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Abstract
Aligning large language models (LLMs) with hu-
man preferences requires balancing policy opti-
mization with computational stability. While re-
cent offline methods like DPO and SimPO by-
pass reinforcement learning’s complexity, they
face critical limitations: DPO relies on static ref-
erence models that degrade with policy updates,
and SimPO assumes a uniform target reward mar-
gin that ignores instance-wise preference strength.
We propose AlphaDPO, an adaptive preference
optimization framework that dynamically repa-
rameterizes the reference distribution to address
these issues. Our key innovation lies in an im-
plicit reference model π̂ref ∝ U(y|x)(πθ/πref)

α,
which interpolates between policy-driven special-
ization and uniform exploration while enabling
instance-adaptive reward margins. Theoretically,
we prove AlphaDPO implicitly controls sequen-
tial KL divergence between iterative policy up-
dates, ensuring stability even with poorly cali-
brated reference models. Empirically, AlphaDPO
achieves state-of-the-art performance on AlpacaE-
val 2 (58.7% LC win rate) and Arena-Hard (35.7%
win rate) across Mistral2-7B, Llama3-8B, and
Gemma2-9B, demonstrating robust alignment
without multi-stage training. Our work establishes
adaptive reference reparameterization as a princi-
pled mechanism for preference optimization. The
code is available at https://github.com/
junkangwu/alpha-DPO.

1. Introduction
Learning from human feedback is essential for aligning
large language models (LLMs) with human values and inten-
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tions (Leike et al., 2018), ensuring they are helpful, honest,
and harmless (Askell et al., 2021). Reinforcement learn-
ing from human feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022; Stiennon et al., 2020) is a widely used
method for fine-tuning LLMs to achieve this goal. However,
RLHF faces challenges, particularly in computational effi-
ciency and training stability due to its multi-stage process.
Recently, alternative offline algorithms like DPO (Rafailov
et al., 2023) and SimPO (Meng et al., 2024) have been
explored. Specifically, DPO reparameterizes the reward
function in RLHF to directly learn a policy model (πθ) from
preference data, removing the need for an explicit reward
model. Building on DPO, SimPO removes the reference
model requirement but introduces a target reward margin γ
to enhance the separation between response pairs, achieving
leading performance. This naturally raises the question:

Do we really need a reference model in the alignment
process?

This question prompts a deeper analysis of SimPO’s under-
lying mechanism: it can be viewed as a variant of DPO
where the original reference model πref is replaced by an
implicit reference model π̂ref. In SimPO, the target reward
margin γ actually reflects a constant difference between
the log likelihoods of a selected response and a rejected
one, i.e., (log π̂ref(yw|x)− log π̂ref(yl|x)). As the constant
difference γ is independent of arbitrary responses, this im-
plicitly assumes a uniform reference distribution (cf. Fig-
ure 1). By tuning γ, SimPO effectively finds an “ideal”
uniform implicit reference model, yielding substantial per-
formance improvements over standard DPO, particularly
when the original reference model πref is suboptimal (Hong
et al., 2024). While conceptually appealing with empir-
ical improvements, SimPO has two inherent limitations:
(1) Applying the same target reward margin to all pairwise
comparisons ignores the variability in the data (Yang et al.,
2024; Wu et al., 2024), potentially compromising decision
quality in some cases; and (2) The implicit assumption of
a uniform reference model somehow lacks a solid theoreti-
cal foundation. These limitations could hinder the model’s
ability to achieve alignment across varied training data, es-
pecially in domains with diverse preferences or complex
reward structures (Morimura et al., 2024; He et al., 2024).
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Figure 1. DPO, SimPO and AlphaDPO mainly differ in their implicit reference model, as indicated in the shaded box, leading to variations
in their respective loss functions. AlphaDPO outperforms DPO and SimPO across a wide range of settings on AlpacaEval 2.

In response to these challenges, we propose an adaptive pref-
erence distribution, which gives rise to an adaptive reward
margin for different response pairs. We term this simple
yet effective preference optimization algorithm AlphaDPO.
Specifically, the adaptive preference distribution is heuris-
tically set as: π̂ref(y|x) = U(y|x) (πθ(y|x)/πref(y|x))α.
Here, U(y|x), inspired by SimPO, employs a uniform dis-
tribution to establish an initial target reward margin, while
the term (πθ(y|x)/πref(y|x))α adjusts the balance between
the policy model πθ and the reference model πref to achieve
a personalized reward margin. When α = 0, AlphaDPO
reduces to SimPO; as α increases, the ratio between πθ and
πref becomes dominant, enabling a personalized, dynamic
target. More important, AlphaDPO offers several intriguing
theoretical insights: We demonstrate that AlphaDPO bal-
ances alignment and diversity via KL divergence control.
By approximating the sequential KL divergence between
the policy and the reference model, AlphaDPO achieves
computational efficiency and robustness, particularly when
the reference model is not well-calibrated at the token level.

Extensive analysis indicates that AlphaDPO leverages pref-
erence data more effectively by assigning personalized mar-
gins to each pair, resulting in an improved policy model. As
demonstrated in Figure 1, our method consistently outper-
forms DPO and SimPO across three base model settings
(Mistral2-7B, Llama3-8B, and Gemma2-9B) on AlpacaEval
2 and Arena-Hard (cf. Section 5). Notably, we achieve a
58.7 length-controlled win rate on AlpacaEval 2, and a 35.7
win rate on Arena-Hard, establishing it as the strongest 8B
open-source model to date.

2. Preliminaries
Offline Alignment. In the offline alignment problem, we
have access to a dataset D = {(x, yw, yl)} comprising
prompts x and labeled response pairs (yw, yl) obtained from
a reference policy πref. Here, yw is the preferred (winning)
response and yl is the less preferred (losing) response. Al-

though the underlying latent reward function r∗(x, y) that
governs these preferences is not directly observable, the
Bradley-Terry (BT) model (Bradley & Terry, 1952) pro-
vides a framework for modeling pairwise comparisons:

P(yw ≻ yl|x) =
exp(r∗(x, yw))

exp(r∗(x, yw)) + exp(r∗(x, yl))
, (1)

where r∗(x, y) assigns a latent reward to each response y
given prompt x. The goal of offline alignment is to learn a
policy πθ that approximates r∗(x, y) using D.

