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Abstract—Weakly-supervised semantic segmentation (WSSS)
aims to achieve pixel-level classification under image-level super-
vision. Recent class activation map (CAM)-based methods seek
to expand foreground activation while suppressing background.
However, they often overlook the uncertainty of CAM, where
non-salient activation in some regions complicates semantic clas-
sification. These regions are typically dismissed as noise, resulting
in inappropriate activations due to inadequate regularization.
To resolve this, we introduce a Spatial Frequency-Aware Self-
Distillation strategy (SFS). Firstly, to enhance the perception of
high-frequency spatial information in uncertain regions, we pro-
pose a boundary self-distillation and uncertain region reconstruc-
tion strategy, which captures high-frequency boundary informa-
tion and fine-grained spatial context in these regions. Secondly, to
enhance the discrimination of low-frequency semantic features,
we propose a contrastive attention mechanism that guides the Vi-
sion Transformer (ViT) to focus more on the foreground, thereby
improving the distinction between foreground and background.
Finally, our SFS demonstrates outstanding performance on both
the VOC 2012 and COCO 2014 datasets, attributed to its superior
spatial frequency perception capabilities. The code is available
at https://github.com/fjoybest/SFS.

Index Terms—weakly-supervised semantic segmentation, self-
distillation, spatial frequency awareness.

I. INTRODUCTION

Weakly-supervised semantic segmentation (WSSS) meth-
ods leverage image-level annotations to achieve pixel-level
classification [1]–[5]. Current WSSS methods typically utilize
class activation maps (CAMs) to derive initial object localiza-
tion [6]–[8]. After refinement, these CAMs are used as pseudo-
labels to guide the segmentation network [9]–[12].

However, CAMs often activate only the most salient re-
gions, leading to under-activation [13]–[15]. Conversely, net-
works with strong semantic associations frequently experience
over-activation of the background [16], [17]. While existing
methods address under-activation and over-activation sepa-
rately [18], [19], they often overlook the uncertainty of CAM,
which may be a common factor of these issues.
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Fig. 1. CAMs visualization for illustrating our motivation. (a) Image and
ground truth. (b) Intermediate layer of the network. (c) Network lacking
uncertainty regularization. (d) Our SFS. White dashed boxes highlight the
uncertain regions, which are primarily indicated by the yellow-green areas.

The uncertainty of CAM refers to the condition where
the activation values are neither significantly high nor low,
rendering it challenging to accurately classify these regions as
foreground or background. As shown in Fig. 1(b), uncertainty
is notably prevalent in the network’s intermediate layers. Cur-
rent WSSS methods often discard these uncertain regions as
noise during regularization or pseudo-label optimization [18],
[20]. We analyze that insufficient regularization of uncertain
regions may cause over-activation or under-activation in these
methods. For example, as shown in Fig. 1, regions such as
“hair” and “watches” exhibit uncertainty in the intermediate
layers. The lack of regularization for these uncertain regions
results in their incorrect classification as background by
deeper network layers, causing under-activation. Conversely,
“branches” that exhibit uncertainty in the intermediate layers
are subject to excessive activation in later layers, leading to
over-activation of background.

Inspired by the learning strategy of self-distillation [21],
[22], we introduce a Spatial Frequency-Aware Self-Distillation
Network (SFS) to guide the correct division of uncertain
regions. As demonstrated in Fig. 1(b), uncertainty is predomi-
nantly located at the boundaries between different semantic
categories. To enhance the network’s boundary and high-
frequency spatial awareness, we propose a high-frequency
spatial context miming (HSCM) strategy, which includes high-
frequency boundary self-distillation (HBS) and uncertaintyIC
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Fig. 2. Overall Architecture of the proposed Spatial Frequency-Aware Self-Distillation Network (SFS). The teacher network updates its parameters using
Exponential Moving Averages (EMA).

spatial reconstruction (USR), providing the network with fine-
grained spatial boundary representations of uncertain regions.
Additionally, to alleviate uncertainty by enhancing seman-
tic discrimination, we introduce a Low-Frequency Semantic-
Aware Contrastive Attention Mechanism (LSCA), which di-
rects multi-head attention to focus on low-frequency semantic
distinctions between foreground and background. Finally, as
shown in Fig. 1(d), our SFS, leveraging spatial frequency
awareness, effectively guides the partitioning of uncertain
regions and prevents inappropriate activations.

