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Abstract
Safety fine-tuning algorithms reduce harm-001
ful outputs in language models, yet their002
mechanisms remain under-explored. Direct003
Preference Optimization (DPO) is a popu-004
lar choice of algorithm, but prior explana-005
tions—attributing its effects solely to damp-006
ened toxic neurons in the MLP layers—are in-007
complete. In this study, we analyse four lan-008
guage models (Llama-3.1-8B, Gemma-2-2B,009
Mistral-7B, GPT-2-Medium) and show that010
toxic neurons only account for 2.5% to 24%011
of DPO’s effects across models. Instead, DPO012
induces distributed activation shifts across all013
MLP neurons to create a net toxicity reduc-014
tion. We attribute this reduction to four neu-015
ron groups—two aligned with reducing toxi-016
city and two promoting anti-toxicity—whose017
combined effects replicate DPO across models.018
To further validate this understanding, we de-019
velop an activation editing method that mimics020
DPO through distributed shifts along a toxic-021
ity representation. This method outperforms022
DPO in reducing toxicity while preserving per-023
plexity, without requiring any weight updates.024
Our work provides a mechanistic understand-025
ing of DPO and introduces an efficient, tuning-026
free alternative for safety fine-tuning. Our027
code is available in the anonymous repository:028
anonymous.4open.science/r/dpo-mlp-toxic.029

1 Introduction030

The growing capabilities of large language mod-031

els (LLMs) also lead to the encoding of undesir-032

able behaviours (Gehman et al., 2020; Gallegos033

et al., 2024). To mitigate harmful outputs, re-034

searchers have developed fine-tuning algorithms035

to prioritise human-preferred responses through re-036

ward modelling (Schulman et al., 2017; Shao et al.,037

2024). Among these, Direct Preference Optimiza-038

tion (DPO) has been a popular algorithm given its039

simplicity that directly optimises the policy model040

(Rafailov et al., 2024). While such methods effec-041

tively reduce harmful behaviours at the output level,042

there is limited mechanistic understanding of how 043

they achieve this internally. This gap limits our 044

ability to explain their vulnerability to jailbreaks 045

and adversarial fine-tuning (Wei et al., 2023; Yang 046

et al., 2023; Qi et al., 2023). 047

Recent studies found that fine-tuning algorithms 048

lead to superficial changes, allowing models to re- 049

tain the undesirable capabilities (Jain et al., 2024; 050

Yang et al., 2023). In particular, Lee et al. (2024) 051

suggested that DPO reduces toxicity by dampening 052

the activations of a few toxic neurons in the MLP 053

layers. While this offers an intuitive explanation, it 054

assumes that toxicity is localised to a small subset 055

of neurons—a strong claim that may oversimplify 056

how safety fine-tuning works. In this paper, we 057

show that this explanation is incomplete, and offer 058

a more comprehensive analysis of DPO’s mecha- 059

nism across four LLMs: Llama-3.1-8B, Gemma-2- 060

2B, Mistral-7B and GPT-2-Medium. 061

Toxic neurons are not enough to explain DPO. 062

Namely, we use activation patching to isolate the 063

role of toxic neurons, and observe only a partial 064

drop in toxicity across models (2.5% to 24%) com- 065

pared to DPO. Where, then, does the rest of DPO’s 066

toxicity reduction come from? 067

Four neuron groups reduce toxicity. We show 068

that DPO induces more nuanced, distributed activa- 069

tion shifts across all MLP neurons than previously 070

suggested. We identify four mutually exclusive 071

neuron groups that consistently contribute to tox- 072

icity reduction across models. Their post-DPO 073

activation changes depend on their orientation rela- 074

tive to the toxicity representation. Using activation 075

patching, we show that their combined influence 076

can match or even exceed the toxicity reduction 077

achieved by DPO. 078

Activation editing to replicate DPO. To validate 079

our understanding, we develop a simple activation 080

editing method to replicate DPO. Unlike the previ- 081
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ous post-hoc patching analyses, our method does082

not rely on access to post-DPO activations, nor083

does it require weight updates or pairwise prefer-084

ence data. Instead, we leverage our observations085

to edit activations based on the orientation of MLP086

weights relative to a toxicity representation. This087

method consistently outperforms DPO across mod-088

els, showing that DPO-like effects can be achieved089

with minimal intervention and without fine-tuning.090

2 Related Work091

Here we review the DPO algorithm, the Trans-092

former MLP layers and related work on mecha-093

nisms of safety fine-tuning algorithms.094

DPO algorithm. DPO is a fine-tuning algorithm095

designed to align LLMs with pairwise human pref-096

erence data (Rafailov et al., 2024). Given pairwise097

preference data098 {(
x(i), y

(i)
+ , y

(i)
−

)}N

i=1
,099

where x is the input prompt, y+, y− are pairwise100

preferred and non-preferred continuations, DPO101

fine-tunes a policy model πθ(y+ | x) that assigns a102

higher likelihood to y
(i)
+ compared to y

(i)
− .103

The DPO loss is defined as:104

LDPO(θ) = − log σ
(
β
(
rθ(x, y

+)− rθ(x, y
−)

))
,105

where σ is the sigmoid function, β is a tempera-106

ture hyperparameter and rθ is the derived reward107

regularised using the reference model πref, that is108

rθ(x, y) = log
πθ(y | x)
πref(y | x)

