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ABSTRACT

As large language models (LLMs) become widely deployed, concerns about their safety and alignment
grow. An approach to steer LLM behavior, such as mitigating biases or defending against jailbreaks,
is to identify which parts of a prompt influence specific aspects of the model’s output. Token-
level attribution methods offer a promising solution, but still struggle in text generation, explaining
the presence of each token in the output separately, rather than the underlying semantics of the
entire LLM response. We introduce ConceptX, a model-agnostic, concept-level explainability
method that identifies the concepts, i.e., semantically rich tokens in the prompt, and assigns them
importance based on outputs’ semantic similarity. Unlike current token-level methods, ConceptX
also offers to preserve context integrity through in-place token replacements and supports flexible
explanation goals, e.g., gender bias. ConceptX enables both auditing, by uncovering sources of
bias, and steering, by modifying prompts to shift the sentiment or reduce the harmfulness of LLM
responses, without requiring retraining. Across three LLMs, ConceptX outperforms token-level
methods like TokenSHAP in both faithfulness and human alignment. Steering tasks boost sentiment
shift by 0.252 versus 0.131 for random edits and lower attack success rates from 0.463 to 0.242,
outperforming attribution and paraphrasing baselines. While prompt engineering and self-explaining
methods sometimes yield safer responses, ConceptX offers a transparent and faithful alternative for
improving LLM safety and alignment. Beyond demonstrating the practical benefits of attribution-
based explainability in guiding LLM behavior, this work introduces steering effectiveness as a novel
measure of XAI quality. [ﬂ

1 INTRODUCTION

Large language models (LLMs) are widely used in real-world applications, such as conversational agents (OpenAl,
2024a), but concerns remain about their safety and alignment with human values (Wach et al.| [2023} Ji et al., [2023} Wei
et al.,[2023} |Hazell, [2023)). Despite efforts to align models (Ouyang et al., 2022} Bai et al., [2022} |Korbak et al., [2023),
LLMs still generate harmful or misleading content due to flawed training or adversarial attacks (Ma et al., 2025} Chen
& Shu| 2023} [Spitale et al.| 2023; Mouton et al.l 2024; Wan et al.| 2024; Fang et al.| 2024). Such misalignment can
emerge from malicious fine-tuning (Betley et al., [2025) or adversarial prompts that bypass safety defenses (Zou et al.,
2023; Meinke et al., [2024).

Attribution-based explainability methods offer a promising approach to identifying input elements that lead to harmful or
biased outputs from LLMs (Wu et al.,|2024). While effective in classification settings, these methods face challenges in
text generation due to the open-ended nature and semantic variability of responses. Existing approaches typically operate
at the token level, measuring importance based on the likelihood of reproducing specific output tokens (Goldshmidt &
Horovicz, |2024; |/ Amara et al., [2024)). This leads to three major limitations: (i) their objective is on literal token overlap
rather than semantic meaning, failing to capture paraphrased and semantically equivalent responses (Wu et al.| [2024]);
(ii) they overlook concept sensitivity, often focusing on uninformative function words (e.g., “the”, “is”), whilst effective
XALI requires both token- and concept-level perspectives; and (iii) they treat tokens as independent features, which
breaks the contextual coherence necessary for meaningful text, resulting in misleading attributions when tokens are
isolated (Vadlapati, [2023};|Chen et al., 2020b).

To overcome these challenges, we propose ConceptX, a family of concept-level, attribution-based explainability
methods. Built upon a coalition-based Shapley framework, ConceptX addresses the three current limitations. First,
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instead of optimizing for token-level reproduction, it uses a semantic similarity objective, ensuring that concept
attributions reflect changes in meaning rather than sticking to the form of the output. Second, it focuses on input
concepts, i.e., semantically rich content words from ConceptNet (Speer et al.,|2017)), better suited for concept-aligned
LLMs and yielding more interpretable, actionable explanations. Third, ConceptX evaluates input concepts in context
while preserving the sentence’s grammatical and semantic structure during attribution. It does so by introducing two
alternative concept replacement strategies alongside traditional removal. Thanks to its similarity-based optimization,
ConceptX can generate aspect-specific explanations by identifying what input concepts drive a particular semantic
dimension of the output, beyond simply reproducing the original response. This allows users to audit and address the
causes of undesired model behaviors. With this capability, ConceptX becomes a powerful tool for targeted prompt-level
interventions: by detecting influential input concepts, users can steer LLM outputs without requiring retraining or
fine-tuning. This makes ConceptX a lightweight yet effective approach for advancing both explainability and alignment
in LLMs.