The main contributions of this paper can be summarized as
follows:

• We propose a high-frequency spatial context mining
(HSCM) strategy to achieve self-distillation of high-
frequency boundary information and fine-grained spatial
inference for uncertain regions.

• We introduce a low-frequency semantic-aware contrastive
attention (LSCA) mechanism to enhance low-frequency
semantic discrimination and reduce semantic uncertainty.

• Our method significantly enhances pseudo-label accuracy
and achieves new WSSS state-of-the-art performance on
VOC 2012 and COCO 2014 datasets.

II. METHODS

The proposed SFS is based on the Vision Transformer
(ViT) [23] architecture, with an overview shown in Fig. 2. This
section begins with the generation of a CAM-based uncertain
region mask and data augmentation. We then introduce our
HSCM and LSCA strategies. Finally, we integrate proposed
strategies into an end-to-end WSSS framework.

A. Prerequisites
1) Uncertain Region Mask Generation: Due to the higher

uncertainty typically present in the intermediate layer of the

network, we utilize CAMs from this layer as auxiliary pseudo-
labels to distinguish between certain and uncertain regions.

Specifically, input image Iin is processed through the ViT
encoder to extract intermediate features Fm ∈ Rh×w×C ,
where h× w represents the spatial dimension after reshaping
the sequence of hw tokens into a two-dimensional format,
and C denotes channel dimension. An auxiliary classifier then
facilitates the acquisition of classifier weights Wcls ∈ RK×C ,
where K represents the number of categories. Then the
intermediate layer CAM Am ∈ Rh×w×K is generated by:

Am = norm(ReLu(FmWT
cls)), (1)

where norm(·) denotes Min-Max normalization scaling Am

to [0, 1], and ReLu(·) is used to eliminate negative values.
Subsequently, by introducing foreground and background

thresholds (θl, θh) [18], [20], the uncertain region mask Mu ∈
Rh×w is obtained as follows:

Mi,j
u =

{
1, if θl < Max(Ai,j,:

t ) < θh,

0, otherwise,
(2)

where (i, j) represents the spatial indices, and Max(·) yields
the maximum value along the channel dimension.

2) Uncertainty-Guided Data Augmentation: To improve the
teacher network’s attention to uncertain regions, we mask
the input images to contain only these uncertain parts. Ad-
ditionally, we mask the uncertain regions of the input images,
enabling the network to infer the uncertainty spatial details
based on the certain representations. Uncertain image Iu and
certain image Ic can be obtained by:

Iu = UP (Mu)⊗ Iin, Ic = UP (1−Mu)⊗ Iin, (3)

where UP (·) upsamples the mask to the spatial size of Iin.
⊗ denotes element-wise multiplication.
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B. High-Frequency Spatial Context Mining

1) High-Frequency Boundary Self-Distillation: Given that
uncertainty often arises at the boundaries of different seman-
tics, we designed a High-Frequency Boundary Self-Distillation
(HBS) strategy to more accurately divide uncertain regions by
extracting high-frequency boundary contexts.

Specifically, input image Iin is input into the student
network, where the encoder generates output features Fo and
extracts shallow features Fl. Subsequently, Fo and Fl are fed
into a boundary perception module (BPM). Inspired by [24],
[25], we design the novel BPM module based on convolution
to extract potential high-frequency information. As illustrated
in Fig. 2, BPM initially fuses Fl and Fo to generate a boundary
map B, which is then combined with Fo to produce boundary-
aware features Fb.

To enhance the teacher’s fine-grained representation and
provide boundary supervision of uncertain regions, we in-
put uncertain image Iu into the teacher network, obtaining
boundary-aware features F

′

b . With the uncertain region mask
Mu, HBS performs self-distillation of high-frequency bound-
ary information through the following loss function:

Lhbs =
1

|M |
∑
i∈M

(Fb,i − F
′

b,i)
2, (4)

where M represents the set of feature pixel indices in Mu

with a response value of 1.
2) Uncertainty Spatial Reconstruction: To enhance the

network’s spatial perception of uncertain regions, we propose
an Uncertainty Spatial Reconstruction (USR) strategy to in-
fer uncertain areas based on salient representations, thereby
improving uncertainty fine-grained spatial awareness. Specif-
ically, image Ic containing only certain regions is input into
the student network to extract features, which are then fed
into a U-shaped reconstructor [24]. The reconstruction loss is
defined as follows:

Lusr = |RC(Fc)− Iin|1, (5)

where RC(·) represents the reconstructor and | · |1 denotes the
L1 norm.

