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Abstract

We propose a novel interpretable deep neural network for text classification, called Proto-
ryNet, based on a new concept of prototype trajectories. Motivated by the prototype theory
in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype
for each sentence in a text sequence and feeding an RNN backbone with the proximity of
each sentence to the corresponding active prototype. The RNN backbone then captures the
temporal pattern of the prototypes, which we refer to as prototype trajectories. Prototype
trajectories enable intuitive and fine-grained interpretation of the reasoning process of the
RNN model, in resemblance to how humans analyze texts. We also design a prototype
pruning procedure to reduce the total number of prototypes used by the model for better
interpretability. Experiments on multiple public datasets demonstrate that ProtoryNet
achieves higher accuracy than the baseline prototype-based deep neural net and narrows
the performance gap when compared to state-of-the-art black-box models. In addition,
after prototype pruning, the resulting ProtoryNet models only need less than or around 20
prototypes for all datasets, which significantly benefits interpretability. Furthermore, we
report survey results indicating that human users find ProtoryNet more intuitive and easier
to understand compared to other prototype-based methods.

1. Introduction

Deep neural networks have become widely adopted for numerous tasks involving unstructured
data, such as texts. State-of-the-art deep neural networks for text data include recurrent
neural network based models with attention mechanism (Wang et al., 2016; Galassi et al.,
2020), convolutional neural networks (Yin et al., 2017; Young et al., 2018), or Transformers
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(Devlin et al., 2018; Liu et al., 2019). Despite achieving good predictive performance, there
is a growing demand for AI models in real-world applications to be interpretable. This
allows end-users to understand the decision-making process and establish trust, facilitating
their adoption and collaboration with the model. However, in their conventional form,
deep neural networks are black-boxes, where features undergo multiple layers of non-linear
transformation, which quickly become intractable and incomprehensible to users.

The black-box nature of existing DNNs for text data has motivated a body of research
focused on achieving model interpretability. This research can be broadly categorized into
two directions. One popular group of approaches is to generate post-hoc explanations (Jacovi
et al., 2018). However, they generally suffer from fundamental limitations in providing
post-hoc explanations. As pointed out by recent research (Rudin, 2019; Alvarez-Melis and
Jaakkola, 2018), there may exist inconsistency and unfaithfulness in the explanations, since
explainer methods only try to approximate the decision-making process, but they are not the
real decision-maker. Another type of approach to understanding the inner workings in deep
neural networks is to leverage certain architecture designs, such as attention-based methods.
The attention-based approaches (Karpathy et al., 2015; Strobelt et al., 2017; Choi et al.,
2016; Guo et al., 2018) weigh the importance of each hidden state in a sequence. However,
while a few of them could be expository, the attention weights are, in general, not always
intelligible, as pointed out by Jain and Wallace (2019). Furthermore, analyzing attention
weights necessitates a certain level of comprehension of RNN functioning in theory. Hence,
novice/non-technical users may find it difficult to understand, and, thus, the broader use in
real-world applications might not be so feasible.

Recent efforts have been invested in redesigning neural networks towards making them
inherently interpretable, based on the classic framework of prototypical learning (Datta
and Kibler, 1995). These models utilize prototypes to provide intuitive explanations for
decisions, with each prototype representing a typical case from past observations. This
process parallels how human experts, such as doctors or judges, make decisions by referring
to similar previous cases and drawing conclusions from them. From the interpretability
standpoint, such prototypes provide an intuitive explanation of how the model has reached
a conclusion in a form that even a layperson can understand, as long as they understand the
similarity by reading the prototypes. Various existing prototype-based models adopt this
reasoning logic (Chen et al., 2019; Ming et al., 2019; Arık and Pfister, 2020). For instance,
ProSeNet (Ming et al., 2019) predicts the positivity of a review by comparing it to other
positive reviews in the training data, where the final score is the sum of contributions from
these prototypes.

In this paper, we identify two designs in existing prototype-based models that are not
so suitable for text data. First, existing prototype-based DNN models define prototypes at
the document level (Ming et al., 2019; Arık and Pfister, 2020) and decompose a prediction
into contributions from each prototype. However, when the input text is long, it becomes
difficult to relate the input document to prototypes given the possible complexity of the
document, which may include twists, changes of tones, etc. For example, if the input is
as simple as “The food is very delicious!”, it is easy for a user to understand why it is
similar to the prototype “Great food!”. But if the input consists of 10 sentences that first
talks about the long wait at the restaurant, and proceeds to compliment the food, but then
complains about the rude waiter, and finally concludes that the overall experience was not
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Figure 1: Prototype trajectory-based explanation.

worth the money spent, it is then difficult for a user to understand why this input is similar
to a particular set of prototypes that also talk about several things at the same time. The
complexity of understanding the rationale increases quickly as the text becomes longer. In
addition, text data are sequences, which naturally allow dynamics of sentiments throughout
the documents. But when prototypes are defined at the document-level, such finer-grained
understanding is not possible, and it is difficult for users to relate sentiments to individual
sentences. Second, existing methods generate a large number of prototypes, which is difficult
for end-users to comprehend. For example, a ProSeNet model (Ming et al., 2019) needs to
use hundreds of prototypes to achieve reliable performance. The ProtoAttend (Arık and
Pfister, 2020) adds sparsity regularization in the model design. But while the number of
prototypes involved in each prediction is small, the total number of prototypes the model
generates, used by different inputs, is still large, since prototypes are defined on the entire
training set. This means users still need to examine Ω(|D|) prototypes (D is the training
set) when making predictions.

To improve from the two aspects above, we design a new type of prototype-based DNN
model, which makes the reasoning process more suitable for text data and uses much fewer
prototypes in total. See Figure 1 for an example. Each sentence is mapped to only one
prototype. Thus, we can relate the sentences to the corresponding sentiments obtained by
the model, generating a trajectory of prototypes as well as a trajectory of sentiments. We
then use the method proposed in the recent work of Hong et al. (2022) to summarize the
main trajectory patterns captured by the LSTM part following the prototype layer. We
explain the motivations of the designs below.

Motivated by the nature of text data being sequences, we propose a new concept:
prototype trajectory, which defines prototypes at the sentence level. The prototype proximity
values are then fed into an RNN backbone, which then captures latent patterns across
sentences via the trajectory of prototypes. Prototype trajectories, therefore, illuminate
the semantic structure of a text sequence and the logical flow therein and, hence, provides
a highly intuitive and useful interpretation of how the model has predicted an output.
In fact, the prototype theory in modern linguistics provides a strong justification for the
proposed idea. In the prototype theory, linguists view “a sentence as the smallest linguistic
unit that can be used to perform a complete action” (Alston, 1964), analyzing texts with
individual sentences as building blocks. Linguists assume that the sentences of a category
are distributed along a continuum: at one extreme of this continuum are sentences having
a maximal number of common properties, while on the other extreme are sentences that
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have only one or very few of such properties (Panther and Köpcke, 2008). Here, the
“ideal” sentence possessing the maximally shared common properties can be considered as a
prototypical sentence or a prototype of the category. Thus, this paper takes a meaningful
first step towards mathematically formalizing the prototype theory in modern linguistics
and its analysis methods by incorporating the above view into a computational framework
and emulating how linguists analyze a text.

Additionally, to reduce the number of prototypes used for each prediction and the total
number of prototypes generated by the model, we introduce two designs to the model. First,
each sentence in an input document is mapped to only one prototype, referred to as the active
prototype for that sentence. This design significantly simplifies the explanations since only
T prototypes are used in explaining a prediction, where T is the number of sentences in the
document. Thus, an input document can be represented by a sequence of prototypes. The
idea bears similarity to the “winner-take-all” mechanism in competitive learning (Rumelhart
and Zipser, 1985; Chung and Lee, 1994), where a fundamental module in these neural net
models involves taking an input computing its similarities to a collection of prototypes
and then selecting only the most similar prototype to “activate”. Our experiments show
using one active prototype for each sentence performs similarly to using all prototypes, with
approximately a 1% drop in accuracy, while greatly improving understandability. Second, to
reduce the total number of prototypes used by the model, we introduce prototype pruning
in our proposed model, which prunes away prototypes that are never or rarely mapped to
and then retrains the model with the remaining prototypes. Our experiments find that
even when the model initializes with 200 prototypes, we end up pruning the majority of
them without compromising the predictive performance at all. For all datasets we used, our
model uses about 20 prototypes while achieving the same predictive performance as using
200 prototypes.

With our design, ProtoryNet permits a fine-grained understanding of sequence data
alongside an intuitive explanation of the dynamics of the subsequences, while being simpler
to understand than baselines. Since the technical details are hidden in the prototypes, a
non-technical user can easily understand the interpretation.