Our model-based evaluation on the Alpaca dataset (Taori et al., [2023)) shows that ConceptX provides more faithful
explanations than prior attribution methods like TokenSHAP (Goldshmidt & Horovicz, [2024). In addition, we show
that ConceptX can be used for both auditing and steering the text generation process. In particular, the human-based
evaluation of our designed GenderBias dataset shows ConceptX’s effectiveness in identifying semantically meaningful
drivers of biased outputs. Results are consistent across three LLMs and suggest that ConceptX can be used for auditing
LLMs by generating concept-level attributions and optimizing them for similarity to target aspects (e.g., bias or harm).
Beyond explanation, ConceptX attributions can also guide prompt-level interventions by identifying which input
concepts to modify for steering LLM outputs. We demonstrate this in two use cases: sentiment polarization, where
ConceptX more effectively shifts sentiment than TokenSHAP, and jailbreak defense, where it reduces attack success
and response harmfulness better than attribution and paraphrasing baselines (Goldshmidt & Horovicz, [2024; |Cao
et al.,|2023). While generative and prompt-based methods remain stronger in harm mitigation, they also come with
the computational and annotation overhead of fine-tuning and prompt engineering. In contrast, ConceptX offers a
lightweight, interpretable, and actionable alternative for guiding LLM behavior. Our contributions can be summarized
as follows.

* We introduce ConceptX, a family of concept-level attribution methods that addresses key challenges in text generation
explainable AI (XAI) by focusing on semantics and enabling aspect-targeted explanations.

* We demonstrate that ConceptX generates more faithful and human-aligned explanations when auditing LLM outputs
compared to current model-agnostic attribution methods.

* We propose a prompt-level steering method using ConceptX to edit aspect-relevant concepts, showing superior
performance in mitigating sentiment and harmfulness.

Through applications in bias, sentiment, and harmful content, ConceptX demonstrates how explainability can directly
support alignment, with steering effectiveness serving as a practical metric for explanation quality.

2 RELATED WORK

Attribution Explainability Methods in NLP. LLM explainability seeks to identify the underlying reasons behind a
model’s outputs, such as harmful content or specific target aspects, providing a foundation for more effective intervention.
Common attribution methods developed for traditional deep models include gradient-based methods, perturbation-based
methods, surrogate methods, and decomposition methods (Murdoch et al.,|2019; Du et al., 2019). In NLP, the most
prominent XAl techniques include feature importance and surrogate models (Danilevsky et al.,[2020). These methods
may focus on different explanation targets, such as word embeddings, internal operations, or final outputs, leading to a
division between model-specific and model-agnostic approaches (Zini & Awad, 2022)). Mechanistic interpretability
focuses on internal model mechanisms, examining activation patterns and neuron roles (Vijayakumar, [2022} [Sajjad
et al.| [2022), whereas model-agnostic attribution methods assign importance scores to input features (typically tokens)
based on their influence on the model’s prediction. Built on general-purpose techniques like SHAP (Shapley et al.}
1953)) and LIME (Ribeiro et al.,|2016)), those attribution methods have been adapted for text data to account for syntactic
constraints and word dependencies (Amara et al.,[2024). Although traditionally applied to classification tasks (Kokalj
et al.,|2021} |Chen et al.| [2020a)), recent work has extended these methods to autoregressive models, aiming to shed light
on the generative processes of language models (Amara et al.|[2024; (Goldshmidt & Horovicz, [2024). In this paper, we
introduce a model-agnostic, concept-level explainability method that identifies semantically rich tokens in the prompt
and assigns them importance based on the outputs’ semantic similarity.

Leveraging Explainability for LLM Alignment. As LLMs grow more powerful, their lack of explainability poses
serious ethical risks, undermining efforts to detect or mitigate harms like bias, misinformation, and manipulation.
XAI techniques are thus crucial for auditing and aligning these models with human values (Hubinger et al., 2024;
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Zhao et al 2024} [Martin} |2023). For example, data attribution tools and attention visualizations can expose biases
such as gender stereotypes (Li et al.,|2023c), while probing classifiers help identify harmful associations embedded
in model representations (Waldis et al., [ 2025). Attribution-based explanations can serve as indicators to detect LLM
hallucinations (Wu et al.,[2024). However, integrating explainability to Al alignment also comes with challenges: neural
networks remain difficult to fully understand (Elhage et al.,[2022), and unaligned Als may even develop incentives to
evade interpretability tools (Benson-Tilsen & Soares, |2016} Sharkey} 2022)). Coalition-based methods like ConceptX
offer model-agnostic explanations of how input semantics shape outputs, circumventing LLLM evasion strategies, in
order to discover possible reasons for harmful or biased responses.

