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Abstract

Safety fine-tuning algorithms reduce harm-
ful outputs in language models, yet their
mechanisms remain under-explored. Direct
Preference Optimization (DPO) is a popu-
lar choice of algorithm, but prior explana-
tions—attributing its effects solely to damp-
ened troxic neurons in the MLP layers—are in-
complete. In this study, we analyse four lan-
guage models (Llama-3.1-8B, Gemma-2-2B,
Mistral-7B, GPT-2-Medium) and show that
toxic neurons only account for 2.5% to 24%
of DPO’s effects across models. Instead, DPO
induces distributed activation shifts across all
MLP neurons to create a net toxicity reduc-
tion. We attribute this reduction to four neu-
ron groups—two aligned with reducing toxi-
city and two promoting anti-toxicity—whose
combined effects replicate DPO across models.
To further validate this understanding, we de-
velop an activation editing method that mimics
DPO through distributed shifts along a toxic-
ity representation. This method outperforms
DPO in reducing toxicity while preserving per-
plexity, without requiring any weight updates.
Our work provides a mechanistic understand-
ing of DPO and introduces an efficient, tuning-
free alternative for safety fine-tuning. Our
code is available in the anonymous repository:
anonymous.4open.science/r/dpo-mlp-toxic.

1 Introduction

The growing capabilities of large language mod-
els (LLMs) also lead to the encoding of undesir-
able behaviours (Gehman et al., 2020; Gallegos
et al., 2024). To mitigate harmful outputs, re-
searchers have developed fine-tuning algorithms
to prioritise human-preferred responses through re-
ward modelling (Schulman et al., 2017; Shao et al.,
2024). Among these, Direct Preference Optimiza-
tion (DPO) has been a popular algorithm given its
simplicity that directly optimises the policy model
(Rafailov et al., 2024). While such methods effec-
tively reduce harmful behaviours at the output level,

there is limited mechanistic understanding of how
they achieve this internally. This gap limits our
ability to explain their vulnerability to jailbreaks
and adversarial fine-tuning (Wei et al., 2023; Yang
et al., 2023; Qi et al., 2023).

Recent studies found that fine-tuning algorithms
lead to superficial changes, allowing models to re-
tain the undesirable capabilities (Jain et al., 2024;
Yang et al., 2023). In particular, Lee et al. (2024)
suggested that DPO reduces toxicity by dampening
the activations of a few roxic neurons in the MLP
layers. While this offers an intuitive explanation, it
assumes that toxicity is localised to a small subset
of neurons—a strong claim that may oversimplify
how safety fine-tuning works. In this paper, we
show that this explanation is incomplete, and offer
a more comprehensive analysis of DPO’s mecha-
nism across four LLMs: Llama-3.1-8B, Gemma-2-
2B, Mistral-7B and GPT-2-Medium.

Toxic neurons are not enough to explain DPO.
Namely, we use activation patching to isolate the
role of toxic neurons, and observe only a partial
drop in toxicity across models (2.5% to 24%) com-
pared to DPO. Where, then, does the rest of DPO’s
toxicity reduction come from?

Four neuron groups reduce toxicity. We show
that DPO induces more nuanced, distributed activa-
tion shifts across all MLP neurons than previously
suggested. We identify four mutually exclusive
neuron groups that consistently contribute to tox-
icity reduction across models. Their post-DPO
activation changes depend on their orientation rela-
tive to the toxicity representation. Using activation
patching, we show that their combined influence
can match or even exceed the toxicity reduction
achieved by DPO.

Activation editing to replicate DPO. To validate
our understanding, we develop a simple activation
editing method to replicate DPO. Unlike the previ-
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ous post-hoc patching analyses, our method does
not rely on access to post-DPO activations, nor
does it require weight updates or pairwise prefer-
ence data. Instead, we leverage our observations
to edit activations based on the orientation of MLP
weights relative to a toxicity representation. This
method consistently outperforms DPO across mod-
els, showing that DPO-like effects can be achieved
with minimal intervention and without fine-tuning.

2 Related Work

Here we review the DPO algorithm, the Trans-
former MLP layers and related work on mecha-
nisms of safety fine-tuning algorithms.

DPO algorithm. DPO is a fine-tuning algorithm
designed to align LL.Ms with pairwise human pref-
erence data (Rafailov et al., 2024). Given pairwise
preference data

{0},

where x is the input prompt, 4y, y_ are pairwise
preferred and non-preferred continuations, DPO
fine-tunes a policy model 7y(y | x) that assigns a
higher likelihood to ygf) compared to y(_l).

The DPO loss is defined as:

Lopo(0) = —logo (B (re(z,y") —re(z,y7))),

where ¢ is the sigmoid function, 3 is a tempera-
ture hyperparameter and 7y is the derived reward
regularised using the reference model 7.y, that is

mo(y | x)
ro(x,y) = log ———=.
) =8 Ta)
MLP layers. MLPs apply two linear transforma-
tions with a non-linearity ¢ in between:

MLP!(x!) = & (W;;xg) W,

where W, W, € Réuwxd g, and d are the di-
mensions of MLP hidden layers and the residual
stream. MLPs can be re-expressed as:

dmlp

MLP!(x") = Y mivy,  mi=o(kj-x"), (1)
=1

where k!, vf € R? are the i-th row of W} and
W{}, respectively. For each MLP neuron i, we

refer to v as its value vector, following Geva et al.

(2022) and Lee et al. (2024). The scalar mf € Ris
an activation score that controls the scaling of the
value vector vf. This means an MLP layer writes
to the residual stream dyy), times, once per neuron,
via the activation-weighted value vector mfvf.
Recent models (Llama, Gemma, Mistral) replace
MLPs with Gated Linear Units (GLUs) (Shazeer,
2020). GLUs can similarly be expressed as a
weighted sum of its value vectors as in (1), where
each weight is determined by some non-linear acti-

vation. See Appendix A for details.

Mechanisms of safety fine-tuning algorithms.
Recent studies have shown that fine-tuning in-
duces superficial weight changes, leaving most pre-
trained capabilities intact. Jain et al. (2023) found
that fine-tuning on synthetic tasks produces ‘wrap-
pers’, i.e. localised weight changes in later layers
optimised for each task. Qi et al. (2024) found that
aligned models primarily adapt their generative dis-
tribution in the first few output tokens. Wei et al.
(2024) showed that pruning just 3% of targeted pa-
rameters can undo safety alignment, highlighting
the brittleness of safety mechanisms. These find-
ings suggest that safety fine-tuning reduces harm-
ful outputs through subtle, targeted weight changes
rather than large-scale rewiring.

Lee et al. (2024) studied the mechanisms of how
DPO reduces toxic outputs, attributing its effects
to dampened activations of a few toxic MLP value
vectors. We revisit this claim and find it to be
incomplete, as shown in Section 4.

3 Experiment Setup

Here we describe the tools used in this study, in-
cluding the data and models, linear probes, projec-
tions and activation patching.

3.1 Data and Models

Toxicity-eliciting prompts. We use the ‘challenge’
subset (N=1,199) of RealToxicityPrompts (Gehman
et al., 2020) to elicit toxic outputs from each model.
This subset is designed to trigger extremely toxic
completions, making it a strong testbed for evaluat-
ing safety fine-tuning.