Reinforcement Learning from Human Feedback
(RLHF). Classical offline alignment algorithms employ
reinforcement learning with a KL-regularized reward ob-
jective (Bai et al., 2022; Ziegler et al., 2019; Ouyang et al.,
2022), defined for a regularization parameter η > 0:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]−βDKL[πθ(y|x)||πref(y|x)],
(2)

where rϕ(x, y) is the reward function learned using the BT
model on the preference dataset, πθ is the policy model
being optimized, πref is the fixed reference policy, typically
obtained via supervised fine-tuning. The KL-divergence
regularizes the policy to remain close to the reference model.

Directed Preference Optimization (DPO). DPO (Rafailov
et al., 2023) is a leading offline preference optimization
method. Instead of learning an explicit reward model, DPO
reparameterizes the reward function r(x, y) using a closed-
form expression involving the optimal policy:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (3)

where Z(x) is the partition function independent of y. This
leads to the DPO loss for any triplet (x, yw, yl):

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yl|x)

)]
.

(4)
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where σ(·) denotes the sigmoid function.

Simple Preference Optimization (SimPO). SimPO (Meng
et al., 2024) introduces two key contributions: (1) a length-
normalized reward, calculated as the average log-probability
per token of a response under the policy model πθ, and (2)
a target reward margin γ to ensure the reward difference
between winning and losing responses exceeds this margin.
The SimPO loss is formulated as:

LSimPO(πθ) = −E(x,yw,yl)∼D[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
,

(5)
where |y| denotes the length (i.e., number of tokens) of
response y, normalizing the reward by response lengths,
and γ is the target reward margin.

3. Method
In this section, we establish a unified framework that con-
nects DPO and SimPO (Section 3.1), highlighting the criti-
cal role of the reference model in preference optimization.
We then introduce AlphaDPO (Section 3.2), a new prefer-
ence optimization algorithm that synergizes the strengths of
both DPO and SimPO.

3.1. A Common Framework for DPO and SimPO

A key insight in our work is that SimPO implicitly adopts
a uniform distribution over the vocabulary as its reference
model, whereas DPO employs the SFT model as the refer-
ence. By examining the role of the reference model in both
methods, we derive the following result:

Theorem 3.1. Let U(y|x) denote a uniform distribution
over the vocabulary for a given input x, replacing πref(y|x)
in the DPO loss function. Then, the DPO loss function
simplifies to:

L(πθ;U) = −E(x,yw,yl)∼D

[log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] ,
(6)

where γ = β (logU(yw|x)− logU(yl|x)) is a constant.
Under a length-normalized reward formulation, this loss
function becomes:

LLN(πθ;U) = −E(x,yw,yl)∼D[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
.

(7)
Therefore, SimPO can be interpreted as a special case of
DPO where the reference model is a uniform distribution.

Remark 3.2. Why do winning and losing responses have
different probabilities under a uniform policy? Although
both winning and losing responses are sampled from the
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Figure 2. log πref(yw|x)− log πref(yl|x) along the training steps.
The random fluctuations suggest πref struggles to distinguish be-
tween the preferred and less preferred responses.
same policy model, their selection probabilities diverge
through the reward model’s scoring mechanism. Specif-
ically, winning response (yw) are those assigned higher
scores, while losing response (yl) receive lower scores. Even
under a uniform policy, these selections remain distinct be-
cause their selection probabilities are tied to their relative
scores, not to the underlying uniform distribution over the
response space.

Theorem 3.1 establishes a unified framework for DPO and
SimPO by showing that replacing the reference model πref
in DPO with a uniform distribution U reduces the DPO loss
to the SimPO loss, up to a constant term γ. This reveals that
SimPO is essentially DPO with a uniform reference model.
Consequently, the term β (log πref(yw|x)− log πref(yl|x))
collapses to a constant, reflecting the difference in selection
probabilities induced by the scoring mechanism. This em-
phasizes the pivotal role of the implicit reference model in
preference optimization.

Limitations of DPO: As depicted in Figure 2, the reference
model πref in DPO may not effectively distinguish between
the preferred (yw) and less preferred (yl) responses, as its
outputs do not inherently reflect the preference information.
In contrast, using a uniform distribution as in SimPO results
in a reward margin γ, ensuring that the reward difference
between the preferred and less preferred responses is entirely
governed by the policy model πθ.

Limitations of SimPO: While SimPO simplifies the loss
function by using a constant offset γ, this one-size-fits-all
approach overlooks the variability inherent in different data
instances. The fixed γ across all training samples could lead
to suboptimal performance, especially in the presence of
noise or inconsistencies in the data. Moreover, completely
discarding reference model πref may eliminate potentially
useful prior knowledge about language structure and se-
mantic relationships that could help discriminate between
similar response pairs.
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3.2. Proposed Method: AlphaDPO

Our analysis highlights the significant impact of the refer-
ence model in preference optimization. To overcome the
limitations identified in both DPO and SimPO, we propose
the following principles:

Principle 1: The reference model should contribute to dif-
ferentiating between preferred and less preferred responses.

Principle 2: The reference model should adapt to discrep-
ancies between response pairs to capture instance-specific
nuances.

Principle 1 addresses the shortcoming in DPO, where the
reference model may inadequately distinguish between yw
and yl, introducing uncertainty without a guaranteed mar-
gin. Principle 2 rectifies the oversimplification in SimPO,
where the absence of a reference model fails to account for
variability across different instances.