.109

MLP layers. MLPs apply two linear transforma-110

tions with a non-linearity σ in between:111

MLPℓ(xℓ) = σ
(
W ℓ

Kxℓ
)
W ℓ

V ,112

where W ℓ
K ,W ℓ

V ∈ Rdmlp×d, dmlp and d are the di-113

mensions of MLP hidden layers and the residual114

stream. MLPs can be re-expressed as:115

MLPℓ(xℓ) =

dmlp∑
i=1

mℓ
iv

ℓ
i , mℓ

i = σ(kℓ
i · xℓ), (1)116

where kℓ
i ,v

ℓ
i ∈ Rd are the i-th row of W ℓ

K and117

W ℓ
V , respectively. For each MLP neuron i, we118

refer to vℓ
i as its value vector, following Geva et al.119

(2022) and Lee et al. (2024). The scalar mℓ
i ∈ R is 120

an activation score that controls the scaling of the 121

value vector vℓ
i . This means an MLP layer writes 122

to the residual stream dmlp times, once per neuron, 123

via the activation-weighted value vector mℓ
iv

ℓ
i . 124

Recent models (Llama, Gemma, Mistral) replace 125

MLPs with Gated Linear Units (GLUs) (Shazeer, 126

2020). GLUs can similarly be expressed as a 127

weighted sum of its value vectors as in (1), where 128

each weight is determined by some non-linear acti- 129

vation. See Appendix A for details. 130

Mechanisms of safety fine-tuning algorithms. 131

Recent studies have shown that fine-tuning in- 132

duces superficial weight changes, leaving most pre- 133

trained capabilities intact. Jain et al. (2023) found 134

that fine-tuning on synthetic tasks produces ‘wrap- 135

pers’, i.e. localised weight changes in later layers 136

optimised for each task. Qi et al. (2024) found that 137

aligned models primarily adapt their generative dis- 138

tribution in the first few output tokens. Wei et al. 139

(2024) showed that pruning just 3% of targeted pa- 140

rameters can undo safety alignment, highlighting 141

the brittleness of safety mechanisms. These find- 142

ings suggest that safety fine-tuning reduces harm- 143

ful outputs through subtle, targeted weight changes 144

rather than large-scale rewiring. 145

Lee et al. (2024) studied the mechanisms of how 146

DPO reduces toxic outputs, attributing its effects 147

to dampened activations of a few toxic MLP value 148

vectors. We revisit this claim and find it to be 149

incomplete, as shown in Section 4. 150

3 Experiment Setup 151

Here we describe the tools used in this study, in- 152

cluding the data and models, linear probes, projec- 153

tions and activation patching. 154

3.1 Data and Models 155

Toxicity-eliciting prompts. We use the ‘challenge’ 156

subset (N=1,199) of RealToxicityPrompts (Gehman 157

et al., 2020) to elicit toxic outputs from each model. 158

This subset is designed to trigger extremely toxic 159

completions, making it a strong testbed for evaluat- 160

ing safety fine-tuning. 161

Models. We study four pre-trained LLMs: Llama- 162

3.1-8B (Grattafiori et al., 2024), Gemma-2-2B (Riv- 163

iere et al., 2024), Mistral-7B (Jiang et al., 2023), 164

and GPT-2 Medium (Radford et al., 2019). GPT-2 165

Medium is included to compare with claims made 166

in Lee et al. (2024). We generate toxic outputs from 167
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each LLM using greedy decoding. Appendix B pro-168

vides the MLP specification for each model.169

Evaluation metrics. We report three metrics: toxi-170

city scores using Detoxify (Hanu, 2020), a BERT171

model fine-tuned for toxicity classification that as-172

signs a likelihood score of a text being toxic; log173

perplexity, the average negative log-likelihood of174

generated tokens on the Wikitext-2 dataset (Mer-175

ity et al., 2016); F1 scores, the harmonic mean of176

precision and recall based on token overlap across177

2,000 Wikipedia sentences (Lee et al., 2024). The178

latter two metrics measure general language qual-179

ity, where F1 complements perplexity by capturing180

exact token matches.181

DPO training. We implement DPO using 24,576182

toxicity contrastive pairs generated from Wikitext-183

2 prompts (Lee et al., 2024). See Appendix C for184

training hyperparameters.185

3.2 Per-Neuron Toxicity Contributions186

We measure per-neuron contributions to toxicity by187

projecting activations onto linear toxicity probes.188

We describe how we extract these probes, validate189

their effects and compute per-neuron contributions.190

Linear probes. To extract toxicity representations,191

we train linear probes WToxic to classify toxic ver-192

sus non-toxic inputs for each model. The probe193

is trained on the final-layer residual stream x̄L−1,194

averaged across all token positions:195

P (toxic | x̄L−1) = σ(WToxicx̄
L−1 + b),196

where σ is the sigmoid function, WToxic ∈ Rd is the197

learned probe vector. We use the Jigsaw Toxic Com-198

ment Classification dataset (cjadams et al., 2017),199

which contains 561,808 comments labelled as toxic200

or non-toxic.201

Across all four models, the linear probes achieve202

over 91% test accuracy using a 90:10 train/test split203

(Appendix Table 11). When projected onto each204

model’s vocabulary space via the unembedding205

matrix, i.e. LogitLens (nostalgebraist, 2020), the206

trained probes predominantly map to toxic tokens207

(Table 1).208

Validating linear probes. To validate that these209

probes represent toxicity, we apply activation steer-210

ing (Zou et al., 2025; Panickssery et al., 2024) by211

subtracting a scaled probe WToxic from the final-212

layer residual stream xL−1 at each token position:213

xL−1
steered = xL−1 − αWToxic,214

Table 1: The four toxic probes predominantly project to
toxic tokens in the vocabulary space. Warning: these
examples are highly offensive.

Model Top tokens projected by probes

GPT-2-355M f*ck, c*nt, a**hole, holes, d*ck, wh*re
Llama-3.1-8B en, kommen, F*CK, iyah, f*ck, dirty
Gemma-2-2B rungsseite, fu*k, Fu*king, SH*T, a**hole
Mistral-7B sh*t, f*ck, assh, bullsh*t, f*cked, a**hole

where α is selected to preserve language quality 215

(perplexity and F1) of pre-trained models (see Ap- 216

pendix Table 11). Increasing α further reduces 217

toxicity scores but raises perplexity (sAppendix 218

Table 12). Table 2 shows that probe-based steer- 219

ing consistently reduces toxicity scores, validating 220

their effects in eliciting toxic outputs. We therefore 221

include it as a baseline for toxicity reduction. 222

Per-neuron toxicity change via projection. For 223

per-neuron contributions, we track how the toxic 224

representation changes at each MLP neuron during 225

DPO via its change in projection onto the probe: 226

∆Toxic,i= (m
pre
i v

pre
i −m

dpo
i v

dpo
i )· WToxic

∥WToxic∥2
, (2) 227

where m
pre
i v

pre
i and m

dpo
i v

dpo
i are the activated 228

components of the i-th value vector before and 229

after DPO; the activation scores mpre
i and m

dpo
i are 230

averaged over 20 generated tokens for all prompts 231

in RealToxicityPrompts. This approach, known 232

as direct feature attribution (Makelov et al., 2024; 233

Arditi et al., 2024), quantifies each neuron’s contri- 234

bution to writing to the toxicity representation. 235

3.3 Activation Patching 236

Throughout our work, we apply activation patch- 237

ing (Zhang and Nanda, 2024) as a counterfactual 238

method to isolate the effect of specific neurons 239

on toxicity scores. For a pre-trained model and a 240

set of MLP value vectors, we set their activations 241

to match its post-DPO counterpart, based on the 242

mean activation of 1,199 RealToxicityPrompts and 243

20 generated tokens per prompt. We then measure 244

the resulting change in the toxicity scores. 245

4 Toxic Neurons Are Not Enough 246

We start by revisiting the claims in Lee et al. (2024): 247

(a) DPO reduces toxicity primarily by dampening 248

the activation of toxic neurons, and (b) this arises 249

from shifts in earlier layer weights. We show that 250
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Table 2: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. Across models,
patching toxic neurons—whether those with toxic tokens or the top 256—yields only a limited drop in toxicity
scores than DPO (Section 4). In contrast, patching all four of our identified groups matches or outperforms DPO
(Section 5.2). Our activation editing method can outperform DPO, probe-based steering and patching all four groups
(Section 6). Green highlights the editing parameters that best compete with DPO while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Toxic PPL F1 Toxic PPL F1 Toxic PPL F1 Toxic PPL F1

Baselines
None 0.545 3.08 0.193 0.496 1.94 0.225 0.488 4.61 0.231 0.507 1.76 0.221

Steering with probe 0.310 3.19 0.191 0.335 2.72 0.187 0.260 5.52 0.228 0.350 2.23 0.220

DPO 0.210 3.15 0.195 0.241 2.69 0.221 0.245 5.15 0.228 0.191 2.01 0.223

Activation
patching
(Sec 5.2)

Patch toxic neurons 0.479 3.09 0.193 0.491 1.94 0.225 0.487 4.61 0.231 0.505 1.76 0.232

Patch 256 neurons 0.465 3.07 0.193 0.488 1.94 0.225 0.482 4.61 0.231 0.455 1.76 0.232

Patch TP↓ 0.407 3.07 0.191 0.488 1.94 0.223 0.470 4.87 0.235 0.502 1.80 0.229

Patch TP↓+AN↓ 0.216 3.08 0.183 0.465 1.94 0.221 0.337 4.59 0.224 0.307 1.76 0.227

Patch TP↓+AN↓+TN↓ 0.194 3.08 0.170 0.391 1.94 0.208 0.307 4.59 0.217 0.238 1.81 0.218