Models. We study four pre-trained LLMs: Llama-
3.1-8B (Grattafiori et al., 2024), Gemma-2-2B (Riv-
iere et al., 2024), Mistral-7B (Jiang et al., 2023),
and GPT-2 Medium (Radford et al., 2019). GPT-2
Medium is included to compare with claims made
in Lee et al. (2024). We generate toxic outputs from



each LLM using greedy decoding. Appendix B pro-
vides the MLP specification for each model.

Evaluation metrics. We report three metrics: foxi-
city scores using Detoxify (Hanu, 2020), a BERT
model fine-tuned for toxicity classification that as-
signs a likelihood score of a text being toxic; log
perplexity, the average negative log-likelihood of
generated tokens on the Wikitext-2 dataset (Mer-
ity et al., 2016); F1 scores, the harmonic mean of
precision and recall based on token overlap across
2,000 Wikipedia sentences (Lee et al., 2024). The
latter two metrics measure general language qual-
ity, where F1 complements perplexity by capturing
exact token matches.

DPO training. We implement DPO using 24,576
toxicity contrastive pairs generated from Wikitext-
2 prompts (Lee et al., 2024). See Appendix C for
training hyperparameters.

3.2 Per-Neuron Toxicity Contributions

We measure per-neuron contributions to toxicity by
projecting activations onto linear toxicity probes.
We describe how we extract these probes, validate
their effects and compute per-neuron contributions.

Linear probes. To extract toxicity representations,
we train linear probes Wric to classify toxic ver-
sus non-toxic inputs for each model. The probe
is trained on the final-layer residual stream X1,

averaged across all token positions:
P(toxic | x71) = o(WreniexXX ™1 + 1),

where o is the sigmoid function, Wryye € R? is the
learned probe vector. We use the Jigsaw Toxic Com-
ment Classification dataset (cjadams et al., 2017),
which contains 561,808 comments labelled as toxic
or non-toxic.

Across all four models, the linear probes achieve
over 91% test accuracy using a 90:10 train/test split
(Appendix Table 11). When projected onto each
model’s vocabulary space via the unembedding
matrix, i.e. LogitLens (nostalgebraist, 2020), the
trained probes predominantly map to toxic tokens
(Table 1).

Validating linear probes. To validate that these
probes represent toxicity, we apply activation steer-
ing (Zou et al., 2025; Panickssery et al., 2024) by
subtracting a scaled probe Wryic from the final-

layer residual stream x~! at each token position:
L-1 _ L-1

steered — oWroxic,

Table 1: The four toxic probes predominantly project to
toxic tokens in the vocabulary space. Warning: these
examples are highly offensive.

Model Top tokens projected by probes

GPT-2-355M f*ck, c*nt, a**hole, holes, d*ck, wh*re
Llama-3.1-8B en, kommen, F*CK, iyah, f*ck, dirty
Gemma-2-2B rungsseite, fu*k, Fu*king, SH*T, a**hole
Mistral-7B sh*t, f*ck, assh, bullsh*t, f*cked, a**hole

where « is selected to preserve language quality
(perplexity and F1) of pre-trained models (see Ap-
pendix Table 11). Increasing « further reduces
toxicity scores but raises perplexity (sAppendix
Table 12). Table 2 shows that probe-based steer-
ing consistently reduces toxicity scores, validating
their effects in eliciting toxic outputs. We therefore
include it as a baseline for toxicity reduction.

Per-neuron toxicity change via projection. For
per-neuron contributions, we track how the toxic
representation changes at each MLP neuron during
DPO via its change in projection onto the probe:

WToxic

- pre_ pre dpo_ dpo
AToxicJ—(mi v, —m;" v, ) Woees , (2)
|| T0x1c”2
d d .
where m! vl and m;P°vi" are the activated

components of the i-th value vector before and
after DPO; the activation scores m?re and mfpo are
averaged over 20 generated tokens for all prompts
in RealToxicityPrompts. This approach, known
as direct feature attribution (Makelov et al., 2024;
Arditi et al., 2024), quantifies each neuron’s contri-

bution to writing to the toxicity representation.

3.3 Activation Patching

Throughout our work, we apply activation patch-
ing (Zhang and Nanda, 2024) as a counterfactual
method to isolate the effect of specific neurons
on toxicity scores. For a pre-trained model and a
set of MLP value vectors, we set their activations
to match its post-DPO counterpart, based on the
mean activation of 1,199 RealToxicityPrompts and
20 generated tokens per prompt. We then measure
the resulting change in the toxicity scores.

4 Toxic Neurons Are Not Enough

We start by revisiting the claims in Lee et al. (2024):
(a) DPO reduces toxicity primarily by dampening
the activation of toxic neurons, and (b) this arises
from shifts in earlier layer weights. We show that



Table 2: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. Across models,
patching toxic neurons—whether those with toxic tokens or the top 256—yields only a limited drop in toxicity
scores than DPO (Section 4). In contrast, patching all four of our identified groups matches or outperforms DPO
(Section 5.2). Our activation editing method can outperform DPO, probe-based steering and patching all four groups
(Section 6). Green highlights the editing parameters that best compete with DPO while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B

Toxic PPL F1 |Toxic PPL F1 |Toxic PPL F1 |[Toxic PPL F1
None 0.545 3.08 0.193 |0.496 1.94 0.225[0.488 4.61 0.231 (0.507 1.76 0.221
Baselines | Steering with probe 0.310 3.19 0.191 [0.335 2.72 0.187 {0.260 5.52 0.228 [0.350 2.23 0.220
DPO 0210 3.15 0.195 [0.241 2.69 0221 [0.245 5.15 0.228 [0.191 2.01 0.223
Patch toxic neurons 0479 3.09 0.193 [0.491 1.94 0.225(0.487 4.61 0.231(0.505 1.76 0.232
Patch 256 neurons 0.465 3.07 0.193 [0.488 1.94 0.225(0.482 4.61 0.231 (0455 1.76 0.232
/}itticvlfit;‘;“ Patch TP 0.407 3.07 0.191 [0.488 1.94 0.223 |0470 4.87 0.235 [0.502 1.80 0.229
(Sec5.2) |Patch TP|+ 0216 3.08 0.183 [0.465 1.94 0.221 [0.337 4.59 0.224 [0.307 1.76 0.227
Patch TP|+AN [+TN][0.194 3.08 0.170 |0.391 1.94 0.208 |0.307 4.59 0.217 |0.238 1.81 0.218
Patch four groups 0.139 3.08 0.170 [0.278 1.94 0.207 [0.260 4.58 0.213 [0.138 1.78 0.209
Activation | o = 0.01, 3 = 0.8 0.123 3.08 0.179 |0.045 2.19 0.186 [0.199 4.54 0.188 [0.038 1.77 0.179
?g:clr%g, a=001,3=06  |0.159 3.08 0.181 [0.183 2.11 0.193 |0.200 4.56 0.201 |0.098 1.77 0.196
probe-based)| v = 0.01, 3 = 0.55 [0.203 3.08 0.183 [0.241 1.96 0.196 [0.216 4.56 0.210 [0.125 1.77 0.202
Activation | = 0.01, 8 = 0.8 0.139 3.08 0.176 |0.116 5.82 0.200 |0.218 4.54 0.180 [0.057 1.77 0.191
?ggcmé a=0.01,3=06 |0238 3.08 0.178 [0.258 228 0210 |0.216 4.57 0203 |0.162 1.77 0.200
probe-free) |a=0.01,5=0.55 |0.282 3.08 0.180 [0.318 2.24 0.204 [0.250 4.58 0.198 [0.239 1.77 0.201

(a) only partially explains the drop in toxicity, and
in Section 5, we show that the weight shifts (b) are
more nuanced than simply bypassing toxic neurons.