Deriving the AlphaDPO Objective. Starting from the stan-
dard Reinforcement Learning (RL) objective for preference
optimization, we redefine the reference model πref as an
implicit reference model π̂ref, formulated as:

π̂ref(y|x) ∝ U(y|x)
(

πθ(y|x)
πref(y|x)

)α

, (8)

where α is a hyperparameter that determines the extent to
which the policy model πθ modifies the reference model
πref, and U(y|x) represents a uniform distribution provid-
ing a stable baseline. This formulation shares structural
similarities with the weak-to-strong preference optimiza-
tion framework (Zhu et al., 2025), where the aligned strong
model πstrong

r is expressed as:

πstrong
r (y | x) ∝ πstrong

ref (y | x)
(
πweak
r (y | x)

πweak
ref (y | x)

)α

. (9)

Both formulations employ model ratios to dynamically ad-
just the reference distribution — πθ

πref
in Equation 8 and πweak

r

πweak
ref

in Equation 9. Specifically, π̂ref interpolates between ex-
isting methods, controlled by the smoothness parameter α:
i) When α = 0, π̂ref reduces to the uniform distribution
U(y|x), equivalent to the assumption in SimPO. ii) When
α = 1, π̂ref fully incorporates the proportionality πθ

πref
, align-

ing with DPO.

The motivation behind this redefinition is to overcome the
potential suboptimality of both SimPO and DPO by learn-
ing instance-specific adjustments while preserving useful
prior knowledge. Rather than relying on either a fixed ref-
erence model or a constant margin, π̂ref creates a flexible
framework that can better capture varying degrees of prefer-
ence strength across different instances. Further details are
provided in Appendix C.

Substituting π̂ref into the original DPO loss function, we

obtain the AlphaDPO objective:

LAlphaDPO(πθ, πref)

= −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
π̂ref(yw|x)
π̂ref(yl|x)

)]
= −E(x,yw,yl)∼D[
log σ

(
β

(
log

πθ(yw|x)
πθ(yl|x)

)
− [γ + αM(x, yw, yl)]

)]
,

(10)
where γ = β

(
log U(yw|x)

U(yl|x)

)
is a constant offset as before,

and M(x, yw, yl) is defined as:

M(x, yw, yl) = β

(
log

πθ(yw|x)πref(yl|x)
πref(yw|x)πθ(yl|x)

)
. (11)

The term M(x, yw, yl) measures the divergence between
the policy model πθ and the reference model πref over the
response pairs, effectively capturing instance-specific dis-
crepancies as described in Principle 2.

Stop Gradient on π̂ref: Although π̂ref depends on πθ and
πref, it is intended to serve as a fixed reference during op-
timization. To prevent gradients from backpropagating
through π̂ref to πθ, we apply a stop-gradient operation, de-
noted as sg[·], ensuring that π̂ref remains constant during the
policy updates.

Normalization of M(x, yw, yl): To stabilize training and
avoid M(x, yw, yl) dominating the loss due to scale varia-
tions, we apply Z-score normalization (Patro & Sahu, 2015)
to M :

M∗(x, yw, yl) =
M(x, yw, yl)− µM

σM
, (12)

where µM and σM are the mean and standard deviation of
M computed over the training dataset.

Length-normalized Reward Formulation: Inspired by
SimPO, we incorporate length normalization into our
method. This adjustment ensures that rewards are scaled
appropriately with respect to the length of the sequences,
thereby stabilizing the training process. As demonstrated
in our experiments (cf. Appendix D.2), we also confirmed
that even without length normalization, our method remains
effective and continues to show performance improvements.

Final Objective: Incorporating the above considerations,
the final AlphaDPO loss function becomes:

LAlphaDPO(πθ, πref) = −E(x,yw,yl)∼D

[log σ (u(x, yw, yl)− sg [γ + αM∗(x, yw, yl)])] ,
(13)

where u(x, yw, yl) = β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x).
This formulation ensures balanced influence between the
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policy and reference models, aligning with Principles 1
and 2. By incorporating the normalized discrepancy term
M∗(x, yw, yl), AlphaDPO adaptively adjusts the margin
between preferred and less preferred responses based on
instance-specific differences, enhancing learning.

4. Theoretical Analysis of AlphaDPO
Balancing alignment performance with response diversity
is crucial in recent alignment methods (Zeng et al., 2024;
Wang et al., 2024a; Ji et al., 2024a). A popular approach
is the Token-Level Direct Preference Optimization (TDPO)
method (Zeng et al., 2024), which introduces fine-grained
control of the KL divergence at the token level. Given a
prompt x and preceding tokens y<t, the policy πθ generates
the next token z by sampling from πθ(z|x, y<t).

By mapping the reward model to a token-level format, the
TDPO loss is defined as:

LTDPO(πθ) = −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

− δ(x, yw, yl)

)]
,

(14)
where the margin term δ(x, yw, yl) is defined as:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]− βDSeqKL[x, yw;πref||πθ],

(15)

= β

|yl|∑
t=1

Ez[log
πref(z|[x, y<t

l ])

πθ(z|[x, y<t
l ])

]− β

|yw|∑
t=1

Ez[log
πref(z|[x, y<t

w ])

πθ(z|[x, y<t
w ])

].

(16)

Here, z ∼ πref and DSeqKL[x, y;πref||πθ] denotes the se-
quential KL divergence between πref and πθ along the se-
quence y given x.

Below we present a lemma establishing theoretical connec-
tions between TDPO and AlphaDPO w.r.t. the margin terms.

Lemma 4.1 (Equivalence of Margin Terms). Consider the
margin term δ(x, yw, yl) that represents the difference in
sequential KL divergences between a reference policy πref

and policy πθ for preferred sequence yw and rejected se-
quence yl, conditioned on input x:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]

− βDSeqKL[x, yw;πref||πθ],
(17)

Under the assumption that the sequential KL divergence can
be approximated by the log-likelihood ratio of complete se-
quences, the margin term δ(x, yw, yl) admits the following
approximation:

δ(x, yw, yl) ≈ β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
= M(x, yw, yl),

where M(x, yw, yl) is the margin term in the AlphaDPO
objective.

The proof follows from the sequence-level approximation
of the KL divergence between πref and πθ along a sequence
y, where:

DSeqKL[x, y;πref||πθ] =

|y|∑
t=1

Ez∼πref

[
log

πref(z|x, y<t)

πθ(z|x, y<t)

]
≈ log

πref(y|x)
πθ(y|x)

.

Applying this approximation to both yw and yl, the dif-
ference δ(x, yw, yl) simplifies to the difference of log-
probability ratios, thereby establishing the equivalence with
the margin term in AlphaDPO.