Patch four groups 0.139 3.08 0.170 0.278 1.94 0.207 0.260 4.58 0.213 0.138 1.78 0.209
Activation

editing
(Sec 6,

probe-based)

α = 0.01, β = 0.8 0.123 3.08 0.179 0.045 2.19 0.186 0.199 4.54 0.188 0.038 1.77 0.179

α = 0.01, β = 0.6 0.159 3.08 0.181 0.183 2.11 0.193 0.200 4.56 0.201 0.098 1.77 0.196

α = 0.01, β = 0.55 0.203 3.08 0.183 0.241 1.96 0.196 0.216 4.56 0.210 0.125 1.77 0.202
Activation

editing
(Sec 6,

probe-free)

α = 0.01, β = 0.8 0.139 3.08 0.176 0.116 5.82 0.200 0.218 4.54 0.180 0.057 1.77 0.191

α = 0.01, β = 0.6 0.238 3.08 0.178 0.258 2.28 0.210 0.216 4.57 0.203 0.162 1.77 0.200

α = 0.01, β = 0.55 0.282 3.08 0.180 0.318 2.24 0.204 0.250 4.58 0.198 0.239 1.77 0.201

(a) only partially explains the drop in toxicity, and251

in Section 5, we show that the weight shifts (b) are252

more nuanced than simply bypassing toxic neurons.253

First, we directly measure the effect of damp-254

ening toxic neurons. We define toxic neurons by255

adapting the method of Lee et al. (2024): we iden-256

tify the top N (= 256)1 MLP value vectors with the257

highest cosine similarity to the toxic probe WToxic.258

In a second variant, we identify a smaller subset of259

interpretable value vectors. To do so, we unembed260

each value vector and consider it as toxic if any261

of its top-10 nearest tokens are toxic. We adopt262

LLM-as-a-judge (Zheng et al., 2023) using GPT-263

4o (OpenAI, 2024) to evaluate whether a token is264

considered toxic (e.g. curse words, slurs, sexual265

content). See Appendix Table 14 for the tokens266

projected by these toxic value vectors.267

We then counterfactually isolate their effect268

on toxicity scores using activation patching (Sec-269

tion 3.3). Namely, for a pre-trained model, we set270

the activations of toxic value vectors to that of its271

post-DPO counterpart.272

Table 3 reports the number of toxic neurons273

per model and the percentage reduction in toxicity274

1This number is based on Lee et al. (2024)’s number (128).
We double the number of accommodate larger model sizes,
but see similar results with the original 128 vectors.

scores through patching. Toxic neurons comprise 275

fewer than 0.05% of all MLP neurons, yet account 276

for as little as 2.5% to 24% of the reduction in toxi- 277

city scores, depending on the model. As patching 278

captures interactions between toxic and non-toxic 279

neurons, these results suggest that toxic neurons 280

only account for a small portion of DPO’s effect, 281

rendering Lee et al. (2024)’s claim that DPO pri- 282

marily dampens toxic neurons as incomplete. 283

Table 3: The number of toxic neurons per model and
percentage decrease in toxicity scores after patching
them. The first row reports the number of toxic neurons
unembed to toxic tokens. The second row reports results
for the top 256 toxic-aligned neurons. The percentage
decrease is the proportion of toxicity score reduction
from patching toxic neurons, relative to the total reduc-
tion by DPO (see Table 2 for full scores).

GPT-2
355M

Llama
3.1-8B

Gemma
2-2B

Mistral
7B

59 (19.7%↓) 7 (1.96%↓) 3 (0.41%↓) 14 (0.63%↓)
256 (23.9%↓) 256 (3.14%↓) 256 (2.47%↓) 256 (16.5%↓)

5 A Deeper Look at DPO Weight Shifts 284

Next, we show that the weight shifts from DPO are 285

more nuanced than simply bypassing toxic neurons. 286
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Figure 1: DPO balances opposing toxicity writing across MLP layers. Blue dots show total projection reduction
per layer, orange dots show the total increase, both after DPO. The shaded blue areas illustrate how these opposing
effects cancel out and lead to a net toxicity reduction. Projection changes grow with layers when measured against
last-layer probe. Net changes in first ≈ 10 layers are negligible and omitted; see Appendix Table 5 for the full graph.

5.1 DPO Balances Opposing Effects287

Across all models, DPO makes minimal adjust-288

ments to the MLP weights. All MLP value vec-289

tors have a cosine similarity of 0.99 before and290

after DPO, likely due to KL divergence regularisa-291

tion (Rafailov et al., 2024). However, these small292

weight changes (vpre
i ≈ v

dpo
i ) accumulate and in-293

duce distributed activation shifts (mpre
i − m

dpo
i )294

across all MLP neurons. Most neurons undergo295

average shifts ranging from 0.66% (Llama-3.1-8B)296

to 16.71% (Mistral-7B), and substantial variation297

across neurons (see Appendix Figure 4).298

These distributed activation shifts lead approxi-299

mately half of all neurons (52%∼58% across mod-300

els) reducing their projection onto the toxic direc-301

tion (∆Toxic,i > 0) and the other half increasing it302

(∆Toxic,i < 0) (see Appendix Table 18). Figure 1303

illustrates how these opposing neuron effects accu-304

mulate and balance out at each MLP layer, creating305

a net toxicity reduction. This suggests that DPO306

does not simply suppress toxic signals, but rather307

delicately redistributes them, balancing a trade-off308

across all MLP neurons.309

5.2 Four Neuron Groups Reduce Toxicity 310

Building on this, we study value vectors that re- 311

duce toxic projections (∆Toxic,i > 0), as they 312

likely contribute to toxicity reduction during DPO. 313

We categorise them into four mutually exclusive 314

groups, and study their collective effect. 315

Table 4 defines the four neuron groups, cate- 316

gorised by their alignment with the toxicity direc- 317

tion (Toxic-aligned vs. Anti-toxic-aligned) and 318

their pre-DPO activations (Positive vs. Negative). 319

TP ↓, TN ↓ have positive alignment with toxicity, 320

while AP ↓, AN ↓ have negative alignment. All 321

groups reduce toxicity projection during DPO (↓). 322

Table 5 shows the proportions of neurons in each 323

group across models. Note that Lee et al. (2024) 324

only considers the neurons in TP ↓. 325

Figure 2c visualises how the four groups reduce 326

toxicity writing via activation shifts in Llama-3.1- 327

8B, with similar patterns seen in all models (see 328

Appendix Figure 6). The activations of each group 329

are shifted in accordance to their orientation with 330

respect to the toxic probe. Namely, toxic-aligned 331

weights (TP ↓, TN ↓) drop in activations while 332
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Figure 2: Four neuron groups collectively reduce toxicity during DPO, shown for Llama-3.1-8B. The same four
groups emerge consistently across models, while panels (a) and (b) show differing patterns for the other three
models (see Appendix Figure 6). (a) Proportion of toxicity reduction per group, showing balanced contributions;
(b) Cumulative toxicity reduction for top 40,000 neurons (ranked by projection reduction), with groups showing
similar reduction rates; (c) Per-group activation shifts during DPO for the top 2,000–2,500 neurons, where each
group shifts according to their orientation relative to the toxic probe.

anti-toxic aligned weights (AN ↓, AP ↓) see an in-333

crease in activations (promotion of “anti-toxicity”).334

Table 4: Definitions of four neuron groups reducing tox-
icity projections (∆Toxic, i > 0). Alignment with probe
(T vs. A) indicates whether the neuron’s value vector
v aligns positively or negatively with the toxic probe
WToxic (v ·WToxic > 0 or v ·WToxic < 0).