First, we directly measure the effect of damp-
ening toxic neurons. We define toxic neurons by
adapting the method of Lee et al. (2024): we iden-
tify the top N (= 256)! MLP value vectors with the
highest cosine similarity to the toxic probe Wraxic.
In a second variant, we identify a smaller subset of
interpretable value vectors. To do so, we unembed
each value vector and consider it as toxic if any
of its top-10 nearest tokens are toxic. We adopt
LLM-as-a-judge (Zheng et al., 2023) using GPT-
40 (OpenAl, 2024) to evaluate whether a token is
considered toxic (e.g. curse words, slurs, sexual
content). See Appendix Table 14 for the tokens
projected by these toxic value vectors.

We then counterfactually isolate their effect
on toxicity scores using activation patching (Sec-
tion 3.3). Namely, for a pre-trained model, we set
the activations of toxic value vectors to that of its
post-DPO counterpart.

Table 3 reports the number of toxic neurons
per model and the percentage reduction in toxicity

!This number is based on Lee et al. (2024)’s number (128).
We double the number of accommodate larger model sizes,
but see similar results with the original 128 vectors.

scores through patching. Toxic neurons comprise
fewer than 0.05% of all MLP neurons, yet account
for as little as 2.5% to 24% of the reduction in toxi-
city scores, depending on the model. As patching
captures interactions between toxic and non-toxic
neurons, these results suggest that toxic neurons
only account for a small portion of DPO’s effect,
rendering Lee et al. (2024)’s claim that DPO pri-
marily dampens toxic neurons as incomplete.

Table 3: The number of toxic neurons per model and
percentage decrease in toxicity scores after patching
them. The first row reports the number of toxic neurons
unembed to toxic tokens. The second row reports results
for the top 256 toxic-aligned neurons. The percentage
decrease is the proportion of toxicity score reduction
from patching toxic neurons, relative to the total reduc-
tion by DPO (see Table 2 for full scores).

GPT-2 Llama Gemma Mistral
355M 3.1-8B 2-2B 7B
59 (19.7%)) 7 (1.96%)) 30.41%]) 14 (0.63%.)

256 (23.9%)) 256 (3.14%]) 256 (2.47%)) 256 (16.5%))

S A Deeper Look at DPO Weight Shifts

Next, we show that the weight shifts from DPO are
more nuanced than simply bypassing toxic neurons.



Projection Reduction and Increase after DPO

Projection Reduction and Increase after DPO

200
—e— Reduced Projection
° Increased Projection 1804
g\ 5 Reduction > Increase
2 160
O
c4
2 1401
=]
o
2
g3 120 | — ¥
s
g 100 1
a2
80
10 11 12 13 14 15 16 17 18 19 20 21 22 23 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
GPT-2-Medium Llama-3.1-8B

0.18 0.6
0.16 d 0.5

Sum of Projection Change
o I IS4
= - =
o N »

o
=3
@

A/

12 13 14 15 16 17 18 19 20 21 22 23 24 25
MLP Layer Index

Gemma-2-2B

0.4

0.3

0.2

0.1

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MLP Layer Index

Mistral-7B

Figure 1: DPO balances opposing toxicity writing across MLP layers. Blue dots show total projection reduction
per layer, orange dots show the total increase, both after DPO. The shaded blue areas illustrate how these opposing
effects cancel out and lead to a net toxicity reduction. Projection changes grow with layers when measured against
last-layer probe. Net changes in first & 10 layers are negligible and omitted; see Appendix Table 5 for the full graph.

5.1 DPO Balances Opposing Effects

Across all models, DPO makes minimal adjust-
ments to the MLP weights. All MLP value vec-
tors have a cosine similarity of 0.99 before and
after DPO, likely due to KL divergence regularisa-
tion (Rafailov et al., 2024). However, these small
weight changes (v?re R~ v?po) accumulate and in-
duce distributed activation shifts (mfre — m?p )
across all MLP neurons. Most neurons undergo
average shifts ranging from 0.66% (Llama-3.1-8B)
to 16.71% (Mistral-7B), and substantial variation
across neurons (see Appendix Figure 4).

These distributed activation shifts lead approxi-
mately half of all neurons (52%~58% across mod-
els) reducing their projection onto the toxic direc-
tion (Aroxic,i > 0) and the other half increasing it
(AToxic,i < 0) (see Appendix Table 18). Figure 1
illustrates how these opposing neuron effects accu-
mulate and balance out at each MLP layer, creating
a net toxicity reduction. This suggests that DPO
does not simply suppress toxic signals, but rather
delicately redistributes them, balancing a trade-off
across all MLP neurons.

5.2 Four Neuron Groups Reduce Toxicity

Building on this, we study value vectors that re-
duce toxic projections (Aroic; > 0), as they
likely contribute to toxicity reduction during DPO.
We categorise them into four mutually exclusive
groups, and study their collective effect.

Table 4 defines the four neuron groups, cate-
gorised by their alignment with the toxicity direc-
tion (Toxic-aligned vs. Anti-toxic-aligned) and
their pre-DPO activations (Positive vs. Negative).
TP |, TN | have positive alignment with toxicity,
while AP |, have negative alignment. All
groups reduce toxicity projection during DPO ().
Table 5 shows the proportions of neurons in each
group across models. Note that Lee et al. (2024)
only considers the neurons in TP |.

Figure 2c¢ visualises how the four groups reduce
toxicity writing via activation shifts in Llama-3.1-
8B, with similar patterns seen in all models (see
Appendix Figure 6). The activations of each group
are shifted in accordance to their orientation with
respect to the toxic probe. Namely, toxic-aligned
weights (TP |, TN |) drop in activations while
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Figure 2: Four neuron groups collectively reduce toxicity during DPO, shown for Llama-3.1-8B. The same four
groups emerge consistently across models, while panels (a) and (b) show differing patterns for the other three
models (see Appendix Figure 6). (a) Proportion of toxicity reduction per group, showing balanced contributions;
(b) Cumulative toxicity reduction for top 40,000 neurons (ranked by projection reduction), with groups showing
similar reduction rates; (c) Per-group activation shifts during DPO for the top 2,000-2,500 neurons, where each
group shifts according to their orientation relative to the toxic probe.

anti-toxic aligned weights ( , AP |) see an in-
crease in activations (promotion of “anti-toxicity”).