The rest of the paper is organized as follows. Section 2 discusses related work, and in
particular, compares ProtoryNet with the closest prototype-based DNN for text classification.
Section 3 presents the architecture of the ProtoryNet model and Section 4 describes the
training procedure. We show detailed experimental results in Section 5 and human subjects
evaluation of the interpretability of ProtoryNet in Section 6 while comparing with another
interpretable baseline. Finally, Section 7 concludes the paper and discusses possible future
directions.

2. Related Work

We first review post-hoc explanation methods and attention mechanisms for explaining
DNN models, and then we discuss prototype-based DNN in depth and compare it with our
proposed model.

Post-hoc Explanations and Attention-Based Methods Various post hoc explanation
methods have been proposed for explaining DNN models, such as Integrated Gradients
(Sundararajan et al., 2017), DeepLift (Shrikumar et al., 2017), NeuroX (Dalvi et al., 2019).
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Specifically, to understand RNN models, Tsang et al. (2018) proposes a hierarchical explana-
tion for neural networks to capture interactions, and Jin et al. (2019) adapts the idea to text
classification to quantify the importance of each word and phrase. For sentiment analysis,
Murdoch et al. (2018) proposes a contextual decomposition method for analyzing individual
predictions made by LSTMs, which identifies words and phrases of contrasting sentiment
and how they are combined to yield the LSTM’s final prediction. In addition to the external
explanation methods, many have considered attention-based approaches interpretable. For
example, Bahdanau et al. (2014) implemented an attention mechanism in a decoder, which
weighs which part of the source sentence the model needs to pay attention to. Similarly,
Rocktäschel et al. (2015) analyzed word-to-word attention weights for achieving insights
into how a long short-term memory (LSTM) classifier reasons about entailment. Similar
strategies can be found in a number of other works (e.g. Ismail et al. (2019); Choi et al.
(2016)). However, recent research has found attention-based methods controversial, and
many works believe they are not explanations (Jain and Wallace, 2019). In addition, the
attention-based approaches are mostly intended for expert users. Many non-technical users
in the real world, who lack basic knowledge of how RNNs work (or even neural networks in
general), may find them difficult to understand.

Prototype-based DNN Prototype-based approaches argue that the intuitiveness of
interpretation can be significantly enhanced by visualizing the reasoning process in terms
of prototypes. In fact, prototype-based reasoning has a long history as a fundamental
interpretability mechanism in traditional models (Cupello and Mishelevich, 1988; Fikes and
Kehler, 1985; Kim et al., 2014). One of the first works that introduce prototypical learning
into a deep neural network is Chen et al. (2019), which designed a new neural network
architecture for image classification. A prototype layer was added after convolutional layers
to compare the convolution responses at different locations with prototypes. From this,
users can understand, for example, a bird is classified as a ‘red-bellied woodpecker’ because
it has the typical prominent red tint at the belly and the top of its head, as well as the black
and white stripes on its wings. The idea was later extended to process video games, using
prototypes to explain a player’s actions (Ragodos et al., 2022).

We discuss two prototype-based DNN for text classification. The first model is ProSeNet
(Ming et al., 2019), which first uses a sequence encoder to obtain a representation of an
input sequence, then uses a prototype layer similar to the one in Chen et al. (2019) to
compare it with a set of prototypes. ProSeNet computes the similarities between an input
sequence (usually a short prose) and prototypes and produces the final prediction as a linear
combination of the similarities. Another more recent work is ProtoAttend (Arık and Pfister,
2020) which can work with image, text, and tabular data. ProtoAttend utilizes an attention
mechanism to select prototypes, and it allows interpretation of the contribution of each
prototype via the attention outputs. Similar to ProSeNet, ProtoAttend also relates an input
to a linear combination of multiple prototypes.

Issues We Aim to Solve Two potential issues might arise in practice for the two models
above. First, the prototypes are defined at the document level, therefore when the text is
too long, it will be difficult to represent the input with a prototype, and it will be difficult to
convince users of their similarity. The original paper of ProSeNet (Ming et al., 2019) validates
ProSeNet only on paragraphs shorter than 25 words. However, it is easily fathomable that
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ProSeNet may fail to assimilate long paragraph data due to large degrees of freedom that
complicate the matching of a prototypical example, as validated in our experiments. This
may render some practical concerns. For instance, in sentiment classification, even if a
paragraph is classified as “negative,” it could consist of several twists of sentiments along
with sentences (e.g., sarcastic use of positive proses). With an increased length, such kinds of
twists can get harder to represent with a prototype, thus making the interpretation difficult
and the explanation less credible. This claim is further supported by findings in modern
linguistics, which suggest that sentences, instead of paragraphs, should be regarded as the
basic elements for text analysis (Panther and Köpcke, 2008). A second potential issue is
the number of prototypes produced, which determines the complexity of the explanations.
ProSeNet needs to use K prototypes to explain a prediction, and according to the original
paper (Ming et al., 2019), K is at the scale of hundreds. ProtoAttend attends to this issue
by including a sparsity regularization in the form of entropy in the training objective. This
will make sure there are only a few active prototypes for each prediction. However, the total
number of prototypes the model needs to store is at the scale of the size of the training
data, which means human users may still need to manually validate and understand all
these prototypes when using the model.

ProtoryNet solves the first issue by defining the prototype at the sentence level and solves
the second issue by designing specific training objectives and prototype pruning procedures,
which will be presented in detail in the next section.

3. ProtoryNet

We present the architecture of ProtoryNet, describe components in the model and then
formulate the learning objective.

3.1 The ProtoryNet Architecture

Suppose we work with a data set D =
{
(X(i),y(i)) : i = 1, . . . , N

}
of size N , comprised of

text sequences X(i) and the corresponding labels y(i). Here, note that the superscript (i)
may be dropped for notational convenience hereinafter, unless necessary. Each instance
X can be understood as a sequence of sentences xt ∈ RV at t-th position, yielding the
representation X = (xt)

T
t=1, where V is the size of vocabulary and T := |X| is the number

of sentences in the sequence X. y ∈ RC is a multi-hot encoded vector representing the class
labels associated with the sequence X, i.e., the c-th element yc of y equals 1 if the label c is
associated with X or 0 otherwise. C is the total number of classes.

ProtoryNet interfaces with text data via a sentence encoder (Figure 2a) modeled as a
mapping r : RV → RJ , where J is the dimension of sentence encoding specified by the user.
That is, the encoder takes each sentence xt ∈ X and produces a sentence embedding:

Sequence Encoder Layer : et = r(xt). (1)

The development of the encoder r(·) is beyond the scope of this paper and, hence, we employ
a state-of-the-art Transformer encoder, Google Universal Encoder (Cer et al., 2018), where
J = 512 by default. The encoder layer may or may not be fine-tuned, which will have an
impact on the predictive performance. For now, we defer the discussion to Section 5.1.
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Figure 2: The architecture of ProtoryNet.

The sentence embeddings et are then fed into the prototype layer (Figure 2b), in which
a set of trainable prototypes P =

{
pk ∈ RJ : k = 1, . . . ,K

}
are compared with et, where

K := |P| is the number of prototypes specified by the user, and each prototype vector pk

has a dimension of J . Note that prototypes P are trainable parts of the model. Then, given
a distance metric d : RJ → R+, the proximity st,k of the sentence embedding et to a given
prototype pk is measured as

Prototype Layer : st,k := exp

(
−d(et,pk)

ψ2

)
, (2)

where ψ ∈ R is a user-specified constant which we set it to be ψ2 = 10. Between two popular
choices for the distance metric d(·), namely the cosine distance and the Euclidean distance,
we find that there is no significant difference between the two. Hence, we use the Euclidean
distance in our experiments for convenience.

