
Channel Simulation and Distributed Compression with Ensemble Rejection Sampling

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 We study *channel simulation* and *distributed matching*, two fundamental prob-
2 lems with several applications to machine learning, using a recently introduced
3 generalization of the standard rejection sampling (RS) algorithm known as En-
4 semble Rejection Sampling (ERS). For channel simulation, we propose a new
5 coding scheme based on ERS that achieves a near-optimal coding rate. In this
6 process, we demonstrate that standard RS can also achieve a near-optimal coding
7 rate and generalize the result of Braverman and Garg (2014) to the continuous
8 alphabet setting. Next, as our main contribution, we present a distributed matching
9 lemma for ERS, which serves as the rejection sampling counterpart to the Poisson
10 Matching Lemma (PML) introduced by Li and Anantharam (2021). Our result
11 also generalizes a recent work on importance matching lemma (Phan et al, 2024)
12 and, to our knowledge, is the first result on distributed matching in the family
13 of rejection sampling schemes where the matching probability is close to PML.
14 We demonstrate the practical significance of our approach over prior works by
15 applying it to distributed compression. The effectiveness of our proposed scheme is
16 validated through experiments involving synthetic Gaussian sources and distributed
17 image compression using the MNIST dataset.

18

1 Introduction

19 One-shot channel simulation is a task of efficiently compressing a finite collection of noisy samples.
20 Specifically, this can be described as a two-party communication problem where the encoder obtains
21 a sample $X \sim P_X$ and wants to transmit its noisy version $Y \sim P_{Y|X}$ to the decoder, with the
22 communication efficiency measured by the coding cost R (bits/sample), see Figure 1 (left). Since
23 the conditional distribution $P_{Y|X}$ can be designed to target different objectives, channel simulation
24 is a generalized version of lossy compression. As a result, it has been widely adopted in various
25 machine learning tasks such as data/model compression [1, 2, 41, 15], differential privacy [32, 37],
26 and federated learning [18]. While much of the prior work has focused on the point-to-point
27 setting described above, recent research has extended channel simulation techniques to more general
28 distributed compression scenarios [22, 30]. These scenarios often follow a canonical setup, shown
29 in Figure 1 (middle, right), in which the encoder (party A) and the decoder (party B) each aim to
30 generate samples Y_A and Y_B , respectively, according to their own target distributions P_Y^A and P_Y^B ,
31 using a shared source of randomness W . Although their sampling goals may differ, the selection
32 processes are coupled through W , resulting in a non-negligible probability that both parties select
33 the same output. We refer to this quantity as the *distributed matching probability*, which can be
34 leveraged to reduce communication overhead in distributed coding schemes. For example, in the
35 Wyner-Ziv setup [40], where the decoder has access to side information unavailable to the encoder,
36 this framework enables the design of efficient one-shot compression protocols [30].

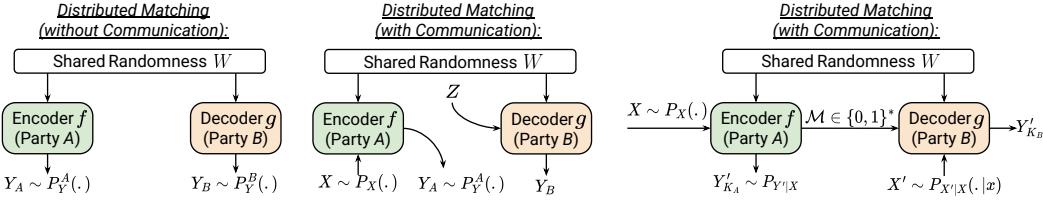


Figure 1: *Left*: Distributed matching without communication. *Middle*: Distributed matching with communication where the decoder’s input $Z \sim P_{Z|X, Y_A}$ represents side information and/or messages from the encoder. *Right*: Distributed compression as an application of the middle scenario.