Table 4: Definitions of four neuron groups reducing tox-
icity projections (Aroxic,i > 0). Alignment with probe
(T vs. A) indicates whether the neuron’s value vector
v aligns positively or negatively with the toxic probe
Wroxic (V- Wroxic > 0 or v - Wi < 0).

Group Alignment Pre-DPO  Projection
with probe activation change

TP | Toxic-aligned Positive Reduced ({)

TN | Toxic-aligned Negative ~ Reduced ()

AP |  Anti-toxic-aligned Positive Reduced ({)

Anti-toxic-aligned  Negative ~ Reduced ({)

Table 5: Proportions of four-neuron-group among all
neurons reducing toxicity projection (/). Proportions are
more balanced across larger LLMs. The Sum column
shows the total number of neurons per model.

Model TP, TN| AP Sum

GPT-2-355M  6.9% 39.1% 32% 50.9% 57,501
Llama-3.1-8B  254% 24.4% 24.6% 25.5% 239,460
Gemma-2-2B  28.8% 21.3% 21.3% 28.6% 123,898
Mistral-7B 297% 203% 202% 29.8% 238,236

Anti-toxic value vectors. What do “anti-toxic”
value vectors encode? Geometrically, some anti-
toxic value vectors essentially lie at the antipode
of toxic semantic clusters. Namely, we take
value vectors with high cosine similarity scores

Table 6: Examples of anti-toxic value vectors (with
reversed signs) that project to toxic tokens in Logit Lens.
Warning: these examples are highly offensive.

Model Vector Top tokens

GPT2 —1xvi3%7  d*mn, darn, kidding, freaking, piss
Llama3 —1xv3g%7™'  f*ck, f*cked, f*cking, sh*t, F*CK
Gemma2 —1 X vﬁ;22 f*cking, godd*mn, f*ck, sh*t
Mistral —1xvi3®®®  sh¥*t, fck, Block, piss, f*cking

to —1 X Wroxic (i.e. anti-toxic value vectors). We
then multiply these value vectors by —1, unembed
them, and inspect their nearest neighbors. Table 6
show examples of toxic tokens they project to (see
Appendix Table 15 for more). To summarise, DPO
also promotes anti-toxicity by increasing the acti-
vation of anti-toxic , AP | neurons.

Why negatively activated? Negatively activated
neurons (including TN |, ) take a large por-
tion of MLP neurons—approximately 50% in three
larger models and 87% in GPT-2 Medium (see Ap-
pendix Table 13). This results from the activation
functions used in modern LLMs: GeLU (GPT-2),
GeLU-Tanh (Gemma), and SiLU (Llama, Mistral),
which allow neurons to retain small negative acti-
vations for negative inputs (Hendrycks and Gimpel,
2023). This allows plenty of neurons to remain
weakly active and contribute marginally to the tox-
icity representation through their activation shifts.



Four groups reduce toxicity at different rates.
When ranking neurons by their reduction of tox-
icity projection, the four groups show different
patterns. In Llama-3.1-8B, all groups contribute
evenly, maintaining balanced shares of top-ranked
neurons (Figure 2b). In contrast, the other three
models show TP | dominating among top-ranked
neurons, while gradually gains influence
in later ranks—a trend most evident in GPT-2-
Medium (see Appendix Figure 6). As a result,
TP | and dominate the overall toxicity re-
duction.

Reduction peaks at later layers. We observe an
overall increasing trend in toxicity reduction across
MLP layers for all neuron groups (see Appendix
Figure 8). This suggests that the four groups col-
lectively steer each layer away from toxicity, with
later layers showing the strongest suppression of
toxic outputs. This upward trend may be partly due
to the probes being extracted from the final layer.

Activation patching confirms the collective ef-
fects of four groups. Finally, we confirm the col-
lective effect of the four groups with activation
patching. This post-hoc analysis assumes that we
know the activations of each group after DPO and
analyses their effects counterfactually. Namely, we
patch the activations of each neuron group, one
group at a time, in the pre-trained model to match
that of the post-DPO model.

Table 2 shows that sequentially patching each
neuron group further reduces toxicity scores across
all models. This confirms the contributions of
both anti-toxic and negatively activated groups to
DPO’s effects. Across models, patching all the four
groups either surpasses or closely matches DPO’s
toxicity reduction, and consistently outperforms
probe-based steering. It also has minimal impact
on perplexity and only slightly reduces F1 scores.
This activation patching outperforms DPO likely
because we do not patch neurons that increase toxi-
city projection after DPO (Section 5.1). As a sanity
check, patching all neurons that increase toxicity
projection (1) during DPO leads to higher toxicity
scores across models, consistent with their projec-
tion changes (see Appendix Table 19).

6 Activating Editing to Replicate DPO

Based on our insights, we demonstrate two simple
methods to replicate DPO’s effects by directing
editing activations. These methods only rely on a

toxicity representation (e.g. a probe) and do not re-
quire any weight updates nor a pairwise preference
dataset, which is not always readily available. Un-
like the previous activation patching analyses, here
we do not assume access to post-DPO activations.

Probe-based activation editing. Previously, we
focused on neuron groups had a reduction in tox-
icity projections (i.e., Aroxic.i > 0) (Section 5.2).
However, knowing whether a neuron undergoes a
increase or decrease in toxicity projection requires
access to post-DPO activations (see Equation 2).
To remove this dependency, here we re-categorise
the neuron groups based solely on their alignment
with the toxicity probe and their pre-DPO activa-
tions, and do not consider their projection changes
(hence notated as TP as opposed to TP ).

Given our new neuron groups (TP, TN, AP,

), we leverage two key insights learned from

DPO: activation shifts are distributed across all neu-
rons (Section 5.1), and the direction of activation
shifts for toxicity reduction depends on the orienta-
tion of the value vector (Section 5.2, Figure 2c¢).

Follow these insights, we sample a fraction 3
(%) of neurons from each group and minimally
adjust their activations. For toxicity-aligned groups
(TP, TN), we slightly decrease their activations by
a factor of o (%), while for anti-toxicity-aligned
groups (AP, ) we slightly increase them. As
TN and have negative activations, we flip the
sign of « accordingly:

di di
S = (o)l s S = (o)l
msE, = (I+a)mi} ; me = (1—a)mPs

where TPg, ANg, TNg, and APy denote the -
fraction of neurons in each group, and mP™ are
their pre-trained activations. Again, here we do not
rely on any post-DPO information (i.e., mPF©).
Table 2 shows our results for selected hyperpa-
rameters « and 3. These hyperparameters reflect
our insights: a majority of neurons (high 3 value)
undergoes small shifts (small o value). We find
that selecting the top-5 fraction of neurons ranked
by cosine similarity with the toxicity probe is most
effective in reducing toxicity scores. In particular,
selecting 5 = 55% yields the best trade-off be-
tween toxicity reduction and F1 scores, consistent
of our earlier finding that DPO reduces toxicity
writing in roughly half of all neurons (Section 5.1).
This approach outperforms both DPO and probe-
based steering in toxicity reduction while preserv-
ing perplexity across pre-trained models, with only



a slight decrease in F1 scores. Further increasing 3
(e.g., to 0.8) leads to greater toxicity reduction at
the cost of F1 drops. Alternative sampling strate-
gies for selecting the top-3 neurons (e.g., based on
ascending absolute activation values) yield similar
results across models (see Appendix Table 19).