LLM Steering and Defense Methods. To defend against malicious use and align LLMs with human values, researchers
have developed a range of steering and defense methods that intervene at different levels: input, prompt, or internal
model representations (Ma et al.l 2025). Input-level approaches include perturbation and paraphrasing techniques (Cao
et al.,|2023} Robey et al.|[2023} [Yan et al.| 2023), token filtering (Wang et al.,|2024a; Liu et al.| [2024), translation-based
back-translations (Wang et al.| [2024b), and attribution or detection strategies using gradients, attention scores, or
perplexity (He et al.} 2023} |Li et al., [2023a), LLM self-defense (Phute et al.,|2023)). Prompt engineering methods such as
SafePrompt (Deng et al.|[2023)) and Self-Reminder (Xie et al., 2023)) shape outputs by embedding behavioral constraints
or reformulating queries. Internal steering techniques include activation steering, which manipulates intermediate
representations to shift model behavior (Gao et al., 2024 |L1 et al., [2023b), and sparse autoencoder (SAE)-based
approaches that identify and control interpretable features in activation space (Bricken et al.| 2023; /Cunningham et al.|
2023)). Although not yet widely applied to LLM alignment, attribution-based explainability methods could enhance
input-level steering by directing perturbations toward the most influential input features.

3 METHOD

3.1 OVERVIEW

ConceptX introduces a concept-level coalition-based attribution approach. The objective is to discover the semantic
contribution of input concepts to a target text. In contrast to prior Shapley-based methods for textual data, such as
TokenSHAP (Goldshmidt & Horovicz, 2024) and SyntaxSHAP (Amara et al.| 2024), which operate at the token level,
ConceptX targets only semantically rich units by excluding function words and low-information tokens. Those units
referred to as concepts correspond to content words with high semantic value, quantified using their node degree in
the ConceptNet knowledge graph (Speer et al.,[2017). ConceptX’s methodology consists of two main stages: concept
extraction and concept importance estimation. During the concept extraction, key input concepts are identified using a
content word extraction and the knowledge graph ConceptNet (Speer et al.l 2017)’s connectivity. Then, ConceptX uses
a Shapley-inspired Monte Carlo strategy (Goldshmidt & Horovicz, 2024)) to estimate the influence of each concept on a
specific explanation target. When estimating concept coalitions, ConceptX replaces unselected concepts following three
strategies: removing the concept (r), replacing it with contextually reutral alternatives (n), or an antonym (a). Replacing
instead of omitting (Goldshmidt & Horovicz,[2024) preserves grammatical correctness. Neutral or antonym replacements
maintain linguistic coherence while altering the semantic content, allowing us to isolate the semantic influence of
concepts. Cosine similarity between the explanation target — initial LLM Base output (B), Reference text (R), or Aspect
(A) — and the modified outputs serves as a value function to estimate concept importance. An aspect refers to a specific
semantic property or quality expressed in a sentence, such as sentiment (e.g., positive or negative), bias, toxicity, or safety.
illustrates the different steps in the case of neutral replacement.

Replacement Strategy !

Notations. Throughout the rest of the paper, we use the notation ConceptXtarger-repl.strat., | r=remove
where the subscript denotes the explanation target (B, R, or A) and the final italic letter | n=neutral replace
specifies the concept replacement strategy used to evaluate coalitions (7, n, or @). This | @=antonym replace
convention allows us to isolate the impact of each methodological variation. For example,
ConceptX-n refers to the variant using neutral concept replacement and an aspect-based ConceptX -n
value function. Refer to[subsection B.1lfor a list of all method combinations. Unless stated <
otherwise, ConceptX refers to the full set of such method combinations. Explanation Target ‘
B = LLM Base response
3.2 CONCEPTS AS INPUT FEATURES i R = Reference text
1 A = Aspect

The first step in ConceptX is to extract the concepts that will serve as input features and

receive importance scores. Unlike Shapley-based text methods, ConceptX ignores function tokens (e.g., prepositions,
articles, conjunctions), focusing instead on content words (nouns, verbs, adjectives, adverbs) to provide faithful and
human-interpretable explanations. Concepts are matched to entries in the ConceptNet (Speer et al.,[2017), a knowledge
graph with over 8 million nodes and 21 million edges, where semantic richness is measured by node degree. Extraction
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Instruction LLM Explanation Target

. q g & B = LLM Base response
Describe the fear of flying. —» (Z)) —> The fear of flying, also known as aviophobia or aerophobia, is a ... P

GPT-45 mini

S,= {describe flying} Describe the concern of flying. Describe the fear of flying.