37 Currently, Poisson Monte Carlo (PMC) [27] and importance sampling (IS) are the two main Monte
 38 Carlo methods being applied across both scenarios [24]. Particularly, the Poisson Functional Rep-
 39 resentation Lemma (PFLR) [23] provides a near-optimal coding cost for channel simulation. The
 40 Poisson Matching Lemma (PML) [22] was later developed for distributed matching scenarios, en-
 41 abling the analysis of achievable error rates in various compression settings. However, PMC requires
 42 an infinite number of proposals, which can cause certain issues involving termination of samples in a
 43 practical scenario when the density functions, typically P_Y^B , are estimated via machine learning. IS-
 44 based approaches, including the importance matching lemma (IML) for distributed compression [30],
 45 bypass this issue by limiting the number of proposals in W to be finite. Yet, the output distribution
 46 from IS is biased [15, 36], and thus not favorable in certain applications. It is hence interesting to see
 47 whether a new Monte Carlo scheme and coding method can be developed to handle both scenarios
 48 without compromising sample quality or termination guarantees.

49 **Contributions.** In this work, we study a new channel simulation scheme for distributed lossy
 50 compression based on *Ensemble Rejection Sampling* (ERS), which combines standard rejection
 51 sampling (RS) with importance sampling (IS) to generate *exact output samples* while maintaining
 52 efficient coding performance. Compared to existing approaches, ERS achieves higher performance
 53 than traditional RS-based methods and outperforms the Importance Matching Lemma (IML) in
 54 low-distortion distributed compression by producing exact samples. Furthermore, ERS naturally
 55 extends to high-dimensional settings where the target distribution P_Y^B must be *learned* via machine
 56 learning methods, a scenario in which other exact approaches, such as PML, may fail to terminate.

57 In addition to our results on distributed compression, we also present in the Appendix B to I the
 58 coding cost analysis for channel simulation. We revisit the runtime-based coding scheme of standard
 59 RS in channel simulation [35, 36], which is commonly regarded as inefficient. We then introduce a
 60 new sorting-based coding scheme achieving a near-optimal coding cost and bypass this limitation.
 61 This scheme naturally extends to ERS and is also shown to achieve competitive coding performance
 62 and thus ERS can be applied in both distributed compression and channel simulation settings.

63 2 Distributed Compression

64 We describe the two setups, with and without communication. Both setups consider two parties:
 65 A (the encoder) and B (the decoder) sharing a source of common randomness $W \in \mathcal{W}$. We then
 66 describe distributed lossy compression as an application of distributed matching.

67 2.1 Distributed Matching Without Communication

68 In this setup, visualized in Figure 1 (left), each party A and B aim to generate samples Y_A and Y_B
 69 from their respective distributions P_Y^A and P_Y^B , which are locally available to each party, by selecting
 70 values from W . Each party constructs their respective mapping f and g as follows:

$$f : \mathcal{W} \rightarrow \mathcal{Y}, \quad g : \mathcal{W} \rightarrow \mathcal{Y},$$

71 with the requirement that $Y_A = f(W) \sim P_Y^A$ and $Y_B = g(W) \sim P_Y^B$. Following prior work on
 72 PML [22], we are interested in the lower bound of the conditional probability that both parties select
 73 the same value, given that $Y_A = y$, with the following form:

$$\Pr(Y_A = Y_B \mid Y_A = y) \geq \Gamma(P_Y^A(y), P_Y^B(y)), \quad (1)$$

74 where in the case of PML, we have $\Gamma(P_Y^A(y), P_Y^B(y)) = (1 + P_Y^A(y)/P_Y^B(y))^{-1}$. For IML,
 75 $\Gamma(P_Y^A(y), P_Y^B(y)) = (1 + (1 + \epsilon)P_Y^A(y)/P_Y^B(y))^{-1}$ where $\epsilon \rightarrow 0$ as the number of proposals increases.

76 **2.2 Distributed Matching With Communication**

77 In practice, communication from the encoder to the decoder is allowed to improve the matching
 78 probability. Also, the target distributions at each end may depend on their respective local inputs.
 79 Specifically, let $(X, Y, Z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ be a triplet of random variables with joint distribution
 80 $P_{X,Y,Z}$. We first define the following mappings, also see Figure 1 (middle):

$$f : \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{Y}, \quad g : \mathcal{W} \times \mathcal{Z} \rightarrow \mathcal{Y},$$

81 where the protocol is as follows:

- 82 1. Encoder (party A): given $X = x \sim P_X$ independent of W , the encoder sets its target
 83 function $P_Y^A = P_{Y|X}(\cdot|x)$ and selects a sample $Y_A = f(x, W) \sim P_Y^A$.
- 84 2. Given $X = x, Y_A = y$, we generate $Z = z \sim P_{Z|X,Y}(\cdot|x, y)$, which can be thought as
 85 some noisy version of (X, Y_A) . Note that the Markov chain $Z - (X, Y_A) - W$ holds.
- 86 3. Decoder (party B): having access to $Z=z$, sets its target distribution to $P_Y^B(\cdot) = \tilde{P}_{Y|Z}(\cdot|z)$,
 87 where $\tilde{P}_{Y|Z}$ can be arbitrary. It then queries a sample $Y_B = g(W, z)$ from the source W .

