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Abstract
A key goal of current mechanistic interpretability
research in NLP is to find linear features (also
called “feature vectors”) for transformers: direc-
tions in activation space corresponding to con-
cepts that are used by a given model in its compu-
tation. Present state-of-the-art methods for find-
ing linear features require large amounts of la-
belled data – both laborious to acquire and com-
putationally expensive to utilize. In this work,
we introduce a novel method, called “observable
propagation” (in short: OBPROP), for finding lin-
ear features used by transformer language mod-
els in computing a given task – using almost no
data. Our paradigm centers on the concept of
“observables”, linear functionals corresponding to
given tasks. We then introduce a mathematical
theory for the analysis of feature vectors, includ-
ing a similarity metric between feature vectors
called the coupling coefficient which estimates
the degree to which one feature’s output corre-
lates with another’s. We use OBPROP to perform
extensive qualitative investigations into several
tasks, including gendered occupational bias, polit-
ical party prediction, and programming language
detection. Our results suggest that OBPROP sur-
passes traditional approaches for finding feature
vectors in the low-data regime, and that OBPROP
can be used to better understand the mechanisms
responsible for bias in large language models.

1. Introduction
When a large language model predicts that the next token in
a sentence is far more likely to be “him” than “her”, what is
causing it to make this decision? The field of mechanistic
interpretability aims to answer such questions by investi-
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gating how to decompose the computation carried out by
a model into human-understandable pieces. This helps us
predict their behavior, identify and correct discrepancies,
align them with our goals, and assess their trustworthiness,
especially in high-risk scenarios. The primary goal is to
improve output prediction on real-world data distributions,
identify and understand discrepancies between intended and
actual behavior, align the model with our objectives, and
assess trustworthiness in high-risk applications (Olah et al.,
2018).

One important notion in mechanistic interpretability is that
of “features”. A feature can be thought of as a simple func-
tion of the activations at a particular layer of the model, the
value of which is important for the model’s computation at
that layer. For instance, in the textual domain, features used
by a language model at some layer might reflect whether
a token is an adverb, whether the language of the token
is French, or other such characteristics. Possibly the most
sought-after type of feature is a “linear feature”, or “fea-
ture vector”: a fixed vector in embedding space that the
model utilizes by determining how much the input embed-
ding points in the direction of that vector. Linear features
are in some sense the holy grails of features: they are both
easy for humans to interpret and amenable to mathematical
analysis (Olah, 2022).

Contributions Our primary contribution is a method,
which we call “observable propagation” (OBPROP in short),
for both finding feature vectors in large language models
corresponding to given tasks, and analyzing these features
in order to understand how they affect other tasks. Unlike
non-feature-based interpretability methods such as saliency
methods (Simonyan et al., 2013; Jacovi et al., 2021; Wal-
lace et al., 2019) or circuit discovery methods (Conmy et al.,
2023; Wang et al., 2022), observable propagation reveals the
specific information from the model’s internal activations
that are responsible for its output, rather than merely tokens
or model components that are relevant. And unlike methods
for finding feature vectors such as probing (Gurnee et al.,
2023; Li et al., 2023; Elazar et al., 2021) or sparse autoen-
coders (Cunningham et al., 2023), observable propagation
can find these feature vectors without having to store large
datasets of embeddings, perform many expensive forward
passes, or utilize vast quantities of labeled data. In addition,
we present the following contributions:
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• We develop a detailed theoretical analysis of feature vec-
tors. In Theorem 1, we provide theoretical motivation ex-
plaining why LayerNorm sublayers do not affect the direc-
tion of feature vectors; making progress towards answering
the question of the extent to which LayerNorms are used
in computation in transformers, which has been raised in
mechanistic interpretability (Winsor, 2022). In Theorem 2,
we introduce and motivate a measurement of feature vector
similarity called the “coupling coefficient”, which can be
used to determine the extent to which the model’s output on
one task is coupled with the model’s output on another task.

• In order to determine the effectiveness of OBPROP in
understanding the causes of bias in large language mod-
els, we investigate gendered pronoun prediction (§4.1) and
occupational gender bias (§4.2). By using observable prop-
agation, we show that the model uses the same features
to predict gendered pronouns given a name, as it does to
predict an occupation given a name; this is supported by
further experiments on both artificial and natural datasets.

• We perform a quantitative comparison between OBPROP
and probing methods for finding feature vectors on diverse
tasks (subject pronoun prediction, programming language
detection, political party prediction). We find that OBPROP
is able to achieve superior performance to these traditional
data-heavy approaches in low-data regimes (§4.3).

All code used in this paper is provided at
https://github.com/jacobdunefsky/
ObservablePropagation.

1.1. Background and Related Work

In interpretability for NLP applications, there are a num-
ber of saliency-based methods that attempt to determine
which tokens in the input are relevant to the model’s pre-
diction (Simonyan et al., 2013; Jacovi et al., 2021; Wallace
et al., 2019). Additionally, recent circuit-based mechanistic
interpretability research has involved determining which
components of a model are most relevant to the model’s
computation on a given task (Conmy et al., 2023; Wang
et al., 2022; Yu et al., 2023). Our work goes beyond these
two approaches by considering not just relevant tokens, and
not just relevant model components, but relevant feature
vectors, which can be analyzed and compared to understand
all the intermediate information used by models in their
computation.

A separate line of research aims to find feature vectors by
performing supervised training of probes to find directions
in embedding space that correspond to labels (Gurnee et al.,
2023; Li et al., 2023; Elazar et al., 2021; Tigges et al., 2023),
or use unsupervised autoencoders on model embeddings
to find feature vectors (Bricken et al., 2023; Cunningham
et al., 2023). OBPROP does not rely on any training – and

importantly, exhibits greater fidelity to the model’s actual
computation, because it directly uses the model weights to
find feature vectors.

A number of recent studies in interpretability involve finding
feature vectors by decomposing transformer weight matri-
ces into a set of basis vectors and projecting these vectors
into token space (Dar et al., 2023; Millidge & Black, 2023).
OBPROP goes beyond this by taking into account nonlinear-
ities, by finding precise feature vectors for tasks (rather than
merely being limited to choosing from among a fixed set of
vectors), and by formulating the concept of “observables”,
which is more general than the tasks considered in these
prior works.

Another approach to mechanistic interpretability involves
making causal interventions on the model to determine
whether a given abstraction accurately characterizes model
behavior (Lepori et al., 2023; Wu et al., 2024). In contrast,
OBPROP directly finds specific feature vectors responsible
for model behavior, rather than requiring humans to impose
a given ontology onto the model to be tested.

Recently, Hernandez et al. (2023) used differentiation to
obtain linear approximations to computations in language
models responsible for encoding relations (such as “plays
musical instrument”) between entities. OBPROP also uses
differentiation to obtain linear approximations, but in con-
trast with this recent work, we seek to find feature vectors
(rather than linear transformations) which are shared across
multiple tasks rather than merely means by which a single
task is implemented.

The concurrent work of Park et al. (2023) also investigates
linear functionals on language models’ logit vectors and the
connection between them and vectors in the model’s em-
bedding space. However, their approach relies on sampling
from the data distribution in order to estimate the covariance
of unembedding vectors; this is in contrast to the data-free
approach presented here.

2. Observable Propagation: From Tasks to
Feature Vectors

In this section, we present our method, which we call “ob-
servable propagation” (OBPROP), for finding feature vectors
directly corresponding to a given task. We begin by intro-
ducing the concept of “observables”, which is central to
our paradigm. We then explain observable propagation for
simple cases, and then build up to a general understanding.

2.1. Our Paradigm: Observables

Often, in mechanistic interpretability, we care about in-
terpreting the model’s computation on a specific task. In
particular, the model’s behavior on a task can frequently be
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expressed as the difference between the logits of two tokens.
For instance, (Mathwin et al., 2023) attempt to interpret the
model’s understanding of gendered pronouns, and as such,
measure the difference between the logits for the tokens "
she" and " he". This has been identified as a general pat-
tern of taking “logit differences” that appears in mechanistic
interpretability work (Nanda, 2022).

The first insight that we introduce is that each of these logit
differences corresponds to a linear functional on the logits.
That is, if the logits are represented by the vector y, then
each logit difference can be represented by nT y for some
vector n. For instance, if etoken is the one-hot vector with a
one in the position corresponding to the token token, then the
logit difference between " she" and " he" corresponds
to the linear functional n = (e" she" − e" he").

We thus define an observable to be a linear functional on
the logits of a language model. More formally:

Definition 2.1. An observable is a linear functional1 n :
Rd vocab → R, where d vocab is the number of tokens in
the model’s vocabulary. We refer to the action of taking the
inner product of the model’s output logits with an observable
n as getting the output of the model under the observable n.

Returning to the previous example, the output of the model
under the observable (e" she" − e" he") corresponds to the
logit difference between the " she" token and the " he"
token.

In defining observables in this way, we no longer consider
logit differences as merely a part of the process of perform-
ing an interpretability experiment; rather, we consider the
broader class of linear functionals as being objects amenable
to study in their own right. (And as we will see in §4.2, these
linear functionals are not limited to merely those correspond-
ing to logit differences between two tokens.) Next, we will
demonstrate how concretizing observables like this enables
us to find sets of feature vectors corresponding to different
observables.

2.2. Observable Propagation for Attention Sublayers

First, let us consider a linear model f(x) = Wx. Given an
observable n, we can compute the measurement associated
with n as nT f(x), which is just nTWx. But now, notice
that nTWx = (WTn)Tx. In other words, WTn is a feature
vector in the domain, such that the dot product of the input
x with the feature vector WTn directly gives the output
measurement nT f(x).

Next, let us consider how to extend this idea to address
1Note that because all observables are linear functionals on a

finite vector space, they can be written as row vectors. As such, it
is often convenient to abuse notation, and associate an observable
with its corresponding vector.

attention sublayers in transformers. Attention combines
information across tokens. They can be decomposed into
two parts: the part that determines from which tokens in-
formation is taken (query-key interaction), and the part that
determines what information is taken from each token to
form the output (output-value). Elhage et al. (2021) refer
to the former part as the “QK circuit” of attention, and the
latter part as the “OV circuit”. Following their formulation,
each attention layer can be written as

xl+1
j = xl

j +
∑H

h=1

∑S

i=1
scorel,h(x

l
i, x

l
j)W

OV
l,h xl

i

where xl
j is the residual stream for token j ∈ {1, ..., S}

at layer l, scorel,h(xl
i, x

l
j) is the attention score at layer l

associated with attention head h ∈ {1, ...,H} for tokens
xl
i and xl

j , and WOV
l,h is the combined output-value weight

matrix for attention head h at layer l.

In each term in this sum, the scoreh(x
l
i, x

l
j) factor corre-

sponds to the QK circuit, and the WOV
l,h xl

i factor corre-
sponds to the OV circuit. Note that the primary nonlinearity
in attention layers comes from the computation of the atten-
tion scores, and their multiplication with the WOV

l,h xl
i terms.

As such, as Elhage et al. (2021) note, if we consider atten-
tion scores to be fixed constants, then the contribution of an
attention layer to the residual stream is just a weighted sum
of linear terms for each token and each attention head. This
means that if we restrict our analysis to the OV circuit, then
we can find feature vectors using the method described for
linear models. While this restricts the scope of computation,
analyzing OV circuits in isolation is still very valuable: do-
ing so tells us what sort of information, at each stage of the
model’s computation, corresponds to our observable. From
this point of view, if we have an attention head h at layer
l, then the direct effect of that attention head on the output
logits of the model is proportional to WUW

OV
l,h xl

i for to-
ken i, where WU is the model unembedding matrix (which
projects the model’s final activations into logits space). We
thus have that the feature vector corresponding to the OV
circuit for this attention head is given by (WUW

OV
l,h )Tn.

This feature vector corresponds to the direct contribution
that the attention head has to the output. But an earlier-layer
attention head’s output can then be used as the input to a
later-layer attention head. For attention heads h, h′ in layers
l, l′ respectively with l < l′, the computational path starting
at token i in layer l is then passed as the input to attention
head h; the output of this head for that token is then used as
the input to head h′ in layer l′. Then by the same reasoning,
the feature vector for this path is: (WUW

OV
l′,h′WOV

l,h )Tn.
Note that this process can be repeated ad infinitum.

2.3. General Form: Addressing MLPs and LayerNorms

Along with attention sublayers, transformers also contain
nonlinear MLP sublayers and LayerNorm nonlinearities be-
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fore each sublayer. One main challenge in interpretability
for large models has been the difficulty in understanding
the MLP sublayers, due to the polysemantic nature of their
neurons (Olah et al., 2020; Elhage et al., 2022). One prior
approach to address this is modifying model architecture to
increase the interpretability of MLP neurons (Elhage et al.,
2022). Instead of architecture modification, we address
these nonlinearities by approximating them as linear func-
tions using their first-order Taylor approximations. This
approach is reminiscent of that presented by Nanda et al.
(2023), who use linearizations of language models to speed
up the process of activation patching (Wang et al., 2022);
we go beyond this by recognizing that the gradients used
in these linearizations act as feature vectors that can be
independently studied and interpreted, rather than merely
making activation patching more efficient. Taking this into
account, the general form of observable propagation, in-
cluding first-order approximations of nonlinearities, can be
implemented as follows. Consider a computational path P
in the model through sublayers l1 < l2 < · · · < lk. Then
for a given observable n, the feature vector corresponding
to sublayer l in P can be computed according to Algorithm
1. (For details on how to choose x0 in line 1, see App. C.)