Note that the intermediate throughput of the prototype layer is the similarity matrix
S̃ = [st,k] of the size T ×K, associating the t-th sentence with the k-th prototype. The rows
of the similarity matrix S̃ then constitute the input to the LSTM backbone at time step t
(Figure 2c), which then finally produces an output prediction. However, doing so means
each sentence is associated with all K prototypes. With the total number of sentences being
T , the explanation will then involve T ·K prototypes. To ensure better interpretability,
we would like to generate easy explanations where each sentence is mapped to only one
prototype instead of K prototypes. And we want it to be the most similar prototype to make
the explanation more convincing. This means we need to set each row in S̃ to zero except
for the position where st,k is the maximum. That is, each row of the transformed similarity
matrix S would be of the same topology as the one-hot encoded vector, whose elements
equal st,k∗ at k∗ := argmaxk st,k and 0 otherwise. For future reference, we denote the most
similar prototype for a given sentence the active prototype. In this case, prototype k∗ is
the active prototype for the t−th sentence.
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The sparsity transformation, unfortunately, is not differentiable and may lead to an
unexpected training behavior during auto-differentiation in deep learning packages. We get
around this issue by the following approximation technique. Suppose the similarity matrix S̃
= [s̃1, . . . , s̃T ]

⊤, where s̃t ∈ RK is a row vector whose elements indicate how similar the t-th
sentence is to each of the prototypes. If we let Softmax(·) to denote the softmax function,
then for some large constant γ,

Γ = [Softmax(γ · s̃1), ...,Softmax(γ · s̃T )], (3)

which approximates the selection matrix whose element equals to 1 at the position corre-
sponding to where st is the maximum for each column t and 0 elsewhere. Here, we find
γ ≥ 1e6 gives a reasonable approximation empirically. With the selection matrix, the sparsity
transformation can be approximated as follows without explicitly computing the maximum:

Sparsity Transformation : S ≈ Γ⊙ S̃, (4)

where ⊙ is the Hadamard product. Note that the softmax function is differentiable and,
thus, is S.

The sparsity transformation of S̃ to S enhances the interpretability of the architecture,
by enforcing each sentence to be matched with the most similar prototype and, thus,
disentangling the information. This is accomplished only at a small cost of accuracy, as
observed from an ablation study in Section 5.5. Since an input text now can be regarded as
a sequence of prototypes, one can think of the matrix S̃ as a type prototype encoding
and matrix S is a sparse prototype encoding. Unlike other sequence encoders (e.g., using
embedding techniques) that yield feature vectors that are not sensible to humans, here
the prototype encoding returns features (i.e., prototype) that are meaningful and easily
understandable.

Next, each row of S is fed into an LSTM model, followed by a few fully connected layers,
denoted as,

RNN Layer : z = γ(S), (5)

Fully Connected Layer : ŷ = ϕ(z), (6)

where γ(·) represents the LSTM layer and ϕ(·) represents a fully connected layer transfor-
mation.

Motivating Example We present an example to further demonstrate the model. The text
data in Figure 2 exemplifies the use of ProtoryNet for sentiment analysis (text classification).
In this example, the task is to predict whether the review of a restaurant is positive or not.
The input text data X is comprised of T = 4 sentences, in this particular case, and the
label y is the binary sentiment label of the review, either “positive” ([1, 0]) or “negative”
([0, 1]). ProtoryNet converts the text data into sentence embeddings, each of which is
then matched with the closest prototype. Observe, in the figure, that the prototypes that
ProtoryNet produced are, indeed, morphosyntactically equivalent to the corresponding input
sentences, well-exemplifying them semantically. The one-hot-like similarity vectors between
the sentences and the prototypes are then fed into the LSTM backbone, which captures the
patterns and trends in the trajectory of prototypes and, finally, predicts the final sentiment
label, which, in this case, is “negative.”
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3.2 Objective Functions

The training objectives of ProtoryNet entail four different terms aiming to achieve both
prediction accuracy and interpretability. Below are the details of their definitions.

Accuracy The accuracy loss is defined as the mean squared loss between the predicted
value and the ground truth label, promoting the model to make accurate predictions:

Lacc(D) :=
1

N

N∑
i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2. (7)

Diversity To ensure diverse and non-overlapping prototypes, we define the diversity loss
term added to enforce the minimum mutual distance δ among the prototypes:

dmin := min
k1,k2

d(pk1 ,pk2), (8)

Ldiv(D) := σ (η(δ − dmin)) , (9)

where d(·) is the Euclidean distance, σ(·) is the sigmoid function and η is a smoothing
constant, which we set η = 1 empirically. The constant δ ∈ R+

∗ is a positive real number
defined by the user, to enforce the minimum separation among prototypes. Hence, when
the distances among the prototypes do not meet the minimum separation requirement i.e.,
dmin < δ, the η(δ − dmin) term will have some positive value, making the diversity loss term
Ldiv active; on the other hand, when the minimum separation requirement is met and thus,
dmin > δ, then the sigmoid function will pull the loss term to zero. Note that a smaller η
will make such a transition by the sigmoid function smoother.

Prototypicality With only the accuracy and the diversity terms alone, it is observable
a prominent tendency of prototypes diverging away from the sentences during training.
Such a behavior introduces overfitting, in which prototypes become less generalizable, as
the prototypes lose their representativity of a category. In addition, it also hurts the
prototypicality of the prototypes since the prototypes are too far away from the sentences
to properly represent the sentences. Hence, we introduce the prototypicality loss, which
promotes each sentence in the database to have a representative prototype close to it, i.e.,
we encourage the distance between a sentence and its active prototype to be small:

Lproto =
1

M

∑
X∈D

∑
xt∈X

min
k
d(r(xt),pk), (10)

where M is the total number of sentences in the data set.

Final loss The final loss function combines the above loss terms:

L = Lacc + αLdiv + βLproto. (11)

Empirically, coefficient values of α = 0.1 and β = 1e−4 are used by default in this paper
except in the sensitivity analysis.
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Remarks on Prototype Interpretability The diversity and prototypicality terms are
designed for improving interpretability. Here, to achieve good explanations, prototypes need
to be different from each other to avoid redundancy, thus the diversity term. In addition,
each input sentence needs to be mapped to a prototype that is similar enough to make
the explanation convincing, thus the prototypicality term. These two loss terms can be
considered regularization terms to serve interpretability purposes. Similar loss terms have
been introduced in other prototype-based DNN models (Ming et al., 2019; Chen et al.,
2019). We will later show in experiments that these two terms do not hurt the predictive
performance. This can be explained by the recent research on “Rashomon Set” (Semenova
et al., 2019; Rudin, 2019), that there exist many models with very similar performance, so
one can add customized constraints to the model to achieve additional benefits, such as
interpretability.

4. Training a ProtoryNet

For the training of ProtoryNet, the adaptive moment estimation (ADAM) optimizer (Kingma
and Ba, 2014) was employed. The learning rate was set to be 1e−4 and the exponential
decay rates for the first and the second-moment estimates were 0.9 and 0.999, respectively.
Below are further details used for generating the results in this paper.

4.1 Prototype Initialization

The training of ProtoryNet can benefit from the initialization method described below.
We first embed all sentences separately in the training data set. Then, in the embedding
space, all sentences in the data set are clustered using the k-medoids clustering algorithm to
categorize sentences by their semantic meaning. The medoids obtained from the k-medoids
algorithm can be considered as representative examples of each cluster and, hence, plausible
candidates for prototypes. Thus, for the training of ProtoryNet, we use these medoids to
initialize prototypes, which in turn accelerates the convergence.

4.2 Prototype Projection

It should be noted that the numerical solutions for the prototypes are found in the embedding
space. These numerical solutions are not automatically intelligible to human users and need
to be deciphered. To this end, we project the prototypes to the closest sentence from the
training data in the embedding space every 10 epochs during the training process, similar to
the technique proposed in Ming et al. (2019); Chen et al. (2019):

sk = argmin
xt∈X(i),∀X(i)∈D

d(r(xt),pk), k ∈ [1,K]. (12)

4.3 Prototype Pruning

In our analysis and experiments, we find that prototypes have significantly different prob-
abilities to be selected (mapped to as the active prototype). While the prototypicality
term makes sure each sentence is close enough to at least one prototype, we observe that
sentences are usually close to a small subset of prototypes, leaving the rest rarely or even
never “activated” in inference.
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For demonstration, we show an example from the experiment section later in the paper.
This model is trained on the Amazon dataset, and the original K is set to 200. We compute
the frequencies of prototypes being active for the model trained on the Amazon dataset.
Out of 200 prototypes, 92 prototypes have never been mapped to by any sentences in the
validation set, which means that these prototypes can already be pruned away without
affecting performance. Then, we plot the frequencies of the remaining 108 prototypes in
Figure 3. The prototypes are ranked in descending order of frequencies of being active, i.e.,
the left-most prototype has the highest frequency: more than 40% sentences are mapped
to this prototype, while the right-most prototype has the lowest frequency of less than
0.01%. We observe that the frequencies decay rapidly, indicating that only the top-ranked
prototypes are heavily used by the model.