Lemma 4.1 highlights that the margin term δ(x, yw, yl),
which represents the sequential KL divergence difference
between preferred and rejected responses, can be directly
mapped to the term M(x, yw, yl) in AlphaDPO. This map-
ping underscores the theoretical connection between the
two approaches in terms of alignment control. While TDPO
operates at the token level and provides fine-grained control,
AlphaDPO offers greater computational efficiency by oper-
ating at the sequence level without sacrificing performance
(cf. Appendix Table 6). Moreover, the sequence-level ap-
proximation enhances robustness to token-level noise in πref,
making AlphaDPO particularly suited for scenarios where
the reference policy may not be perfectly aligned.

Advantages of the margin term δ(x, yw, yl). The core
contribution of TDPO lies in introducing the margin term
r(x, yw)− r(x, yl)− δ(x, yw, yl), which is similar to DPO
with an offset (Amini et al., 2024) and helps control the
KL divergence. In contrast, AlphaDPO generalizes this ap-
proach by replacing δ(x, yw, yl) with M(x, yw, yl), a more
flexible margin term inspired by SimPO. Appendix Table 6
supports this with performance comparisons between TDPO
and AlphaDPO. These findings illustrate: i) Adding an off-
set to DPO and its variants is a robust strategy, applicable
to both TDPO and AlphaDPO. ii) The choice of offset is
critical — the sequence-level margin term M(x, yw, yl) is
particularly effective when applied to potentially unreliable
reference models.

5. Experiments
In this section, we present the main results of our experi-
ments, highlighting the superior performance of AlphaDPO
over existing methods on various benchmarks and ablation
studies to analyze the impact of different components of
AlphaDPO.
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Table 1. AlpacaEval 2, Arena-Hard results across four settings. “WR” denotes the raw win rate,“LC” the length-controlled win rate,
and “SC” the style-controlled win rate. The best results are highlighted in bold, while the second-best are underlined.

Method
Llama3-Instruct (8B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

SFT 24.0 23.6 22.1 22.2 22.4 19.0 15.4 18.3 13.2 12.9

DPO 40.2 38.1 31.9 32.0 31.2 20.3 17.9 18.9 13.7 13.4
IPO 35.9 34.4 29.2 29.9 30.2 22.3 18.6 22.4 16.6 16.2
CPO 29.6 34.4 26.3 28.1 29.4 26.2 31.7 26.6 21.4 23.8
KTO 38.3 34.1 30.3 30.6 30.3 19.4 20.3 21.5 16.0 16.8
ORPO 31.6 29.8 26.6 26.6 26.3 24.0 23.0 24.4 18.5 18.6
R-DPO 40.3 37.3 33.1 32.9 32.9 21.4 22.2 18.7 14.0 13.8
SimPO 43.8 38.0 33.5 33.5 32.6 30.2 32.1 25.6 19.8 20.1

AlphaDPO 46.6 38.1 34.1 34.2 33.3 32.3 32.6 27.2 21.5 21.5

Method
Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

SFT 24.0 23.6 22.1 22.2 22.4 48.7 36.5 32.0 42.2 42.1

DPO 51.9 50.8 26.1 31.5 33.9 70.4 66.9 43.9 55.6 58.8
IPO 40.6 39.6 31.1 34.2 34.9 62.6 58.4 41.1 51.9 53.5
CPO 36.5 40.8 29.4 32.8 34.2 56.4 53.4 42.4 53.3 55.2
KTO 41.4 36.4 27.1 29.5 28.9 61.7 55.5 41.7 52.3 53.8
ORPO 36.5 33.1 28.8 30.8 30.4 56.2 46.7 35.1 45.3 46.2
R-DPO 51.6 50.7 29.2 34.3 35.0 68.3 66.9 45.1 55.9 57.9
SimPO 55.6 49.6 28.5 34.0 33.6 72.4 65.0 45.0 56.1 57.8

AlphaDPO 58.7 51.1 30.8 36.3 35.7 73.4 66.1 48.6 59.3 60.8

5.1. Experiments Setup

Models and training settings. We optimize preferences
using three model families: Llama3-8B (AI@Meta,
2024), Mistral2-7B (Jiang et al., 2023), and Gemma2-9B
(Rivière et al., 2024), all in the Instruct setup. Following
Meng et al. (2024), we utilize pre-trained instruction-
tuned models (meta-llama/Meta-Llama-3-8B-Instruct,
mistralai/Mistral-7B-Instruct-v0.2, google/gemma-2-9b-it)
as SFT models. For a fair comparison, we use the same
training data as SimPO: princeton-nlp/llama3-ultrafeedback-
armorm1, princeton-nlp/mistral-instruct-ultrafeedback2,
and princeton-nlp/gemma2-ultrafeedback-armorm 3 for
Llama3-8B, Mistral2-7B, and Gemma2-9B, respec-
tively. Additionally, the v0.2 Llama3-Instruct setup uses
RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024b)

1https://huggingface.co/datasets/princeton-nlp/llama3-
ultrafeedback-armorm

2https://huggingface.co/datasets/princeton-nlp/mistral-
instruct-ultrafeedback

3https://huggingface.co/datasets/princeton-nlp/gemma2-
ultrafeedback-armorm

as the reward model for ranking generated data, significantly
enhancing performance. These configurations represent
state-of-the-art methods, positioning our models among the
top performers on various leaderboards.

Evaluation benchmarks. We evaluate our models using
two widely recognized open-ended instruction-following
benchmarks: AlpacaEval 2 (Li et al., 2023) and Arena-
Hard (Li et al., 2024). These benchmarks assess the models’
conversational abilities across a diverse range of queries
and are extensively used by the research community. For
AlpacaEval 2, we report the length-controlled win rate (LC)
and raw win rate (WR). For Arena-Hard, we provide the
win rate (WR), length-controlled win rate (LC), and style-
controlled win rate (SC) compared to baseline models. Note
that style significantly impacts performance on these leader-
boards.