Note that before every sublayer, there is a nonlinear Lay-
erNorm operation. For greatest accuracy, one can find the
feature vector corresponding to this LayerNorm by taking
its gradient as described above. But as shown in Theorem
1, if one only cares about the directions of the feature vec-
tors and not their magnitudes, then the LayerNorms can be
ignored entirely.

Algorithm 1 Observable propagation
1: Input: observable n
2: Let WU be the model unemebdding matrix.
3: if there exists a LayerNorm operation x 7→ f(x) before the

unembedding operation then
4: y ← ∇

(
nTWUf(x)

)
|x=x0 for some suitable value of x0

5: else
6: y ← (WU )

Tn
7: end if
8: for k ∈ {|P| , . . . , 1}, starting at the end do
9: if lk is an attention head then

10: Let Wk be the OV matrix for lk.
11: y ←WT

k y.
12: end if
13: if lk is an a nonlinearity that maps x 7→ f(x) then
14: y ← ∇

(
yT f(x)

)
|x=x0 for some suitable value of x0

15: end if
16: end for
17: Output: feature vector y

2.4. The Effect of LayerNorms on Feature Vectors

LayerNorm nonlinearities are ubiquitous in Transformers,
appearing before every MLP and attention sublayer, and
before the final unembedding matrix. Therefore, it is worth

investigating how they affect feature vectors; if LayerNorms
are highly nonlinear, this would cause trouble for OBPROP.

Nanda et al. (2023) provide intuition for why we should ex-
pect that in high-dimensional spaces, LayerNorm is approxi-
mately linear. However, the gradient of LayerNorm depends
on the norm of the input, so we cannot consider LayerNorm
gradients to be constant for inputs of different norms. Never-
theless, empirically, we found that LayerNorms had almost
no impact on the direction of feature vectors. In particular,
for the feature vectors discussed in §4.3, we looked at the
cosine similarities between the feature vectors computed by
differentiating through LayerNorm and those computed by
ignoring LayerNorm; the minimum cosine similarity was
as high as 0.998. Further details can be found in Appendix
E.6.

The following statement, which we prove in Appendix E.5,
provides further theoretical underpinning for this behav-
ior. (Note that while this theorem assumes that observables
are normally distributed, which is not necessarily the case,
we believe that it nevertheless provides useful theoretical
motivation for explaining our empirical findings.)

Theorem 1. Define LayerNorm(x) = x−(⃗1T x)⃗1

∥x−(⃗1T x)⃗1∥ , where

1⃗ is the vector of all ones. For a feature vector n, define
f(x;n) = n · LayerNorm(x). Define

θ(x;n) = arccos

(
n · ∇xf(x;n)

∥n∥ ∥∇xf(x;n)∥

)
– that is, θ(x;n) is the angle between n and ∇xf(x;n).
Then if n ∼ N (0, I) in Rd, and d ≥ 8 then

E [θ(x;n)] < 2 arccos
(√

1− 1/(d− 1)
)
.

3. Data-free Analysis of Feature Vectors
Once we have used this to obtain a given set of feature
vectors, we can then perform some preliminary analyses on
them, using solely the vectors themselves. This can give us
insights into the behavior of the model without having to
run forward passes of the model on data.

Feature vector norms One technique that can be used
to assess the relative importance of model components is
investigating the norms of the feature vectors associated
with those components. To see why, recall that if y is a
feature vector associated with observable n for a model
component that implements function f , then for an input
x, we have n · f(x) = y · x. Now, if we have no prior
knowledge regarding the distribution of inputs to this model
component, we can expect y · x to be proportional to ∥y∥.
Thus, components with larger feature vectors should have
larger outputs; this is borne out in experiments (see §4.1)
Note that when calculating the norm of a feature vector for
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a computation path starting with a LayerNorm, one must
multiply the norm by an estimated norm of the LayerNorm’s
input (see Appendix E.3 for explanation).

Coupling coefficients An important question that we
might want to ask about a model’s behavior is the following:
given two separate tasks, to what extent should we expect
that the model will have a high output on one task whenever
it has a high output on the other task? In other words, to
what extent are the model’s outputs on the two tasks cou-
pled? Let us translate this problem into the language of
feature vectors. If n1 and n2 are observables with feature
vectors y1 and y2 for a function f , then for inputs x, we have
n1 · f(x) = y1 · x and n2 · f(x) = y2 · x. Now, if we con-
strain our input x to have norm c, and constrain x · y1 = k,
then what is the expected value of x · y2? And what are
the maximum/minimum values of x · y2? We present the
following theorem to provide theoretical grounding towards
answering both questions:
Theorem 2. Let y1, y2 ∈ Rd. Let x be uniformly distributed
on the hypersphere defined by the constraints ∥x∥ = s and
x · y1 = k. Then we have

E[x · y2] = k
y1 · y2
∥y1∥2

and the maximum and minimum values of x · y2 are given
by

∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
s2∥y1∥2 − k2

)
where θ is the angle between y1 and y2.

We denote the value y1·y2

∥y1∥2 by C(y1, y2), and call it the
“coupling coefficient from y1 to y2”. Intuitively, C(y1, y2)
measures the expected dot product between a vector and
y2, assuming that that vector has a dot product of 1 with
y1. Additionally, note that Theorem 2 also implies that the
coupling coefficient becomes a more accurate estimator as
the cosine similarity between y1 and y2 increases.

Returning back to our original motivation, the coupling co-
efficient can be interpreted as estimating the constant of
proportionality between a model’s outputs on two tasks
(where each task corresponds to an observable and a feature
vector); the cosine similarity can be interpreted as quantify-
ing the extent to which the model’s outputs might deviate
from this proportional relationship. In this manner, the cou-
pling coefficient helps us predict the model’s behavior on
unseen tasks.

Note that while Theorem 2 does make the assumption that
hidden states x are spherically-symmetrically distributed,
nevertheless, experimental evidence does bear out that the
coupling coefficient is an accurate estimator of the expected
constant of proportionality between activations of different
features, with accuracy increasing as the cosine similarity
increases; see §4.1 for results.

4. Experiments
Armed with our “observable propagation” toolkit for obtain-
ing and analyzing feature vectors, we now turn our attention
to the problem of gender bias in LLMs in order to determine
the extent to which these tools can be used to diagnose the
causes of unwanted behavior.

4.1. Gendered Pronouns Prediction

We first consider the related question of understanding
how a large language model predicts gendered pronouns.
Specifically, given a sentence prefix including a tradition-
ally=gendered name (for example, “Mike” is often associ-
ated with males and “Jane” is often associated with females),
how does the model predict what kind of pronoun should
come after the sentence prefix? We will later see that un-
derstanding the mechanisms driving the model’s behavior
on this benign task will yield insights for understanding
gender-biased behavior of the model. Additionally, this in-
vestigation also provides an opportunity to test the ability
of OBPROP to accurately predict model behavior.

The gendered pronoun prediction problem was previously
considered by Mathwin et al. (2023), where the authors
used the “Automated Circuit Discovery” tool presented by
Conmy et al. (2023) to investigate the flow of information
between different components of GPT-2-small (Radford
et al., 2019) in predicting subject pronouns (i.e. “he”, “she”,
etc). We extend the problem setting in various ways. We in-
vestigate both the subject pronoun case (in which the model
is to predict the token “she” versus “he”) and the object
pronoun case (in which the model is to predict “her” versus
“him”). Additionally, we seek to understand the underly-
ing features responsible for this task, rather than just the
model components involved, so that we can compare these
features with the features that the model uses in producing
gender-biased output.

Problem setting We consider two observables, corre-
sponding to the subject pronoun prediction task and the
object pronoun prediction task. The observable for the sub-
ject pronoun task, nsubj, is given by e" she"−e" he", where
etoken is the one-hot vector with a one in the position corre-
sponding to the token token. This corresponds to the logit
difference between the tokens " she" and " he", and
indicates how likely the model predicts the next token to be
" she" versus " he". Similarly, the observable for the
object pronoun task, nobj, is given by e" her" − e" him".

We investigate the model GPT-Neo-1.3B (Black et al.,
2021), which has approximately 1.3B parameters, 24 layers,
16 attention heads, an embedding dimension of 2048, and
an MLP hidden dimension of 8192. Note that OBPROP
is able to work with models that are significantly larger
than those previously explored, such as GPT-2-small (117M
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parameters) (Radford et al., 2019), which has been the focus
of recent interpretability work by (Wang et al., 2022), inter
alia.

Additionally, a note on notation. The attention head with
index h at layer l will be presented as “l::h”. For instance,
17::14 refers to attention head 14 at layer 17. Furthermore,
the MLP at layer L will be presented as “mlpL”. For in-
stance, mlp1 refers to the MLP at layer 1.

Feature vector norms for single attention heads We
begin by analyzing the norms for the feature vectors cor-
responding to nsubj and nobj for each attention head in the
model. We then used path patching (Goldowsky-Dill et al.,
2023) to measure the mean degree to which each atten-
tion head contributes to the model’s output on dataset of
male/female prompt pairs. If our method is effective, then
we would expect to see that the heads with the greatest fea-
ture norms are those identified by path patching as most
important to model behavior. The results are given in Ta-
ble 1.

We see that three of the four attention heads with the highest
feature norms – that is, 17::14, 15::13, and 13::11 – also
have very high attributions for both the subject and object
pronoun cases. (Interestingly, head 18::11 does not have a
high attribution in either case despite having a large feature
norm; this may be due to effects involving the model’s
QK circuit.) This indicates that observable propagation
was largely successful in being able to predict the most
important attention heads, despite only using one forward
pass per observable (to estimate LayerNorm gradients).

Cosine similarities and coupling coefficients Next, we
investigated the cosine similarities between feature vectors
for nsubj and nobj. We found that the four heads with the
highest cosine similarities between its nsubj feature vector
and its nobj feature vector are 17::14, 18::11, 15::13, and
13::11, with cosine similarities of 0.9882, 0.9831, 0.9816,
0.9352. The high cosine similarities of these feature vectors
indicates that the model uses the same underlying features
for both the task of predicting subject pronoun genders and
the task of predicting object pronoun genders.

We also looked at the feature vectors for the computational
paths 6::6→9::1→13::11 for nsubj and 6::6→13::11 for nobj,
because performing path patching on a pair of prompts
suggested that these computational paths were relevant. The
feature vectors for these paths had a cosine similarity of
0.9521.

We then computed the coupling coefficients between the
nsubj and nobj feature vectors for heads 17::14, 15::13, and
13::11. This is because these heads were present among the
heads with the highest cosine similarities, highest feature
norms, and highest patching attributions, for both the nsubj

and nobj cases. After this, we tested the extent to which
the coupling coefficients accurately predicted the constant
of proportionality between the dot products of different
feature vectors with their inputs. We ran the model on ap-
proximately 1M tokens taken from The Pile dataset (Gao
et al., 2020) and recorded the dot product of each token’s
embedding with these feature vectors. We then computed
the least-squares best fit line that predicts the nobj values
given the nsubj values, and compared the slope of the line to
the coupling coefficients. The results are given in Table 2.
We find that the coupling coefficients are accurate estima-
tors of the empirical dot products between feature vectors
and that, in accordance with Theorem 2, the dot products
between vectors with greater cosine similarity exhibited
greater correlation.

4.2. Occupational Gender Bias

Now that we have understood some of the features rele-
vant to predicting gendered pronous, we more directly con-
sider the setting of occupational gender bias in language
models, a widely-investigated problem (Bolukbasi et al.,
2016; Vig et al., 2020). For a prompt like "My friend
[NAME] is an excellent ...", an LM which hasn’t
been aligned using e.g. RLHF (Ouyang et al., 2022) is more
likely to predict that the next token is " programmer"
than " nurse" if [NAME] is replaced with a male name,
and vice-versa for a female name (Brown et al., 2020). We
applied observable propagation to the problem in order to go
beyond prior work and understand the features responsible
for this behavior. In particular, we considered the observ-
able nbias = (e" nurse" + e" teacher" + e" secretary")−
(e" programmer" + e" engineer" + e" doctor"); this ob-
servable represents the extent to which the model
predicts stereotypically-female occupations instead of
stereotypically-male ones.

The same features are used to predict gendered pronouns
and occupations We ran path patching on a single pair of
prompts in order to determine computational paths relevant
to nbias. The results were computational paths beginning
with mlp1→6::6→9::1→... and 6::6→9::1→..., which be-
gan on the token in the prompt associated with the gendered
name. Even though there were many relevant computa-
tional paths beginning with these prefixes, and even though
these computational paths passed through multiple later-
layer MLPs, the feature vectors for these different paths
nevertheless had high cosine similarity with one another.

More surprising is that the feature vector for nbias for
6::6→9::1→... had a cosine similarity of 0.966 with the
feature vector for nsubj for 6::6→9::1→13::11. Similarly,
the nbias feature vector for mlp1→6::6→9::1→... had a
cosine similarity of 0.977 with the nsubj feature vector
for mlp1→6::6→9::1→13::11. This indicates that the
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Observable Heads with greatest feature norms Feature vector norms

nsubj 18::11 17::14 13::11 15::13 237.3 236.2 186.4 145.4
nobj 17::14 18::11 13::11 15::13 159.2 157.0 145.0 112.3

Observable Heads with greatest attributions Path patching attributions

nsubj 17::14 13::11 15::13 13::3 5.004 3.050 1.199 0.584
nobj 17::14 13::11 15::13 22::2 2.949 1.885 1.863 0.365

Table 1. The four attention heads with the greatest feature norms and path patching attributions (corrupted-clean logit differences) for
both the nsubj and nobj observables. nsubj is the observable measuring the difference between the logits for " she" and " he"; nobj is
the observable measuring the difference between the logits for " her" and " him". “l::k” denotes the attention head with index k at
layer with index l. “Feature vector norms” refers to the norm of the feature vector associated with the attention head; “Path patching
attributions” refers to the difference between the model’s output for the given observable when the given attention head’s activations was
patched, and the model’s output for that given observable when the attention head was not patched.