Figure 3: The frequencies of prototypes from a ProtoryNet model trained on Amazon dataset
with K = 200

We observe similar patterns in other datasets where only a subset of prototypes are
used, and the remaining are never activated or rarely activated. This is an encouraging
observation that justifies the idea of prototype pruning, that in addition to its obvious
benefit of improving the model interpretability, prototype pruning seems to reduce the
redundancy in the model without hurting the performance. We hypothesize that this is
due to the diversity term in the objective, which keeps prototypes distant from each other.
Then, when only a few prototypes are sufficient for covering the data space, redundant
prototypes are pushed away from all sentences since they need to remain δ away from other
prototypes. Because of this, we propose to do prototype pruning, which is to remove these
redundant prototypes after the training is complete, based on their frequencies of being
active, evaluated on a validation set. If the frequency is smaller than a threshold θ, then
the prototypes are removed. The steps are described in lines 11 and 12 in Algorithm 1.
Let K represent the indices of remaining prototypes. K ⊂ {1, 2, · · · ,K} and |K| = K̂. The
remaining prototype vectors are {pk}k∈K. In practice, the threshold θ can be tuned via a
validation set.

When implementing the prototype pruning, we build a new ProtoryNet, denoted as f̃ .
f̃ consists of the same sentence encoder layer r(·) and the K̂ prototypes {pk}k∈K selected
above. We freeze r(·) and {pk}k∈K and allow the rest of the layers in f̃ to be trained, i.e.,
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the LSTM layer, denoted as γ̃(·), and fully connected layer, denoted as ϕ̃. The steps are
described from line 14 to 19 in Algorithm 1.

Sentiment Scores for Prototypes Once the training is done, ProtoryNet returns a set
of K̂ prototypes and K̂ < K. We then feed the prototypes back into the trained ProtoryNet
one at a time. The outputs from the model are the corresponding sentiment scores of each
prototype. These sentiment scores will later be used to provide quantitative visualizations
of how the tones and sentiments change within text data.

We summarize the training procedure in Algorithm 1 1.

Algorithm 1 Training Procedure for ProtoryNet

1: Input: K, Dtrain,Dval, α, β, δ, θ, FineTuning
2: Initialization: Build a ProtoryNet f = {r, {p1, · · · ,pK},LSTM-layer, ϕ} and set
r,p1, · · · ,pK , LSTM-layer, and ϕ to trainable

3: # ——————– this block trains the model to obtain K prototypes ——————–
4: if FineTuning = FALSE then
5: r(·) ← non-trainable
6: end if
7: for j ← 0 to nepoch do
8: train f with ADAM
9: end for

10: # —————————————— prototype pruning ——————————————
11: Compute the frequencies of active prototypes using Dval

12: Select {pk}k∈K whose frequencies are larger than θ.
13: # ————————– retrain the model with K̂ prototypes fixed ————————–
14: Build a new ProtoryNet f̃ = {r, {pk}k∈K, γ̃, ϕ̃}, where the r(·) and {pk}k∈K are identical

to those in f
15: r(·), {pk}k∈K → non-trainable
16: γ̃, ϕ̃→ trainable
17: for j ← 0 to nepoch do
18: train f̃(·) using ADAM
19: end for
20: Evaluate the sentiment scores for each prototypes pk = r(sk), |K| = K̂.
21: {sk}Kk=1 ← Prototype projection of {pk}Kk=1 using Formula (12)

22: Return: f̂(·), {sk}Kk=1

5. Experiments

In this section, we evaluate ProtoryNet on six data sets (a detailed description and data
preparation for the datasets are included in Section A.1 in the Appendix). Our method is
compared against a vanilla LSTM method, an accurate black-box model, DistilBERT Sanh
et al. (2019), and a state-of-the-art prototype-based interpretable model, ProSeNet Ming
et al. (2019). We also compare our method with a non-neural bag-of-words baseline, which

1. Code can be found at https://github.com/dathong/ProtoryNet
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can provide explanations at a word level. See a description of the model setup in Section
A.2 in the Appendix.

Our goal is to investigate whether ProtoryNet is comparable to other interpretable
baselines and how much accuracy it may lose compared to the black-box model. Then,
we analyze the effect of prototype pruning on the prediction performance. In addition, we
provide a detailed example of ProtoryNet using one of the datasets and demonstrate the
complexity of sentiment trajectories. Finally, we study the effect of various hyper-parameters
in the model.

5.1 Prediction Accuracy

We foremost demonstrate that our inherently-interpretable model design does not cause
significant degradation in performance while beating other interpretable baselines

We implement two types of ProtoryNet in the experiments, a fine-tuned version where
the sentence encoder continues to be trained on the target dataset with the rest of ProtoryNet
and a non-fine-tuned version where the universal sentence encoder is used as a service but
not updated during training. The non-fine-tuned ProtoryNet needs to train significantly
fewer coefficients, about 0.03% of the fine-tuned models, thus consuming less energy and
computing resources. The goal is to explore 1) the best performance ProtoryNet can achieve,
with the help of the state-of-the-art sentence encoder, and 2) the more economical solution
for use in resource-constrained scenarios.

Here we keep the parameters same for all datasets: K = 200, α = 0.01, β = 1e−4, δ =
1, η = 1. Our intention is to show that the method is robust enough to solve different text
classification problems with varying complexity using one single model architecture and
hyperparameters. This way, the ProtoryNet will be practically accountable and easier to
use in practice since it does not necessarily need exhaustive tuning of hyper-parameters.
We will later explain in Section 5.2 why ProtoryNet is insensitive to K and investigate its
sensitivity to α and β in Section 5.5. In addition, we also do not do prototype pruning in
this part of the experiment and we will investigate it in detail in Section 5.2.

Reported in Table 1 are performance on the six data sets. First, we acknowledge the
performance gap compared to the black-box models. As expected, the black box model
(DistilBERT) has the best performance in all data sets used. But still, both versions of
ProtoryNet reduce the gap. They both outperform the two interpretable baselines and
Vanilla LSTM, and if we allow fine-tuning, ProtoryNet becomes even better, with a more
significant increase compared to the baselines and only 1.9% away on average from the
black-box DistilBERT.

Fine-Tuning vs Non-Fine-Tuning To choose between the fine-tuned and non-fine-tuned
ProtoryNet in practice, users need to trade-off between the time and computing resource
consumption and the predictive performance. There are more than 256 million parameters
in the sentence encoder and only 68 thousand parameters in the rest of ProtoryNet (when
K = 200), which means that the non-fine-tuned ProtoryNet can be trained only with less
than 0.03% of the parameters compared to the fine-tuned version. In addition, training a
fine-tuned ProtoryNet takes much longer in time (approximately three times longer on the
same Google Colab notebook with a GPU accelerator) than a non-fine-tuned ProtoryNet.
In summary, the non-fine-tuned ProtoryNet is much smaller and more energy efficient, while
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Table 1: Performance of ProtoryNet in comparison with other benchmark models.

Data set DistilBERT
ProtoryNet
(Fine-tuned)

ProtoryNet
(Not fine-tuned)

ProSeNet
Vanilla
LSTM

Bag-of-words

IMDB 0.931 0.914 0.871 0.863 0.871 0.877
Amazon Reviews 0.940 0.918 0.890 0.875 0.884 0.830
Yelp Reviews 0.967 0.962 0.941 0.932 0.952 0.908
Rotten Tomatoes 0.903 0.881 0.771 0.869 0.877 0.785
Hotel Reviews 0.976 0.961 0.949 0.930 0.949 0.905
Steam Reviews 0.955 0.924 0.876 0.834 0.864 0.844

still beating the interpretable baselines. Answering the increasing call for Green-AI Schwartz
et al. (2019), non-fine-tuned ProtoryNet will be better than the fine-tuned ProtoryNet when
smaller, and lighter models are preferred.

Comparing Short and Long Reviews Between ProSeNet and ProtoryNet, ProtoryNet
outperformed ProSeNet for all six cases overall. In particular, the performance difference
was clearer when long text data were analyzed. Since the fine-tuned ProtoryNet significantly
outperforms ProSeNet, here we only compare ProSeNet with the weaker version of ProtoryNet,
the non-fine-tuned models. In Table 2, we split each data set into short and long samples—
texts that were less than 25 words were classified as short samples, following the criterium
used in the ProSeNet paper (Ming et al., 2019). As shown in the table, ProSeNet was on
par or better than ProtoryNet on short texts, while ProtoryNet was better than ProSeNet
when long paragraphs were concerned. In fact, this is an advantage of ProtoryNet since long
texts (more than 25 words) are more prevalent than short texts in most real-world datasets,
as evidenced in Table 2. This also explains why the non-fine-tuned ProtoryNet performs
worse than ProSeNet on the Rotten Tomatoes dataset since more than 65% of the reviews
are short reviews with less than 25 words.

Table 2: Comparison between ProSeNet and ProtoryNet (non-fine-tuned) on text data of
different lengths.