88 The constraint $Y_B \sim P_Y^B$ is not necessarily satisfied, but this is not required in this setting [22], where
 89 the goal is to ensure the decoder selects the same value as the encoder with high probability. As in
 90 the case without communication, we are interested in establishing the bound with the following form:

$$\Pr(Y_A = Y_B \mid Y_A = y, Z = z, X = x) \geq \Gamma(P_Y^A(y), P_Y^B(y)), \quad (2)$$

91 where for PML and IML, $\Gamma(P_Y^A(y), P_Y^B(y))$ also follows the form discussed in Section 2.1.

92 **Remark 2.1.** Since $Z - (X, Y_A) - W$ forms a Markov chain and Z is input to the decoder, the
 93 communication in this setting happens by designing $P_{Z|X,Y}(\cdot|x, y)$ to include the encoder message.
 94 Finally, this setup generalizes the no-communication one by setting (X, Z) to fixed constants.

95 **2.3 Distributed Lossy Compression**

96 In the Wyner-Ziv distributed compression setting [40], see Figure 1 (middle), the encoder observes
 97 $X = x \sim P_X$, while the decoder has access to correlated side information $X' \sim P_{X'|X}(\cdot|x)$ that is
 98 unavailable to the encoder. Let $P_{Y'|X}(\cdot|x)$ denote the target distribution that the encoder aims to
 99 simulate, which, together with X' , induces the joint distribution $P_{X,X',Y'}$. Given the shared common
 100 randomness W , the encoder first selects $Y'_{K_A} \sim P_{Y'|X}(\cdot|x)$ and sends a message M to the decoder.
 101 The decoder, upon receiving M along with the common randomness W and its side information X' ,
 102 computes an output Y'_{K_B} , where the goal is to ensure that $Y'_{K_A} = Y'_{K_B}$ with high probability.

103 To see that this is a special case of the previous scenario in Section 2.2, we keep the input X
 104 unchanged while setting $Y_A = (Y'_{K_A}, M)$ and $Z = (M, X')$. Details of Y'_{K_A}, Y'_{K_B}, W and M will
 105 be explained in details in Section D.1.

106 **2.4 Bounding Condition**

107 In this work, we often consider the ratio $P_Y(y)/Q_Y(y)$ to be bounded for all y , where P_Y, Q_Y are
 108 the target and proposal distribution, respectively. We formalize this in Definition 2.2.

109 **Definition 2.2.** A pair of distributions (P_Y, Q_Y) is said to satisfy a *bounding condition with constant*
 110 $\omega \geq 1$ if $\max_y P_Y(y)/Q_Y(y) \leq \omega$. Furthermore, let $(X, Y) \sim P_{X,Y}$, a triplet $(P_X, P_{Y|X}, Q_Y)$
 111 satisfies an *extended bounding condition with constant $\omega \geq 1$* if $\max_{x,y} P_{Y|X}(y|x)/Q_Y(y) \leq \omega$.

112 We note that the extended condition is practically satisfied when $(P_{Y|X=x}, Q_Y)$ satisfies the bounding
 113 condition for every x , and P_X has bounded support.

114 **3 Ensemble Rejection Sampling**

115 **Setup and Definitions.** We begin by defining the common randomness W , which includes a set of
 116 exponential random variables to employ the Gumbel-Max trick for IS [30, 36], i.e.:

$$W = \{(B_1, U_1), (B_2, U_2), \dots\}, \text{ where } U_i \sim \mathcal{U}(0, 1) \quad (3)$$

$$B_i = \{(Y_{i1}, S_{i1}), (Y_{i2}, S_{i2}), \dots, (Y_{iN}, S_{iN})\}, \text{ where } Y_{ij} \sim P_Y(\cdot), S_{ij} \sim \text{Exp}(1), \quad (4)$$

Algorithm 1: Ensemble Rejection Sampling - ERS($W; P_Y, Q_Y, \omega = \max_y \frac{P_Y(y)}{Q_Y(y)}$, scale = 1)

Input: Target distribution P_Y , Proposal distribution Q_Y , and the source of randomness W (see Section D.1). Default value $\omega = \max_y \frac{P_Y(y)}{Q_Y(y)}$ unless override by some value $> \omega$.