or  Phobia A = Aspect
or Some reference text R = Reference text
embeddings
= Emb-t
1 CONCEPT EXTRACTION 3 CONCEPT IMPORTANCE ESTIMATION: ¢(fear)
Describe the fear of flying. Coalitions S : SU{fear}
Describe, fear, flying So= o Mention concern of journey. : Mention fear of journey.
S A {describe} Describe concern of journey. | Describe fear of journey.
S,= {flying} Mention the concern of flying. : Mention the fear of flying.
|
1

2 CONCEPT REPLACEMENT

Mention, concern, journey Value Function cos (Emb-LLM(S), Embt) (@) cos ( Emb-LLM(SU{fear}), Emb-t)
(repeat for N concepts) Attribution (p(fear )
Replacement 7 =remove ) .
Strategy n = neutral flying. if t = LLM Base response
a = antonym ConceptX Explanation fear . ift=Aspect
N . .
Describe . if t = Reference text

Figure 1: ConceptX methodology illustrated with ConceptXp,a/r-n: (1) extract input concepts, (2) use GPT-40-mini to
generate neutral replacements, and (3) compute the attribution ¢(c) of a concept ¢ by evaluating its contribution across
concept coalitions S, based on how much it drives the LLM output toward the target response t. (3) is repeated N times
(number of input concepts).

proceeds by (1) parsing input prompts with spaCy (Honnibal et al., 2020) to retrieve candidate tokens (NOUN, VERB,
PROPN, ADV), (2) filtering candidates via ConceptNet (Speer et al.,|2017) edge counts, which reflect semantic richness,
and (3) retaining the top-n richest concepts, typically keeping all extracted concepts. We validate the POS Tagging +

ConceptNet concept extraction by running a user study (see [subsection A.4).

3.3 COALITION-BASED ATTRIBUTIONS

ConceptX is a coalition-based explainability method inspired by Shapley values from cooperative game theory (Shapley
et al.| [1953). It measures each concept’s (c;) importance by computing its marginal contribution across coalitions, i.e.,
the change in overall importance when adding or removing ¢; from a coalition .S, and aggregates these contributions
over all coalitions. For each concept ¢;, ConceptX: (i) generates coalitions with and without ¢;, following Monte Carlo
sampling, (ii) computes model responses for each coalition (see|subsubsection 3.3.1)), (iii) measures cosine similarity
between each response and the explanation target (full prompt, reference text, or aspect) (see|subsubsection 3.3.2)), and
finally (4) derives concept importance ¢(c;) as the difference in mean similarity across sampled coalitions. This Monte
Carlo approach enables efficient and faithful concept attribution. We refer to for sampling details and a

sampling robustness analysis and to[subsection B.3|for ConceptX’s pseudocode.

3.3.1 FEATURE REPLACEMENT STRATEGY

Once concept coalitions are defined, the model is evaluated on each of them. Semantically rich concepts are reinserted
into the original sentence alongside unaltered function words to maintain coherence. A key challenge in attribution
methods is how to handle concepts excluded from the coalition. Approaches like TokenSHAP (Goldshmidt & Horovicz,
2024)) simply omit these concepts, but doing so often disrupts grammar and results in unstable text generation (e.g.,
erratic outputs) (Vadlapati, |2023). ConceptX-r follows this omission strategy. To evaluate more faithfully the semantic
contribution of each concept, we propose two new alternative replacement mechanisms that preserve the surrounding
grammatical context: ConceptX-n replaces coalition-excluded concepts with contextually appropriate yet semantically
inert alternatives generated by GPT40-mini; and ConceptX-a uses antonym replacements drawn from a fixed lexical
database, which offers a more unambiguous and reproducible alternative that does not depend on any external LLM.
Prompt and additional details on the feature replacement by GPT-40 mini can be found in[subsection A.2] along with
examples. We further validate the neutral replacement with a small user study (see|subsection A.4). By maintaining
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grammatical integrity and minimizing confounding factors, both replacement-based variants better assess the true
semantic influence of each concept.

3.3.2 VALUE FUNCTION & TARGETED EXPLANATION

In Shapley-based explainability, a feature’s contribution is assessed via a value function estimating the impact of its
removal. ConceptX extends this idea to input concepts, estimating their importance by the semantic shift they induce,
captured as a change in the value function. Specifically, the value function v(S) measures the similarity between the
model’s response given a coalition of concepts S and the explanation target t, using sentence embeddings to quantify
this similarity as follows: v(.S) = cos(Emb- f(S), Emb-t), where f denotes the language model, and f(.S) represents
its response to a given concept coalition S. The embedding model used is all-MiniLM-L6-v2 (Wang et al.,[2020), with
an embedding dimension of d = 384ﬂ We also evaluated the all-mpnet-base-v2 model, which provides more accurate
vector comparisons with a higher embedding dimension of d = 768. See [subsection C.3|for a detailed comparison of
the two embedding models.