Data set % of short reviews
ProSeNet ProtoryNet
Short Long Short Long

IMDB 0.17 0.868 0.863 0.868 0.871
Amazon Reviews 6.02 0.908 0.873 0.843 0.893
Yelp Reviews 8.85 0.943 0.931 0.863 0.949
Rotten Tomatoes 65.52 0.875 0.859 0.751 0.809
Hotel Reviews 2.11 1.000 0.928 1.000 0.949
Steam Reviews 23.75 0.791 0.848 0.860 0.881

Discussion We can compare the performance of interpretable models based on the results
from Table 1 and Table 2. We can see between ProtoryNet and ProSeNet, ProtoryNet
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Figure 4: The effect of prototype pruning

Data set K̂

IMDB 8
Amazon Reviews 14
Yelp Reviews 15
Rotten Tomatoes 23
Hotel Reviews 7
Steam Reviews 17

Table 3: Numbers of remaining prototypes
without hurting the accuracy.

outperforms ProSeNet in long text documents. This is because ProSeNet’s prototypes are
at the document level, so when the review is long (more than 25 words), there is more likely
a loss of information when defining prototypes to represent the entire review. ProtoryNet
mitigates this problem by splitting a document into sentences, making processing long
documents viable. The superior performance of ProtoryNet on long reviews leads to a
better performance on average, since most reviews are longer than 25 words in a review
dataset, as shown in Table 2. Compared to other baselines, ProtoryNet (not fine-tuned)
performs similarly to Vanilla LSTM and better than bag-of-words because bag-of-words do
not consider the sequential nature of text data.

5.2 Prototype Pruning

In previous experiments, we set K to a fixed number (K = 200) for all datasets to show that
our method is robust enough to solve different text classification problems using the same
parameters. In this section, we apply prototype pruning after a model is trained for the
purpose of improving interpretability, since fewer prototypes there are, the easier it is for
human users to understand the model and interpret the predictions.

We perform prototype pruning with varying pruning thresholds to obtain various sizes of
remaining prototypes, to analyze how much the pruning impacts the predictive performance.
The idea is, after we obtain a set of prototypes, we compute the frequencies of each prototype
being mapped to and then remove prototypes with frequencies lower than a threshold we
choose. Then we train a new model with the remaining prototype. We use K̂ to represent the
number of remaining prototypes. For demonstration, we choose the Amazon dataset, and we
set the pruning threshold to {0.2%, 0.5%, 1%, 2%, 5%, 10%}, which returns various models
with much fewer prototypes. Their predictive performance and the number of remaining
prototypes are reported in Figure 4. Note that, with only a 0.5% threshold, 186 prototypes,
which is 93% of the total, were pruned. Meanwhile, removing these prototypes did not hurt
the predictive performance at all: the accuracy after pruning is still 0.918, the same as
when the model has 200 prototypes. This implies that a large number of prototypes are
redundant and can be safely removed without hurting the model’s performance. This brings
considerable benefits to interpretability since, after pruning, the model is only left with 14
prototypes with exactly the same accuracy as K = 200. This means that in practical uses, a
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human user, either model designer or end user, can easily check all prototypes to determine
whether they make sense, like an example we provide in Section 5.3.

To test whether the observation applies to different initial K, we also set K = 100 and
K = 400 and repeat the experiment. The curves are similar to K = 200: the accuracy does
not change even when a large number of prototypes are pruned. Only when reaching a
certain “tipping point”, the performance starts to drop, then pruning hurts the performance.
The results imply that the number of necessary prototypes for a given dataset is more or
less the same, even provided with a different number of initial prototypes K. The findings
above offer meaningful implications for model tuning, that one does not need to tune K
heavily: as long as we supply the initial model with a large number of prototypes and let
the model achieve the best predictive performance it can obtain, then we can prune the
prototypes afterward for better interpretability.

Therefore, we conduct prototype pruning for all fine-tuned ProtoryNet models from
Table 1 with K = 200 and report the minimum K̂ that achieves the same accuracy as
K = 200. K̂ for all models are reported in Table 3. Results show that all datasets only
require around 20 prototypes, which indicates a significant improvement in interpretability
compared to other prototype-based DNNs, given the complexity of the dataset and task.
Now model designers or users only need to examine the list of prototypes that could easily
fit into a piece of paper, like Table 4, to understand or contest the model.

5.3 Prototypes and Prototype Trajectories

In this section, we present an example ProtoryNet trained on the Yelp dataset with prototype
pruning. As shown in Table 3, this model ends up with only 15 prototypes while maintaining
the same accuracy as K = 200 (0.962 accuracy as reported in Table 1). Table 4 displays the
prototypes along with their corresponding sentiment scores. The prototypes are ranked in
descending order based on their sentiment scores. These prototypes encompass a wide range
of sentiments, ranging from the most positive prototype, “I love this place” with a sentiment
score of 0.972, to the least positive prototype, “I won’t be going back” with a sentiment
score of 0.011. It is noteworthy that his highly accurate model only needs prototypes that
can fit into half of a page, enabling easy and quick comprehension of all the prototypes.

Then, each input text can be represented by a sequence of prototypes selected from Table
4. One can regard the sequence of prototypes as a human-understandable representation
of the input text. Unlike other sequence encoders based on embedding techniques where
the features are not sensible to humans, here we can consider this prototype trajectory as
“prototype encoding” and the features, i.e., prototypes, are easily understandable.

We show two positive examples in Table 5 and two negative examples in Table 6. Each
sentence in a text instance is mapped to one of the prototypes from Table 4 as well as the
corresponding sentiment score, generating a trajectory of prototypes and sentiments. For
example, the first sentence in Example 1, “This is our first visit to Paradise Bakery and all I
can say is YUM!” is mapped to prototype 3, “Went here for lunch yesterday with a friend
and it was so yummy.” The corresponding sentiment is 0.968, as shown in the sentiment
trajectory in the figure. Note that different sentences in the text input can be mapped to
the same prototype, such as the second sentence in Example 1: “It was so good, I went back
for lunch the next day”, which is also mapped to prototype 3 in Table 4.
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Table 4: Prototype information for Yelp review (K̂ = 15 after pruning).

ID Prototypes Sentiment

1 I love this place 0.972
2 The biggest breakfast in Pittsburgh, as far as I can tell - and deli-

cious and cheap too
0.972

3 Went here for lunch yesterday with a friend and it was so yummy 0.968
4 The steak was cooked perfectly and the crabcake was a good size 0.962
5 Papa J’s is by far my favorite restaurant in Pittsburgh, my hometown 0.949
6 My aunt insisted that we have lunch at Uno’s Pizzeria & Grill as the food was de-

licious
0.603

7 From the minute we were seated, we were greeted by a server that was clearly in-
experienced and didn’t know the menu

0.171

8 We ended up spending a fortune on beer and mediocre appetizers 0.074
9 If I want to spend that kind of money, I’ll go somewhere that I can get good ser-

vice
0.028

10 They finally brought my food out and left it without asking for me to pay 0.027
11 The burgers were over cooked and the fries were soggie and the milkshake was

runny at best
0.019

12 The waitress told me that the kitchen hadn’t even started on my order yet, so I
told her to cancel it and walked out

0.017

13 It took forever to order and then forever and the place was empty 0.013
14 I won’t be going back 0.011
15 Food was terrible 0.011

We observe that the trajectories can be very different even for the same sentiment class.
Example 1 stays positive for the entire review, while Example 2 starts and ends with positive
sentiments but mentions a negative aspect in the middle, that it’s pricey. Similarly, the
two negative examples also yield different trajectories of sentiments. Example 3 starts with
a positive sentiment since the customer “used to LOVE this place”, which is mapped to
prototype “I love this place” with a sentiment score of 0.972. Then the customer changes
his tone and talks about negative aspects of the restaurant, i.e., bad service and unsanitary
behavior of the waitress, and ends with a negative sentiment. On the other hand, Example
4 maintains a negative tone for the entire review, which is also reflected by the trajectory of
sentiments. As such, the interpretation of ProtoryNet can be more fine-grained, generating
deeper insights to users.