Group Alignment
with probe

Pre-DPO
activation

Projection
change

TP ↓ Toxic-aligned Positive Reduced (↓)
TN ↓ Toxic-aligned Negative Reduced (↓)
AP ↓ Anti-toxic-aligned Positive Reduced (↓)
AN ↓ Anti-toxic-aligned Negative Reduced (↓)

Table 5: Proportions of four-neuron-group among all
neurons reducing toxicity projection (↓). Proportions are
more balanced across larger LLMs. The Sum column
shows the total number of neurons per model.

Model TP ↓ TN ↓ AP ↓ AN ↓ Sum

GPT-2-355M 6.9% 39.1% 3.2% 50.9% 57,501
Llama-3.1-8B 25.4% 24.4% 24.6% 25.5% 239,460
Gemma-2-2B 28.8% 21.3% 21.3% 28.6% 123,898
Mistral-7B 29.7% 20.3% 20.2% 29.8% 238,236

Anti-toxic value vectors. What do “anti-toxic”335

value vectors encode? Geometrically, some anti-336

toxic value vectors essentially lie at the antipode337

of toxic semantic clusters. Namely, we take338

value vectors with high cosine similarity scores339

Table 6: Examples of anti-toxic value vectors (with
reversed signs) that project to toxic tokens in Logit Lens.
Warning: these examples are highly offensive.

Model Vector Top tokens

GPT2 −1×v1307
11 d*mn, darn, kidding, freaking, piss

Llama3 −1×v14671
25 f*ck, f*cked, f*cking, sh*t, F*CK

Gemma2 −1×v7822
14 f*cking, godd*mn, f*ck, sh*t

Mistral −1×v14693
14 sh*t, f*ck, Block, piss, f*cking

to −1×WToxic (i.e. anti-toxic value vectors). We 340

then multiply these value vectors by −1, unembed 341

them, and inspect their nearest neighbors. Table 6 342

show examples of toxic tokens they project to (see 343

Appendix Table 15 for more). To summarise, DPO 344

also promotes anti-toxicity by increasing the acti- 345

vation of anti-toxic AN ↓, AP ↓ neurons. 346

Why negatively activated? Negatively activated 347

neurons (including TN ↓, AN ↓) take a large por- 348

tion of MLP neurons—approximately 50% in three 349

larger models and 87% in GPT-2 Medium (see Ap- 350

pendix Table 13). This results from the activation 351

functions used in modern LLMs: GeLU (GPT-2), 352

GeLU-Tanh (Gemma), and SiLU (Llama, Mistral), 353

which allow neurons to retain small negative acti- 354

vations for negative inputs (Hendrycks and Gimpel, 355

2023). This allows plenty of neurons to remain 356

weakly active and contribute marginally to the tox- 357

icity representation through their activation shifts. 358

6



Four groups reduce toxicity at different rates.359

When ranking neurons by their reduction of tox-360

icity projection, the four groups show different361

patterns. In Llama-3.1-8B, all groups contribute362

evenly, maintaining balanced shares of top-ranked363

neurons (Figure 2b). In contrast, the other three364

models show TP ↓ dominating among top-ranked365

neurons, while AN ↓ gradually gains influence366

in later ranks—a trend most evident in GPT-2-367

Medium (see Appendix Figure 6). As a result,368

TP ↓ and AN ↓ dominate the overall toxicity re-369

duction.370

Reduction peaks at later layers. We observe an371

overall increasing trend in toxicity reduction across372

MLP layers for all neuron groups (see Appendix373

Figure 8). This suggests that the four groups col-374

lectively steer each layer away from toxicity, with375

later layers showing the strongest suppression of376

toxic outputs. This upward trend may be partly due377

to the probes being extracted from the final layer.378

Activation patching confirms the collective ef-379

fects of four groups. Finally, we confirm the col-380

lective effect of the four groups with activation381

patching. This post-hoc analysis assumes that we382

know the activations of each group after DPO and383

analyses their effects counterfactually. Namely, we384

patch the activations of each neuron group, one385

group at a time, in the pre-trained model to match386

that of the post-DPO model.387

Table 2 shows that sequentially patching each388

neuron group further reduces toxicity scores across389

all models. This confirms the contributions of390

both anti-toxic and negatively activated groups to391

DPO’s effects. Across models, patching all the four392

groups either surpasses or closely matches DPO’s393

toxicity reduction, and consistently outperforms394

probe-based steering. It also has minimal impact395

on perplexity and only slightly reduces F1 scores.396

This activation patching outperforms DPO likely397

because we do not patch neurons that increase toxi-398

city projection after DPO (Section 5.1). As a sanity399

check, patching all neurons that increase toxicity400

projection (↑) during DPO leads to higher toxicity401

scores across models, consistent with their projec-402

tion changes (see Appendix Table 19).403

6 Activating Editing to Replicate DPO404

Based on our insights, we demonstrate two simple405

methods to replicate DPO’s effects by directing406

editing activations. These methods only rely on a407

toxicity representation (e.g. a probe) and do not re- 408

quire any weight updates nor a pairwise preference 409

dataset, which is not always readily available. Un- 410

like the previous activation patching analyses, here 411

we do not assume access to post-DPO activations. 412

Probe-based activation editing. Previously, we 413

focused on neuron groups had a reduction in tox- 414

icity projections (i.e., ∆Toxic, i > 0) (Section 5.2). 415

However, knowing whether a neuron undergoes a 416

increase or decrease in toxicity projection requires 417

access to post-DPO activations (see Equation 2). 418

To remove this dependency, here we re-categorise 419

the neuron groups based solely on their alignment 420

with the toxicity probe and their pre-DPO activa- 421

tions, and do not consider their projection changes 422

(hence notated as TP as opposed to TP ↓). 423

Given our new neuron groups (TP, TN, AP, 424

AN), we leverage two key insights learned from 425

DPO: activation shifts are distributed across all neu- 426

rons (Section 5.1), and the direction of activation 427

shifts for toxicity reduction depends on the orienta- 428

tion of the value vector (Section 5.2, Figure 2c). 429

Follow these insights, we sample a fraction β 430

(%) of neurons from each group and minimally 431

adjust their activations. For toxicity-aligned groups 432

(TP, TN), we slightly decrease their activations by 433

a factor of α (%), while for anti-toxicity-aligned 434

groups (AP, AN) we slightly increase them. As 435

TN and AN have negative activations, we flip the 436

sign of α accordingly: 437

medit
TPβ

=(1−α)m
pre
TPβ

; medit
TNβ

= (1+α)m
pre
TNβ

medit
APβ

=(1+α)m
pre
APβ

; medit
ANβ

= (1−α)m
pre
ANβ

438

where TPβ , ANβ , TNβ , and APβ denote the β- 439

fraction of neurons in each group, and mpre are 440

their pre-trained activations. Again, here we do not 441

rely on any post-DPO information (i.e., mDPO). 442

Table 2 shows our results for selected hyperpa- 443

rameters α and β. These hyperparameters reflect 444

our insights: a majority of neurons (high β value) 445

undergoes small shifts (small α value). We find 446

that selecting the top-β fraction of neurons ranked 447

by cosine similarity with the toxicity probe is most 448

effective in reducing toxicity scores. In particular, 449

selecting β = 55% yields the best trade-off be- 450

tween toxicity reduction and F1 scores, consistent 451

of our earlier finding that DPO reduces toxicity 452

writing in roughly half of all neurons (Section 5.1). 453

This approach outperforms both DPO and probe- 454

based steering in toxicity reduction while preserv- 455

ing perplexity across pre-trained models, with only 456
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a slight decrease in F1 scores. Further increasing β457