Default scaling factor scale = 1 unless override by some value within $(0, 1]$.

Output: Selected Index K and sample $Y_K \sim P_Y$

1. Observe batch $\{B_i, U_i\}$

2. **Gumbel-Max IS.** Select candidate index: $K_i^{\text{cand}} = \operatorname{argmin}_{1 \leq k \leq N} \frac{S_{ik}}{\lambda_{ik}}$, where: $\lambda_{ik} = \frac{P_Y(Y_{ik})}{Q_Y(Y_{ik})}$

3. Compute: $\hat{Z}(Y_{i,1:N}) = \sum_{k=1}^N \lambda_{ik}$, $\bar{Z}(Y_{i,1:N}, K_i^{\text{cand}}) = \hat{Z}(Y_{i,1:N}) + \omega - \lambda_{i,K_i^{\text{cand}}}$

4. **Rejection Step.** Set $K_1 = i$, $K_2 = K_i^{\text{cand}}$, $K = (N-1)i + K_i^{\text{cand}}$ and return Y_K if:

$$U_i \leq \frac{\hat{Z}(Y_{i,1:N})}{\bar{Z}(Y_{i,1:N}, K_i^{\text{cand}})} \cdot \text{scale},$$

else repeat Step 1 with B_{i+1} .

117 where we refer to each B_i as a batch. A selected sample Y_K from W is defined by two indices: the
118 *batch index* K_1 and the *local index* in B_{K_1} , denoted as K_2 . Its *global index* within W is K , where
119 $K = (N-1)K_1 + K_2$ and we write $Y_K \triangleq Y_{K_1, K_2}$.

120 **Sample Selection.** Consider the target distribution $P_{Y|X}(\cdot|x)$, for each batch $B_i \in W$, the ERS
121 algorithm selects a candidate index K_i^{cand} via Gumbel-max IS and decides to accept/reject $Y_{K_i^{\text{cand}}}$
122 based on U_i . This process ensures that the accepted $Y_K \sim P_{Y|X}(\cdot|x)$ and is denoted for simplicity as:

$$K = \text{ERS}(W; P_{Y|X=x}, P_Y), \quad (5)$$

123 where the procedure is shown in Figure 6 (top, left) and Algorithm 1. This procedure assumes the
124 bounding condition holds for $(P_{Y|X}(y|x), P_Y(y))$ with ω .

125 3.1 Distributed Compression Protocol

126 We begin by defining the common randomness W . For any integer $\mathcal{V} > 0$ and $U_i \sim \mathcal{U}(0, 1)$, we
127 set $Y_{ij} = (Y'_{ij}, V_{ij})$ in batch B_i within W where $Y'_{ij} \sim P_{Y'}(\cdot)$ (i.e., the ideal output) and $V_{ij} \sim$
128 $\text{Unif}[1:\mathcal{V}]$ (i.e., the random hash value for index j). Algorithm 2 presents the communication proto-
129 col, whose analysis relies on studying the distributed matching probabilities, as detailed in Appendix D
130 and subsequent sections in the appendix.

Algorithm 2: Wyner-Ziv Distributed Compression Protocol

Encoder: Receives $X = x$ and W , performs:

131 1. Select $K_A = \text{ERS}(W; P_{Y'|X=x}, Q_{Y'})$; 2. Sends $(K_{1,A}, V_{K_A})$ to the decoder.

1 **Decoder:** Receives $Z = (V_{K_A}, K_{1,A}, X')$ and W , performs:

1. Keep batch $K_{1,A}$; 2. Remove all j where $V_{K_{1,A},j} \neq V_{K_A}$; 3. Select K_B with $P_{Y'|X'=x'}$.

132 Following Algorithm 2, the encoder selects the index K_A using the ERS procedure such that the
133 selected $Y'_{K_A} \sim P_{Y'|X=x}$. It then constructs the message $M = (K_{1,A}, V_{K_A})$ where $K_{1,A}$ is the batch
134 index of the selected value and V_{K_A} is the associated hashed index of $K_{2,A}$ within batch $K_{1,A}$.