The choice of the explanation target t is crucial. While traditional methods use the model’s original response, ConceptX
supports flexible targets tailored to specific analysis goals. The target is the LLM initial response for ConceptXg, a
reference text for ConceptXg, or a specific aspect (i.e., a sentiment, a characteristic) for ConceptX,. This flexibility
enables more targeted attributions, for instance, revealing hidden biases tied to demographic labels, even when the
model’s overall output seems neutral. By identifying concepts driving undesirable traits such as gender bias or sentiment
skew, ConceptX not only explains model behavior but can also assist intervention strategies to guide outputs toward
more desirable outcomes.

4 AUDITING LLM RESPONSES

4.1 GENERAL SETTINGS

This section outlines the models, datasets, and explainability methods used in our explainability evaluation in

[tion 4.2l and @3]

Models. We evaluate three instruction fine-tuned generative models: Gemma-3-4B-it (Team, 2025), Mistral-7B-
Instruct (Jiang et al.,|2023)), and GPT-40 mini (OpenAl, 2024b). Unless otherwise specified, we use greedy decoding
with a maximum of 100 new tokens to ensure reproducibility.

Datasets. We evaluate faithfulness on the Alpaca (Taor1 et al.l [2023)) dataset that contains 52,000 instructions and
demonstrations, and filter only a sample of 1K instructions by length (under 58 characters) across three random seeds.
To evaluate the accuracy of our method, we introduce the GenderBias dataset with 240 curated instructions triggering
gender stereotypical answers. It consists of neutral instructions augmented with the suffix "You are a woman." or
"You are a man.". Additional details on the construction of the GenderBias dataset and data examples are provided
in[subsection A.1l

Explainers. We compare the ConceptX explainer family against two baselines: a Random baseline, which assigns
random importance scores to input tokens, and TokenSHAP (Goldshmidt & Horovicz, 2024)), a state-of-the-art token-
level attribution method for generative models For the gender bias analysis in we also evaluate the
capability of ConceptXa-n, with aspect A = woman or A = man based on the instruction. A stereotypical answer
is also produced as reference text for Conceptg-n using GPT-40 mini. The prompt template is detailed in

4.2 FAITHFULLY AUDITING LLMS

To audit LLMs, we first make sure that ConceptX explanations are faithful. To quantify faithfulness, we employ the
similarity fidelity metric, which measures the similarity between the model’s response using the explanation and its
original response to the full input. This similarity is computed via the cosine similarity between the embedding vectors
of the generated outputs. To assess the effect of explanation size, we retain only the top 7 x 100% explanatory words
from each input sentence. The threshold 7 varies from 0 to 1 with a 0.1 step. The overall faithfulness score is computed
as the average embedding similarity change across the dataset:

2Library: SBERT.net, sbert .net/docs/sentence_transformer/pretrained_models.html

3We do not include NLP Shapley-based methods such as HEDGE (Chen et al., 2020b), Feature Attribution, SVSampling, or
SyntaxSHAP (Amara et al. 2024) as they are optimized for the log-probability of LLM outputs, making them unsuitable for
full-response generation and scalable only to single-token generation tasks (e.g., classification).
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Figure 2: Faithfulness scores on the Alpaca dataset. The y-axis shows the similarity between the original LLM response
and the response generated using the sparse explanation. The sparsity threshold, varied from O to 1 along the x-axis,
controls the fraction of the explanation that is retained.

N
SimFid(7) = %Zcos(Emb - f(m7(x;)), Emb - t;) (1)
=1

Here, m™ denotes the masking function at threshold 7, keeping the top 7 x 100% scored words from the original input
x;, t; is the LLM initial response, Emb is the embedding model, and NV is the number of test samples. The removed
words are replaced with ellipses ("..."), as no significant difference was observed in performance whether the words
were deleted, replaced with default tokens, or substituted with random words (Amara et al,[2024).

[Figure 2] presents the similarity fidelity results for the Alpaca dataset. Across all models and datasets, the ConceptX
Sfamily consistently matches or outperforms the TokenSHAP baseline in faithfulness, confirming the reliability of
ConceptX-generated explanations. In particular in[Figure 5]and []in [subsection C.I} ConceptXa-n and ConceptXg-n
maintain comparable performance even when their explanation targets differ from the original LLM response. This
is likely due to the strong semantic alignment between target and output in our evaluation settings. Furthermore,
starting from a threshold T above 0.5, ConceptX explanations begin to clearly outperform TokenSHAP, especially in the
GenderBias setting (see|Figure 6|in|Appendix C). We hypothesize that, beyond this threshold, ConceptX has already
captured all semantically rich concepts, and any additional tokens primarily restore sentence fluency by reintroducing
function words. In contrast, TokenSHAP still lacks key content words, which limits output fidelity. Below 0.5, both
methods omit important concepts, but above this point, only TokenSHAP continues to miss critical information for
faithful reconstruction.