(e.g., to 0.8) leads to greater toxicity reduction at458

the cost of F1 drops. Alternative sampling strate-459

gies for selecting the top-β neurons (e.g., based on460

ascending absolute activation values) yield similar461

results across models (see Appendix Table 19).462

Probe-free activation editing. While the previous463

activation editing method does not require pairwise464

preference data, it still relies on a latent toxicity465

representation, for which we use our probe. While466

a probe does not require pairwise preference data,467

it still needs labelled classification data (Section 3).468

Here, we demonstrate that activation editing can469

be performed even without a probe by leveraging an470

alternative toxicity representation. Namely, prior471

works have observed a close relationship between472

concept representations in the model’s hidden lay-473

ers and the token embedding space (Lee et al.,474

2025). Similarly, we observe that toxic tokens are475

nearest neighbors to our probes in the token embed-476

ding space (Table 1). Motivated by this, we replace477

the probe with a contrastive vector derived directly478

from token embeddings.479

To construct this vector, we simply select sets480

of toxic and non-toxic token embeddings in each481

model and compute the difference between their482

mean embeddings (Table 7). This bypasses the483

need to train a probe model. We then apply the484

same activation editing method as described above.485

Table 7: Toxic and non-toxic tokens used to compute
the contrastive vector. The contrastive vector is derived
by subtracting the mean embedding of non-toxic tokens
from that of toxic tokens.

Toxic fu*k sh*t cr*p da*n a**hole

Non-toxic hello thanks friend peace welcome

The last rows of Table 2 show that this ap-486

proach yields results comparable to our probe-487

based method. These results together validate our488

mechanistic understanding of DPO and offer a489

proof-of-concept alternative when weight updates490

are costly or training data is not readily available.491

7 Discussion and Conclusion492

Our work provides a mechanistic understanding493

of how DPO reduces toxicity across four LLMs.494

Using activation patching, we show that prior ex-495

planations are incomplete: a small number of toxic496

neurons associated with toxic tokens (Lee et al.,497

2024) cannot fully explain DPO’s effects. This 498

explanation also relies on a monosemantic view 499

of neurons, an assumption disputed by prior work 500

(Elhage et al., 2022). Instead, DPO induces dis- 501

tributed activation shifts across all MLP neurons to 502

produce a net toxicity reduction. 503

To characterise these distributed effects, we iden- 504

tify four neuron groups that play distinct roles in 505

toxicity reduction and show that their combined 506

effect replicates the effect of DPO. 507

Building on these insights, we develop an activa- 508

tion editing method mimicking DPO by applying 509

distributed activation shifts along a learned toxic- 510

ity representation. We explore two options for this 511

representation: a probe model and a contrastive vec- 512

tor derived from token embeddings. This method 513

outperforms DPO in reducing toxicity while pre- 514

serving perplexity, all without any weight updates. 515

In summary, our work provides a more complete 516

understanding of how DPO reduces toxicity and 517

introduces a efficient, training-free alternative. 518

The shallowness of safety. DPO’s tendency to 519

spread activation shifts thinly across the network 520

suggests that pre-trained harmful capabilities are 521

not removed, but merely masked. As a result, small 522

disruptions anywhere in the model, not just in toxic 523

neurons, can potentially breach the safety barrier 524

and reactivate harm. This extends prior findings 525

on the shallowness of safety fine-tuning from the 526

activation perspective (Jain et al., 2024; Qi et al., 527

2024). These distributed shifts likely arise as a by- 528

product of regularisation to preserve pre-training 529

performance, hinting at a deeper trade-off: the shal- 530

low safety may be an inherent cost of maintain- 531

ing language quality. This diluted effect is fur- 532

ther compounded by the use of smooth activation 533

functions (dicussed in Section 5.2), which allow 534

many weakly active neurons to marginally partic- 535

ipate in toxicity writing. As a result, much of the 536

model’s capacity for toxicity reduction remains un- 537

tapped—we observe many MLP neurons actually 538

increase their toxicity projection during DPO (Sec- 539

tion 5.1). In contrast, our activation editing method 540

offers a more targeted alternative by explicitly steer- 541

ing activations toward reducing toxicity. This may 542

explain why it achieves greater toxicity reduction 543

than DPO, despite applying smaller average acti- 544

vation changes. Taken together, our findings point 545

to the value of exploring more interpretable safety 546

interventions as a path beyond shallow tuning. 547
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Limitations548

Projection to a toxic subspace. In this work, we549

use a linear probe to capture an aggregated toxicity550

representation, following common practice in the551

literature (Ferrando et al., 2024; Ravfogel et al.,552

2022). However, it may be possible that toxicity553

manifest along multiple directions, each capturing554

different aspects such as hate speech or abusive555

language, thus better represented as a subspace556

(Uppaal et al., 2024). We thus conduct an initial557

analysis on GPT-2-Medium. We construct the toxic558

subspace by applying Singular Value Decomposi-559

tion (SVD) to the top 128 toxic-aligned value vec-560

tors and selecting the top singular directions, each561

of which projects to different toxic tokens (see Ap-562

pendix G). However, we find that most value vec-563

tors show inconsistent alignment across the three564

directions and mixed projection changes after DPO.565

A single value vector can be “toxic-aligned” in566

one SVD direction and “anti-toxic-aligned” in an-567

other, also reducing toxicity along one axis while568

increasing it in another. Such inconsistencies make569

it difficult to assign neurons to coherent neuron570

groups as in our approach. We therefore leave a571

more robust analysis of toxic subspace projections572

to future work.573

Assumptions for the projection. We use pro-574

jection to estimate each neuron’s contribution to575

toxicity (Equation 2), assuming that neurons con-576

tribute proportionally along their activated direc-577

tions. However, toxicity representations may be578

distributed across more complex linear combina-579

tions of neurons. Alternative tools, such as sparse580

autoencoders (SAEs) (Bricken et al., 2023; Cun-581

ningham et al., 2023), which learn linear feature582

compositions through autoencoder reconstruction,583

may offer a complementary perspective for tracing584

toxic feature changes back to specific neurons.585

Generalise the four neuron groups across tasks586

and models. DPO is inherently a binary algorithm,587

as it is trained on pairwise preference data. The588

four neuron groups we identify naturally reflect this589

binary structure, with activations shifting along the590

representation of a binary concept. Accordingly,591

we expect similar group structures to emerge in592

other binary safety-related tasks beyond toxicity593

(e.g., biased vs. unbiased content, factual vs. mis-594

information) under DPO—a direction we leave for595

future work.596

These four neuron groups may also persist 597

in general instruction-tuned models (e.g., those 598

trained with supervised fine-tuning or RLHF) on 599

binary tasks, likely operating through distributed 600

activation shifts due to regularisation. We leave 601

this as another direction for exploration. 602

Generalising the activation editing method to 603

more tasks. Our activation editing method requires 604

only a linear concept representation, which can be 605

derived from a probe or token embeddings—both 606

relatively cheap to obtain. Future work could ex- 607

tend our method to other safety-related tasks (e.g., 608

bias or misinformation) where such representations 609

are available, or to general tasks where the target 610

behavior can be captured by representative tokens 611

(e.g., sentiment polarity, political stance). 612
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A Gated Linear Units793