Baselines. We compare AlphaDPO with several state-of-
the-art preference optimization methods: DPO (Rafailov
et al., 2023), SimPO (Meng et al., 2024), IPO (Azar et al.,
2024), CPO (Xu et al., 2024), KTO (Ethayarajh et al., 2024),
ORPO (Hong et al., 2024), and R-DPO (Park et al., 2024).
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Table 2. Ablation studies under Llama3-Instruct v0.2 and Mistral-Instruct settings. We ablate each key design of AlphaDPO and
explore variants of the implicit reference model π̂ref.

Method
Llama3-Instruct v0.2 (8B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) SC (%) LC (%) WR (%) LC (%) WR (%) SC (%) LC (%) WR (%)

U(·|x) 55.6 49.6 28.5 34.0 33.6 30.2 32.1 25.6 19.8 20.1

U(·|x) (πθ(·|x)/πref(·|x))α 58.7 51.1 30.8 36.3 35.7 32.3 32.6 27.2 21.5 21.5

w/o Normalization 56.5 49.7 23.1 28.4 27.7 32.1 33.1 25.2 19.7 19.6
w/o sg 2.7 3.7 7.7 5.4 6.3 27.2 27.7 25.8 20.3 20.7
γ = 0 51.2 44.9 30.0 34.5 33.3 31.9 31.3 24.2 19.6 19.3

U(·|x) (πθ(·|x))α 57.2 50.4 27.6 33.5 32.9 31.6 34.1 26.9 21.3 21.5
U(·|x) (πref(·|x))α 56.3 49.5 29.0 34.3 33.5 28.6 30.9 25.5 20.1 20.3
U(·|x) (1/πref(·|x))α 56.3 49.2 29.0 34.4 33.8 32.2 33.1 26.0 20.7 20.6

We also include the SFT model as a baseline. We thor-
oughly tune the hyperparameters for each baseline and re-
port the best performance. Further details can be found in
Appendix D.1.

5.2. Main Results

AlphaDPO consistently outperforms existing preference
optimization methods. As shown in Table 1, while all
preference optimization algorithms improve over the SFT
baseline, AlphaDPO achieves superior performance com-
pared to existing methods specifically on the AlpacaEval 2
LC metric. These significant improvements highlight the
robustness and effectiveness of AlphaDPO. Specifically, Al-
phaDPO outperforms the best baseline by an average of
3 percentage points in AlpacaEval 2 LC win rate. Fur-
thermore, on benchmarks such as Arena-Hard, AlphaDPO
achieves state-of-the-art or second-best results, demonstrat-
ing its competitiveness across different evaluation settings.

Impact of Metrics on Leaderboard Rankings. While both
benchmarks are widely used, the standard win rate (WR)
metric shows poor separability among different methods,
making it challenging to distinguish their relative perfor-
mance. Minor differences in WR may stem from biases
towards generating detailed or aesthetically pleasing re-
sponses, aligning with observations by Dubois et al. (2024)
and Chen et al. (2024a). In contrast, the length-controlled
(LC) and style-controlled (SC) win rates offer more reliable
and interpretable metrics, as they reduce the influence of
verbosity and stylistic biases, thereby better reflecting true
performance.

The importance of the design on the implicit refer-
ence model. As the core contribution of this work
is to propose a novel reference model π̂ref(y|x) =
U(y|x) (πθ(y|x)/πref(y|x))α, we also evaluate other vari-
ants of the reference model. Specifically, we com-
pare AlphaDPO with three variants: (1) π̂ref(y|x) =

U(y|x) (πθ(y|x))α, (2) π̂ref(y|x) = U(y|x) (πref(y|x))α,
and (3) π̂ref(y|x) = U(y|x) (1/πref(y|x))α. As shown in
Table 2, most of the variants perform better than SimPO
(π̂ref(y|x) = U(y|x)), which demonstrates the importance
of adaptive margin between pairs. Besides, our proposed
reference model consistently outperforms other variants,
indicating the effectiveness of the proposed design.

All key designs in AlphaDPO are crucial. To further an-
alyze the impact of different components in AlphaDPO,
we conduct ablation studies by removing key components
from AlphaDPO. As shown in Table 2, removing normal-
ization, stop gradient, or setting γ = 0 all lead to significant
performance drops, highlighting the importance of these
components in AlphaDPO.

5.3. KL divergence control in AlphaDPO

Outstanding Performance and Lower KL. As noted in
Rafailov et al. (2023); Zeng et al. (2024), it is crucial to
consider both performance and KL divergence when com-
paring algorithms. A slightly higher win rate accompanied
by a significantly higher KL divergence is often not de-
sirable. In line with the design principles of TDPO, we
implemented SimPO and AlphaDPO. Figure 3a 3b presents
the KL divergence curves. The results indicate that as α
increases, the KL divergence of AlphaDPO remains stable
or even decreases slightly when compared to SimPO. This
demonstrates that AlphaDPO not only achieves superior
performance but also maintains a lower KL divergence, in-
dicating a better balance between alignment and control of
KL divergence during the training process.

Mitigating Over-Optimization. Over-optimization, as de-
scribed by Gao et al. (2023) and Rafailov et al. (2024),
refers to a phenomenon where model performance exhibits
a hump-shaped pattern across different targets: beyond
an optimal point, further increasing the KL budget results
in diminishing returns. To investigate this, we evaluate
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Figure 3. Analysis of KL divergence and LC trade-off. (a) KL divergence for chosen samples (yw), (b) KL divergence for rejected samples
(yl), and (c) relationship between LC and KL divergence.
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Figure 4. Impact of α on (a) LC and SC win rate, (b) reward difference distribution, and (c) log-likelihood distribution of chosen responses
in AlphaDPO.

SimPO and AlphaDPO at four intermediate checkpoints,
corresponding to different KL budgets. As illustrated in
Figure 3c, it is intriguing that while the performance of our
approach does decrease with increasing KL budget, the de-
cline is relatively modest. This indicates that our method
effectively mitigates the issue of over-optimization.

5.4. The Impact of α in AlphaDPO

Effect of α on Performance. We investigated how the pa-
rameter α in AlphaDPO impacts the win rate on AlpacaEval
2 and Arena-Hard. The results, as shown in Figure 4 (a), in-
dicate that the style-control win rate on Arena-Hard initially
increases and then decreases with increasing α. In contrast,
the length-control win rate on AlpacaEval 2 exhibits a con-
sistently increasing trend. This suggests that the optimal
value of α varies depending on the evaluation benchmarks.
Further experiments refer to Appendix D.3.