Users can identify a more subtle sentiment development or change of tones in the text that
document-level prototypes cannot achieve. From this, users can extract useful information.
For example, by identifying the change of tones in positive reviews, the model indirectly
teaches restaurants which aspects they should pay attention to and probably improve in the
future. For instance, the sentiment trajectory for Example 3 points out that the price might
be a little high, and it is something the restaurant needs to take a look at if they would
like to increase customer satisfaction. Such information can potentially be more valuable to
restaurants than simply predicting whether a review is positive or negative.
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Table 5: Two Positive Examples

Input Text Prototype Trajectory

E
x
am

p
le

1

①This was our first visit to Paradise Bakery
and all I can say is YUM

3

② It was so good, I went back for lunch the
next day

3

③ The dining room is very pleasant and clean,
the service is great and the sandwiches are
super yummy

6

④ I love having this fairly close to our house 1

E
x
am

p
le

2

①This place is fantastic 1

② Impeccable service, great atmosphere and
outstanding food

4

③Yes, it’s pricey but well worth it. 9

④I’ve been here a couple of times and it never
disappoints

1

Table 6: Two Negative Examples

Input Text Prototype Trajectory

E
x
am

p
le

3

①I used to LOVE this place 1

② But the service was TERRIBLE 15

③The woman was so slow and put her FINGER
in my food

10

④I won’t be coming back 14

E
x
a
m
p
le

4

①Not good at all 15

② Average at best 15

③ Table we were sat at was sticky and needed
wiping down, had to ask the server twice

7

④ Food was ok but not good 15
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Table 7: Accuracy of ProtoryNet When Substituting LSTM with Other Interpretable Models

Data set Average Logistic Regression Decision Tree ProtoryNet

IMDB 0.602 0.859 0.836 0.914

Amazon Reviews 0.559 0.808 0.878 0.918

Yelp Reviews 0.802 0.825 0.923 0.962

Rotten Tomatoes 0.501 0.671 0.796 0.881

Hotel Reviews 0.896 0.905 0.918 0.961

Steam Reviews 0.771 0.815 0.790 0.924

Substituting LSTM with Interpretable Models The previous analysis demonstrates
the diversity in the sentiment trajectory, that even if the predicted sentiments for the whole
review are positive (or negative), the trajectories of sentiments could differ greatly from each
other. Thus, the trajectory reflects the complexity as well as heterogeneity in the sentiment
development along with the text reviews. In the ProtoryNet model, the sentiments are not
directly used but implicitly represented by the prototypes. When generating a prediction, a
sequence of similarities to the active prototypes is fed to an LSTM model, which is processed
by an LSTM model. The LSTM is used to learn the temporal pattern from the sequence
to produce the final output. Note that the LSTM is an essential component since other
interpretable models cannot remember as LSTM does. To demonstrate the value of LSTM,
we conduct a set of experiments where we use an interpretable model to replace LSTM in
the final step. The features are sentiments of the active prototypes for each sentence in a
review. Since the interpretable models work with panel data, we truncate all reviews to 10
sentences and pad those with fewer sentences with the average sentiments from existing
sentences. We experimented with two types of interpretable models, Logistic Regression
and Decision Tree. In addition, we calculate the average sentiment of sentences in each
review (without padding) and compare it with a threshold to obtain a prediction. Results
are shown in Table 8 in comparison with ProtoryNet which uses an LSTM to process the
sentiment change.

Table 8 shows that the original ProtoryNet using LSTM achieves much better performance
than the interpretable baselines. The results prove the necessity of using an LSTM that
processes the text as a sequence instead of treating it as a collection of sentiments. This
means, not only do the sentiment scores matter, but where they appear in the text also
matters.

Explaining the Prototype Trajectory Patterns Since LSTM is necessary and cannot
be replaced by a simpler interpretable model, we aim to explain the LSTM component.
Specifically, we would like to understand what trajectory patterns the LSTM can capture.
Explaining RNN/LSTM is always a challenge due to its temporal interactions and non-linear
transformations. We use the method from the recent work of Hong et al. (2022) as a
post-hoc explainer to the LSTM. This method will generate a deterministic finite automaton
(DFA) that summarizes the patterns an input document needs to match in order to be
predicted positively. Here a pattern is a sequence of prototypes. For example, if “7 →
4” is a pattern identified in the DFA, it means a document is positive as long as the first
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sentence is mapped to prototype 7, the second sentence is mapped to prototype 4, and the
following sentences can be mapped to any prototypes since the pattern doesn’t specify. A
DFA aggregates the main patterns that exist in the LSTM being explained into a graphical
representation. See an example trained on Yelp data in Figure 9 in the appendix. This DFA
describes the patterns the model used to predict positive sentiment scores for Yelp reviews.
It achieves an explanation fidelity of 91.4%, meaning that the patterns are correct on 91.4%
of the instances. Two positive examples from Table 5 are predicted positive because they
match this DFA’s patterns (starts with a sentence mapped to prototype 3 or prototype
1). Similarly, Figure 10 shows an example DFA for predicting negative sentiment; and two
negative examples from Table 5 match this DFA.

It is interesting to notice that generally, the model will classify a review as positive if it
stumbles upon a prototype with high sentiment score (prototypes with low ID in Table 4).
Equivalently, the model will classify a review as negative if its first sentence is mapped to a
low-score prototype (at the bottom in Table 4). In addition, using the DFA as an explainer,
we can diagnose when LSTM makes mistakes. For example, if we use 15 prototypes from
Table 4, the review “I had the shrimp boil but, it was very under-seasoned. The service
and atmosphere was great in general. ” will match with prototypes “The burgers were over
cooked and the fries were soggie and the milkshake was runny at best.” (prototype ID 11)
and “I love this place” (prototype ID 1). Based on the DFA, this review is predicted as
positive by the model since the pattern “11 →1” starts negative and changes the tone to
positive. But its true label of the review is actually negative.

5.4 Extension to Multi-class classification

ProtoryNet can also be used for multi-label classification. We only need to modify the fully
connected layer (part (d) in Figure 2) to have the number of labels we want. For illustration,
we run experiments using 2 datasets: DBPedia and Consumer complaints. For each dataset,
we extract 4 labels for the multiclass classification tasks and set the number of prototypes
to 20. The dataset is described with further details in the Appendix.

The prototype label is generated the same way as binary classification: we feed the
prototype to the trained model and collect the output label vector, whose dimension is the
same as the number of labels. For example, with 4 labels “Person”, “Animal”, “Building”,
“NaturalPlace” in dataset DBPedia, prototype “Eremias acutorostris is a species of Lizard
found in east Iran and south Afghanistan” is represented by a vector (0.019, 0.986, 0.017,
0.014), where 0.019 indicates how much this prototype belongs to the class “Person”, etc.
Because 0.986 is the largest so this prototype is mostly likely to represent “Animal”.

Results show that ProtoryNet still outperforms ProSeNet, reducing the gap compared to
the black-box baseline.

Table 8: Accuracy Comparison on Datasets for Multi-class Classification

Data set DistilBERT ProtoryNet ProSeNet

DBPedia 0.996 0.991 0.984

Consumer complaints 0.967 0.927 0.878
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Figure 5: Effect of K on accuracy. Figure 6: Sensitivity analysis of α and β.

5.5 Ablation and Sensitivity Analysis

In previous experiments, we used the same set of hyper-parameters, to show that our
ProtoryNet is easy to use in practice since it does not need heavy tuning and can still achieve
reliable performance. In this section, we evaluate the effect of different hyper-parameters on
the model performance. We also examine how much the sparsity transformation hurt the
predictive performance, which is designed for better interpretability.

Effect of K We investigated how the initial number of prototypes, K, influences the
performance of ProtoryNet2. In Figure 5, the performance of ProtoryNet on the Hotel
Review data set is plotted for different values of K. Other hyperparameters were controlled
to be the same. Curves in Figure 5 show that ProtoryNet is not so sensitive to K once
K is sufficiently large. This observation can be explained by Table 8, that only a minimal
number (about 20) of effective prototypes are actually needed to “cover” the feature space.
More prototypes are only redundant for the classification task and can be safely removed.
This finding reinforces the insights for parameter tuning: users just need to set K to a large
number and then prune it back. For the fine-tuned ProtoryNet, the performance is already
very well with a small K. This is because when fine-tuning is allowed, sentences can be
moved toward the prototype they are mapped to, thus it does not need many prototypes to
cover the whole space. On the other hand, for non-fine-tuned ProtoryNet, each sentence
is represented by a fixed vector in the feature space. If there are very few prototypes, it
becomes difficult for some sentences to be mapped to the correct prototype since they are
far away from all prototypes.

Effect of Diversity and Prototypicality Terms We performed a sensitivity analysis
to understand the effect of the two terms on predictive performance using the Hotel dataset.
Since our goal was to study the effect of α and β, we fixed the K to be 100 and tried different
combinations of α, β, where α = 0, 1e−3, 1e−2, 1e−1, 1, and β = 0, 1e−5, 1e−4, 1e−3, 1e−2. As
seen in Figure 6, our experiment revealed that the ProtoryNet achieves consistently high
performance with different α and β. This benefits the training and tuning process because
users do not need to invest a tremendous amount in parameter tuning. In this paper, we set

2. Note that K was selected from [5,20,50,100,200,400] via a validation set when producing Table 1.
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α = 0.1 and β = 1e−4 to all experiments. In addition, we notice that the best performance
was achieved when α and β are set to small values instead of 0, suggesting the positive impact
of the diversity term and prototypicality term we designed on the predictive performance.
A possible explanation would be that having some constraints on the prototypes’ diversity
(Ldiv) and their representativeness (Lproto) prevents overfitting as these terms “regulate”
prototypes.