In this section, we introduce Gated Linear Units794

(GLUs), which replace standard MLPs (Section 2)795

in recent models such as Llama, Gemma, Mistral796

(Shazeer, 2020).797

GLUs introduce a gating mechanism that selec-798

tively controls information flow by computing the799

element-wise product of two linear projections, one800

of which is passed through a non-linearity σ:801

GLUℓ(xℓ) =
(
σ(W ℓ

1x
ℓ)⊙W ℓ

2x
ℓ
)
W ℓ

V ,802

where W ℓ
1 ,W

ℓ
2 ,W

ℓ
V ∈ Rdmlp×d. The term803

σ(W ℓ
1x

ℓ) acts as the gates, blocking W ℓ
2x

ℓ from804

propagating when the non-linearity (σ) is inactive.805

We can still express GLUs as (see Equation 1):806

MLPℓ(xℓ) =

dmlp∑
i=1

mℓ
iv

ℓ
i ,807

where808

mℓ
i = σ(kℓ

i · xℓ) · (wℓ
i · xℓ),809

kℓ
i ∈ Rd and wℓ

i ∈ Rd are the i-th rows of W ℓ
1810

and W ℓ
2 , respectively. For each MLP neuron i, vℓ

i811

(rows of W ℓ
V ) is its value vector (Geva et al., 2021), 812

and the scalar mℓ
i ∈ R is an activation score that 813

controls the scaling of the value vector vℓ
i . 814

This shows that, despite despite architectural 815

differences in GLUs, our formulation in Equation 1 816

still holds, as it consists of value vectors scaled by 817

a non-linear activation. 818

B MLP layer specification 819

In this section, we provide the MLP layer specifi- 820

cations for each model (Section 3.1). 821

Table 8 reports, for each model, the number of 822

MLP layers, MLP hidden dimensions, activation 823

function, and whether a gating mechanism is used. 824

Table 8: MLP specifications for each model. l is the
number of MLP Layers, d is the residual stream dimen-
sion, dmlp is the dimension of MLP hidden layer, σ is
the activation function, Gated? indicates whether the
model uses gated MLPs.

Model l d dmlp σ Gated?

GPT-2-355M 24 1024 4096 GeLU ×
Llama-3.1-8B 32 4096 14336 SiLU ✓
Gemma-2-2B 26 2304 9216 GeLUTanh ✓
Mistral-7B 32 4096 14336 SiLU ✓

C DPO training hyperparameters 825

In this section, we provide the hyperparameters for 826

DPO training (Section 3.1). 827

Table 9 reports the shared hyperparameters 828

across models. Table 10 reports the KL regularisa- 829

tion weight λ tuned in DPO to maintain pre-trained 830

model’s perplexity and F1 scores for each model. 831

Table 9: Shared hyperparameters for DPO Training.

Hyperparameter Value / Description

Beta (β) 0.1 (preference strength)
Optimizer RMSprop
Learning rate 1× 10−5

Warmup steps 150
Gradient accumulation steps 4
Batch size 4 (per step)
Evaluation batch size 8
Max input length 256 tokens
Max new tokens 64 tokens
Max prompt length 64 tokens
Epochs 5
Gradient clipping Max norm = 10.0
Patience for early stopping 30 validations
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Table 10: The KL regularisation weight λ for each
model. λ is selected to maintain perplexity and F1 scores
to pre-trained models.

Model KL weight (λ)

GPT-2-355M 0.02
Llama-3.1-8B 0.1
Gemma-2-2B 0.05
Mistral-7B 0.05

D More results on toxic probes832

In this section, we provide more results on validat-833

ing toxic linear probes (Section 3.2).834

Table 11 reports the test accuracies of linear835

probes on the Jigsaw Toxic Comment Classifica-836

tion dataset (90–10 split) (cjadams et al., 2017),837

with all probes achieving over 91% accuracy. It838

also reports the selected α values for probe-based839

steering that best preserve the pre-trained models’840

perplexity and F1 scores.841

Table 11: Validation accuracy of toxicity probes and
scaling values α for probe-based steering. α is selected
to preserve the pre-trained perplexity and F1 scores.

Model Validation Accuracy α

GPT-2-355M 95.6% 30
Llama-3.1-8B 92.6% 2
Gemma-2-2B 96.1% 3
Mistral-7B 91.0% 5

Table 12 shows that in probe-based activation842

steering, increasing α beyond the selected values843

further reduces toxicity, but also increases perplex-844

ity and lowers F1 scores. This demonstrates a trade-845

off in steering: stronger steering reduces toxicity at846

the cost of general language quality.847

E Negatively activated value vectors848

In this section, we show that a large proportion of849

value vectors vi are negatively activated by their850

activations mi (Section 5.2).851

Table 13 reports the percentage of MLP neurons852

that are negatively activated across models, show-853

ing that they constitute at least half of all MLP854

neurons.855

Since GPT-2 Medium has a particularly high pro-856

portion of negatively activated neurons (over 87%),857

Figure 3 illustrates this by showing the average acti-858

vations of the top 100 toxic-aligned neurons. Most859

of these value vectors remain negatively activated860

Table 12: Toxicity (Toxic), log perplexity (logPPL), and
F1 scores after probe-based steering with different α
values. Larger α reduces toxicity but increases perplex-
ity and lowers F1 scores. Bold highlights the selected α
values.

Model Method Toxic logPPL F1

GPT-2-355M None 0.545 3.08 0.193
Subtract (α=30) 0.310 3.19 0.191
Subtract (α=40) 0.250 3.34 0.180

Llama-3.1-8B None 0.496 1.94 0.225
Subtract (α=2) 0.335 2.72 0.187
Subtract (α=3) 0.267 3.53 0.180

Gemma-2-2B None 0.488 4.61 0.231
Subtract (α=3) 0.260 5.52 0.228
Subtract (α=5) 0.251 5.64 0.226

Mistral-7B None 0.507 1.76 0.231
Subtract (α=5) 0.350 2.23 0.220
Subtract (α=7) 0.319 2.63 0.212

Table 13: Percentages of MLP neurons with negative
pre-trained activations. The three larger LLMs have
approximately 50% of their MLP neurons negatively
activated, whereas GPT-2 Medium has over 87%.

Model
% neurons
negatively
activated

% neurons
positively
activated

GPT-2-355M 87.28% 12.71%
Llama-3.1-8B 49.96% 50.04%
Gemma-2-2B 49.94% 50.06%
Mistral-7B 50.03% 49.97%

both before and after DPO, reflecting the impact of 861

the GeLU activation function. 862

Figure 3: Activations of the top 100 toxic-aligned neu-
rons in GPT-2-Medium. The activation mi for each
value vector is averaged over all prompts and 20 gen-
erated tokens. The majority of value vectors remain
weakly negatively activated both before and after DPO.
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F Logit lens tokens for value vectors863

In this section, we present the Logit Lens tokens864

for selected value vectors.865

Table 14 shows the top toxic-aligned value vec-866

tors that project to at least one toxic token among867

the top 10 nearest tokens (Section 4).868

Table 15 shows example anti-toxic value vectors869

that, when sign-reversed, project to at least one870

toxic token across models (Section 5.2).871

Table 14: Examples of toxic value vectors that project
to toxic tokens in LogitLens. Value vectors are ranked
by their cosine similarity with the toxicity probe WToxic.
Warning: these examples are highly offensive.