Impact of α on the reward distribution. We visualize the
distribution of the learned reward margin r(x, yw)−r(x, yl)
and the log likelihood of the chosen response log πθ(yw|x)
under different α values in Figure 4 (b,c). Decreasing α
results in a flatter reward margin, while the log likelihood
distribution remains relatively unchanged. Conversely, in
SimPO (cf. Figure 6), increasing γ yields a flatter reward
margin distribution but at the cost of also flattening the
log likelihood distribution, which undesirably lowers the
log likelihood of positive samples. This indicates that Al-
phaDPO can better balance the relationship between the

reward margin and log likelihood.

6. Discussion
Conclusion. We proposed AlphaDPO, an adaptive prefer-
ence optimization method that improves LLM alignment
by introducing a dynamic reward margin based on instance-
specific differences. AlphaDPO addresses limitations in
previous methods like DPO and SimPO by balancing align-
ment and diversity through KL divergence control. Our
theoretical guarantees and empirical results show that Al-
phaDPO consistently outperforms baselines on benchmarks
like AlpacaEval 2 and Arena-Hard, with significant improve-
ments in win rates, establishing it as a robust solution for
LLM fine-tuning.

Limitations and Future Work. While AlphaDPO en-
hances performance, it introduces an additional hyperpa-
rameter, α, requiring manual tuning. Future work could
focus on developing an adaptive approach to automatically
adjust this parameter. Additionally, although we show Al-
phaDPO’s theoretical equivalence to online methods, it re-
mains an offline approach. Extending it to online learning
would allow real-time adaptation, broadening its application
in interactive environments. Lastly, we observed that dif-
ferent benchmarks, such as AlpacaEval 2 and Arena-Hard,
require distinct parameter settings for optimal performance.
Investigating a more generalized approach that adapts effec-
tively across multiple benchmarks would further improve
the model’s versatility.
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Impact Statement
This work introduces AlphaDPO, an adaptive preference op-
timization framework that improves Large Language Model
(LLM) alignment with human preferences. By establishing
a more principled and effective mechanism for preference
optimization, AlphaDPO contributes to developing more
robustly aligned LLMs, a crucial step towards safer and
more beneficial AI systems.
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A. Related Work
Reinforcement learning from human feedback. RLHF is a technique that aligns large language models with human
preferences and values (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Azar et al., 2024). Traditional RLHF
can be divided into three stages: supervised fine-tuning (Zhou et al., 2023; Taori et al., 2023; Geng et al., 2023; Conover
et al., 2023; Köpf et al., 2023; Ding et al., 2023), reward modeling (Gao et al., 2023; Luo et al., 2025; Chen et al., 2024b;
Lightman et al., 2024; Havrilla et al., 2024; Lambert et al., 2025), and policy optimization (Schulman et al., 2017; Anthony
et al., 2017). In the third stage, Proximal Policy Optimization (PPO) is a widely used algorithm. Additionally, Xiong et al.
(2023) proposed efficient algorithms for the reverse-KL regularized contextual bandit framework in RLHF. Ye et al. (2024)
introduced provably efficient algorithms for KL-regularized Nash-Learning from Human Feedback (NLHF). Furthermore, Ji
et al. (2024b) developed an active-query-based PPO algorithm with specific regret bounds and query complexity.

Offline direct preference optimization. Several alternative preference optimization objectives have been proposed in
addition to DPO (Rafailov et al., 2023). IPO (Azar et al., 2024) addresses the overfitting issues associated with DPO.
ORPO (Hong et al., 2024) and SimPO (Meng et al., 2024) aim to eliminate the dependence on a reference model. R-
DPO (Park et al., 2024) focuses on mitigating exploitation based on sequence length. KTO (Ethayarajh et al., 2024) deals
with preference optimization when data are not pairwise. CPO (Xu et al., 2024) and β-DPO(Wu et al., 2024) emphasize the
quality of preference data. Another line of research explores comparisons among more than two instances (Dong et al.,
2023; Liu et al., 2025a; Song et al., 2024; Yuan et al., 2023).

Online direct preference optimization. Offline direct preference optimization methods are simple but rely on preference
data collected offline. RLHF methods interact online with the language model being aligned but require policy gradients.
In contrast, online direct preference optimization methods combine the advantages of both approaches. Yuan et al. (2024)
proposed a “self-rewarding” approach in which the policy being aligned provides online feedback to itself. Alternatively,
OAIF (Guo et al., 2024) is a novel online preference optimization method that can leverage feedback from any LLM,
including those stronger than the LLM being aligned. Swamy et al. (2024) also concurrently investigate the importance of
online preference but still rely on reward models (RMs). SELMA (Zhang et al., 2025) improves exploration efficiency by
selectively favoring responses with high potential rewards rather than indiscriminately sampling unseen responses.

B. Proofs
B.1. Proof of Theorem 3.1

Theorem 3.1. Let U(y|x) denote a uniform distribution over the vocabulary for a given input x, replacing πref(y|x) in the
DPO loss function. Then, the DPO loss function simplifies to:

L(πθ;U) = −E(x,yw,yl)∼D

[log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] ,
(6)

where γ = β (logU(yw|x)− logU(yl|x)) is a constant. Under a length-normalized reward formulation, this loss function
becomes:

LLN(πθ;U) = −E(x,yw,yl)∼D[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
.

(7)

Therefore, SimPO can be interpreted as a special case of DPO where the reference model is a uniform distribution.

Proof. Let U(y|x) denote a uniform distribution over the vocabulary V for a given input x. Specifically, for any sequence y,
the uniform distribution is defined as:

U(y|x) =
|y|∏
t=1

1

|V|
=

(
1

|V|

)|y|

.

Consider the DPO loss function:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yl|x)

)]
.