C. Low-frequency Semantic-aware Contrastive Attention

To enhance low-frequency semantic learning and im-
prove semantic discrimination, we propose Low-frequency
Semantic-aware Contrastive Attention (LSCA), which guides
the transformer attention to focus more on the foreground,
ensuring precise object segmentation.

Specifically, for the i-th block in ViT, the multi-head
attention averaged across all heads is denoted as Si ∈
R(hw+1)×(hw+1), where hw + 1 consists of hw patch tokens
and one class token. As shown in Fig. 2, by averaging the
attention across l blocks, we derive semantic attention S ∈
R(hw+1)×(hw+1). Then, we extract the attention corresponding
to the class token from S to obtain foreground-aware attention
Sf ∈ R1×hw, which captures the attention between the class
token and the other patch tokens.

Since class tokens embody foreground semantics [18],
[26], Sf reflects the responses of patch tokens to the target
foreground. To enhance foreground perception and reduce
background activation, we reshape Sf to Rh×w and utilize
the CAM At from the teacher network to supervise Sf .
Specifically, the foreground mask Mt ∈ Rh×w is first derived
from At ∈ Rh×w×K as follows:

Mi,j
t =

{
1, if Max(Ai,j,:

t ) > θh,

0, otherwise,
(6)

where (i, j) represents the spatial indices, and Max(·) yields
the maximum value along the channel dimension.

To guide the attention blocks focus more on foreground
semantics, we minimize the distance between the class token
and foreground tokens while increasing the distance to back-
ground tokens. To prevent negative optimization from incorrect
sample classification, we use the certain region mask 1−Mu

to exclude noisy samples. Finally, the contrastive attention loss
Llsca is defined as follows:

Llsca = −
∑
i,j

(1−Mi,j
u )Mi,j

t log(Si,j
f ), (7)

where (i, j) indexes the spatial locations.

D. Weakly-Supervised Training of SFS

Following a common practice, we utilize multi-label soft
margin loss Lcls to train the classifiers and pixel-wise cross-
entropy loss Lseg for the segmentation decoder. To enhance the
diversity of the ViT and mitigate over-smoothing, we employ
an affinity loss Laff [18]. For the above common losses, we
use Lcom to represent them. Lcom can be expressed as:

Lcom = λ1Lcls + λ2Laff + λ3Lseg. (8)

After introducing the proposed losses, the overall loss
function for our SFS network is detailed as follows:

Lsfs = Lcom + λ4Lhbs + λ5Lusr + λ6Llsca, (9)

where {λi}6i=1 represent the weighting factors.
Based on the end-to-end WSSS framework, our SFS en-

hances the network’s spatial frequency awareness, improves
CAM activation precision by reducing uncertainty, and refines
segmentation outcomes.

III. EXPERIMENTS

A. Experimental Setup

1) Dataset and Evaluation Metric: We validate our method
on two benchmarks for WSSS, i.e., VOC 2012 [27] and COCO
2014 [28], using mean Intersection over Union (mIoU) as
the evaluation metric. The VOC 2012 dataset consists of 20
foreground classes and a background class. Following the
common practice of previous works [18], [20], [22], we use the
augmented SBD dataset [29], which includes 10,582 images
for training, 1,449 for validation, and 1,456 for testing. The
COCO 2014 dataset includes 80 categories and a background
class, with 10,582 images for training, 1,449 for validation,
and 1,456 for testing.
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TABLE I
QUALITY OF CAM PSEUDO-LABELS ON THE PASCAL VOC 2012 train

AND val DATASETS, EVALUATED USING MIOU AS THE METRIC.

Method Backbone train val
ViT-PCM (ECCV’22) [30] ViT-B 67.7 66.0
AFA (CVPR’22) [20] MiT-B1 68. 7 66.5
ToCo (CVPR’23) [18] ViT-B 73.6 72.3
CPAL (CVPR’24) [31] ResNet38 75.8 -
DuPL (CVPR’24) [17] ViT-B 76.0 74.1
SFS (ours) ViT-B 78.0 76.7

Image
&GT

ToCo

Ours

VOC COCO

DuPL

Fig. 3. Qualitative segmentation results of ToCo [18] , DuPL [17], and our
proposed SFS.