GPT-2 medium

Vector Rank Top tokens

WToxic - c*nt, f*ck, a**hole, d*ck, wh*re, holes
v770
19 1 sh*t, a**, cr*p, f*ck, c*nt, garbage

v253
13 18 c*m, d*ck, icles, icle, bo*bs, naughty

v3358
7 29 cr*p, whine, sh*t, uphem, shri, bullsh*t

v3972
6 50 f*cking, d*mn, sinful, hell, immoral

Llama-3.1-8B

Vector Rank Top tokens

WToxic - en, kommen, F*CK, iyah, f*ck, dirty
v14065
25 1 sh*t, cr*p, rubbish, garbage, bullsh*t

v3863
27 7 waste, trash, garbage, junk, wastes

v13797
18 10 Shoot, oh, sh*t, cr*p, swore, allocator

v6041
19 18 d*mn, sh*t, DAM, dam, fig, D*mn

Gemma-2-2B

Vector Rank Top tokens

WToxic - rungsseite, fu*k, Fu*king, SH*T
v2288
4 1 idiot, bastard, a*hole, fu*ks, moron

v2597
18 10 yes, ridiculous, absurd, ludicrous

v4727
3 22 sh*t, Sh*t, cr*p, sh*ts, sh*te, sh*tty

Mistral-7B

Vector Rank Top tokens

WToxic - sh*t, f*ck, assh, bullsh*t, a**hole
v1061
22 1 fu*k, sh*t, bullsh*t, a**hole, sh*tty

v2454
15 4 fuck*ng, bullsh*t, stupid, sh*t, cr*p

v11281
14 34 sexual, sex, girls, women, dating, porn

v4689
19 45 cr*p, sh*t, d*mn, hell, b*tch, piss

G Projecting value vectors to a toxic872

subspace873

In this section, we present initial results using a874

toxic subspace to capture toxicity representations875

in GPT-2-Medium and to perform projections (dis-876

Table 15: Examples of anti-toxic value vectors that,
when sign-reversed, project to toxic tokens in Logit
Lens. Rank gives the cosine similarity rank with −1×
WToxic, reflecting how “anti-toxic” a neuron is. Warning:
these examples are highly offensive.

GPT-2 medium

Vector Rank Top tokens

−1×v1882
10 1 maniac, ueless, thug, arrog, f*cking

−1×v1307
11 3 d*mn, darn, kidding, freaking, piss

−1×v301
15 4 harmful, worse, unfavorable, disturbing

Llama-3.1-8B

Vector Rank Top tokens

−1×v14671
25 2 f*ck, f*cked, f*cking, sh*t, F*CK

−1×v4997
14 19 s*cks, s*ck, adla, BackPressed, teri

Gemma-2-2B

Vector Rank Top tokens

−1×v7822
14 1 f*cking, godd*mn, f*ck, sh*t, d*mn

−1×v7099
6 2 f*cking, f*ck, f*cker, p*ss, F*ck

−1×v8418
17 13 idiot, idiots, stupid, moron, dumbass

Mistral-7B

Vector Rank Top tokens

−1×v14693
14 1 sh*t, f*ck, Block, piss, f*cking, bitch

−1×v8200
14 16 cr*p, nonsense, stupid, d*mn, ridiculous

−1×v14302
17 25 hell, d*mn, d*mned, f*ck, cr*p, sh*t

−1×v8139
12 36 f*cked, sh*t, bitch, sex, sexual, rape

cussed in Limitations). We explain why we do 877

not adopt this approach for neuron analysis, as it 878

complicates the identification of coherent neuron 879

groups. 880

Specifically, on GPT-2-Medium, we apply singu- 881

lar value decomposition (SVD) to the value vectors 882

of 128 toxic-aligned MLP neurons, using the top 883

three components as basis directions to capture dif- 884

ferent aspects of toxicity. We choose N = 128 885

because it yields a stable toxic subspace—adding 886

more value vectors does not significantly expand it. 887

Table 16 shows that these SVD vectors unembed to 888

different toxic tokens, including offensive curse 889

words (SVDToxic[0]), mild insults (SVDToxic[1]), 890

and sexualised terms (SVDToxic[2]). 891

Follow Section 5.2, we attempt to identify neu- 892

ron groups based on their projection changes onto 893

the toxicity subspace. One approach is to compute 894

a weighted sum of the SVD vectors (scaled by their 895

singular values) to form a single combined direc- 896

tion, then measure projections onto it. However, 897

this provides little advantage over using a standard 898
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Table 16: Logit Lens tokens for the top three SVD vec-
tors extracted from 128 toxic-aligned neurons in GPT-2
Medium. Each SVD direction captures a different as-
pect of toxicity. Warning: these examples are highly
offensive.

Model Top Tokens

SVDToxic[0] f*ck, assh*le, f*cking, d*ck, sh*t, sl*t
SVDToxic[1] d*mned, cr*p, stupid, darn, Godd, idiots
SVDToxic[2] sex, boobs, chicks, sexy, vagina, breasts

toxicity probe. Instead, we project each value vec-899

tor onto each SVD vectors individually.900

Since the SVD vectors are orthonormal, the total901

projection onto the toxic subspace is equivalent to902

summing the projections onto each SVD direction.903

Thus to identify neurons reducing toxicity, we com-904

pute each value vector’s cosine similarity with the905

SVD vectors, along with their projections before906

and after DPO.907

We find that 74.7% of value vectors have con-908

flicting signs of alignment across the SVD direc-909

tions—that is, they align positively with at least one910

vector and negatively with another. This compli-911

cates defining whether a neuron is “toxic-aligned”.912

Similarly, 74.3% of neurons show inconsistent pro-913

jection change after DPO, reducing toxicity along914

one direction while increasing it along another.915

These inconsistencies make it impossible to iden-916

tify coherent neuron groups that reduce toxicity917

across all SVD directions, i.e. across the toxic sub-918

space. This also means that each SVD direction919

induces its own set of contradictory neuron groups.920

More importantly, this prevents us from linking921

toxicity scores to specific neuron groups via acti-922

vation patching (Section 5.2), as a single neuron923

can simultaneously increase and decrease toxicity924

depending on the direction.925

For these reasons, we choose not to proceed with926

subspace projection for neuron analysis and instead927

focus on the single-probe approach.928

H More results on activation shifts929

In this section, we provide more results on DPO-930

induced activation shifts by presenting their distri-931

butions and analyse whether they occur systemati-932

cally with neuron properties. These results comple-933

ment Section 5.1.934

Figure 4 shows the distribution of activation935

shifts across models. Most neurons have small936

activation shifts around the mean but substantial937

variation in the tails. 938

Table 17 presents the results of a Pearson cor- 939

relation analysis (Schober et al., 2018) between 940

DPO-induced activation shifts and neuron proper- 941

ties. The analysis reveals no correlation between 942

activation shifts and the “toxicity level” of a neu- 943

ron—measured by its cosine similarity with the 944

toxic probe—and only a weak positive correlation 945

with pre-trained activations. While this may sug- 946

gest a slight tendency for DPO to push activations 947

toward zero, the pattern is likely due to a regression- 948

to-the-mean effect, thus more of a statistical artifact 949

than an intentional toxicity-reduction mechanism. 950

These findings indicate that DPO-induced activa- 951

tion shifts are largely random. 952

I More results on opposing neuron effects 953

In this section, we provide more statistics and vi- 954

sualisations on the opposing neuron effects (Sec- 955

tion 5.1). 956

Table 18 shows the percentage of neurons reduc- 957

ing toxicity projection (∆Toxic,i < 0, denoted as ↓), 958

ranging from 52% in Gemma-2-2B to 58% in GPT- 959

2-Medium. This shows that DPO’s activation shifts 960

cause roughly half of the MLP neurons to reduce 961

toxicity projection, while the other half increase it, 962

revealing a trade-off in toxicity reduction. 963

Figure 5 visualises the opposing effects across all 964

MLP layers, complementing Figure 1 by including 965

the first 10 layers that were omitted. 966

J More results on four neuron groups 967

In this section, we provide more visualisations on 968

the four neuron groups (Section 5.2). 969

Figure 6 shows the four-group distributions for 970

GPT-2-Medium, Gemma-2-2B, and Mistral-7B, re- 971

peating the analysis from Figure 2 for Llama-3.1- 972

8B. In these three models, overall toxicity reduc- 973

tion is primarily driven by TP ↓ and AN ↓, which 974

dominate the stacked bars in Figure 6a. 975

Figure 6b shows that the four groups reduce 976

toxicity projection at different rates when neurons 977

are ranked by their contribution. TP ↓ dominates 978

among the top-ranked neurons, while AN ↓ be- 979

comes more prominent later, especially in GPT-2- 980

Medium. Figure 7 further decodes this trend in 981

GPT-2-Medium, where activation shifts become 982

more evenly distributed in lower-ranked neurons. 983

Figure 6c demonstrates that each group shifts 984

activations according to their orientation relative 985
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Figure 4: Probability density of activation shifts (mpre
i −mdpo