Head Coupling
coefficient

Cosine
similarity Best-fit slope r2

17::14 0.7123 0.9882 0.7692 0.9567
15::13 0.8011 0.9816 0.8003 0.9523
13::11 0.7478 0.9352 0.7632 0.8189

6::6→... – 0.9521 – 0.8613

Table 2. Coupling coefficients and cosine similarity, compared to
the slope of the best-fit line for empirical dot products with feature
vectors of nsubj versus nobj. Note that for the 6::6→... feature
vectors, we do not investigate coupling coefficients, because these
earlier-layer attention heads are involved in many computational
paths, so the magnitudes obtained for these feature vectors along
one computational path do not reflect the importance along the
sum total of computational paths.

model uses the same features to identify both gendered pro-
nouns and likely occupations, given a traditionally-gendered
name.

To determine the extent to which these feature vectors re-
flected model behavior, we ran the model on an artificial
dataset of 600 prompts involving gendered names (see Ap-
pendix A), recorded the dot product of the model’s acti-
vations on the name token with the feature vectors, and
recorded the model’s output with respect to the observables.
The results can be found in Figure 1. Note that the corre-
lation coefficient r2 between the dot product with the nbias
feature vector and the actual model output is 0.88, indicat-
ing that the feature vector is a very good predictor of model
output.

We then investigated the tokens in a 1M-token subset of
The Pile that maximally activated the nbias feature vector2.
These tokens were primarily female names: tokens like
" Rita", " Catherine", and " Mary", along with
female name suffixes like "a" (as in “Phillipa”), "ine"

2If y is a feature vector, then the maximally-activating tokens
for y are given by argmaxi(y

Txi) where xi is the model’s hidden
state on the i-th token in the dataset.

(as in “Josephine”), and "ia" (as in “Antonia”). Surpris-
ingly, the least-activating tokens were generally male com-
mon nouns, such as " husband", " brother", and "
son" – but also words like " his", and even " male".
This evidence even further supports the hypothesis that the
model specifically uses gendered features in order to deter-
mine which occupations are most likely to be associated
with a name. However, it is worth noting that part of the
power of OBPROP is that it allows us to test hypotheses such
as this without needing to run the model on large datasets
and record the tokens with the highest feature vector activa-
tions: simply by virtue of the extremely high cosine simi-
larity between the nsubj feature vector and the nbias feature
vector, we could infer that the model was using gendered
information to predict occupations. As such, looking at
the maximally-activating tokens primarily served as a “san-
ity check”, verifying that the feature vectors returned by
OBPROP are human-interpretable.

4.3. Quantitative Analysis Across Observables

We now evaluate OBPROP’s performance across a broader
variety of tasks, including subject pronoun prediction, iden-
tifying American politicians’ party affiliations, and distin-
guishing between C and Python code. We use OBPROP to
find feature vectors for each task; for comparison, we also
find feature vectors using the more data-intensive methods
of linear/logistic regression and mean difference, standard
methods used by Kim et al. (2018), Tigges et al. (2023) and
many others. For the pronoun prediction task, we use the
same artificial dataset used in the subject pronoun prediction
experiments; for the political affiliation task, we use an arti-
ficial dataset comprised of 40 Democratic politicians’ and
40 Republican politicians’ names and consider the model’s
logit difference between the tokens " Democrat" and "
Republican". For the programming language classifica-
tion task, we use a natural dataset of code. For each feature
vector y, we look at the dot product yTx across inputs x. For
the former two tasks, we evaluate the correlation between
yTx and the model’s output; on the latter task, we apply
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Figure 1. The dot product of model activations with (normalized) feature vectors, compared to the model’s output for observables. (a) Dot
products with the nbias feature vector for 6::6→9::1→..., versus the model’s output with respect to nbias. (b) Dot products with the nsubj

feature vector for 6::6→9::1→13::11, versus the model’s output w.r.t nsubj.

the “AUC-ROC” metric to evaluate the accuracy of yTx in
differentiating between C and Python code.

The results are given in Table 3. For the subject pronoun pre-
diction task, in order for the feature vector found by linear
regression to match the performance of the OBPROP feature
vector, 60 prompts’ worth of embeddings had to be used for
training; similarly, for the C vs. Python classification task,
the logistic regression had to be trained on 50 code snippets’
worth of embeddings to obtain equal performance. In the po-
litical party prediction task, even when training on 3/4 of the
dataset, the linear regression feature vector’s performance
on the test set was well below that of the OBPROP feature
vector’s performance on the whole dataset. This suggests
the ability of OBPROP to match the performance of prior
methods for finding feature vectors, and outcompete them
especially in the low-data regime. For more details on these
experiments, refer to Appendix B.

5. Conclusion and Discussion
In this paper, we introduced observable propagation (or
OBPROP for short), a novel method for finding feature vec-
tors in transformer models using little to no data. We de-
veloped a theory for analyzing the feature vectors yielded
by OBPROP, and demonstrated this method’s utility for
understanding the internal computations carried out by a
model. In our case studies, we found that investigating the
norms of feature vectors obtained via OBPROP could be
used to predict relevant attention heads for a task without
actually running the model on any data; that OBPROP can
be used to understand when two different tasks utilize the
same feature; that coupling coefficients can be used to show
the extent to which a high output for one observable implies
a high output for another on a general distribution of data;
and that the feature vectors returned by OBPROP accurately
predict model behavior. We also demonstrated that in data-
scarce settings, OBPROP outperforms traditional data-heavy

probing approaches for finding feature vectors.

This culminated in a demonstration that the model specifi-
cally uses the feature of “gender” to predict the occupation
associated with a name. Notably, even though experiments
on larger datasets further supported this claim, observable
propagation alone was able to provide striking evidence
of this using minimal amounts of data. We hope that our
approach, being independent of data, can democratize in-
terpretability research and facilitate broader-scale investiga-
tions.

Furthermore, the conclusion that the model uses the same
mechanisms to predict grammatical gender as it does to
predict occupations portends difficulties in attempting to
“debias” the model. This means that inexpensive inference-
time attempts to remove bias from the model will likely also
decrease model performance on desired tasks like correct
gendered pronoun prediction (see Appendix G for additional
experiments.) This reveals a clear future work direction to
invest in more powerful methods, to ensure that models are
both unbiased and useful.

Note that although OBPROP demonstrates significant
promise in cheaply unlocking the internal computations
of language models, it does have limitations. In particular,
OBPROP currently primarily addresses the OV circuits of
Transformers, ignoring computations in QK circuits respon-
sible for mechanisms such as “induction heads” (Elhage
et al., 2021). However, even though QK circuits are respon-
sible for moving information around in Transformers, OV
circuits are where computation on this information occurs.
Thus, whenever we want to understand what sort of infor-
mation the model uses to predict one token as opposed to
another, the answer to this question lies in the model’s OV
circuits, and OBPROP can provide such answers.

Given the power that the current formulation of OBPROP
has demonstrated already in our experiments, we are very
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Task OBPROP
Logistic regression

(trained)
Mean difference
vector (trained)

Training
set size

Subject pronouns r2 ≈ 0.945 r2 ≈ 0.945 r2 ≈ 0.899 60 prompts
Political parties r2 ≈ 0.427 r2 ≈ 0.295 r2 ≈ 0.0605 60 prompts (3/4 of dataset)
C vs. Python AUC ≈ 0.9974 AUC ≈ 0.9971 AUC ≈ 0.9052 50 code snippets

Table 3. Accuracy of regression-derived feature vectors vs. OBPROP feature vectors.

excited about the potential for this method, and methods
building upon it, to yield even greater insights in the near
future.

A note on SAEs Sparse autoencoders (SAEs), as de-
scribed by Cunningham et al. (2023) and Bricken et al.
(2023), have recently made waves in the mechanistic inter-
pretability community. SAEs can be trained unsupervised
on model hidden states in order to yield a set of feature
vectors that can represent any hidden state as a sparse linear
combination of these feature vectors. Although we do find
SAEs to be very promising, we fear that SAEs might incur
some philosophical risks by assuming the existence of a
set of “ground-truth features” that can be found. Plausi-
bly, SAEs might fail to account for cases where later-layer
features depend on a dense subset of earlier-layer features
or where feature vectors are composed in unintuitive ways
to compute a task. As such, OBPROP takes a different
approach that privileges fidelity to computation over data:
OBPROP aims to find feature vectors (approximately) corre-
sponding to the computation of human-interpretable tasks,
the behavior of which feature vectors can then be quan-
tifiably understood. In this manner, we hope to provide a
complementary approach to the SAE paradigm (and one
that could perhaps be integrated with it) in order to account
for potential shortcomings of the latter.

Supplementary Statements
Impact Statement

In this work, we present observable propagation, our method
for finding feature vectors used by large language models
in their computation of a given task. We demonstrate in
an experiment that observable propagation can be used to
pin-point specific features that are responsible for gender
bias in large language models, suggesting that observable
propagation might prove to be useful in mechanistically
understanding how to debias language models. Additionally,
the data-efficient nature of observable propagation allows
this sort of inquiry into model bias to be democratized,
conducted by researchers who might not have access to
compute or data required by other methods. However, it
is important to note that observable propagation does not
necessarily make perfect judgments about model bias or
lack thereof; a model might be biased even if observable

propagation fails to find specific feature vectors responsible
for that bias. As such, it is incumbent upon researchers,
practitioners, and organizations working with large language
models to continue to perform deeper investigations into
model bias issues, and be aware of the way in which it might
affect their results.

Reproducibility Statement

A proof of Theorem 1 is given in Appendix E.5; a
proof of Theorem 2 is given in Appendix H. Details
on the datasets that we used in our experiments can be
found in Appendix A. Further details regarding the ex-
periments in Section 4.3 can be found in Appendix B.
Details on how we chose the x0 point used to approxi-
mate nonlinearities (as described in §2.3) can be found
in Appendix C; for LayerNorm linear approximations,
we used the estimation method described in Appendix
E.3. Code is available at https://github.com/
jacobdunefsky/ObservablePropagation.
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A. Datasets
In our experiments, we made use of an artificial dataset, along with a natural dataset. The natural dataset was processed by
taking the first 1,000,111 tokens of The Pile (Gao et al., 2020) and then splitting them into prompts of length at most 128
tokens. This yielded 7,680 prompts.

To construct the artificial dataset, we wrote three prompt templates for the nsubj observable, three prompt templates for the
nbias observable, and three prompt templates for the nobj observable. The prompt templates are as follows:

• Prompt templates for nsubj (inspired by (Mathwin et al., 2023)):

1. "<|endoftext|>So, [NAME] really is a great friend, isn’t"

2. "<|endoftext|>Man, [NAME] is so funny, isn’t"

3. "<|endoftext|>Really, [NAME] always works so hard, doesn’t"

• Prompt templates for nobj:

1. "<|endoftext|>What do I think about [NAME]? Well, to be honest, I love"

2. "<|endoftext|>When it comes to [NAME], I gotta say, I really hate"

3. "<|endoftext|>This is a present for [NAME]. Tomorrow, I’m gonna give it
to"

• Prompt templates for nbias:

1. "<|endoftext|>My friend [NAME] is an excellent"

2. "<|endoftext|>Recently, [NAME] has been recognized as a great"

3. "<|endoftext|>His cousin [NAME] works hard at being a great"

A dataset of prompts was then generated by replacing the [NAME] substring in each prompt template with a name from a set
of traditionally-male names and a set of traditionally-female names. These names were obtained from the “Gender by Name”
dataset from (UCI Machine Learning Repository, 2020), which provided a list of names, the gender traditionally associated
with each name, and a measure of the frequency of each name. The top 100 single-token traditionally-male names and top
100 single-token traditionally-female names from this dataset were collected; this comprised the list of names that we used.

B. Experimental Details for Section 4.3
B.1. Datasets

The dataset used in the subject pronoun prediction task is the same artificial dataset described in Appendix A.

The dataset used in the C vs. Python classification task consists of 730 code snippets, each 128 tokens long, taken from C
and Python subsets of the GitHub component of The Pile (Gao et al., 2020).

The dataset used in the American political party prediction task is an artificial dataset consisting of
prompts of the form "[NAME] is a", where [NAME] is replaced by the name of a politician drawn
from a list of 40 Democratic Party politicians and 40 Republican Party politicians. These politicians
were chosen according to the list of “the most famous Democrats” and “the most famous Republicans”
for Q3 2023 compiled by YouGov, available at https://today.yougov.com/ratings/politics/fame/Democrats/all and
https://today.yougov.com/ratings/politics/fame/Democrats/all. The intuition behind this choice of dataset is that the model
would be more likely to identify the political affiliation of well-known politicians, because better-known politicians would
be more likely to occur in its training data. This is the primary reason that a smaller dataset is being used.

B.2. Task Definition

The subject pronoun prediction task involves the model predicting the correct token for each prompt. The target scores are
considered to be the difference between the model’s logit prediction for the token " she" and the model’s logit prediction
for the token " he".
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The political party prediction task also involves the model predicting the correct token for each prompt. The target scores
are considered to be the difference between the model’s logit prediction for the token " Democrat" and the model’s logit
prediction for the token " Republican".