12



AlphaDPO: Adaptive Reward Margin for Direct Preference Optimization

By substituting πref = U , the term involving the reference policy simplifies to:

β log
πref(yw|x)
πref(yl|x)

= β (logU(yw|x)− logU(yl|x)) = γ,

where γ is a constant. This constancy arises because yw and yl are chosen from distinct subsets of the vocabulary, ensuring
that logU(yw|x) − logU(yl|x) does not depend on the lengths of the sequences but is instead determined by the fixed
probabilities of the respective subsets. Consequently, γ remains fixed across all samples in D.

Substituting back into the DPO loss function, we obtain:

L(πθ;U) = −E(x,yw,yl)∼D [log σ (β (log πθ(yw|x)− log πθ(yl|x))− γ)] .

Under the length-normalized reward formulation, the rewards are adjusted by the lengths of the sequences yw and yl. This
normalization yields:

LLN(πθ;U) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
.

Here, γ remains a fixed constant since it is derived from the uniform distribution over distinct vocabulary subsets corre-
sponding to yw and yl.

Comparing this with the SimPO loss function:

LSimPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
,

it is evident that:
LLN(πθ;U) = LSimPO(πθ).

Thus, when the reference policy πref is a uniform distribution over distinct vocabulary subsets for yw and yl, the DPO loss
function simplifies to the SimPO loss function with γ being a fixed constant. This establishes that SimPO is a special case of
DPO under the specified conditions.

B.2. Proof of Lemma 4.1

Lemma B.1 (Equivalence of Margin Terms). Consider the margin term δ(x, yw, yl) that represents the difference in
sequential KL divergences between a reference policy πref and policy πθ for preferred sequence yw and rejected sequence
yl, conditioned on input x:

δ(x, yw, yl) = βDSeqKL[x, yl;πref||πθ]

− βDSeqKL[x, yw;πref||πθ],
(17)

Under the assumption that the sequential KL divergence can be approximated by the log-likelihood ratio of complete
sequences, the margin term δ(x, yw, yl) admits the following approximation:

δ(x, yw, yl) ≈ β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
= M(x, yw, yl),

where M(x, yw, yl) is the margin term in the AlphaDPO objective.

Proof of Lemma 4.1. We begin by expanding the definition of δ(x, yw, yl):

δ(x, yw, yl) = βDSeqKL[x, yl;πref∥πθ]− βDSeqKL[x, yw;πref∥πθ]

Expanding each sequential KL divergence, we have:
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DSeqKL[x, y;πref∥πθ] =

|y|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t])

πθ(z | [x, y<t])

]
Substituting this into the expression for δ, we obtain:

δ(x, yw, yl) = β

|yl|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t
l ])

πθ(z | [x, y<t
l ])

]
− β

|yw|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t
w ])

πθ(z | [x, y<t
w ])

]
Under the assumption that the reference policy πref has large errors, we approximate the expectation Ez∼πref with a uniform
distribution. This approximation simplifies each expectation term as follows:

|y|∑
t=1

Ez∼πref

[
log

πref(z | [x, y<t])

πθ(z | [x, y<t])

]
≈ log

πθ(y | x)
πref(y | x)

Applying this approximation to both sequential KL divergence terms, we obtain:

δ(x, yw, yl) ≈ β

(
log

πθ(yl | x)
πref(yl | x)

− log
πθ(yw | x)
πref(yw | x)

)
This expression can be rewritten as:

δ(x, yw, yl) ≈ β

(
log

πθ(yw | x)
πref(yw | x)

− log
πθ(yl | x)
πref(yl | x)

)
= M(x, yw, yl)

where M(x, yw, yl) is the margin term defined in the AlphaDPO objective. Thus, we have shown that:

δ(x, yw, yl) ≈ M(x, yw, yl)

This completes the proof.

C. The motivation for the proposed π̂ref(y|x)
The motivation for the proposed reference policy π̂ref(y|x) can be clarified as follows:

• Utility Theory Perspective: The proposed π̂ref(y|x) is designed with the uniform distribution U(y|x) as a baseline.

The term
(

πθ(y|x)
πref(y|x)

)α

dynamically adjusts the reward margin by balancing contributions from the policy and reference
models. This mechanism can be interpreted through the lens of utility theory as relative attractiveness, enabling adaptive
instance-specific reward modeling.

• Gradient Perspective By introducing π̂ref(y|x), the framework mitigates the label flipping issues found in DPO or SimPO.
In the SimPO framework, the gradient is expressed as:

∇θLSimPO(πθ) = −βE(x,yw,yl)∼D

[
sθ

(
1

|yw|
∇θ log πθ(yw|x)−

1

|yl|
∇θ log πθ(yl|x)

)]
,

where sθ = σ
(

β
|yl| log πθ(yl|x)− β

|yw| log πθ(yw|x) + γ
)

.

This formulation may amplify weights when the reward estimate is incorrect. By contrast, under AlphaDPO:

sθ = σ

(
β

|yl|
log πθ(yl|x)−

β

|yw|
log πθ(yw|x) + γ + αM(x, yw, yl)

)
,
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the additional αM(x, yw, yl) component increases weight when the reward estimate is accurate, ensuring a more robust
reward signal.

• Motivational Core The central goal of the proposed AlphaDPO is to address the unreliability of the reference policy, as
outlined in Section 3.1. By integrating the policy model into the reference model design, the quality of the reference model
is enhanced, improving fine-tuning performance. Similar concepts have been explored in recent works (Gorbatovski et al.,
2025; Liu et al., 2025b).

D. Experiments
D.1. Implementation Details

We observed that the performance of various methods is highly sensitive to model parameters and learning rates. To ensure a
fair comparison, we conducted a hyperparameter search as specified in the respective papers. The specific search ranges are
detailed in Table 3. Furthermore, due to recent updates to both Llama3-8b and Instruct-7b models, we had to re-implement
SimPO as the original results were no longer directly applicable.

Training hyperparameters. For other parameters, we used a consistent batch size of 128 across all methods. The learning
rate was searched within the range of [3e-7, 5e-7, 8e-7, 1e-6], and all models were trained for a single epoch with a cosine
learning rate schedule and a 10% warmup phase. Adam was used as the optimizer (Kingma & Ba, 2014). Additionally, the
maximum sequence length was set to 2048.