Effect of Sparsity Transformation Furthermore, we conducted an ablation study on
the sparsity transformation. The sparsity transformation from S̃ to S was used to enhance
the interpretability of the model, which forces each sentence to be mapped to one closest
prototype, i.e., the active prototype. Without the sparsity transformation, each sentence
will be mapped to K prototypes, which will involve T ·K prototypes in the explanation
for the prediction. Despite the big advantage of sparsity transformation in interpretability,
we investigate the impact of this sparsity transformation on predictive performance. We
measured the change in prediction accuracy when the sparsity transformation step had been
removed, and the dense similarity matrix S̃ had been used directly. Specifically, we compare
fine-tuned ProtoryNet’s performance with and without the sparsity transformation and show
the comparison in Table 9. As reported in Table 9, there was only a small drop in accuracy
(approx. 1%) caused by the sparsity transformation.

Table 9: Performance comparison between non-sparse S̃ and sparse S as the input to the
LSTM layer. The validation accuracy for each case.

Data set Dense (K active prototypes) Sparse (1 active prototype)

IMDB 0.920 0.914

Amazon Reviews 0.921 0.918

Yelp Reviews 0.956 0.954

Rotten Tomatoes 0.896 0.881

Hotel Reviews 0.968 0.961

Steam Reviews 0.936 0.924

6. Human Evaluation of ProtoryNet

In this section, we evaluate the interpretability of ProtoryNet via human evaluations. To
this end, we designed two surveys. The first survey evaluated whether individual prototypes
picked by the models match the human users’ expectations and how easily they can be
interpreted. The second survey evaluated whether users understood the prototype trajectories
at the document level.

6.1 Survey 1: Prototype Evaluation

The first survey evaluated the interpretability of prototypes selected by ProtoryNet. We
collected responses from 111 individuals, among which 42 identified themselves as non-
technical users. Subjects were recruited through two different channels. Individuals from the
authors’ home institution holding a master’s degree or above having advanced knowledge
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of RNNs have been recruited as technical users. Non-technical users were recruited from
Amazon Mechanical Turk. The survey designs are disclosed in Appendix.

We first evaluated whether the prototypes were indeed representative of the input text
to the human users. We asked the users to choose the most appropriate prototype for a
given sentence out of four options presented to them, one of which was the actual prototype
matched by the model, the other two were randomly selected from the rest of the prototypes,
and the other was “None of the above.” We created 10 such questions by sampling reviews
from the Yelp Review data set, each for ProtoryNet and ProSeNet. As reported in Figure 7a,
ProtoryNet showed a more significant agreement between the model-selected prototype
and the prototype that the human users found the most appropriate. For both technical
users and non-technical users, ProtoryNet was significantly better than ProSeNet, as was
validated by the t-test. The difference between technical users and non-technical users was
insignificant, suggesting that non-technical users can comprehend prototypes equally well as
technical users.

Figure 7: The means and standard errors (error bars) of the rating of users. The p-values for
the t-test are evaluated for comparing the responses for ProtoryNet and ProSeNet
on technical users and non-technical users, respectively.

The survey also included self-report questions to assess how easy it was for them to select
a prototype in a score ranging between 1 (very difficult) and 5 (very easy). As reported
in Figure 7b, subjects found that ProtoryNet was easier to interpret in general, and the
improvement in interpretability was more significant for technical users.

Second, we measured how easily the users can learn to interpret the prototype-based
explanations from ProtoryNet and ProSeNet. For this, each subject was randomly assigned
to either ProtoryNet or ProSeNet and trained on how the model that they are assigned to
makes predictions. Then, their proficiency was measured by showing them three examples
on which the model had made an incorrect prediction and asking them to diagnose the
problem by pointing out an inappropriately matched prototype. The problematic prototype
(i.e., the “correct answer” for the survey question) was determined via a discussion among
the authors, which later turned out to be aligned with the consensus in the survey responses
as well. As in Figure 7c, both subject groups were more accurate at diagnosing ProtoryNet
in general. We notice that while technical users find ProtoryNet easier to diagnose, such
a difference was not significant for non-technical users. In fact, there was no significant
difference between technical users and non-technical users when they use ProSeNet since it
was almost equally difficult for these two groups of users.
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The reason that ProtoryNet is generally easier to understand than ProSeNet is that the
prototypes are defined at the sentence level so it is easier for users to compare and relate a
sentence to a prototype. For ProSeNet, however, prototypes are defined at the document
level. When a document is long, it may discuss aspects and contain mixed sentiments, thus
harder for users to find similar prototypes.

6.2 Survey 2: Prototype Trajectory Evaluation

The second survey evaluated the understandability of explanations provided by a ProtoryNet
at the document level, i.e., the trajectory of prototypes. We asked participants to choose the
correct prototype trajectory for a given review out of four different prototype trajectories
we created from the models’ prototypes. An example of the questions is shown in Figure
16 in the Appendix. If the users can choose the correct trajectory, it means they not only
understand the prototypes but also the trajectory of prototypes.

In addition, we also investigated whether different numbers of prototypes K will affect
human interpretation. With a small number of prototypes, the distances between a sentence
and the closest prototype increase, so their similarities become less apparent to users. On
the other hand, the prototypes tend to be more distinctive, and it is easier for users to select
from fewer options. Therefore, it is interesting to investigate the impact of K on choosing
the correct trajectory. To this end, we trained two ProtoryNet models on the Yelp dataset,
one with 15 prototypes (reported in Table 4) and the other with 100 prototypes. We then
asked users to choose the trajectory for the 4 examples in Table 5 and 6 and create four
questions for each model. A user is then randomly assigned to see one set of questions for
either K = 15 or K = 100.

After filtering out users who had incomplete answers or spent too little time (less than 60
seconds on the four questions), we kept responses from 37 users and reported the accuracy
on each of the four questions in Figure 8, for the two ProtoryNet models, respectively.
The average accuracy across users and questions is around 60%, which is lower than users’
accuracy in selecting prototypes in the previous survey. This is because choosing the correct
trajectory includes understanding multiple prototypes and their corresponding sentiments
and, thus, is more difficult for users than only selecting individual prototypes.

7. Discussion and Conclusion

We introduced a novel idea of prototype trajectory in DNNs. Our model, ProtoryNet, maps
a text input into a sequence of prototypical sentences, illuminating the underlying dynamics
of semantics within the text data. Therefore, Users can identify a more subtle sentiment
development or change of tones in the text that document-level prototypes cannot achieve.
ProtoryNet achieved a predictive performance higher than the state-of-the-art interpretable
baselines and reduced the performance gap compared to black-box DNNs. Moreover, the
human evaluation result suggested that ProtoryNet provided more intuitive prototypes than
the baseline and that the novice users were able to interpret ProtoryNet equally well as
the expert users. The prototype pruning we design has proved to be quite effective on all
datasets we experimented with and the resulting models only need around 20 prototypes in
total, which is a significant improvement compared to other baselines.
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Figure 8: Agreement between users and the models. Here we have 2 models, one is trained
with K = 15 prototypes and another is trained with K = 100 prototypes. The
y-axis shows the percentage of correct answers (the users picked the same mapping
as the model). The x-axis indicates the survey question.

Our model has also shown be very easy to use. First, it does not rely on heavy parameter
tuning (we used the same set of parameters in all of our experiments), which makes it
convenient in practice. In addition, we experimented with two versions of ProtoryNet, a
fine-tuned ProtoryNet to fully utilize the power of a state-of-the-art Transformer encoder,
and a non-fine-tuned ProtoryNet, which is much smaller, lighter, and energy-efficient. Results
show that even the non-fine-tuned ProtoryNet already beats the interpretable baselines and
can potentially be more promising with the increasing need for Green AI.

The benefit of prototype-based reasoning resides in the fact that it hides technical details
by encapsulating them with prototypical examples while still being tractable numerically
when desired. Hence, novice users can understand how the reasoning was achieved in RNNs
so long as they can comprehend the prototypes, lowering the barrier for those numerous
non-technical users who may use RNN-based applications in the real world. On the other
hand, numerical weights assigned to prototypes alongside their association with the “nuts
and bolts” of RNNs still allow experts to perform in-depth analyses of how a model has drawn
a prediction. One can think of the prototypes as a special type of feature representation of
the original text input. Compared to other types of latent features produced by complicated
transformations through encoding layers, where the features are not sensible, the “prototype
encoding” in ProtoryNet obtains a human-understandable feature representation. Prototypes
make sense to humans while encapsulating all necessary information in them, thus they are
able to obtain good predictive performance even using only the LSTM layers to process
them.