Probe-free activation editing. While the previous
activation editing method does not require pairwise
preference data, it still relies on a latent toxicity
representation, for which we use our probe. While
a probe does not require pairwise preference data,
it still needs labelled classification data (Section 3).

Here, we demonstrate that activation editing can
be performed even without a probe by leveraging an
alternative toxicity representation. Namely, prior
works have observed a close relationship between
concept representations in the model’s hidden lay-
ers and the token embedding space (Lee et al.,
2025). Similarly, we observe that toxic tokens are
nearest neighbors to our probes in the token embed-
ding space (Table 1). Motivated by this, we replace
the probe with a contrastive vector derived directly
from token embeddings.

To construct this vector, we simply select sets
of toxic and non-toxic token embeddings in each
model and compute the difference between their
mean embeddings (Table 7). This bypasses the
need to train a probe model. We then apply the
same activation editing method as described above.

Table 7: Toxic and non-toxic tokens used to compute
the contrastive vector. The contrastive vector is derived
by subtracting the mean embedding of non-toxic tokens
from that of toxic tokens.

fuxk
hello

shxt da*n a*xhole

thanks

Toxic cr*p

Non-toxic friend peace welcome

The last rows of Table 2 show that this ap-
proach yields results comparable to our probe-
based method. These results together validate our
mechanistic understanding of DPO and offer a
proof-of-concept alternative when weight updates
are costly or training data is not readily available.

7 Discussion and Conclusion

Our work provides a mechanistic understanding
of how DPO reduces toxicity across four LLMs.
Using activation patching, we show that prior ex-
planations are incomplete: a small number of toxic
neurons associated with toxic tokens (Lee et al.,

2024) cannot fully explain DPO’s effects. This
explanation also relies on a monosemantic view
of neurons, an assumption disputed by prior work
(Elhage et al., 2022). Instead, DPO induces dis-
tributed activation shifts across all MLP neurons to
produce a net toxicity reduction.

To characterise these distributed effects, we iden-
tify four neuron groups that play distinct roles in
toxicity reduction and show that their combined
effect replicates the effect of DPO.

Building on these insights, we develop an activa-
tion editing method mimicking DPO by applying
distributed activation shifts along a learned toxic-
ity representation. We explore two options for this
representation: a probe model and a contrastive vec-
tor derived from token embeddings. This method
outperforms DPO in reducing toxicity while pre-
serving perplexity, all without any weight updates.

In summary, our work provides a more complete
understanding of how DPO reduces toxicity and
introduces a efficient, training-free alternative.

The shallowness of safety. DPO’s tendency to
spread activation shifts thinly across the network
suggests that pre-trained harmful capabilities are
not removed, but merely masked. As a result, small
disruptions anywhere in the model, not just in toxic
neurons, can potentially breach the safety barrier
and reactivate harm. This extends prior findings
on the shallowness of safety fine-tuning from the
activation perspective (Jain et al., 2024; Qi et al.,
2024). These distributed shifts likely arise as a by-
product of regularisation to preserve pre-training
performance, hinting at a deeper trade-off: the shal-
low safety may be an inherent cost of maintain-
ing language quality. This diluted effect is fur-
ther compounded by the use of smooth activation
functions (dicussed in Section 5.2), which allow
many weakly active neurons to marginally partic-
ipate in toxicity writing. As a result, much of the
model’s capacity for toxicity reduction remains un-
tapped—we observe many MLP neurons actually
increase their toxicity projection during DPO (Sec-
tion 5.1). In contrast, our activation editing method
offers a more targeted alternative by explicitly steer-
ing activations toward reducing toxicity. This may
explain why it achieves greater toxicity reduction
than DPO, despite applying smaller average acti-
vation changes. Taken together, our findings point
to the value of exploring more interpretable safety
interventions as a path beyond shallow tuning.



Limitations

Projection to a toxic subspace. In this work, we
use a linear probe to capture an aggregated toxicity
representation, following common practice in the
literature (Ferrando et al., 2024; Ravfogel et al.,
2022). However, it may be possible that toxicity
manifest along multiple directions, each capturing
different aspects such as hate speech or abusive
language, thus better represented as a subspace
(Uppaal et al., 2024). We thus conduct an initial
analysis on GPT-2-Medium. We construct the toxic
subspace by applying Singular Value Decomposi-
tion (SVD) to the top 128 toxic-aligned value vec-
tors and selecting the top singular directions, each
of which projects to different toxic tokens (see Ap-
pendix G). However, we find that most value vec-
tors show inconsistent alignment across the three
directions and mixed projection changes after DPO.
A single value vector can be “toxic-aligned” in
one SVD direction and “anti-toxic-aligned” in an-
other, also reducing toxicity along one axis while
increasing it in another. Such inconsistencies make
it difficult to assign neurons to coherent neuron
groups as in our approach. We therefore leave a
more robust analysis of toxic subspace projections
to future work.

Assumptions for the projection. We use pro-
jection to estimate each neuron’s contribution to
toxicity (Equation 2), assuming that neurons con-
tribute proportionally along their activated direc-
tions. However, toxicity representations may be
distributed across more complex linear combina-
tions of neurons. Alternative tools, such as sparse
autoencoders (SAEs) (Bricken et al., 2023; Cun-
ningham et al., 2023), which learn linear feature
compositions through autoencoder reconstruction,
may offer a complementary perspective for tracing
toxic feature changes back to specific neurons.

Generalise the four neuron groups across tasks
and models. DPO is inherently a binary algorithm,
as it is trained on pairwise preference data. The
four neuron groups we identify naturally reflect this
binary structure, with activations shifting along the
representation of a binary concept. Accordingly,
we expect similar group structures to emerge in
other binary safety-related tasks beyond toxicity
(e.g., biased vs. unbiased content, factual vs. mis-
information) under DPO—a direction we leave for
future work.

These four neuron groups may also persist
in general instruction-tuned models (e.g., those
trained with supervised fine-tuning or RLHF) on
binary tasks, likely operating through distributed
activation shifts due to regularisation. We leave
this as another direction for exploration.

Generalising the activation editing method to
more tasks. Our activation editing method requires
only a linear concept representation, which can be
derived from a probe or token embeddings—both
relatively cheap to obtain. Future work could ex-
tend our method to other safety-related tasks (e.g.,
bias or misinformation) where such representations
are available, or to general tasks where the target
behavior can be captured by representative tokens
(e.g., sentiment polarity, political stance).
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A Gated Linear Units

In this section, we introduce Gated Linear Units
(GLUs), which replace standard MLPs (Section 2)
in recent models such as Llama, Gemma, Mistral
(Shazeer, 2020).