For the C vs. Python classification task, because the data is drawn from a diverse corpus of code, the task is treated as a
binary classification task instead of a token prediction task.

B.3. Feature Vectors

The OBPROP feature vector used for the pronoun prediction task is the feature vector corresponding to the computational
path 6::6 → 9::1 → 13::1 for the nsubj observable.

The OBPROP feature vector used for the political party prediction task is the feature vector corresponding to attention head
15::8 for the observable defined by e" Democrat" − e" Republican".

The OBPROP feature vector used for the C versus Python classification task is the feature vector corresponding to attention
head 16::9 for the observable defined by e" ):" − e" ){". (The intuition behind this observable is that in Python, function
definitions look like def foo(bar, baz):, whereas in C, function definitions look like int foo(float bar,
char* baz){. Notice how the former line ends in the token "):" whereas the latter line ends in the token "){".)

The regression feature vectors for each task were trained on model embeddings at the same layer as the OBPROP feature
vectors for that task. Thus, for example, the linear regression feature vector for the pronoun prediction task was trained on
model embeddings at layer 6.

The “mean difference” feature vectors for each task were calculated as follows. First, run the model on inputs from one
class (e.g. female names, Democratic politicians, C code) and compute the mean vector across these inputs of the model
embeddings at the same layer as the OBPROP feature vector. Then, run the model on inputs from the other class (e.g. male
names, Republican politicians, Python code) and compute the mean vector. Now, the “mean difference” feature vector is
simply the difference between these two mean vectors.

B.4. Task Evaluation

For the pronoun prediction task, the predicted score was determined as the dot product of the feature vector with the model’s
embedding at layer 6 for the name token in the prompt.

For the political party prediction task, the predicted score was determined as the dot product of the feature vector with the
model’s embedding at layer 15 for the last token in the politician’s name in each prompt.

For the C versus Python classification task, the predicted score for each code snippet was determined by taking the mean of
the model’s embeddings at layer 16 for all tokens in the code snippet, and then taking the dot product of the feature vector
with those mean embeddings.

C. Details on Linear Approximations for MLPs
Finding feature vectors for MLPs is a relatively straightforward application of the first-order Taylor approximation. However,
there is a fear that if one takes the gradient at the wrong point, then the local gradient will not reflect well the larger-scale
behavior of the MLP. For example, the output of the MLP with respect to a given observable might be saturated at a certain
point: the gradient at this point might be very small, and might even point in a direction inconsistent with the MLP’s gradient
in the unsaturated regime.

To alleviate this, we use the following method. Define g(x) = nT MLP(x), where n is a given observable. If this observable
n represents the logit difference between two tokens, then we should be able to find an input on which this difference is very
negative, along with an input on which this difference is very positive. For example, if n represents the logit difference
between the token " her" and the token " him", then an input containing a male name should make this difference very
negative, and an input containing a female name should cause this difference to be very positive.

Thus, we have two points x− and x+ such that g(x−) < 0 and g(x+) > 0. Since MLPs are continuous, there therefore
must be some point x0 on the line between x− and x+ at which g(x0) = 0; this point lies at the intersection of the line
between x− and x+ with the MLP’s decision boundary. It stands to reason that the gradient at this decision boundary is
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more likely to capture the larger-scale behavior of the MLP and is less likely to be saturated, when compared to the gradient
at more “extreme” points like x− and x+. Such an x0 can be found using constrained optimization methods; we use the
Python library MDMM (Crowson, 2021) to do so.

This approach given here is used in Line 1 of Algorithm 1 for dealing with MLP nonlinearities. For LayerNorms, we simply
take the gradient at an input point x− or x+.

D. Details on Path Patching for Finding Important Computational Paths
In Section 4, we use path patching (Goldowsky-Dill et al., 2023) to determine which computational paths in the model are
most important for a given task. Here, we provide more details on our implementation of path patching to measure the
importance of a single computational path, along with more details on how we used path patching to find a set of important
computational paths.

D.1. Path patching

Path patching is a causal method for determining the importance of a computational path in the model according to a
given metric. This metric can generally be any function of the model’s outputs (e.g. the metric could be the cross-entropy
next-token-prediction loss), but in this paper, our metrics are the dot product of the model’s logits with a given observable.
We thus use path patching for determining how important a computational path is to the observable corresponding to a given
task.

The high-level approach to path patching (which is common to other causal methods) is as follows. We consider two inputs
to the model, a clean input and a dirty input, which display different behavior with respect to the metric. (For instance, if the
metric is the dot product of the model’s logits with the nsubj observable, then the clean input would be a prompt containing a
traditionally-male name, and the dirty input would be a prompt containing a traditionally-female name.) First, run the model
on both the clean and the dirty input, storing the model’s hidden states on both inputs. Then, take the hidden states from
the clean run, replace certain hidden states with the corresponding ones from the dirty run, and re-run the model on this
modified set of hidden states. After doing so, measure the difference, with respect to the given metric, between the model’s
output on the clean input and the model’s output using the modified hidden states.

Our implementation of path patching is slightly different from the implementation described in Goldowsky-Dill et al. (2023):
the implementation described here avoids the costly “Treeify” function from the original.

First, we will describe how to perform path patching for a single-edge path. Given an earlier-layer component3 c and a
later-layer component c′, let oclean be the output of c on the clean input, and let x′

clean be the hidden states on the clean input
before c′. Similarly, let odirty be the output of c on the dirty input. Now, as explained by Elhage et al. (2021), a transformer’s
hidden state before any component can be decomposed as the sum of all previous components’ outputs (along with the
original token embedding and positional embedding). Thus, to measure the direct effect of the computational edge from c to
c′, we replace x′

clean with x′
clean − oclean + odirty. This corresponds to replacing the contribution of c to the input of c′ with the

output of c on the dirty input. The path patching score is then computed by running the model with this modified hidden
state and measuring the difference between its output and the clean output.

Now, this can be extended to longer computational paths as follows. Given a computational path of components c(1), . . . , c(k),
let x(i)

clean be the hidden states on the clean input before c(i), let o(i)clean be the output of c(i) on the clean input, and let o(i)dirty be

the output of c(i) on the dirty input. Just as before, replace x
(2)
clean with x

(2)
dirty = x

(2)
clean − o

(1)
clean + o

(1)
dirty. Run c(2) on x

(2)
dirty and

store the output as o(2)dirty. Repeat this process for the later components: replace x
(i)
clean with x

(i)
dirty = x

(i)
clean − o

(i−1)
clean + o

(i−1)
dirty ,

run c(i) on x
(i)
dirty, and store the output as o(i)dirty. The path patching score is then given by the difference in the model’s output

on these dirty hidden states and the model’s original output on the clean input.

D.2. Finding Important Computational Paths

Now that we can use path patching to allow us to determine the importance of a given computational path, we use the
following greedy method in conjunction with path patching to find a set of important computational paths.

3A component is an attention head or an MLP sublayer
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Figure 2. Mean norms of activations before each LayerNorm

First, use path patching to identify the k most important single-edge computational paths. Then, for each of those paths,
identify the k most important paths with the current path as a suffix; this gives us k2 total paths. Now, take the top k paths
from these k2 total paths, and repeat for as many iterations as one needs (until one has paths of a desired length).

The complexity of this process is O(nk(pm+m logm)), where n is the number of iterations, k is the number of paths, m
is the number of nodes in the full computational graph of the model, and p is the cost of path patching for one computational
path. (To see this: at each iteration, we do path patching on k parent paths, which has cost p for each computational node m
in the model. Then, we sort the m nodes to get the top k paths, which gives us the m logm term.)

Note that this process can be made more efficient by using faster alternatives to path patching such as edge attribution
patching (Syed et al., 2023).

E. More on LayerNorms
In this section, we put forth various results relevant for the discussion of LayerNorm gradients in §2.4.

E.1. LayerNorm Input Norms per Layer

We calculated the average norms of inputs to each LayerNorm sublayer in the model, over the activations obtained from
the 600 subject pronoun prompts in the artificial dataset described in §A. The results can be found in Figure 2. The wide
variation in the input norms across different layers implies that input norms must be taken into account in any approximation
of LayerNorm gradients.

E.2. LayerNorm Weight Values Are Very Similar

In §2.4, the LayerNorm nonlinearity is defined as LayerNorm(x) = x−(⃗1T x)⃗1

∥x−(⃗1T x)⃗1∥ + b, where 1⃗ is the vector of all ones.

However, in actual models, after every LayerNorm operation as defined above, the output is multiplied by a fixed scalar
constant equal to

√
d (where d is the embedding diension), multiplied by a learned diagonal matrix W , and then added

to a learned bias vector b. Thus, the actual operation implemented is
√
dW LayerNorm(x) + b, where W is the learned

diagonal matrix and b is the learned vector.

This is important with regard to our earlier discussion of the extent to which LayerNorm affects feature vector directions,
because although b does not affect the gradient, nevertheless, if the values of W are different from one another, this could
cause the gradient to point in a different direction from the original feature vector.

However, empirically, we find that most of the entries in W are very close to one another. This suggests that we can
approximate W as a scalar, meaning that W primarily scales the gradient, rather than changing its direction. Therefore, if
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Figure 3. Ratio between LayerNorm weight matrix variances and mean absolute entries of each layer’s embeddings

we want to analyze the directions of feature vectors rather than their magnitudes, then we can largely do so without worrying
about LayerNorms.

In particular, we found that the average variance of scaling matrix entries across all LayerNorms in GPT-Neo-1.3B is
0.007827. To determine the extent to which this variance is large, we calculated the ratio of the variance of each LayerNorm’s
weight matrix’s entries to the mean absolute value of each layer’s embeddings’ entries. The results can be found in Figure 3.
Note that the highest value found was 0.0714 at Layer 0 – meaning that the average entry in Layer 0 embeddings was over
14.01 times larger than the variance between entries in that layer’s ln 1 LayerNorm weight. This supports our assertion that
LayerNorm scaling matrices can be largely treated as constants.

One possible guess as to why this behavior might be occurring is this: much of the computation taking place in the model
does not occur with respect to basis directions in activation space. However, the diagonal LayerNorm weight matrices can
only act on these very basis directions. Therefore, the weight matrices end up “settling” on the same nearly-constant value
in all entries.

E.3. LayerNorm Gradients Are Inversely Proportional to Input Norms

In §2.4, it was stated that LayerNorm gradients are not constant, but instead, depend on the norm of the input to the
LayerNorm. To elaborate, the gradient of nT (

√
dW LayerNorm(x) + b) can be shown to be

√
dW

∥Px∥P
(
I − (Px)(Px)T

∥Px∥2

)
n

(see Appendix E.5). P and
(
I − (Px)(Px)T

∥Px∥2

)
are both orthogonal projections that leave ∥n∥ relatively untouched, so the

term that is most responsible for affecting the norm of the feature vector is the
√
dW

∥Px∥ factor. Now, by Lemma 1 in Appendix

E.5, we have that
√
dW

∥Px∥ ≈
√
dW
∥x∥ . Thus, if ∥̃x∥ a good estimate of ∥x∥ for a given set of input prompts at a given layer, then

a good approximation of the gradient of a LayerNorm sublayer is given by
(√

dW/∥̃x∥
)
n. This approximation can be used

to speed up the computation of gradients for LayerNorms.

E.4. Feature Vector Norms with LayerNorms

In §4.1, we explained that looking at the norms of feature vectors can provide a fast and reasonable guess of which model
components will be the most important for a given task. However, there is a caveat that must be taken into account regarding
LayerNorms. As shown in Appendix E.3, the gradient of a LayerNorm sublayer is approximately inversely proportional to
the norm of the input to the LayerNorm sublayer.

Now, assume that we have a computational path beginning at a LayerNorm, where ∥̃x∥ is an estimate of the norm of the
inputs to that LayerNorm. Let y be the feature vector for this computational path. Then we have y ≈

√
dW/∥̃x∥y′, where
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y′ is the feature vector for the “tail” of the computational path, that comes after the initial LayerNorm.

Given an input x, we have that

y · x ≈
√
dW/∥̃x∥y′ · x

=
√
d∥̃x∥ ∥Wy′∥ ∥x∥ cos θ

≈
√
d ∥Wy′∥ cos θ

Therefore, the dot product of an input vector with the feature vector y will be approximately proportional to
√
d ∥Wy′∥ –

not
√
d ∥Wy′∥ /∥̃x∥. As such, if one wants to use feature vector norms to predict which feature vectors will have the highest

dot products with their inputs, then that feature vector must not be multiplied by 1/∥̃x∥.

A convenient consequence of this is that when analyzing computational paths that do not involve any compositionality (e.g.
analyzing a single attention head or a single MLP) – then ignoring LayerNorms entirely still provides an accurate idea of the
relative importance of attention heads. This is because the only time that a (

√
dW/∥̃x∥) term appears with the factor of

1/∥̃x∥ included is for the final LayerNorm before the logits output. As such, since this factor is not dependent on the layer
of the component being analyzed, it can be ignored.

E.5. Proof of Theorem 1

Theorem 1. Define f(x;n) = n · LayerNorm(x). Define

θ(x;n) = arccos

(
n · ∇xf(x;n)

∥n∥ ∥∇xf(x;n)∥

)

– that is, θ(x;n) is the angle between n and ∇xf(x;n). Then if n ∼ N (0, I) in Rd, and d ≥ 8 then

E [θ(x;n)] < 2 arccos

(√
1− 1

d− 1

)

To prove this, we will introduce a lemma:

Lemma 1. Let y be an arbitrary vector. Let A = I − vvT

∥v∥2 be the orthogonal projection onto the hyperplane normal to v.