ProtoryNet can potentially be applied to other sequence data other than text. However,
one should be able to define meaningful and consistent sub-sequences, like sentences in a
document. This definition is task-specific and may need to conform with application-specific
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constraints. In addition, one may remove the sentence encoder or replace it with some other
feature extractor.

Limitations and Future Work In ProtoryNet, the mapping to the prototype with
similar meanings depends on the quality of embeddings. We used Google Universal Encoder,
which performs well in most cases but there exist some cases where two sentences are close to
each other but with different meanings. Now with the recent breakthrough of ChatGPT and
a series of on-going effort in developing LLM, we believe this problem will be less of an issue
eventually. In addition, the similarity score between a sentence and a prototype is purely
based on the embedding, thus it does not naturally have an explanation. Users may still not
understand why one sentence is similar to another. We believe there’s an opportunity for
future research to rationalize the similarity score computation, especially if using LLM such
as GPT-4. In addition, for future work, it would be interesting to mathematically formalize
some of the well-established requirements to be a prototype in the linguistics literature. For
example, Panther and Köpcke (Panther and Köpcke, 2008) assert several conditions that
a prototype must possess—a prototypical sentence is an affirmative declarative sentence;
the subject is in the nominative case; the verb in a prototype is in the active voice and
in the indicative mood; to list a few. Albeit non-trivial, the mathematical translation of
such conditions should bring more interpretability and, perhaps, better performance of
ProtoryNet.
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Appendix A. Reproducibility

A.1 Data Sets Description

IMDB Movie Reviews The IMDB Movie Reviews data set is a standard benchmark
data set for binary sentiment classification and is available at https://ai.stanford.edu/

~amaas/data/sentiment/. The data set is perfectly balanced and comprised of 25,000
movie reviews for training and 25,000 for testings and we followed this original partition of
the training and testing set and use 10% of the training data as validation.

Yelp Reviews The Yelp Reviews data set was obtained from http://goo.gl/JyCnZq.
The data set is comprised of 580,000 Yelp review samples and their corresponding labels.
The authors of the data set have binarized the sentiment scores by assuming 1 and 2 stars
as a negative sentiment and 3 and 4 stars as a positive sentiment. They also already split
the dataset into a training set with 550,000 reviews and a test set with 30,000 reviews. In
this paper, we followed this data partition and partitioned the training set into 90% training
and 10% validation.

Amazon Product Reviews Similar to the Yelp Reviews dataset, we also obtained
Amazon Reviews from http://goo.gl/JyCnZq. For this dataset, we took random samples
of 30,000 reviews, in which 24,000 reviews are randomly selected as the training set and
validation, and the remaining 6,000 reviews are used as the test set.
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Rotten Tomatoes The Rotten Tomatoes Movie Review data set is a corpus of movie re-
views used for sentiment analysis and is available at https://github.com/nicolas-gervais/
rotten-tomatoes-dataset, which contains 480,000 reviews. We randomly split the dataset
into a training set and a test set by a ratio of 80-20. Then 10% of the training data were
used as validation.

Hotel Reviews The Hotel Reviews data set is comprised of 20,000 review samples
evaluating 1,000 hotels and is available on Kaggle: https://www.kaggle.com/datafiniti/
hotel-reviews. In this paper, we assumed a positive sentiment for reviews of 4 and 5-star
ratings and a negative sentiment for reviews of 1 and 2 stars. Reviews with 3 stars were
ignored. This assignment yields 17,746 positive reviews and 2,254 negative ones. To balance
out the data set, we randomly picked 2,254 positive reviews to make them equal, making
the total of 4,508 reviews used in our experiments.

Steam Reviews The dataset contains reviews from Steam’s best-selling games as of Febru-
ary 2019 and is available on Kaggle https://www.kaggle.com/luthfim/steam-reviews-dataset.
We preprocessed the data by removing potentially incomplete reviews (with less than 10
characters or 2 sentences) and sampling 65,000 positive reviews and 65,000 negative ones.

DBPedia This is a multiclass dataset extracted from information on Wikipedia. The
dataset is always maintained up-to-date on http://wikidata.dbpedia.org/develop/datasets.
For the experiments in this paper, we only use 4 labels “Person”,“Animal”,“Building” and
“NaturalPlace”.

Consumer complaints The dataset is available on https://www.kaggle.com/datasets/
dushyantv/consumer_complaints. This is also a multiclass dataset. For the experiments,
we only use 4 classes “Checking or savings account”, “Credit card or prepaid card”,“Debt
collection”,“Mortgage”.

For pre-processing, the period (‘.’), the question mark (‘?’), and the exclamation mark
(‘!’) were used as delimiters to define the boundary between sentences. All words were
then converted to the lowercase and punctuations were removed using the definition in
string.punctuation constant in Python 3.5. In all experiments, we used pre-trained
BERT-based language model with mean-tokens pooling Reimers and Gurevych (2019) to
convert the raw sentence data to sentence embeddings.

A.2 Models

Vanilla LSTM We used 300-dimensional GloVe word embeddings Pennington et al. (2014)
to encode words in sentences. An LSTM model with 2 hidden layers of size 128 each was
used. The final prediction was made by a fully connected layer of size 256. A dropout layer
of the rate 0.5 was used immediately before the fully connected layer. The implementation
is done in Tensorflow 1.15.

DistilBERT DistilBERT Sanh et al. (2019) is considered as a lightweight version of
the state-of-the-art BERT model with smaller, faster, and less expensive deployment time
and resources. In our experiments, a pre-trained DistilBERT model was transferred and
fine-tuned to each target data set. We used an implementation that was available in the
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Hugging Face Transformers Library (https://github.com/huggingface/transformers),
which was implemented in PyTorch and TensorFlow 2.0.

ProSeNet ProSeNet Ming et al. (2019) is a state-of-the-art prototype-based interpretable
RNN. For the implementation of ProSeNet, we used an LSTM layer with 2 hidden layers of
size 128 and the dropout rate 0.5 for the sequence encoder. This is the same configuration
as ProtoryNet’s RNN layer. We tuned K from [5, 20, 50, 100, 200, 400] using a validation set.

ProtoryNet We used TensorFlow v2.33 to implement ProtoryNet (and v1.15 for other
benchmark models). In addition, the LSTM layer in ProtoryNet was implemented to have
the same architecture as the baseline methods to eliminate the bias. Just like ProSeNet, we
tuned K from [5, 20, 50, 100, 200, 400] using a validation set and fixed α = 0.1 and β = 1e−4.

Bag-of-words We followed the “Bag-of-words and its TFIDF” in Section 3.1 in paper
Zhang et al. (2015). While being considered traditional, the method still achieved very good
performance in many cases. We use TFIDF (term-frequency inverse-document-frequency) as
the word counts, and Logistic Regression as the classifier for the purpose of interpretability.
The method is implemented in Python and Scikit-learn libraries with default configuration.

Appendix B. Supplementary Figures

This section provides some supplementary figures used in the main paper.

Appendix C. Survey Questions

The figures below show a few examples of the survey questions we used for the user evaluation
study.

For the prototype selection, we created 10 questions each, for ProSeNet and ProtoryNet.
Here we only show one example in Figure 11.

Figure 12 and Figure 13 show how we educated the subjects about how ProtoryNet or
ProSeNet work.

For diagnosing the ProSeNet and ProtoryNet, we create 3 questions for each model. We
show one example for each model in Figure 14 and Figure 15.

Figure 8 shows a sample question to ask if the users’ choice matches the model’s decision.
We trained 2 models with K = 15 and K = 100 prototypes and create 4 questions for each
model; this gives us 8 questions total.

3. https://www.tensorflow.org/
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Figure 9: A deterministic finite automaton (DFA) explaining how the LSTM makes decision
on predicting if a review’s sentiment is positive. The arrow are the prototype IDs
from Table 4 and the ovals are transition states.
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Figure 10: A DFA explaining how the LSTM makes decisions on predicting if a review’s
sentiment is negative. Similar to Figure 9, the arrow are the prototype IDs from
Table 4 and the ovals are transition states.
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Figure 11: Prototype selection question.
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Figure 12: Education material for ProtoryNet
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Figure 13: Education material for ProSeNet.
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Figure 14: Diagnosis question for ProtoryNet model.
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Figure 15: Diagnosis question for ProSeNet model.
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Figure 16: Prototype mapping question for ProtoryNet.
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