GLUs introduce a gating mechanism that selec-
tively controls information flow by computing the
element-wise product of two linear projections, one
of which is passed through a non-linearity o

GLU‘(x%) = (O‘(foé) ©) fo€> W,

where W{, Wi, W, € Rém»*d  The term

o(W{x") acts as the gates, blocking W4x" from

propagating when the non-linearity (o) is inactive.
We can still express GLUSs as (see Equation 1):

dmlp
MLP!(x%) = Z méve,
i=1
where
l l V4 l V4
m; =o(k; -x") - (w; -x),

k! € R and w! € R? are the i-th rows of WY
and Wf respectively. For each MLP neuron i, v

i
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(rows of Wf/) is its value vector (Geva et al., 2021),
and the scalar m{ € R is an activation score that
controls the scaling of the value vector vf.

This shows that, despite despite architectural
differences in GLUs, our formulation in Equation 1
still holds, as it consists of value vectors scaled by

a non-linear activation.

B MLP layer specification

In this section, we provide the MLP layer specifi-
cations for each model (Section 3.1).

Table 8 reports, for each model, the number of
MLP layers, MLP hidden dimensions, activation
function, and whether a gating mechanism is used.

Table 8: MLP specifications for each model. 1 is the
number of MLP Layers, d is the residual stream dimen-
sion, dpp is the dimension of MLP hidden layer, o is
the activation function, Gated? indicates whether the
model uses gated MLPs.

Model l d dmip o Gated?
GPT-2-355M 24 1024 4096 GeLU X
Llama-3.1-8B 32 4096 14336 SiLU v
Gemma-2-2B 26 2304 9216 GeLUTanh v
Mistral-7B 32 4096 14336 SiLU v

C DPO training hyperparameters

In this section, we provide the hyperparameters for
DPO training (Section 3.1).

Table 9 reports the shared hyperparameters
across models. Table 10 reports the KL regularisa-
tion weight A tuned in DPO to maintain pre-trained
model’s perplexity and F1 scores for each model.

Table 9: Shared hyperparameters for DPO Training.

Hyperparameter Value / Description
Beta (83) 0.1 (preference strength)
Optimizer RMSprop

Learning rate 1x107°

Warmup steps 150

Gradient accumulation steps 4

Batch size 4 (per step)
Evaluation batch size 8

Max input length 256 tokens

Max new tokens 64 tokens

Max prompt length 64 tokens

Epochs 5

Gradient clipping Max norm = 10.0

Patience for early stopping 30 validations




Table 10: The KL regularisation weight \ for each
model. )\ is selected to maintain perplexity and F1 scores
to pre-trained models.

Model KL weight (\)
GPT-2-355M 0.02
Llama-3.1-8B 0.1
Gemma-2-2B 0.05
Mistral-7B 0.05

D More results on toxic probes

In this section, we provide more results on validat-
ing toxic linear probes (Section 3.2).

Table 11 reports the test accuracies of linear
probes on the Jigsaw Toxic Comment Classifica-
tion dataset (90-10 split) (cjadams et al., 2017),
with all probes achieving over 91% accuracy. It
also reports the selected o values for probe-based
steering that best preserve the pre-trained models’
perplexity and F1 scores.

Table 11: Validation accuracy of toxicity probes and
scaling values o for probe-based steering. « is selected
to preserve the pre-trained perplexity and F1 scores.

Model Validation Accuracy «
GPT-2-355M 95.6% 30
Llama-3.1-8B 92.6% 2
Gemma-2-2B 96.1% 3
Mistral-7B 91.0% 5

Table 12 shows that in probe-based activation
steering, increasing « beyond the selected values
further reduces toxicity, but also increases perplex-
ity and lowers F1 scores. This demonstrates a trade-
off in steering: stronger steering reduces toxicity at
the cost of general language quality.

E Negatively activated value vectors

In this section, we show that a large proportion of
value vectors v; are negatively activated by their
activations m,; (Section 5.2).

Table 13 reports the percentage of MLP neurons
that are negatively activated across models, show-
ing that they constitute at least half of all MLP
neurons.

Since GPT-2 Medium has a particularly high pro-
portion of negatively activated neurons (over 87%),
Figure 3 illustrates this by showing the average acti-
vations of the top 100 toxic-aligned neurons. Most
of these value vectors remain negatively activated

13

Table 12: Toxicity (Toxic), log perplexity (logPPL), and
F1 scores after probe-based steering with different o
values. Larger « reduces toxicity but increases perplex-
ity and lowers F1 scores. Bold highlights the selected o
values.

Model Method Toxic logPPL F1
GPT-2-355M  None 0.545 3.08 0.193
Subtract (=30) 0.310 3.19 0.191
Subtract (=40) 0.250 3.34 0.180
Llama-3.1-8B  None 0496 1.94 0.225
Subtract (a=2) 0.335 2.72 0.187
Subtract (a=3) 0.267 3.53 0.180
Gemma-2-2B  None 0.488 4.61 0.231
Subtract (a=3) 0.260 5.52 0.228
Subtract (a=5) 0.251 5.64 0.226
Mistral-7B None 0.507 1.76 0.231
Subtract (a=5) 0.350 2.23 0.220
Subtract (a=7) 0.319 2.63 0.212

Table 13: Percentages of MLP neurons with negative
pre-trained activations. The three larger LLMs have
approximately 50% of their MLP neurons negatively
activated, whereas GPT-2 Medium has over 87%.

% neurons % neurons
Model negatively positively

activated activated
GPT-2-355M 87.28% 12.71%
Llama-3.1-8B 49.96% 50.04%
Gemma-2-2B 49.94% 50.06%
Mistral-7B 50.03% 49.97%

both before and after DPO, reflecting the impact of
the GeLU activation function.

GPT-2-Medium: Activations of Top 100 Toxic-aligned Neurons
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Figure 3: Activations of the top 100 toxic-aligned neu-
rons in GPT-2-Medium. The activation m,; for each
value vector is averaged over all prompts and 20 gen-
erated tokens. The majority of value vectors remain
weakly negatively activated both before and after DPO.



F Logit lens tokens for value vectors

In this section, we present the Logit Lens tokens
for selected value vectors.

Table 14 shows the top toxic-aligned value vec-
tors that project to at least one toxic token among

Table 15: Examples of anti-toxic value vectors that,
when sign-reversed, project to toxic tokens in Logit
Lens. Rank gives the cosine similarity rank with —1 x
Wioxic, reflecting how “anti-toxic” a neuron is. Warning:
these examples are highly offensive.