2) Implementation Details: We use ViT-B [23] pretrained
on ImageNet [32] as the encoder. To improve patch and class
token correlation, we add two cross-attention layers after the
encoder [22]. The student network is optimized with AdamW,
starting with a base learning rate of 6e-5 and subsequently
decaying following a cosine schedule. Images are randomly
cropped to 448 × 448, and we adopt the multi-crop and data
augmentation strategies described in [33]. The background
threshold is set to (0.25, 0.7). The loss weight factors {λi}6i=1

are set as (1.0, 0.2, 0.1, 0.1, 0.2, 0.1). We train the models
for 20,000 iterations on VOC 2012 and 80,000 iterations on
COCO 2014 with a batch size of 8. During testing, we employ
multi-scale testing and Conditional Random Fields (CRF) for
post-processing [34].

B. Comparison With State-of-the-Arts

1) Quality of Pseudo Labels: As shown in Table I, we
assesse the quality of the CAMs pseudo masks generated by
SFS and other recent competitors. The results demonstrate that
our SFS achieves mIoU scores of 78.0% and 76.7% on the
VOC train and val sets, respectively, closely approaching the
ground truth and surpassing other methods.

2) Segmentation Performance: Table II compares the seg-
mentation performance of our SFS against other WSSS meth-
ods on the VOC and COCO datasets. SFS surpasses other
single-stage state-of-the-art methods by 1.7% and 2.0% mIoU
on the VOC val and test sets, and by 1.2% mIoU on the COCO
val set. SFS achieves superior segmentation accuracy while
omitting complex training procedures, surpassing the state-of-
the-art multi-stage methods.

TABLE II
SEGMENTATION RESULTS ON THE VOC val AND test DATASETS AND THE
COCO val DATASET. M AND S DENOTE MULTI-STAGE METHODS AND

SINGLE-STAGE METHODS, RESPECTIVELY.

Method Type Backbone VOC COCO
val test val

MCTformer (CVPR’22) [16]

M

ResNet38 71.9 71.6 42.0
FPR (ICCV’23) [35] ResNet38 70.0 70.6 43.9
ACR (CVPR’23) [36] ResNet38 71.9 71.9 45.3
SSC (TIP’24) [37] ResNet101 72.7 72.8 38.1
CPAL (CVPR’24) [31] ResNet38 72.5 72.9 42.9
MCTformer+ (TPAMI’24) [19] ResNet38 74.0 73.6 45.2
AFA (CVPR’22) [20]

S

MiT-B1 66.0 66.3 38.9
TSCD (AAAI’23) [21] MiT-B1 67.3 67.5 40.1
ToCo (CVPR’23) [18] ViT-B 71.1 72.2 42.0
DuPL (CVPR’24) [17] ViT-B 73.3 72.8 44.6
SFS (ours) ViT-B 75.0 74.8 45.8

TABLE III
ABLATION STUDY OF PROPOSED MODULES. CAM AND Seg REPRESENT

THE MIOU OF CAM AND SEGMENTATION RESULTS, RESPECTIVELY.

baseline LSCA HBS USR CAM Seg
✓ 71.9 69.7
✓ ✓ 74.1 71.1
✓ ✓ ✓ 76.5 73.1
✓ ✓ ✓ ✓ 76.7 73.8

Qualitative segmentation results on VOC and COCO are
visualized in Fig. 3, which demonstrate that SFS provides
clearer and more accurate multi-object boundaries, as well as
improved foreground-background distinction.

C. Ablation Studies

As shown in Table III, we perform an ablation study of the
proposed strategies on VOC val dataset. ViT with common
losses Lcom (Sec. II-D) is used as the baseline. It is notable
that all ablation experiments are conducted without post-
processing. The results demonstrate that our LSCA, HBS, and
USR strategies collectively enhance both CAM and segmenta-
tion performance. The integration of these strategies equips the
network with both spatial high-frequency and low-frequency
semantic awareness, leading to improved performance.

IV. CONCLUSION

In this work, we introduce a novel Spatial Frequency-
Aware Self-Distillation (SFS) strategy for accurately dividing
uncertain regions. Firstly, we design a self-distillation strategy
to extract boundary high-frequency information and then apply
deterministic representations to reconstruct these uncertain
regions, enhancing the network’s spatial high-frequency per-
ception. Secondly, we propose a semantic-aware contrastive
attention to focus more on the low-frequency foreground
semantic and distinguish it from the background. Finally,
Combining these strategies, our SFS method achieves superior
spatial context perception of both high and low frequencies,
outperforming other state-of-the-art methods on the VOC and
COCO datasets.
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