i ) during DPO. Most neurons have small activation
shifts around the mean, with more substantial variation in the tails. Gemma-2-2B and Mistral-7B show larger
average shifts and standard deviations (SD) compared to the other two models.

Table 17: Pearson correlation between activation shifts and neuron properties. Activation shifts (mpre
i −mdpo

i )
show no correlation with a neuron’s "toxicity level" (measured by cosine similarity with the toxic probe), and only a
weak positive correlation with pre-trained activations, which is likely a regression-to-the-mean effect.

Variables Metric GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B

Activation shift
& probe alignment

Correlation 0.004 0.001 0.004 0.003
p-value 0.252 0.487 0.071 0.045

Activation shift
& pre-trained activation

Correlation 0.263 0.033 0.098 0.347
p-value <0.0001 <0.0001 <0.0001 <0.0001

Table 18: Percentages of neurons reducing toxicity pro-
jection after DPO. Across models, 52% to 58% of MLP
neurons reduce their projection (∆Toxic,i < 0) onto the
toxicity probe, while the remaining neurons increase it
(∆Toxic,i > 0).

Model % neurons
reduce projection (↓)

% neurons
increase projection (↑)

GPT-2-355M 58.49% 41.51%
Llama-3.1-8B 53.01% 46.99%
Gemma-2-2B 51.75% 48.25%
Mistral-7B 51.98% 48.02%

to the toxic probe, consistent with the pattern ob-986

served in Figure 2c.987

Figure 8 shows toxicity reduction across layers988

for all four groups. The reduction generally in- 989

creases through successive MLP layers, reflecting 990

the cumulative effect of activation shifts, though 991

this trend is less pronounced in Gemma-2-2B. 992

These results suggest that layers progressively steer 993

the residual stream away from toxicity, with later 994

layers showing the strongest suppression of toxic 995

outputs. The upward trend may be partly due to 996

our use of final-layer probes for extraction. 997

K More results on activation editing 998

In this section, we present more results on activa- 999

tion editing (Section 6). 1000

Table 19 extends our probe-based editing results, 1001

comparing two selection methods for the top-β 1002
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Figure 5: DPO balances opposing toxicity writing across all MLP layers. Blue dots show the total projection
reduction per layer, while orange dots show the total increase, both after DPO. The shaded blue areas illustrate how
the opposing effects cancel out and lead to a net toxicity reduction. Projection changes tend to grow in later layers
when measured against the last-layer probe.

neurons: descending cosine similarity with probe1003

(main results also in Table 2) and by ascending1004

absolute activations. While both approaches work,1005

the latter is slightly less effective and fails to sur-1006

pass DPO for Gemma-2-2B.1007

As a sanity check, we also patching neurons with1008

increased toxicity projection (↑) during DPO and1009

find that they raise toxicity scores across models1010

(Section 5.2).1011

1012
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Table 19: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. As a sanity
check, patching neurons with increased toxicity projection (↑) raises toxicity scores. In probe-based editing, we
compare two samping strategies for the top-β neurons: descending cosine similarity with the probe and ascending
absolute activation values. For both approaches, Green highlights the editing parameters that best compete with
DPO while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Toxic PPL F1 Toxic PPL F1 Toxic PPL F1 Toxic PPL F1

Baseline
None 0.545 3.08 0.193 0.496 1.94 0.225 0.488 4.61 0.231 0.507 1.76 0.231

Steering with probe 0.310 3.19 0.191 0.335 2.72 0.187 0.260 5.52 0.228 0.350 2.23 0.220

DPO 0.210 3.15 0.195 0.241 2.69 0.221 0.245 5.15 0.228 0.221 2.01 0.233

Activation
patching

Patch all four groups 0.139 3.08 0.169 0.278 1.94 0.207 0.260 4.58 0.213 0.138 1.78 0.209

Patch all ↑ neurons 0.853 6.05 0.154 0.536 2.64 0.184 0.686 4.58 0.199 0.611 1.78 0.199

Activation
editing

(probe-based,
descending

cossim)

α = 0.01, β = 0.8 0.123 3.08 0.179 0.045 2.19 0.186 0.199 4.54 0.188 0.038 1.77 0.179

α = 0.01, β = 0.6 0.159 3.08 0.181 0.183 2.11 0.193 0.200 4.56 0.201 0.098 1.77 0.196

α = 0.01, β = 0.55 0.203 3.08 0.183 0.241 1.96 0.196 0.216 4.56 0.210 0.125 1.77 0.202

α = 0.05, β = 0.5 0.211 3.08 0.184 0.299 1.96 0.200 0.260 4.56 0.204 0.264 1.77 0.197

Activation
editing

(probe-based,
ascending
activation)

α = 0.01, β = 0.8 0.025 3.08 0.158 0.097 2.39 0.188 0.271 4.56 0.183 0.154 1.77 0.196

α = 0.01, β = 0.6 0.075 3.07 0.178 0.204 2.26 0.198 0.295 4.57 0.202 0.218 1.77 0.201

α = 0.01, β = 0.55 0.111 3.08 0.175 0.258 2.25 0.203 0.330 4.57 0.199 0.229 1.77 0.202

α = 0.05, β = 0.5 0.109 3.08 0.178 0.310 1.96 0.204 0.331 4.58 0.204 0.251 1.77 0.193

18



Figure 6: Four neuron groups collectively reduce toxicity during DPO, shown for GPT-2-Medium, Gemma-2-2B,
and Mistral-7B. The same four groups emerge consistently across models. (a) Proportion of toxicity reduction per
group, where TP ↓ and AN ↓ dominate; (b) Cumulative toxicity reduction for the top 40,000 neurons (ranked by
projection reduction), where TP ↓ dominates early ranks and AN ↓ gradually catches up the effect; (c) Per-group
activation shifts during DPO for the top 2,000–2,500 neurons, where each group shifts according to its orientation
relative to the toxic probe.
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Figure 7: Activation shifts of top-contributing neurons to toxicity projection reduction in GPT-2-Medium. (a)
Activation shifts of top 500 neurons, where TP ↓ drives the reduction. (b) Activation shifts of neurons ranked
5000–5500, showing increased AN ↓ influence and more balanced contributions across all four groups.

Figure 8: Layer-wise toxicity projection reduction by neuron group. Toxicity reduction generally increases across
MLP layers under the cumulative group effects, though the upward trend is less evident for Gemma-2-2B. The
upward trend shows that each layer progressively shifts away from toxicity, with the largest toxicity reduction
occurring in later layers.
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