GPT-2 medium

the top 10 nearest tokens (Section 4). Vector Rank Top tokens
Table 15 shows example anti-toxic value vectors — _q, 1882 maniac, ueless, thug, arrog, f*cking
that, when sign-reversed, project to at least one 1307 3 d*mn, darn, kidding, freaking, piss
toxic token across models (Section 5.2). —1xv3 4 harmful, worse, unfavorable, disturbing
Table 14: Examples of toxic value vectors that project
. . . Llama-3.1-8B
to toxic tokens in LogitLens. Value vectors are ranked
by their cosine similarity with the toxicity probe Wioxic. Y ector Rank Top tokens
Warning: these examples are highly offensive. —1xvigeTr 5 frck, Prcked, f¥cking, sh*t, F*CK
GPT-2 medium —1xvi9®" 19  s*cks, s*ck, adla, BackPressed, teri
Vector Rank Top tokens Gemma-2-2B
W Toxic - c*nt, f*ck, a**hole, d*ck, wh*re, holes Vector Rank Top tokens
770 ®t ¥k op¥p. £ *
Vio ! sht, ™, erp, ek, c*nt, garbage —1xvi§2 | f*cking, godd*mn, f*ck, sh*t, d*mn
vigs 18 c*m, d*ck, icles, icle, bo*bs, naughty v
’ ? ’ ’ ’ —1xv3o® 2 f*cking, f*ck, f*cker, p*ss, F*ck
3358 9 : .
vy 29 cr*p, whine, sh*t, uphem, shri, bullsh*t 8418 R, .
3972 ; . ) —1xvir 13 idiot, idiots, stupid, moron, dumbass
Vg 50 f*cking, d*mn, sinful, hell, immoral
Mistral-7B
Llama-3.1-8B
Vector Rank Top tokens
Vector Rank Top tokens
W N F*CK. ivah. f*ek. di —1><v}2693 1 sh*t, f*ck, Block, piss, f*cking, bitch
1100’;; _1 elr:;t om*men,bb- N ’ 1yab ’ cb ’ll 1:*}; —1xv§3°° 16  cr*p, nonsense, stupid, d*mn, ridiculous
v§263 ; s ;Crt p,;u 1; ,ga.r aie, uts —1xvigs0z 95 hell, d*mn, d*mned, f*ck, cr*p, sh*t
vf;m., waste, trash, garbage, junk, wastes —1xv§33® 36  frcked, sh*t, bitch, sex, sexual, rape
Vig 10 Shoot, oh, sh*t, cr*p, swore, allocator
vgat 18 d*mn, sh*t, DAM, dam, fig, D*mn
Gemma-2-2B cussed in Limitations). We explain why we do
Vector  Rank Top tokens not adopt this approach for neuron analysis, as it
complicates the identification of coherent neuron
W Toxic - rungsseite, fu*k, Fu*king, SH*T
mona o groups.
Vi 1 idiot, bastard, a*hole, fu*ks, moron S ficall 1 GPT-2-Medium Iv sin
v2go7 10 yes, ridiculous, absurd, ludicrous 1 PTC ga .0 o SVeD u ’hwe a{)p y smgu
vaT2T ” sh*t, Sh*t, cr¥p, sh¥ts, shte, sh¥tty ar value e.com'posmon ( ) to the VB: ue vectors
of 128 toxic-aligned MLP neurons, using the top
Mistral-7B three components as basis directions to capture dif-
Vector ~ Rank Top tokens ferent aspects of toxicity. We choose N = 128
, because it yields a stable toxic subspace—adding
Wiwie - sht, ek, assh, bullsh*t, a**hole more value vectors does not significantly expand it
v396t 1 fu*k, sh*t, bullsh*t, a**hole, sh*tty & Y exXp )
2454 . Table 16 shows that these SVD vectors unembed to
vis 4 fuck*ng, bullsh*t, stupid, sh*t, cr¥p ] . . . .
11281 . . different toxic tokens, including offensive curse
Vi 34 sexual, sex, girls, women, dating, porn T
vilgsg 45 Cr*p, Sh*t, d*mn, hell, b*tCh, piss WOI‘dS (SVDTOXIC [0}), mlld IIlSllltS (SVDTOXIC[l])7

G Projecting value vectors to a toxic
subspace

In this section, we present initial results using a
toxic subspace to capture toxicity representations
in GPT-2-Medium and to perform projections (dis-
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and sexualised terms (SVDroxic[2]).

Follow Section 5.2, we attempt to identify neu-
ron groups based on their projection changes onto
the toxicity subspace. One approach is to compute
a weighted sum of the SVD vectors (scaled by their
singular values) to form a single combined direc-
tion, then measure projections onto it. However,
this provides little advantage over using a standard



Table 16: Logit Lens tokens for the top three SVD vec-
tors extracted from 128 toxic-aligned neurons in GPT-2
Medium. Each SVD direction captures a different as-
pect of toxicity. Warning: these examples are highly
offensive.

Model Top Tokens

SVDroxic[0]  f*ck, assh*le, f*cking, d*ck, sh*t, sl*t
SVDroxic[1]  d*mned, cr*p, stupid, darn, Godd, idiots
SVDr1oxic[2]  sex, boobs, chicks, sexy, vagina, breasts

toxicity probe. Instead, we project each value vec-
tor onto each SVD vectors individually.

Since the SVD vectors are orthonormal, the total
projection onto the toxic subspace is equivalent to
summing the projections onto each SVD direction.
Thus to identify neurons reducing toxicity, we com-
pute each value vector’s cosine similarity with the
SVD vectors, along with their projections before
and after DPO.

We find that 74.7% of value vectors have con-
flicting signs of alignment across the SVD direc-
tions—that is, they align positively with at least one
vector and negatively with another. This compli-
cates defining whether a neuron is “toxic-aligned”.
Similarly, 74.3% of neurons show inconsistent pro-
jection change after DPO, reducing toxicity along
one direction while increasing it along another.

These inconsistencies make it impossible to iden-
tify coherent neuron groups that reduce toxicity
across all SVD directions, i.e. across the toxic sub-
space. This also means that each SVD direction
induces its own set of contradictory neuron groups.
More importantly, this prevents us from linking
toxicity scores to specific neuron groups via acti-
vation patching (Section 5.2), as a single neuron
can simultaneously increase and decrease toxicity
depending on the direction.

For these reasons, we choose not to proceed with
subspace projection for neuron analysis and instead
focus on the single-probe approach.

H More results on activation shifts

In this section, we provide more results on DPO-
induced activation shifts by presenting their distri-
butions and analyse whether they occur systemati-
cally with neuron properties. These results comple-
ment Section 5.1.

Figure 4 shows the distribution of activation
shifts across models. Most neurons have small
activation shifts around the mean but substantial
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variation in the tails.

Table 17 presents the results of a Pearson cor-
relation analysis (Schober et al., 2018) between
DPO-induced activation shifts and neuron proper-
ties. The analysis reveals no correlation between
activation shifts and the “toxicity level” of a neu-
ron—measured by its cosine similarity with the
toxic probe—and only a weak positive correlation
with pre-trained activations. While this may sug-
gest a slight tendency for DPO to push activations
toward zero, the pattern is likely due to a regression-
to-the-mean effect, thus more of a statistical artifact
than an intentional toxicity-reduction mechanism.
These findings indicate that DPO-induced activa-
tion shifts are largely random.

I More results on opposing neuron effects

In this section, we provide more statistics and vi-
sualisations on the opposing neuron effects (Sec-
tion 5.1).

Table 18 shows the percentage of neurons reduc-
ing toxicity projection (Aryyic,; < 0, denoted as ),
ranging from 52% in Gemma-2-2B to 58% in GPT-
2-Medium. This shows that DPO’s activation shifts
cause roughly half of the MLP neurons to reduce
toxicity projection, while the other half increase it,
revealing a trade-off in toxicity reduction.

Figure 5 visualises the opposing effects across all
MLP layers, complementing Figure 1 by including
the first 10 layers that were omitted.