Then the cosine similarity between y and Ay is given by
√

1− cos(θ)2, where cos(θ) is the cosine similarity between y and
v.

Proof. Assume without loss of generality that y is a unit vector. (Otherwise, we could rescale it without affecting the angle
between y and v, or the angle between y and Ay.)

We have Ay = y − y·v
∥v∥2 v. Then,

y ·Ay = y · (y − y · v
∥v∥2

v)

= ∥y∥2 − (y · v)2

∥v∥2

= 1− (y · v)2

∥v∥2

and
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∥Ay∥2 = (y − y · v
∥v∥2

v) · (y − y · v
∥v∥2

v)

= y · (y − y · v
∥v∥2

v)− y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − (y · v)2

∥v∥2
+

∥∥∥∥ y · v∥v∥2
v

∥∥∥∥2
= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥4
∥v∥2

= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥2

= y ·Ay

Now, the cosine similarity between y and Ay is given by

y ·Ay

∥y∥∥Ay∥
=

y ·Ay

∥Ay∥

=
∥Ay∥2

∥Ay∥
= ∥Ay∥

At this point, note that ∥Ay∥ =
√
y ·Ay =

√
1− (y·v)2

∥v∥2 . But y·v
∥v∥ is just the cosine similarity between y and v. Now, if we

denote the angle between y and v by θ, we thus have

∥Ay∥ =

√
1− (y · v)2

∥v∥2
=
√

1− cos(θ)2.

Now, we are ready to prove Theorem 1.

Proof. First, as noted by Brody et al. (2023), we have that LayerNorm(x) = Px
∥Px∥ , where P = I − 1

d 1⃗⃗1
T is the orthogonal

projection onto the hyperplane normal to 1⃗, the vector of all ones. Thus, we have

f(x;n) = nT

(
Px

∥Px∥

)

Using the multivariate chain rule along with the rule that the derivative of x
∥x∥ is given by I

∥x∥ −
xxT

∥x∥3 (see §2.6.1 of (Petersen
& Pedersen, 2012)), we thus have that

∇xf(x;n) =

(
nT

(
I

∥Px∥
− (Px)(Px)T

∥Px∥3

)
P

)T

=

(
1

∥Px∥
nT

(
I − (Px)(Px)T

∥Px∥2

)
P

)T

=
1

∥Px∥
P

(
I − (Px)(Px)T

∥Px∥2

)
n because P is symmetric
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Denote Q = I − (Px)(Px)T

∥Px∥2 . Note that this is an orthogonal projection onto the hyperplane normal to Px. We now have that
∇xf(x;n) =

1
∥Px∥PQn. Because we only care about the angle between n and ∇xf(x;n), it suffices to look at the angle

between n and PQn, ignoring the 1
∥Px∥ term.

Denote the angle between n and PQn as θ(x, n). (Note that θ is also a function of x because Q is a function of x.)
Then if θQ(x, n) is the angle between n and Qn, and θP (x, n) is the angle between Qn and PQn, then θ(x, n) ≤
θQ(x, n) + θP (x, n), so E[θ(x, n)] ≤ E[θQ(x, n)] + E[θP (x, n)].

Using Lemma 1, we have that θQ(x, n) = arccos
(√

1− cos(ϕ(n, Px))2
)

, where ϕ(n, Px) is the angle between n and

Px. Now, because n ∼ N (0, I), we have E[cos(ϕ(n, Px))2] = 1/d, using the well-known fact that the expected squared
dot product between a uniformly distributed unit vector in Rd and a given unit vector in Rd is 1/d.

At this point, define g(t) = arccos
(√

1− t
)
, h(t) = g′

(
1

d−1

)(
t− 1

d−1

)
+ g

(
1

d−1

)
. Then if 1

d−1 < c, where c is the

least solution to g′(c) = π−2g(c)
2(1−c) , then h(t) ≥ g(t). (Note that g(t) is convex on (0, 0.5] and concave on [0.5, 1). Therefore,

there are exactly two solutions to g′(c) = π−2g(c)
2(1−c) . The lesser of the two solutions is the value at which g′(c) equals the slope

of the line between (c, g(c)) and (1, π/2) – the latter point being the maximum of g – at the same time that g′′(c) ≥ 0.) One
can compute c ≈ 0.155241 . . . , so if d ≥ 8, then 1/(d− 1) < c is satisfied, so h(t) ≥ g(t). Thus, we have the following
inequality:

h(1/(d− 1)) > h(1/d)

= h(E[cos(ϕ(n, Px))2])

= E[h(cos(ϕ(n, Px))2)] due to linearity

≥ E[g(cos(ϕ(n, Px))2)] because h(t) ≥ g(t) for all t
= E[θQ(x, n)]

Now, h(1/(d− 1)) = g(1/(d− 1)) = arccos
(√

1− 1
d−1

)
. Thus, we have that arccos

(√
1− 1

d−1

)
> E[θQ(x, n)].

The next step is to determine an upper bound for E[θP (x, n)]. By Lemma 1, we have that θP (x, n) =

arccos

(√
1− cos(ϕ(Qn, 1⃗))2

)
. Now, note that because n ∼ N (0, I), then Qn is distributed according to a unit Gaussian

in ImQ, the (d− 1)-dimensional hyperplane orthogonal to Px. Note that because 1⃗ is orthogonal to Px (by the definition of
P ) and Px is orthogonal to ImQ, this means that 1⃗ ∈ ImQ. Now, let us apply the same fact from earlier: that the expected
squared dot product between a uniformly distributed unit vector in Rd−1 and a given unit vector in Rd−1 is 1/(d− 1). Thus,
we have that E[cos(ϕ(Qn, 1⃗))2] = 1/(d− 1).

From this, by the same logic as in the previous case, arccos
(√

1− 1
d−1

)
≥ E[θP (x, n)].

Adding this inequality to the inequality for E[θQ(x, n)], we have

2 arccos

(√
1− 1

d− 1

)
> E[θQ(x, n)] + E[θP (x, n)] ≥ E[θ(x, n)]

.

E.6. Empirical Results Regarding LayerNorm Gradients

In Section 2.4, we mention that we empirically found that feature vectors computed by differentiating through LayerNorms
had high cosine similarities with feature vectors computed while ignoring LayerNorms.

In particular, for the feature vectors considered in Section 4.3, these cosine similarities and angles are given in Table 4.

Theorem 1 can be used to estimate the expected angle in radians between a feature vector computed with LayerNorm and a
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Task Cosine similarity Angle (radians)

Subject pronoun prediction (attention 6::6) 0.99779 0.0664
C vs. Python 0.99936 0.0358

Political party prediction 0.99900 0.0447

Table 4. Cosine similarities between the feature vectors used in Section 4.3, computed with and without LayerNorms

feature vector computed without LayerNorm. In this case, given that the model has dimensionality 512, this expected angle
is approximately 0.0442 radians.

In general, this value is a decent estimation to the empirical values that we found – especially when considering that Theorem
1 makes the assumption that feature vectors are normally distributed, and when considering that this theorem does not take
into account the scaling matrix after the LayerNorm described in Appendix E.

Additionally, while the feature vectors for subject pronoun prediction have a higher angle between them of 0.0664 radians,
this can be possibly be attributed to the fact that the circuit for these feature vectors goes through multiple LayerNorms.

F. Applicability to Modified Transformer Architectures
Many modern transformers include architectural modifications from older transformer models such as GPT2 (Radford et al.,
2019). For instance, the open-source Llama 3 family of models (AI@Meta, 2024) modifies attention sublayers by using
grouped-query attention (GQA) (Ainslie et al., 2023), and uses RMSNorm (Zhang & Sennrich, 2019) instead of LayerNorm.
It is thus natural to consider the extent to which OBPROP generalizes to models incorporating these architectural changes.
Happily, OBPROP functions the exact same way in the presence of GQA and RMSNorm. Because GQA only affects the QK
circuit of attention, and OBPROP only addresses the OV circuit of attention, GQA does not change the operation of our
method.

As for RMSNorm, from a practical perspective, Algorithm 1 still works the same (because RMSNorm can just be treated as
another nonlinearity). And from a theoretical perspective, RMSNorm is actually easier to handle than vanilla LayerNorm:
for Theorem 1, the bound becomes tighter (arccos(

√
1− 1/d)), the normality assumption can be changed to apply to x

instead of n, and the proof follows almost immediately from Lemma 1. (This is because RMSNorm does not include the P
projection found in the proof of Theorem 1.)

G. Further Debiasing Experiments
We ran further experiments on the artificial dataset described in Appendix A, in order to determine the extent to which the
feature vectors yielded by observable propagation could be used for debiasing the model’s outputs. The idea is similar to
that presented by Li et al. (2023): by adding a feature vector to the activations at a given layer for the name token, we can
hopefully shift the model’s output to be less biased.

Specifically, we used the following methodology. We paired each of the 300 female-name prompts for nbias with one of the
300 male-name prompts for nbias. For each prompt pair, we ran the model on the female-name prompt and on the male-name
prompt, recording the scores with respect to the nbias observable. We then ran the model on the male-name prompt – but
added a multiple of the 6::6 feature vector for nbias described in §4.2 to the model’s activations for the name token before the
LayerNorm preceding the layer 6 attention sublayer.

In particular, let y be the unit 6::6 feature vector for nbias, let xfemale be the activation vector for the name token at that
layer for the female prompt, and let xmale be the activation vector for the name token at that layer for the male prompt.
Then we added the vector y′ = ((xfemale − xmale) · y) y to xmale. If the model were a linear model whose output was solely
determined by the dot product of the input at this layer with the feature vector y, then the output of the model in the case
where y′ is added to the male embeddings would be the same as the output of the model on the female prompt. Therefore,
the difference between this “patched” output and the model’s output on the female prompt can be viewed as an indicator of
the extent to which the feature vector is affected by nonlinearity in the model. We also ran this same experiment, but adding
2y′ instead of y′ to the male embeddings, in order to get a stronger debiasing effect.

The results are given in Table 5. We see that adding y′ to the activations for the male prompts is in fact able to cause the
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Male prompt Female prompt Male patched +y′ Male patched +2y′

Mean nbias score −2.947 5.011 −0.5489 4.879
Mean absolute differ-
ence with female scores

7.9903 0 5.6245 1.3180

Mean difference from fe-
male scores

7.9583 0 5.5599 0.1316

Table 5. The results of the debiasing experiments for the nbias observable. “Mean absolute difference with female scores” refers to the
mean absolute difference between the nbias score for each male prompt (or male prompt with patched activations) and the score for the
corresponding female prompt. “Mean difference from female scores” refers to the mean difference, without taking the absolute value,
between the nbias for the female prompt, and the score for the corresponding (patched) male prompt.

Male prompt Female prompt Male patched +2y′

Mean nsubj score −5.1393 5.0404 4.8794
Mean absolute difference with female scores 10.180 0 2.148
Mean difference from female scores 10.180 0 0.161

Table 6. The results of the debiasing experiments for the nsubj observable, adding 2y′ to the male prompts’ activations.

model’s output to become closer to that of the female prompts – although not as much as it would if the model were linear.
But adding 2y′ to the male prompts’ activations is able to bring the model’s output to within an average of 1.3180 logits of
the model’s output on the female prompts. And when the mean difference between the patched male prompt outputs and the
female prompt outputs is calculated without taking the absolute value, this difference becomes even smaller – only 0.1316
logits on average – which indicates that sometimes, adding 2y′ to the male prompts’ activations even overshoots the model’s
behavior on the female prompts. As such, we can infer that this feature vector obtained via observable propagation has
utility in debiasing the model.

We then wanted to investigate the extent to which adding this “debiasing vector” would harm the model’s performance on
the pronoun prediction task. As such, we repeated these experiments on the dataset of prompts for nsubj, but adding 2y′ to
the male activations. The results can be found in Table 6. The results show that adding the “debiasing vector” to the male
name embeddings also causes the model’s ability to correctly predict gendered pronouns to drop dramatically. This suggests
that in cases such as this one, where the model uses the same features for undesirable outputs as it does for desirable outputs,
inference-time interventions such as that presented by Li et al. (2023) may cause an inevitable decrease in model quality.

H. Proof of Theorem 2
Theorem 2. Let y1, y2 ∈ Rd. Let x be uniformly distributed on the hypersphere defined by the constraints ∥x∥ = s and
x · y1 = k. Then we have

E[x · y2] = k
y1 · y2
∥y1∥2

and the maximum and minimum values of x · y2 are given by

∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
s2∥y1∥2 − k2

)
where θ is the angle between y1 and y2.

Before proving Theorem 2, we will prove a quick lemma.

Lemma 2. Let S be a hypersphere with radius r and center c. Then for a given vector y, the mean squared distance from y
to the sphere, Es∈S [∥y − c∥2], is given by ∥y − c∥2 + r2.

Proof. Without loss of generality, assume that S is centered at the origin (so ∥y − c∥2 = ∥y∥2). Induct on the dimension of
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the S. As our base case, let S be the 0-sphere consisting of a point in R1 at −r and a point at r. Then Es∈S [|y − s|2] =
(y−r)2+(y−(−r))2

2 = y2 + r2.

For our inductive step, assume the inductive hypothesis for spheres of dimension d − 2; we will prove the theorem of
spheres of dimension d− 1 in an ambient space of dimension d. Without loss of generality, let y lie on the x-axis, so that we
have y =

[
y1 0 0 . . .