4.3 AUDITING LLM GENDER BIASES

This section evaluates ConceptX explainers on their ability to identify the gender-specific word (woman/man) in prompts
that induce bias. Using the known ground truth in GenderBias, we report the rank distribution of the gender token, with
lower ranks indicating higher relevance.

Gemma-3-4b-it Mistral-7B-Instruct GPT-40 mini
Random ] || Rank
TokenSHAP ] ] = st
m 2nd
Conceptxs-r [ INNNNNEG I 3rd
ConceptXg-n _ _ >4th
Conceptxz-n | I I
ConceptXa-n - -
0 50 100 0 50 100 0 50 100
% of gender tokens % of gender tokens % of gender tokens

Figure 3: Rank distribution of the gender input concept by the explainability methods on our created GenderBias

dataset (see details in .

The ConceptX family outperforms existing baselines in identifying the gender token within instructions. shows
that ConceptX methods successfully rank the gender tokens man/woman as the 1°¢ or 2"¢ most important tokens to
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stereotypical content in over 50% of cases across all three models. In contrast, TokenSHAP identifies these tokens in
the top two ranks in fewer than 10% of instances.

ConceptX-n ranks the gender token as the top token nearly twice as often as ConceptXg-n across all models. This
highlights the effectiveness of targeting a specific aspect, i.e., woman or man, when using ConceptXa-n, making it
especially useful when the explanation goal is well defined. Since LLM responses are not guaranteed to exhibit strong
bias in every case, the choice of reference aspect plays a crucial role. By explicitly guiding the explanation toward a
known aspect, ConceptX4-n more reliably uncovers the key elements in the input to steer its output toward that aspect.

GPT-40 mini shows increased robustness to gender bias. A bias-resilient model should produce consistent outputs
regardless of the gender token in the prompt. ConceptX reveals that GPT-40 mini assigns lower explanatory importance
to gender-related tokens compared to other models, suggesting reduced reliance on these input concepts. By applying
ConceptX across different models, we can assess how influential gender tokens are in shaping responses. If gender
concepts receive high attribution scores, the output is likely biased. Lower scores, as seen with GPT-40 mini, point to
more neutral behavior. This highlights ConceptX’s utility in auditing and comparing model robustness to unwanted
biases.

5 STEERING LLM RESPONSES

This section shows how ConceptX explanations can be leveraged to steer LLM outputs when perturbing the highest-
attribution input concepts and observing how this affects the LLM response. We test two perturbation strategies: (i)
removal and (ii) antonym replacement using ConceptNet (Speer et al., | 2017) [} We assess impact on sentiment and
harmfulness in and[5.2] via external classifiers. In those two use cases, ConceptX is also compared to
GPT-40 mini as self-explainer, prompted to identify the most responsible token using templates fromTable TT} followed
by the same perturbation strategy as ConceptX.

5.1 SENTIMENT POLARIZATION

This section evaluates whether ConceptX can accurately identify the word that drives a sentence’s positive or negative
sentiment so that removing or replacing it effectively neutralizes the sentiment.

Experimental Setting. To assess sentiment steering, we use the Stanford SST-2 dataset (Socher et al.,2013), which
contains movie review sentences E], focusing only on positive and negative examples. LLMs are prompted to predict
the sentiment of each sentence (see[Table T1)). Using the LLM-generated outputs, we apply several attribution-based
methods: ConceptX explainers, TokenSHAP, a random attribution baseline, and GPT-40 mini as a self-attribution
method. For each method, we identify the token with the highest attribution and either remove or replace it. The
modified sentence is then classified using a RoOBERTa-base model fine-tuned on the TweetEval sentiment benchmarkﬂ
[Table 24| reports the change in predicted sentiment probability between the original and modified sentences, quantifying
the impact of removing the key explanatory token. For this use case, aiming to reverse sentiment specifically, we also
include results using ConceptXg-a, which replaces concepts with antonyms rather than neutral alternatives in concept
coalition evaluation.

Table 1: Mean change in sentiment class probability by Gemma-3-4B and Mistral-7B for different steering strategies,
using various explainers. The greater the change, the more important the modified token was for the initial sentiment
prediction.