Table 3. Various preference optimization objectives and hyperparameter search range.
Method Objective Hyperparameter

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

IPO (Azar et al., 2024)
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

− 1
2τ

)2

τ ∈ [0.01, 0.1, 0.5, 1.0]

CPO (Xu et al., 2024) − log σ (β log πθ(yw|x)− β log πθ(yl|x))− λ log πθ(yw|x) α = 1.0, β ∈ [0.01, 0.05, 0.1]

KTO (Ethayarajh et al., 2024) −λwσ
(
β log πθ(yw|x)

πref(yw|x) − zref

)
+ λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
, λl = λw = 1.0

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))] β ∈ [0.01, 0.05, 0.1]

ORPO (Hong et al., 2024) − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

λ ∈ [0.1, 0.5, 1.0, 2.0]
where pθ(y|x) = exp

(
1
|y| log πθ(y|x)

)
R-DPO (Park et al., 2024) − log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

− (α|yw| − α|yl|)
)

α ∈ [0.05, 0.1, 0.5, 1.0]
β ∈ [0.01, 0.05, 0.1]

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

)
β ∈ [2.0, 4.0, 6.0, 8.0]
γ ∈ [0.3, 0.5, 1.0, 1.2, 1.4, 1.6]

AlphaDPO − log σ (u(x, yw, yl)− sg [γ + αM∗(x, yw, yl)]) β ∈ [2.5, 10.0], γ ∈ [0.1, 0.3, 0.5]
where u(x, yw, yl) =

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x) α ∈ [1e− 2, 5e− 2, 0.1, 0.2]

Table 4. The hyperparameter values in AlphaDPO used for each training setting.
Setting β γ α Learning rate

Mistral-Instruct 2.5 0.15 5e-2 6e-7
Llama3-Instruct 2.5 0.6 0.2 1e-6
Llama3-Instruct-v0.2 10.0 0.4 0.2 1e-6
Gemma2-Instruct 10.0 0.4 5e-2 8e-7

Hyperparameter in AlphaDPO. Table 4 outlines the hyperparameters used for AlphaDPO under various settings. It’s
important to note that while our approach involves three key parameters, we have found through experience that β can
be reliably set to 10.0 by default. Among these parameters, γ typically requires more careful tuning. As for α, we have
observed consistent performance improvements when set to 5e-2 by default. If you are already familiar with the parameter
settings for SimPO, you can focus your search primarily on α or simply adopt the default setting of α = 5e− 2.
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Figure 5. AlphaDPO LC on AlpacaEval 2 with different α values.

Decoding hyperparameters. The decoding hyperparameters used in this study are the same as those employed by SimPO4.
We extend our sincere gratitude to the SimPO team for sharing their invaluable insights.

Computation environment. All training experiments presented in this paper were conducted using 8×A100 GPUs, as per
the procedures detailed in the alignment-handbook repository.5

D.2. AlphaDPO without length-normalized

In this paper, we consider length-normalized training as a stability technique and not as a primary contribution of this
work. Existing research (Meng et al., 2024) has demonstrated that length normalization can indeed enhance model
performance, particularly with respect to the length control win rate. However, to validate the general applicability of
AlphaDPO—specifically, its stability and performance without length normalization—we conducted experiments across
several models: meta-llama/Meta-Llama-3-8B-Instruct, mistralai/Mistral-7B-Instruct-v0.2, and google/gemma-2-9b-it.

We evaluated DPO, SimPO without length normalization, and AlphaDPO without length normalization. The experimental
results, as shown in Table 5, demonstrate that AlphaDPO consistently achieves performance improvements even without the
use of length normalization. This indicates the robustness and general effectiveness of AlphaDPO.

Table 5. Performance comparison without length-normalization on AlpacaEval2. “LC” denotes the length-controlled win rate, and “WR”
represents the raw win rate.

Method Llama3-Instruct (8B) Mistral-Instruct (7B) Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)

LC (%) WR (%) LC (%) WR (%) LC (%) WR (%) LC (%) WR (%)

DPO 40.2 38.1 20.3 18.0 51.1 53.3 70.2 66.9
SimPO w/o LN 42.4 40.4 30.5 38.2 49.2 52.6 71.2 69.9
AlphaDPO w/o LN 44.4 42.6 32.0 38.4 51.1 54.0 72.7 70.5

D.3. AlphaDPO with differenct α

To analyze the impact of α on the model, we adjust its value for four different models. The results are illustrated in Figure 5.
When α is set to 0, the model degenerates to SimPO. As α increases, performance improves across all models, although the
optimal value of α varies among them. This highlights the significance of α.

It is noteworthy that within the parameter tuning range [1e-2, 5e-2, 0.1, 0.2], the optimal α values are consistently around
0.1 or even closer to 5e-2.

4https://github.com/princeton-nlp/SimPO/tree/main/eval
5https://github.com/huggingface/alignment-handbook
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Figure 6. (a) SimPO: Reward difference distribution under different γ values. (b) AlphaDPO: Reward difference distribution under
different α values. (c) SimPO: Log likelihood distribution on chosen responses under different γ values. (d) AlphaDPO: Log likelihood
distribution on chosen responses under different α values.

D.4. Comparison With TDPO

To investigate the relationship between TDPO and AlphaDPO, we conducted the experiments, with the results outlined
below.

Table 6. Performance comparison between TDPO and AlphaDPO.

Method Llama3-Instruct (8B)

LC (%) WR (%)

TDPO 52.8 45.9
AlphaDPO w/ δ(x, yw, yl) 56.9 50.4
AlphaDPO w/ M(x, yw, yl) 58.7 51.1

In its original form, TDPO did not perform well on Llama3-8B. By applying Lemma 4.1, we modified the expression
M(x, yw, yl) in AlphaDPO to use TDPO’s δ(x, yw, yl), converting our sentence-level estimations to a token-level calculation.
This adjustment resulted in a noticeable performance improvement, which we attribute to the length-normalization, γ and
z-score normalization of δ(x, yw, yl). Nevertheless, the modified TDPO still underperformed compared to AlphaDPO. This
indicates that, when the πref is suboptimal, token-level calculations are prone to significant errors.
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