]T
. Next, divide S into slices along the x-axis. Denote the slice at position x = x0 as Sx0 . Then

Sx0 is a (d − 2)-sphere centered at
[
x0 0 0 . . .

]T
, and has radius

√
r2 − x2

0. Now, by the law of total expectation,

Es∈S [∥y − s∥2] = E−r≤x≤r

[
Es′∈Sx

[
∥y − s′∥2

]]
. We then have that

Es′∈Sx

[
∥y − s′∥2

]
= E

[
(y1 − x)2 + s22 + s23 + · · ·

]
= (y1 − x)2 + E

[
s22 + s23 + · · ·

]
Once again, Sx is a (d− 2)-sphere defined by s22 + s23 + · · · = r2 − x2. This means that by the inductive hypothesis, we
have E

[
s22 + s23 + · · ·

]
= r2 − x2. Thus, we have

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es∈S [∥y − s∥2] = E−r≤x≤r

[
(y1 − x)2 + r2 − x2

]
=

1

2r

∫ r

−r

(y1 − x)2 + r2 − x2dx

= r2 + y21

We are now ready to begin the main proof.

Proof. First, assume that ∥x∥ = 1. Now, the intersection of the (d − 1)-sphere defined by ∥x∥ = 1 and the hyperplane
x · y1 = k is a unit hypersphere of dimension (d− 2), oriented in the hyperplane x · y1 = k, and centered at c1y1 where
c1 = k/ ∥y1∥2. Denote this (d− 2)-sphere as S, and denote its radius by r.

Next, define c2 = k
y2·y1

. Then cy2 · y1 = k, so c2y2 lies in the same hyperplane as S. Additionally, because c1y1 is in this
hyperplane, and c1y1 is also the normal vector for this hyperplane, we have that the vectors c1y1, c2y2, and c1y1 − c2y2
form a right triangle, where c2y2 is the hypotenuse and c1y1 − c2y2 is the leg opposite of the angle θ between y1 and y2. As
such, we have that ∥c1y1 − c2y2∥ = sin(θ) ∥c2y2∥.

Furthermore, we have that c1y1 · c2y2 = k2

∥y1∥2 , that ∥c1y1∥ = |k|
∥y1∥2 , and that ∥c2y2∥ = |k|

∥y1∥|cos θ|

We will now begin to prove that the maximum and minimum values of y2 · x are given by
∥y2∥
∥y1∥

(
k cos(θ)± | sin(θ)|

√
s2∥y1∥2 − k2

)
.

To start, note that the nearest point on S to c2y2 and the farthest point on S from c2y2 are located at the intersection of S
with the line between c2y2 and c1y1.

To see this, let x+ be the at the intersection of S and the line between c2y2 and c1y1. We will show that x+ is the nearest
point on S to c2y2. Let x′

+ ∈ S ̸= x+. Then we have the following cases:

• Case 1: c2y2 is outside of S. Then ∥c2y2 − c1y1∥ = ∥c2y2 − x+∥ + ∥x+ − c1y1∥, because c2y2, x+, and
c1y1 are collinear – so ∥c2y2 − c1y1∥ = ∥c2y2 − x+∥ + r (because x+ ∈ S). By the triangle inequality, we
have ∥c2y2 − c1y1∥ ≤

∥∥c2y2 − x′
+

∥∥ +
∥∥x′

+ − c1y1
∥∥ =

∥∥c2y2 − x′
+

∥∥ + r. But this means that ∥c2y2 − x+∥ ≤∥∥c2y2 − x′
+

∥∥.
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• Case 2: c2y2 is inside of S. Then ∥c2y2 − c1y1∥ = ∥x+ − c1y1∥ − ∥c2y2 − x+∥, because c2y2, x+, and c1y1 are
collinear – so ∥c2y2 − c1y1∥ = r−∥c2y2 − x+∥. By the triangle inequality, we have

∥∥x′
+ − c1y1

∥∥ ≤
∥∥c2y2 − x′

+

∥∥+
∥c2y2 − c1y1∥, so

∥∥x′
+ − c1y1

∥∥ ≤
∥∥c2y2 − x′

+

∥∥ + r − ∥c2y2 − x+∥. But since
∥∥x′

+ − c1y1
∥∥ = r, this means that

∥c2y2 − x+∥ ≤
∥∥c2y2 − x′

+

∥∥.

A similar argument will show that x−, the farthest point on S from c2y2, is also located at the intersection of S with the line
between c2y2 and c1y1.

Now, let us find the values of x+ and x−. The line between c2y2 and c1y1 can be parameterized by a scalar t as
c1y1 + t(c2y2 − c1y1). Then x+ and x− are given by c1y1 + t∗(c2y2 − c1y1), where t∗ are the solutions to the equation
∥c1y1 + t(c2y2 − c1y1)∥ = 1.

We have the following:

1 = ∥c1y1 + t(c2y2 − c1y1)∥

= ∥c1y1∥2 + 2t(c1y1 · (c2y2 − c1y1)) + t2 ∥c2y2 − c1y1∥2

= ∥c1y1∥2 + 2t((c1y1 · c2y2)− ∥c1y1∥2) + t2 ∥c2y2∥2 sin2 θ

=
k2

∥y1∥2
+ 2t

(
k2

∥y1∥2
− k2

∥y1∥2

)
+ t2

k2

∥y1∥2 cos2 θ
sin2 θ

=
k2

∥y1∥2
(t2 tan2 θ + 1)

Thus, solving for t, we have that t∗ =
±
√

∥y1∥2−k2

|k| tan θ . Therefore, we have that

x+, x− = c1y1 + t∗(c2y2 − c1y1)

= c1y1 +

(
k2

∥y1∥2
(t2 tan2 θ + 1)

)
(c2y2 − c1y1)

=
ky1

∥y1∥2
+

±
√

∥y1∥2 − k2

|k| tan θ

( ky2
y1 · y2

− ky1

∥y1∥2

)

= k

 y1

∥y1∥2
±


√

∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
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y2 · x+, y2 · x− = y2 · k

 y1

∥y1∥2
±


√

∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
=

ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
y2 · y2
y1 · y2

− y1 · y1
∥y1∥2

)

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
∥y2∥

∥y1∥ cos θ
− ∥y2∥ cos θ

∥y1∥

)
=

[
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

(
1

cos θ
− cos θ

)]

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

sin θ tan θ

=
ky1 · y2
∥y1∥2

± ∥y2∥
∥y1∥

sin θ

√
∥y1∥2 − k2

=
∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
∥y1∥2 − k2

)

We will now prove that E [y2 · x] = y1·y2

∥y1∥2 . Before we do, note that we can also use our value of t∗ to determine the squared
radius of S. We have that the squared radius of S is given by

r2 = ∥t∗(c2y2 − c1y1)∥2

= (t∗)2 ∥(c2y2 − c1y1)∥2

= (t∗)2 sin2 θ ∥c2y2∥2

=
sin2(θ)k2/

(
∥y1∥2 cos2 θ

)
k2 tan θ

(
∥y1∥2 − k2

)
= 1− k2

∥y1∥2

We will use this result soon. Now, on to the main event. Begin by noting that y2 ·x = ∥y2∥ ∥x∥ cos(y2, x) = ∥y2∥ cos(y2, x),
where cos(y2, x) is the cosine of the angle between y2 and x. Now, cos(y2, x) = signum(c2) cos(c2y2, x). And we have
that ∥x− cy2∥2 = ∥x∥2 + ∥cy2∥2 − 2 ∥x∥ ∥c2y2∥ cos(cy2, x) = 1+ ∥c2y2∥2 − 2 ∥c2y2∥ cos(c2y2, x). Therefore, we have

cos(y2, x) = signum(c2) cos(c2y2, x)

= signum(c2)
∥x− c2y2∥2 − 1− ∥c2y2∥2

−2 ∥c2y2∥

= signum(c2)
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

y2 · x = ∥y2∥ cos(y2, x)

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥
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E [y2 · x] = E

[
signum(c2) ∥y2∥

1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

]

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − E

[
∥x− c2y2∥2

]
2 ∥c2y2∥

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥

This last line uses Lemma 2: c1y1 is the center of S , so the expected squared distance between c2y2 and a point on S is given
by 1 − k2

∥y1∥2 + ∥c1y1 − c2y2∥2, where 1 − k2

∥y1∥2 is the squared radius of S and ∥c1y1 − c2y2∥2 is the squared distance
from c2y2 to the center. We can use this lemma because c2y2 is in the same hyperplane as S , so we can treat this situation as
being set in a space of dimension d− 1.

Now, continue to simplify:

E [y2 · x] = signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 + k2

∥y1∥2 − sin2 θ ∥c2y2∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 cos2 θ + k2

∥y1∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
1

2

(
∥c2y2∥ cos2 θ +

|k| cos θ
∥y1∥

)
= signum(c2) ∥y2∥

1

2

(
|k| |cos θ|
∥y1∥

+
|k| |cos θ|
∥y1∥

)
= signum(c2) |k|

∥y2∥
∥y1∥

|cos θ|

= k
∥y2∥
∥y1∥

cos θ

= k
y1 · y2
∥y1∥2

The last thing to do is to note that the above formulas are only valid when ∥x∥ = 1. But if ∥x∥ = s, this is equivalent to the
case when ∥x∥ = 1 if we scale y1 and y2 by s. Scaling those two vectors by s gives us the final formulas in Theorem 2.

I. Top Activating Tokens on 1M Tokens from The Pile for nbias and nsubj 6::6 Feature Vectors
In §4.2, in order to confirm that the feature vectors that we found for attention head 6::6 corresponded to notions of gender,
we looked at the tokens from a dataset of 1M tokens from The Pile (see Appendix A) that maximally and minimally activated
these feature vectors.

I.1. nbias Feature Vector

The thirty highest-activating tokens, along with the prompts from which they came, and their scores, are given below:

1. Highest-activating token #1:

• Excerpt from prompt: "son Tower** and in front of it a beautiful statue of
St Edmund by Dame Elisabeth Frink (1976). The rest of the abbey spreads
eastward like a r"
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• Token: "abeth"
• Score: 18.372

2. Highest-activating token #2:

• Excerpt from prompt: " a gorgeous hammerbeam roof and a striking sculpture of
the crucified Christ by Dame Elisabeth Frink in the north transept.\n\nThe
impressive entrance porch has a"

• Token: "abeth"
• Score: 17.388

3. Highest-activating token #3:

• Excerpt from prompt: " the elaborate Portuguese silver service or the impressive
Egyptian service, a divorce present from Napoleon to Josephine"

• Token: "ine"
• Score: 16.815

4. Highest-activating token #4:

• Excerpt from prompt: " rocky beach of **Priest’s Cove**, while nearby are the
ruins of **St Helen’s Oratory**, supposedly one of the first Christian
chapels built in West Cornwall"

• Token: " Helen"

• Score: 16.309

5. Highest-activating token #5:

• Excerpt from prompt: ", and opened in 1892, this brainchild of his Parisian
actress wife, Josephine, was built by French architect Jules Pellechet to
display a collection the Bow"

• Token: "ine"
• Score: 16.267

6. Highest-activating token #6:

• Excerpt from prompt: " the film Bridget Jones’s Diary; a local house was used
as Bridget’s parents’ home.\n\n1Sights\n\nBroadway TowerTOWER"

• Token: "idget"
• Score: 16.171

7. Highest-activating token #7:

• Excerpt from prompt: ") by his side and a loyal band of followers in support.
Arthur went on to slay Rita Gawr, a giant who butchered"

• Token: " Rita"

• Score: 16.079

8. Highest-activating token #8:

• Excerpt from prompt: " for the fact that Sir Robert Walpole’s grandson sold the
estate’s splendid art collection to Catherine the Great of Russia to stave
off debts { those paintings formed the foundation of the"

• Token: " Catherine"

• Score: 16.039

9. Highest-activating token #9:
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• Excerpt from prompt: " Highlights include the magnificent gold coach of 1762 and
the 1910 Glass Coach (Prince William and Catherine Middleton actually used
the 1902 State Landau for their wedding in 2011).\n\n"

• Token: " Catherine"

• Score: 15.967

10. Highest-activating token #10:

• Excerpt from prompt: " by Canaletto, El Greco and Goya as well as 55 paintings
by Josephine herself. Among the 15,000 other objets d’art are incredible
dresses from"

• Token: "ine"
• Score: 15.906

11. Highest-activating token #11:

• Excerpt from prompt: " looks like something from a children’s storybook (a
fact not unnoticed by the author Antonia Barber, who set her much-loved
fairy-tale The Mousehole Cat"

• Token: "ia"
• Score: 15.582

12. Highest-activating token #12:

• Excerpt from prompt: ". Precious little now remains save for a few nave walls,
the ruined **St Mary’s chapel**, and the crossing arches, which may"

• Token: " Mary"

• Score: 15.443

13. Highest-activating token #13:

• Excerpt from prompt: ".\n\nTrain\n\nThe northern terminus of the Welsh Highland
Railway is on St Helen’s Rd. Trains run to Porthmadog (£35 return, 2½"

• Token: " Helen"

• Score: 15.374

14. Highest-activating token #14:

• Excerpt from prompt: "2\n\n### KING RICHARD III\n\nIt’s an amazing story.
Philippa Langley, a member of the Richard III Society, spent four-and-a"

• Token: "a"
• Score: 15.358

15. Highest-activating token #15:

• Excerpt from prompt: " pit (which can still be seen) from the granary above.
In 1566, Mary, Queen of Scots famously visited the wounded tenant of the
castle, Lord Bothwell,"