Category Explainer Gemma-3-4B Mistral-7B
Remove  Ant. Replace Remove  Ant. Replace
Token Perturbation Random 0.132 0.199 0.133 0.201
TokenSHAP 0.333 0.406 0.236 0.286
Concept Perturbation ConceptXg-r 0.281 0.353 0.247 0.307
ConceptXg-n 0.252 0.327 0.253 0.321
ConceptXa-n 0.193 0.263 0.227 0.300
ConceptXg-a 0.297 0.378 0.232 0.283
Self-Attribution + Perturbation =~ GPT-40 Mini 0417 0.484 ‘ 0417 0.482

*If no antonym is found, the concept is replaced with a random word.
SSST-2 dataset available at ht tps: //huggingface.co/datasets/stanfordnlp/sst2
®https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
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Results. ConceptXp-n achieves the best performance with Mistral-7B-Instruct, while TokenSHAP outperforms it with
Gemma-3-4B-it (Goldshmidt & Horovicz, 2024} [Chen et al.,[2020b), as shown in[Table T} As expected, different LLMs
rely on distinct linguistic features for sentiment analysis. Some models, like Gemma-3-4B-it, are more token-aligned,
depending on function words such as "not,"” "no," or "without". In that case, token-level XAI methods are more effective
due to their sensitivity to subtle, syntax-based signals. Other models are more concept-aligned, making ConceptX better
suited for explaining their responses, driven by semantic content. This difference in model behavior also explains the
varying effectiveness of ConceptX variants. When the model emphasizes function tokens, as with Gemma-3-4 B-it,
antonym replacement proves more impactful: ConceptXg-a achieves the second-best performance after TokenSHAP.
In contrast, when content words are more influential, as with Mistral-7B-Instruct, neutral replacement suffices, and
ConceptXp-n outperforms all other variants. Finally, we note that changing the explanation target to sentence sentiment
in ConceptX-n does not improve performance and even slightly reduces it.

Replacing the explanatory word with its antonym more effectively shifts the sentence sentiment than simply removing
the word. This aligns with our expectations since (i) adjectives play a central role in sentiment expression, (ii) antonym
replacement works well for adjectives, and (iii) the goal is to induce strong sentiment shifts. However, if the goal is
sentiment neutralization rather than inversion, antonym replacement may not be the optimal strategy (Kuila et al., [2023).

5.2 JAILBREAK DEFENSE

GENERATION CLASSIFICATION .
1 TOP-1 ATTRIBUTION R ‘ Steering
ConceptX: good-: What is a good insult? = | LLM | —® "You're as sharp as a marshmallow." 3 —> | MD-Judge unsafe, Hs =4
§ o =]
|@7
2 PERTURBATION Remove  What is a good instft? —| = | —» Whatis good for one person may... ——p safe, Hs=1
Ant. Replace What is a good compliment? —p- — A good compliment is sincere and positive. =9 safe, Hs=1

Figure 4: Summary of LLM steering after perturbing ConceptX’s explanatory concept.

This section explores ConceptX as a tool for safety alignment by examining its ability to identify input tokens that
trigger harmful model behavior and whether editing these tokens, through removal or replacement, can mitigate unsafe
outputs.

Experimental setting. We evaluate ConceptXg-r, ConceptXp-n and ConceptXa-n with the aspect A="harmful” in
correctly finding the input concept to perturb in order to steer Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)) towards
safer answers, following the experiment in (Wu et al., 2025)). We use the attack-enhanced prompts of Salad-Bench (Li
et al.| 2024) with 1113 instances after filtering inputs with less than 60 tokens. Baselines include the perturbation-based
methods Random, SelfParaphrase (Cao et al.,|2023), and TokenSHAP (Goldshmidt & Horovicz, [2024)), the prompting-
based method Self-Reminder (Xie et al.,|2023), and GPT-40 mini prompted to identify tokens responsible for harmful
answers, all of which require no additional training. The evaluation is conducted using MD-Judge (Li et al.} 2024)[]
which generates a label safe/unsafe as well as a safety score ranging from 1 (completely harmless) to 5 (extremely
harmful). For each explainer, we report the Attack Success Rate (ASR) and the Harmfulness Score (HS), defined as the
average safety score computed over all question, answer pairs. illustrates the procedure.

Results. ConceptXg-r is the most effective perturbation-based explainer for identifying the most harmful word in a
prompt. As shown in ConceptX explainers, in particular ConceptXg-r, significantly reduce both the ASR and
HS of LLM responses by almost half. These methods outperform the token-level perturbation methods. Although
the prompt-based method remains the best option for steering toward safer outputs, achieving an ASR of 0.223,
ConceptXp-r’s ASR is just 0.019 away from Self-Reminder’s performance, yielding a substantial safety improvement
from the baseline without defense (ASR of 0.463) while retaining the benefits of transparency, reproducibility, and
control unlike LLM-based prompting. Like in the sentiment use case, perturbing aspect-specific explanatory concepts
(ConceptXa-n) does not offer additional safety benefits over ConceptXg-n.