J More results on four neuron groups

In this section, we provide more visualisations on
the four neuron groups (Section 5.2).

Figure 6 shows the four-group distributions for
GPT-2-Medium, Gemma-2-2B, and Mistral-7B, re-
peating the analysis from Figure 2 for Llama-3.1-
8B. In these three models, overall toxicity reduc-
tion is primarily driven by TP | and , which
dominate the stacked bars in Figure 6a.

Figure 6b shows that the four groups reduce
toxicity projection at different rates when neurons
are ranked by their contribution. TP | dominates
among the top-ranked neurons, while be-
comes more prominent later, especially in GPT-2-
Medium. Figure 7 further decodes this trend in
GPT-2-Medium, where activation shifts become
more evenly distributed in lower-ranked neurons.

Figure 6¢ demonstrates that each group shifts
activations according to their orientation relative
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shifts around the mean, with more substantial variation in the tails. Gemma-2-2B and Mistral-7B show larger
average shifts and standard deviations (SD) compared to the other two models.

Table 17: Pearson correlation between activation shifts and neuron properties. Activation shifts (m

pre
7

dpo
—m,

show no correlation with a neuron’s "toxicity level" (measured by cosine similarity with the toxic probe), and only a
weak positive correlation with pre-trained activations, which is likely a regression-to-the-mean effect.

Variables Metric GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Activation shift Correlation 0.004 0.001 0.004 0.003

& probe alignment p-value 0.252 0.487 0.071 0.045
Activation shift Correlation 0.263 0.033 0.098 0.347

& pre-trained activation  p-value <0.0001 <0.0001 <0.0001 <0.0001

Table 18: Percentages of neurons reducing toxicity pro-
Jjection after DPO. Across models, 52% to 58% of MLP
neurons reduce their projection (Aroyic,; < 0) onto the
toxicity probe, while the remaining neurons increase it
(AToxic,i > O)

Model % neurons ) % neurons
reduce projection () increase projection (1)
GPT-2-355M 58.49% 41.51%
Llama-3.1-8B 53.01% 46.99%
Gemma-2-2B 51.75% 48.25%
Mistral-7B 51.98% 48.02%

to the toxic probe, consistent with the pattern ob-
served in Figure 2c.

Figure 8 shows toxicity reduction across layers

for all four groups. The reduction generally in-
creases through successive MLP layers, reflecting
the cumulative effect of activation shifts, though
this trend is less pronounced in Gemma-2-2B.
These results suggest that layers progressively steer
the residual stream away from toxicity, with later
layers showing the strongest suppression of toxic
outputs. The upward trend may be partly due to
our use of final-layer probes for extraction.

K More results on activation editing

In this section, we present more results on activa-
tion editing (Section 6).

Table 19 extends our probe-based editing results,
comparing two selection methods for the top-53
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Figure 5: DPO balances opposing toxicity writing across all MLP layers. Blue dots show the total projection
reduction per layer, while orange dots show the total increase, both after DPO. The shaded blue areas illustrate how
the opposing effects cancel out and lead to a net toxicity reduction. Projection changes tend to grow in later layers
when measured against the last-layer probe.

neurons: descending cosine similarity with probe
(main results also in Table 2) and by ascending
absolute activations. While both approaches work,
the latter is slightly less effective and fails to sur-
pass DPO for Gemma-2-2B.

As a sanity check, we also patching neurons with
increased toxicity projection (1) during DPO and
find that they raise toxicity scores across models
(Section 5.2).
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Table 19: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. As a sanity
check, patching neurons with increased toxicity projection (1) raises toxicity scores. In probe-based editing, we
compare two samping strategies for the top-3 neurons: descending cosine similarity with the probe and ascending
absolute activation values. For both approaches, Green highlights the editing parameters that best compete with
DPO while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Toxic PPL F1 Toxic PPL F1 Toxic PPL F1 Toxic PPL F1
None 0.545 3.08 0.193 [0.496 1.94 0.225 |0.488 4.61 0.231 |0.507 1.76 0.231
Baseline Steering with probe |0.310 3.19 0.191 |0.335 2.72 0.187 |0.260 5.52 0.228 [0.350 2.23 0.220
DPO 0.210 3.15 0.195 [0.241 2.69 0.221 |0.245 5.15 0.228 |0.221 2.01 0.233

Activation | Patch all four groups |0.139 3.08 0.169 |0.278 1.94 0.207 |0.260 4.58 0213 |0.138 1.78 0.209
patching  |pach all 1 neurons  |0.853 6.05 0.154 [0.536 2.64 0.184 [0.686 4.58 0.199 [0.611 1.78 0.199
Activation |a = 0.01,8=0.8 |0.123 3.08 0.179 [0.045 2.19 0.186 |0.199 454 0.188 [0.038 1.77 0.179
(prggéfg‘fsed, a=001,8=0.6 0159 3.08 0.181 |0.183 2.11 0.193 [0.200 456 0201 [0.098 1.77 0.196
descending | = 0.01, 3 = 0.55|0.203 3.08 0.183 [0.241 1.96 0.196 [0.216 456 0.210 [0.125 1.77 0.202
cossim) | =0.05,8=0.5 [0211 3.08 0.184 [0.299 1.96 0.200 |0.260 4.56 0204 |0.264 1.77 0.197
Activation |o = 0.01,8=0.8 |0.025 3.08 0.158 [0.097 239 0.188 [0.271 456 0.183 |0.154 1.77 0.196
(prggéfg‘ie L@ =001,8=06 0075 307 0.178 0204 226 0.198 |0295 457 0202|0218 177 0201
ascending |@=0.01,8=0.55 [0.111 3.08 0.175 [0.258 2.25 0.203 [0.330 4.57 0.199 [0.229 177 0.202

activation) |o =0.05,83=0.5 [0.109 3.08 0.178 [0.310 1.96 0.204 |0.331 4.58 0.204 [0.251 1.77 0.193
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Figure 6: Four neuron groups collectively reduce toxicity during DPO, shown for GPT-2-Medium, Gemma-2-2B,
and Mistral-7B. The same four groups emerge consistently across models. (a) Proportion of toxicity reduction per
group, where TP | and AN | dominate; (b) Cumulative toxicity reduction for the top 40,000 neurons (ranked by
projection reduction), where TP | dominates early ranks and AN | gradually catches up the effect; (c) Per-group
activation shifts during DPO for the top 2,000-2,500 neurons, where each group shifts according to its orientation
relative to the toxic probe.
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Figure 7: Activation shifts of top-contributing neurons to toxicity projection reduction in GPT-2-Medium. (a)
Activation shifts of top 500 neurons, where TP | drives the reduction. (b) Activation shifts of neurons ranked
5000-5500, showing increased AN | influence and more balanced contributions across all four groups.
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Figure 8: Layer-wise toxicity projection reduction by neuron group. Toxicity reduction generally increases across
MLP layers under the cumulative group effects, though the upward trend is less evident for Gemma-2-2B. The
upward trend shows that each layer progressively shifts away from toxicity, with the largest toxicity reduction
occurring in later layers.
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