• Token: " Mary"

• Score: 15.312

16. Highest-activating token #16:

• Excerpt from prompt: " Richard III, Henry VIII and Charles I. It is most famous
as the home of Catherine Parr (Henry VIII’s widow) and her second husband,
Thomas Seymour. Princess"

• Token: " Catherine"

• Score: 15.275
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17. Highest-activating token #17:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n#### Isles of
Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n#### Bryher\n\n#### St Martin"

• Token: " Mary"

• Score: 15.246

18. Highest-activating token #18:

• Excerpt from prompt: "’.\n\nOutside the cathedral’s eastern end is the grave of
the WWI heroine Edith"

• Token: "ith"
• Score: 15.182

19. Highest-activating token #19:

• Excerpt from prompt: " many people visit for the region’s literary connections;
William Wordsworth, Beatrix Potter, Arthur Ransome and John Ruskin all
found inspiration here.\n\n"

• Token: "rix"
• Score: 15.135

20. Highest-activating token #20:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n#### Isles of
Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n#### Bryher\n\n#### St Martin"

• Token: " Mary"

• Score: 15.111

21. Highest-activating token #21:

• Excerpt from prompt: " Mayor of Casterbridge locations hidden among modern
Dorchester. They include **Lucetta’s House**, a grand Georgian affair
with ornate door posts in Trinity St,"

• Token: "etta"
• Score: 15.053

22. Highest-activating token #22:

• Excerpt from prompt: " leads down to this little cove and the remains of the
small Tudor fort of **St Catherine’s Castle**.\n\nPolkerris BeachBEACH\n\n(
G"

• Token: " Catherine"

• Score: 15.051

23. Highest-activating token #23:

• Excerpt from prompt: "-century **St Catherine’s Lighthouse** and its 14th-century
counterpart, **St Catherine’s Or"

• Token: " Catherine"

• Score: 14.979

24. Highest-activating token #24:

• Excerpt from prompt: " ) ; Castle Yard) stands behind a 15th-century gate near
the church of St Mary de Castro ( MAP GOOGLE MAP ) ; Castle St),"

• Token: " Mary"

• Score: 14.968
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25. Highest-activating token #25:

• Excerpt from prompt: " the Glasgow School of Art. It was there that he met the
also influential artist and designer Margaret Macdonald, whom he married;
they collaborated on many projects and were major influences on"

• Token: " Margaret"

• Score: 14.930

26. Highest-activating token #26:

• Excerpt from prompt: " Nov-Mar )\n\nThe raising of the 16th-century warship the
Mary Rose in 1982 was an extraordinary feat of marine archaeology. Now
the new £"

• Token: "Mary"
• Score: 14.699

27. Highest-activating token #27:

• Excerpt from prompt: " was claimed by the Boleyn family and passed through the
generations to Thomas, father of Anne Boleyn. Anne was executed by her
husband Henry VIII in 1533, who"

• Token: " Anne"

• Score: 14.686

28. Highest-activating token #28:

• Excerpt from prompt: ". The village has literary cachet too { Wordsworth went
to school here, and Beatrix Potter’s husband, William Heelis, worked here
as a solicitor for"

• Token: "rix"
• Score: 14.658

29. Highest-activating token #29:

• Excerpt from prompt: " are William MacTaggart’s Impressionistic Scottish
landscapes and a gem by Thomas Millie Dow. There’s also a special
collection of James McNeill Whistler’s lim"

• Token: "ie"
• Score: 14.626

30. Highest-activating token #30:

• Excerpt from prompt: " Stay\n\nAMillgate House\n\nADevonshire
Fell\n\nAHelaina\n\nAQuebecs\n\nALa Rosa Hotel\n\n## Yorkshire Highlights"

• Token: "aina"
• Score: 14.578

The thirty lowest-activating tokens, along with the prompts from which they came, and their scores, are given below:

1. Lowest-activating token #1:

• Excerpt from prompt: " recounted the sighting of a disturbance in the loch by
Mrs Aldie Mackay and her husband: ’There the creature disported itself,
rolling and plunging for fully a minute"

• Token: " husband"

• Score: -12.129
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2. Lowest-activating token #2:

• Excerpt from prompt: " paid time off work during menstruation\n• (often from male
workers, who viewed the employment of women as competition) women should
not be employed in"

• Token: " male"

• Score: -11.344

3. Lowest-activating token #3:

• Excerpt from prompt: " family was devastated, but things quickly got worse.
Emily fell ill with tuberculosis soon after her brother’s funeral; she
never left the house again, and died on 19 December. Anne"

• Token: " brother"

• Score: -11.146

4. Lowest-activating token #4:

• Excerpt from prompt: " handsome Jacobean town house belonging to Shakespeare’s
daughter Susanna and her husband, respected doctor John Hall, stands south
of the centre. The exhibition offers fascinating insights"

• Token: " husband"

• Score: -11.016

5. Lowest-activating token #5:

• Excerpt from prompt: " hall was home to the 16th-century’s second-most
powerful woman, Elizabeth, Countess of Shrewsbury { known to all as Bess
of Hardwick {"

• Token: " Count"

• Score: -10.793

6. Lowest-activating token #6:

• Excerpt from prompt: " haunted places, with spectres from a phantom funeral
to Lady Mary Berkeley seeking her errant husband. Owner Sir Humphrey
Wakefield has passionately restored the castle’s extravagant medieval
stater"

• Token: " husband"

• Score: -10.682

7. Lowest-activating token #7:

• Excerpt from prompt: " Windsor Castle in 1861, Queen Victoria ordered its
elaborate redecoration as a tribute to her husband. A major feature of
the restoration is the magnificent vaulted roof, whose gold mosaic"

• Token: " husband"

• Score: -10.577

8. Lowest-activating token #8:

• Excerpt from prompt: "Ornate Plas Newydd was home to Lady Eleanor Butler and
Miss Sarah Ponsonby, two society ladies who ran away from Ireland to Wales
disguised as men, and"

• Token: "onson"
• Score: -10.503

9. Lowest-activating token #9:
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• Excerpt from prompt: " with DVD players, with tremendous views across the bay
from the largest two. Bridget and Derek really give this place a ’home
away from home’ ambience, and can arrange"

• Token: " Derek"

• Score: -10.483

10. Lowest-activating token #10:

• Excerpt from prompt: " of adultery, debauchery, crime and edgy
romance, and is filled with Chaucer’s witty observations about human
nature.\n\nHistory\n\nCanterbury’s past"

• Token: "cer"
• Score: -10.296

11. Lowest-activating token #11:

• Excerpt from prompt: " the city in 1645. Legend has it that the disease-ridden
inhabitants of **Mary King’s Close** (a lane on the northern side of the
Royal Mile on the site"

• Token: " King"

• Score: -10.294

12. Lowest-activating token #12:

• Excerpt from prompt: " manor was founded in 1552 by the formidable Bess of
Hardwick and her second husband, William Cavendish, who earned grace and
favour by helping Henry VIII dissolve the English"

• Token: " husband"

• Score: -10.251

13. Lowest-activating token #13:

• Excerpt from prompt: " Apartments** is the bedchamber where Mary, Queen of Scots
gave birth to her son James VI, who was to unite the crowns of Scotland
and England in 1603"

• Token: " son"

• Score: -10.148

14. Lowest-activating token #14:

• Excerpt from prompt: "s at the behest of Queen Victoria, the monarch grieved
here for many years after her husband’s death. Extravagant rooms include
the opulent Royal Apartments and Dur"

• Token: " husband"

• Score: -10.112

15. Lowest-activating token #15:

• Excerpt from prompt: "am-5pm Mar-Oct)\n\nThis ambitious three-dimensional
interpretation of Chaucer’s classic tales using jerky animatronics and
audioguides is certainly entertaining"

• Token: "cer"
• Score: -10.053

16. Lowest-activating token #16:

• Excerpt from prompt: " his death, in the hard-to-decipher Middle English of the
day, Chaucer’s Tales is an unfinished series of 24 vivid stories told by
a party"
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• Token: "cer"
• Score: -10.050

17. Lowest-activating token #17:

• Excerpt from prompt: " especially in **Poets’ Corner**, where you’ll find
the resting places of Chaucer, Dickens, Hardy, Tennyson, Dr Johnson and
Kipling, as well as"

• Token: "cer"
• Score: -10.033

18. Lowest-activating token #18:

• Excerpt from prompt: " her? She’s up here saying his intent was this.\n\n¶ 35
Trujillo objected on the basis"

• Token: " his"

• Score: -10.031

19. Lowest-activating token #19:

• Excerpt from prompt: " lived here happily with his sister Dorothy, wife Mary and
three children John, Dora and Thomas until 1808, when the family moved to
another nearby house at Allen Bank, and"

• Token: " Thomas"

• Score: -9.934

20. Lowest-activating token #20:

• Excerpt from prompt: " home of Queen Isabella, who (allegedly) arranged the
gruesome murder of her husband, Edward II.\n\nHoughton Hall"

• Token: " husband"

• Score: -9.932

21. Lowest-activating token #21:

• Excerpt from prompt: " Saturday, four on Sunday).\n\nQueen Victoria bought
Sandringham in 1862 for her son, the Prince of Wales (later Edward VII),
and the features and furnishings remain"

• Token: " son"

• Score: -9.883

22. Lowest-activating token #22:

• Excerpt from prompt: " the palace, which contains Mary’s Bed Chamber, connected
by a secret stairway to her husband’s bedroom, and ends with the ruins of
Holyrood Abbey.\n\nHoly"

• Token: " husband"

• Score: -9.824

23. Lowest-activating token #23:

• Excerpt from prompt: " holidays.\n\nThe two-hour tour includes the **Throne
Room**, with his-and-hers pink chairs initialed ’ER’ and ’P’. Access is"

• Token: " his"

• Score: -9.717

24. Lowest-activating token #24:
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• Excerpt from prompt: " is packed with all manner of Highland memorabilia. Look
out for the secret portrait of Bonnie Prince Charlie { after the Jacobite
rebellions all things Highland were banned, including pictures of"

• Token: " Prince"

• Score: -9.691

25. Lowest-activating token #25:

• Excerpt from prompt: " the last college to let women study there; when they were
finally admitted in 1988, some male students wore black armbands and flew
the college flag at half mast.\n\n"

• Token: " male"

• Score: -9.652

26. Lowest-activating token #26:

• Excerpt from prompt: "oh, Michael Bond’s Paddington Bear, Beatrix Potter’s
Peter Rabbit, Roald Dahl’s Willy Wonka and JK Rowling’s Harry Potter are
perennially popular"

• Token: "ald"
• Score: -9.613

27. Lowest-activating token #27:

• Excerpt from prompt: " one of the rooms. In 2003 the close was opened to
the public as the Real Mary King’s Close.\n\n### SCOTTISH PARLIAMENT
BUILDING\n"

• Token: " King"

• Score: -9.405

28. Lowest-activating token #28:

• Excerpt from prompt: ", Mary, Dorothy and all three children. Samuel Taylor
Coleridge’s son Hartley is also buried here.\n\nGrasm"

• Token: " Samuel"

• Score: -9.372

29. Lowest-activating token #29:

• Excerpt from prompt: ", the town became northern Europe’s most important
pilgrimage destination, which in turn prompted Geoffrey Chaucer’s
The Canterbury Tales, one of the most outstanding works in English
literature."

• Token: "cer"
• Score: -9.351

30. Lowest-activating token #30:

• Excerpt from prompt: " Queen Isabella, who (allegedly) arranged the gruesome
murder of her husband, Edward II.\n\nHoughton Hall"

• Token: " Edward"

• Score: -9.272
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I.2. nsubj Feature Vector

The thirty highest-activating tokens, along with the prompts from which they came, and their scores, are given below:

1. Highest-activating token #1:

• Excerpt from prompt: "son Tower** and in front of it a beautiful statue of
St Edmund by Dame Elisabeth Frink (1976). The rest of the abbey spreads
eastward like a r"

• Token: "abeth"
• Score: 18.372

2. Highest-activating token #2:

• Excerpt from prompt: " a gorgeous hammerbeam roof and a striking sculpture of
the crucified Christ by Dame Elisabeth Frink in the north transept.\n\nThe
impressive entrance porch has a"

• Token: "abeth"
• Score: 17.388

3. Highest-activating token #3:

• Excerpt from prompt: " the elaborate Portuguese silver service or the impressive
Egyptian service, a divorce present from Napoleon to Josephine"

• Token: "ine"
• Score: 16.815

4. Highest-activating token #4:

• Excerpt from prompt: " rocky beach of **Priest’s Cove**, while nearby are the
ruins of **St Helen’s Oratory**, supposedly one of the first Christian
chapels built in West Cornwall"

• Token: " Helen"

• Score: 16.309

5. Highest-activating token #5:

• Excerpt from prompt: ", and opened in 1892, this brainchild of his Parisian
actress wife, Josephine, was built by French architect Jules Pellechet to
display a collection the Bow"

• Token: "ine"
• Score: 16.267

6. Highest-activating token #6:

• Excerpt from prompt: " the film Bridget Jones’s Diary; a local house was used
as Bridget’s parents’ home.\n\n1Sights\n\nBroadway TowerTOWER"

• Token: "idget"
• Score: 16.171

7. Highest-activating token #7:

• Excerpt from prompt: ") by his side and a loyal band of followers in support.
Arthur went on to slay Rita Gawr, a giant who butchered"

• Token: " Rita"