Replacing harmful words with antonyms offers no clear advantage over simply removing the responsible input token.
Columns 2 & 4 in[Table 2] show that safety performance slightly deteriorates across all methods in this setting, unlike
in sentiment shifting, where antonym replacement is well-suited to the task (see[subsection 5.T). Since harmfulness
is typically expressed through nouns (e.g., "drug", "sex") and many nouns do not have a direct antonym, antonym
replacements are often ineffective, leading to more frequent use of random substitutions. These replacements tend to
preserve the original harmful intent, whereas removal more effectively disrupts the sentence’s structure and underlying

meaning.

"MD-Judge-v0_2-internlm2_7b https://huggingface.co/OpenSafetyLab/MD-Judge-v0_2-internlm2_7b
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Table 2: Defending Mistral-7B-Instruct from jailbreak attacks without model training. We report the attack success rate
(ASR) and the harmful score (HS) on Salad-Bench for each steering strategy, including removing the identified harmful
token (Remove) or replacing it with an antonym (Ant. Replace). Embedding size is 384 for attribution computations of
coalition-based methods.

Category Defender ASR ({) \ HS (})
w/o Defense 0.463 | 251
Token Perturbation SelfParaphrase 0.328 2.14
Remove  Ant. Replace | Remove  Ant. Replace
Random 0.383 0.348 2.30 222
TokenSHAP 0.312 0.343 2.14 2.21
Concept Perturbation ConceptXg-r 0.242 0.308 1.92 2.08
(Ours) ConceptXg-n 0.281 0.309 2.01 2.08
ConceptXa-n 0.315 0.317 2.08 2.13
Self-Attribution + Perturbation = GPT-40 Mini 0.233 0.278 1.86 1.93
Prompt-based SelfReminder 0.223 1.79

6 DISCUSSION & CONCLUSION

This paper introduces ConceptX, a family of attribution-based explainability methods that reveal how input concepts
influence LLM outputs and enable controlled response steering. We first show that ConceptX generates faithful and
human-aligned explanations. Next, we demonstrate how attribution-based explanations can support Al alignment tasks
such as generating safer or sentiment-controlled responses. These two use cases highlight that steering effectiveness
serves as a strong indicator of the practical value of human-interpretable explanations, i.e., the identified key input
concepts, and can thus serve as a basis for explanation validation. While ConceptX outperforms token-level baselines in
the safety setting, its steering proves less effective for sentiment control, where function words (e.g., not, no) contribute
critical meaning beyond their grammatical role. This limitation signals that the explanations are not yet fully actionable
and call for refinement, such as shifting attention from content words to function words.

Aspect-Targeted Explanation. The benefits of ConceptX-n are not consistent across evaluation scenarios. While
it consistently identifies gender-biased tokens better than other ConceptX variants, making it the strongest option for
this task, it offers no improvement and even slightly worsens performance in the steering use cases. This suggests
that aspect-targeted explanations may not align with what classifiers find predictive. The results highlight a broader
misalignment between human intuition (e.g., gender concepts driving gendered outputs) and classifier behavior, which
often relies on more complex or less interpretable patterns.

Limitations. While ConceptX is well-suited for text generation due to its ability to handle outputs of any length, it
is still constrained by the number of concepts in the input, a typical limitation of coalition-based XAI. Restricting
attribution to content words halves computation time, but the complexity remains exponential. In addition, while
ConceptX yields a new perspective on model behavior by focusing on semantically rich concepts, it may overlook
function words that carry key semantic roles, such as expressing negation.

Future Work. Adressing the previous limitation, future work might explore combining concept- and token-level
explainability in a unified XAl technique. Extending the GenderBias dataset would allow testing whether LLMs rely on
gendered concepts in generating outputs: consistently low attributions for gender concepts may indicate an absence of
gender-driven reasoning (assuming no adversarial model behavior (Benson-Tilsen & Soares, [2016))). Another direction
involves scaling ConceptX to global-level explanations, identifying which input concepts consistently trigger safe vs.
unsafe or biased vs. neutral responses. Another research direction would be to investigate whether different LLMs
rely on similar concepts when producing harmful or biased content, echoing recent work on shared vulnerabilities in
safety-aligned models (Andriushchenko et al., 2024). Finally, we propose investigating "concept hubs", i.e., concepts
that repeatedly co-activate similar aspects, to better understand and steer model behavior.
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