• Score: 16.079

8. Highest-activating token #8:
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• Excerpt from prompt: " for the fact that Sir Robert Walpole’s grandson sold the
estate’s splendid art collection to Catherine the Great of Russia to stave
off debts { those paintings formed the foundation of the"

• Token: " Catherine"

• Score: 16.039

9. Highest-activating token #9:

• Excerpt from prompt: " Highlights include the magnificent gold coach of 1762 and
the 1910 Glass Coach (Prince William and Catherine Middleton actually used
the 1902 State Landau for their wedding in 2011).\n\n"

• Token: " Catherine"

• Score: 15.967

10. Highest-activating token #10:

• Excerpt from prompt: " by Canaletto, El Greco and Goya as well as 55 paintings
by Josephine herself. Among the 15,000 other objets d’art are incredible
dresses from"

• Token: "ine"
• Score: 15.906

11. Highest-activating token #11:

• Excerpt from prompt: " looks like something from a children’s storybook (a
fact not unnoticed by the author Antonia Barber, who set her much-loved
fairy-tale The Mousehole Cat"

• Token: "ia"
• Score: 15.582

12. Highest-activating token #12:

• Excerpt from prompt: ". Precious little now remains save for a few nave walls,
the ruined **St Mary’s chapel**, and the crossing arches, which may"

• Token: " Mary"

• Score: 15.443

13. Highest-activating token #13:

• Excerpt from prompt: ".\n\nTrain\n\nThe northern terminus of the Welsh Highland
Railway is on St Helen’s Rd. Trains run to Porthmadog (£35 return, 2½"

• Token: " Helen"

• Score: 15.374

14. Highest-activating token #14:

• Excerpt from prompt: "2\n\n### KING RICHARD III\n\nIt’s an amazing story.
Philippa Langley, a member of the Richard III Society, spent four-and-a"

• Token: "a"
• Score: 15.358

15. Highest-activating token #15:

• Excerpt from prompt: " pit (which can still be seen) from the granary above.
In 1566, Mary, Queen of Scots famously visited the wounded tenant of the
castle, Lord Bothwell,"

• Token: " Mary"

• Score: 15.312
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16. Highest-activating token #16:

• Excerpt from prompt: " Richard III, Henry VIII and Charles I. It is most famous
as the home of Catherine Parr (Henry VIII’s widow) and her second husband,
Thomas Seymour. Princess"

• Token: " Catherine"

• Score: 15.275

17. Highest-activating token #17:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n#### Isles of
Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n#### Bryher\n\n#### St Martin"

• Token: " Mary"

• Score: 15.246

18. Highest-activating token #18:

• Excerpt from prompt: "’.\n\nOutside the cathedral’s eastern end is the grave of
the WWI heroine Edith"

• Token: "ith"
• Score: 15.182

19. Highest-activating token #19:

• Excerpt from prompt: " many people visit for the region’s literary connections;
William Wordsworth, Beatrix Potter, Arthur Ransome and John Ruskin all
found inspiration here.\n\n"

• Token: "rix"
• Score: 15.135

20. Highest-activating token #20:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n#### Isles of
Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n#### Bryher\n\n#### St Martin"

• Token: " Mary"

• Score: 15.111

21. Highest-activating token #21:

• Excerpt from prompt: " Mayor of Casterbridge locations hidden among modern
Dorchester. They include **Lucetta’s House**, a grand Georgian affair
with ornate door posts in Trinity St,"

• Token: "etta"
• Score: 15.053

22. Highest-activating token #22:

• Excerpt from prompt: " leads down to this little cove and the remains of the
small Tudor fort of **St Catherine’s Castle**.\n\nPolkerris BeachBEACH\n\n(
G"

• Token: " Catherine"

• Score: 15.051

23. Highest-activating token #23:

• Excerpt from prompt: "-century **St Catherine’s Lighthouse** and its 14th-century
counterpart, **St Catherine’s Or"

• Token: " Catherine"
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• Score: 14.979

24. Highest-activating token #24:

• Excerpt from prompt: " ) ; Castle Yard) stands behind a 15th-century gate near
the church of St Mary de Castro ( MAP GOOGLE MAP ) ; Castle St),"

• Token: " Mary"

• Score: 14.968

25. Highest-activating token #25:

• Excerpt from prompt: " the Glasgow School of Art. It was there that he met the
also influential artist and designer Margaret Macdonald, whom he married;
they collaborated on many projects and were major influences on"

• Token: " Margaret"

• Score: 14.930

26. Highest-activating token #26:

• Excerpt from prompt: " Nov-Mar )\n\nThe raising of the 16th-century warship the
Mary Rose in 1982 was an extraordinary feat of marine archaeology. Now
the new £"

• Token: "Mary"
• Score: 14.699

27. Highest-activating token #27:

• Excerpt from prompt: " was claimed by the Boleyn family and passed through the
generations to Thomas, father of Anne Boleyn. Anne was executed by her
husband Henry VIII in 1533, who"

• Token: " Anne"

• Score: 14.686

28. Highest-activating token #28:

• Excerpt from prompt: ". The village has literary cachet too { Wordsworth went
to school here, and Beatrix Potter’s husband, William Heelis, worked here
as a solicitor for"

• Token: "rix"
• Score: 14.658

29. Highest-activating token #29:

• Excerpt from prompt: " are William MacTaggart’s Impressionistic Scottish
landscapes and a gem by Thomas Millie Dow. There’s also a special
collection of James McNeill Whistler’s lim"

• Token: "ie"
• Score: 14.626

30. Highest-activating token #30:

• Excerpt from prompt: " Stay\n\nAMillgate House\n\nADevonshire
Fell\n\nAHelaina\n\nAQuebecs\n\nALa Rosa Hotel\n\n## Yorkshire Highlights"

• Token: "aina"
• Score: 14.578

The thirty lowest-activating tokens, along with the prompts from which they came, and their scores, are given below:
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1. Lowest-activating token #1:

• Excerpt from prompt: " family was devastated, but things quickly got worse.
Emily fell ill with tuberculosis soon after her brother’s funeral; she
never left the house again, and died on 19 December. Anne"

• Token: " brother"

• Score: -11.732

2. Lowest-activating token #2:

• Excerpt from prompt: " recounted the sighting of a disturbance in the loch by
Mrs Aldie Mackay and her husband: ’There the creature disported itself,
rolling and plunging for fully a minute"

• Token: " husband"

• Score: -11.608

3. Lowest-activating token #3:

• Excerpt from prompt: " paid time off work during menstruation\n• (often from male
workers, who viewed the employment of women as competition) women should
not be employed in"

• Token: " male"

• Score: -11.324

4. Lowest-activating token #4:

• Excerpt from prompt: "Ornate Plas Newydd was home to Lady Eleanor Butler and
Miss Sarah Ponsonby, two society ladies who ran away from Ireland to Wales
disguised as men, and"

• Token: "onson"
• Score: -11.228

5. Lowest-activating token #5:

• Excerpt from prompt: " of adultery, debauchery, crime and edgy
romance, and is filled with Chaucer’s witty observations about human
nature.\n\nHistory\n\nCanterbury’s past"

• Token: "cer"
• Score: -11.007

6. Lowest-activating token #6:

• Excerpt from prompt: " Apartments** is the bedchamber where Mary, Queen of Scots
gave birth to her son James VI, who was to unite the crowns of Scotland
and England in 1603"

• Token: " son"

• Score: -10.971

7. Lowest-activating token #7:

• Excerpt from prompt: " handsome Jacobean town house belonging to Shakespeare’s
daughter Susanna and her husband, respected doctor John Hall, stands south
of the centre. The exhibition offers fascinating insights"

• Token: " husband"

• Score: -10.884

8. Lowest-activating token #8:
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• Excerpt from prompt: " his death, in the hard-to-decipher Middle English of the
day, Chaucer’s Tales is an unfinished series of 24 vivid stories told by
a party"

• Token: "cer"
• Score: -10.854

9. Lowest-activating token #9:

• Excerpt from prompt: " especially in **Poets’ Corner**, where you’ll find
the resting places of Chaucer, Dickens, Hardy, Tennyson, Dr Johnson and
Kipling, as well as"

• Token: "cer"
• Score: -10.794

10. Lowest-activating token #10:

• Excerpt from prompt: "am-5pm Mar-Oct)\n\nThis ambitious three-dimensional
interpretation of Chaucer’s classic tales using jerky animatronics and
audioguides is certainly entertaining"

• Token: "cer"
• Score: -10.793

11. Lowest-activating token #11:

• Excerpt from prompt: " haunted places, with spectres from a phantom funeral
to Lady Mary Berkeley seeking her errant husband. Owner Sir Humphrey
Wakefield has passionately restored the castle’s extravagant medieval
stater"

• Token: " husband"

• Score: -10.696

12. Lowest-activating token #12:

• Excerpt from prompt: " Windsor Castle in 1861, Queen Victoria ordered its
elaborate redecoration as a tribute to her husband. A major feature of
the restoration is the magnificent vaulted roof, whose gold mosaic"

• Token: " husband"

• Score: -10.673

13. Lowest-activating token #13:

• Excerpt from prompt: " hall was home to the 16th-century’s second-most
powerful woman, Elizabeth, Countess of Shrewsbury { known to all as Bess
of Hardwick {"

• Token: " Count"

• Score: -10.617

14. Lowest-activating token #14:

• Excerpt from prompt: " Saturday, four on Sunday).\n\nQueen Victoria bought
Sandringham in 1862 for her son, the Prince of Wales (later Edward VII),
and the features and furnishings remain"

• Token: " son"

• Score: -10.556

15. Lowest-activating token #15:
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• Excerpt from prompt: " is packed with all manner of Highland memorabilia. Look
out for the secret portrait of Bonnie Prince Charlie { after the Jacobite
rebellions all things Highland were banned, including pictures of"

• Token: " Prince"

• Score: -10.424

16. Lowest-activating token #16:

• Excerpt from prompt: " beautiful, time-worn rooms hold fascinating relics,
including the cradle used by Mary for her son, James VI of Scotland (who
also became James I of England), and fascinating letters"

• Token: " son"

• Score: -10.266

17. Lowest-activating token #17:

• Excerpt from prompt: ", the town became northern Europe’s most important
pilgrimage destination, which in turn prompted Geoffrey Chaucer’s
The Canterbury Tales, one of the most outstanding works in English
literature."

• Token: "cer"
• Score: -10.250

18. Lowest-activating token #18:

• Excerpt from prompt: " the city in 1645. Legend has it that the disease-ridden
inhabitants of **Mary King’s Close** (a lane on the northern side of the
Royal Mile on the site"

• Token: " King"

• Score: -10.177

19. Lowest-activating token #19:

• Excerpt from prompt: " with DVD players, with tremendous views across the bay
from the largest two. Bridget and Derek really give this place a ’home
away from home’ ambience, and can arrange"

• Token: " Derek"

• Score: -10.124

20. Lowest-activating token #20:

• Excerpt from prompt: " her? She’s up here saying his intent was this.\n\n¶ 35
Trujillo objected on the basis"

• Token: " his"

• Score: -10.113

21. Lowest-activating token #21:

• Excerpt from prompt: " the last college to let women study there; when they were
finally admitted in 1988, some male students wore black armbands and flew
the college flag at half mast.\n\n"

• Token: " male"

• Score: -10.058

22. Lowest-activating token #22:

• Excerpt from prompt: "s at the behest of Queen Victoria, the monarch grieved
here for many years after her husband’s death. Extravagant rooms include
the opulent Royal Apartments and Dur"
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• Token: " husband"

• Score: -10.018

23. Lowest-activating token #23:

• Excerpt from prompt: " home of Queen Isabella, who (allegedly) arranged the
gruesome murder of her husband, Edward II.\n\nHoughton Hall"

• Token: " husband"

• Score: -9.989

24. Lowest-activating token #24:

• Excerpt from prompt: ", Van Dyck, Vermeer, El Greco, Poussin, Rembrandt,
Gainsborough, Turner, Constable, Monet, Pissarro,"

• Token: "brand"
• Score: -9.937

25. Lowest-activating token #25:

• Excerpt from prompt: " 24 vivid stories told by a party of pilgrims journeying
between London and Canterbury. Chaucer successfully created the illusion
that the pilgrims, not Chaucer (though he appears in the"

• Token: "cer"
• Score: -9.909

26. Lowest-activating token #26:

• Excerpt from prompt: " the palace, which contains Mary’s Bed Chamber, connected
by a secret stairway to her husband’s bedroom, and ends with the ruins of
Holyrood Abbey.\n\nHoly"

• Token: " husband"

• Score: -9.862

27. Lowest-activating token #27:

• Excerpt from prompt: " lived here happily with his sister Dorothy, wife Mary and
three children John, Dora and Thomas until 1808, when the family moved to
another nearby house at Allen Bank, and"

• Token: " Thomas"

• Score: -9.842

28. Lowest-activating token #28:

• Excerpt from prompt: " 19 prime ministers, countless princes, kings and
maharajahs, famous explorers, authors and"

• Token: " prime"

• Score: -9.733

29. Lowest-activating token #29:

• Excerpt from prompt: " held court in the Palace of Holyroodhouse for six brief
years, but when her son James VI succeeded to the English throne in 1603,
he moved his court to London"

• Token: " son"

• Score: -9.711

30. Lowest-activating token #30:
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• Excerpt from prompt: ", Mary, Dorothy and all three children. Samuel Taylor
Coleridge’s son Hartley is also buried here.\n\nGrasm"

• Token: " Samuel"

• Score: -9.654
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