135 The decoder, after receiving the message $M = (K_{1,A}, V_{K_A})$ and the side information X' , aims
136 to infer $K_{2,A}$ with the batch $B_{K_{1,A}}$ by using the posterior distribution $P_{Y'|X'=x'}$. The message
137 $(V_{K_A}, K_{1,A})$ from the encoder will further reduce the decoder's search space within W and improve
138 the matching probability (details in Appendix L). This selection process (step 3) is based on the
139 Gumbel-max IS process, i.e. line 2 in Algorithm 1.

140 **Why communicate the batch index?** Compared to the existing protocol using PML, our protocol
141 includes the batch index which results in a slight $\mathcal{O}(1)$ overhead. This is because, in practice,
142 the target distribution at the decoder $P_{Y'|X'=x'}$ is often learned via deep learning since its closed
143 form is unknown. Consequently, it is difficult to obtain an upper bound for the likelihood ratio

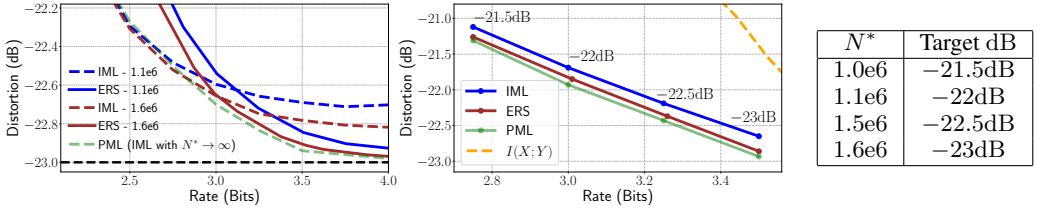


Figure 2: *Left*: Comparison of RD performance between different matching results for the Gaussian setting when targeting -23dB distortion (**black dotted line**), with the average number of proposals $N^* \in \{1.1\text{e}6, 1.6\text{e}6\}$. *Right*: RD curves of different methods. Each group targets the same distortion levels and uses the same average number of proposals N^* for ERS and IML, shown in the right table.

144 $P_{Y'|X'=x'}(y)/Q_{Y'}(y)$, which is crucial for guaranteeing algorithmic termination (Step 4 in Algorithm
145 1). This challenge is not unique to ERS but also affects other exact sampling algorithms, such as
146 Poisson Monte Carlo [36], rendering PML inapplicable in this setting without a strong assumption on
147 the posterior distribution, i.e. Gaussian distribution. For ERS, since the cost of transmitting the batch
148 size $K_{1,A}$ is $\mathcal{O}(1)$ for sufficiently large N , the overall coding cost is not significantly degraded, and
149 this overhead becomes negligible when compressing multiple samples jointly.

150 Finally, we provide the theoretical guarantee for our communication protocol below.

151 **Proposition 3.1.** *Fix any $\epsilon > 0$ and let $(P_X, P_{Y'|X}, Q_{Y'})$ satisfies the extended bounding condition
152 with ω , for $N \geq \max(N_0(\epsilon), \omega)$ where $N_0(\epsilon)$ is defined in Remark D.5, we have:*

$$\Pr(Y'_{K_A} \neq Y'_{K_B}) \leq \mathbb{E}_{X, Y', X'} \left[1 - \left(1 + \epsilon + (1 + \epsilon) \mathcal{V}^{-1} 2^{i(Y'; X) - i(Y'; X')} \right)^{-1} \right] \quad (6)$$

153 where $i_{Y', X}(y'; x) = \log P_{Y'|X}(y'|x) - \log P_{Y'}(y')$ is the information density. The coding cost is
154 $\log(\mathcal{V}) + r$ where r is the coding cost of sending the selected batch index $K_{1,A}$ and $r \leq 4$ bits.

155 *Proof:* See Appendix L

156 **Remark 3.2.** *We can reduce the overhead r in Proposition D.6 by jointly compressing n i.i.d. samples,
157 i.e., to $4/n$ per sample. This also improves the matching probability in practice (see Appendix L).*

158 4 Experiments

159 We study the performance of ERS in the Wyner-Ziv distributed compression setting on synthetic
160 Gaussian sources and MNIST dataset. All experiments are conducted on a single NVIDIA RTX
161 A-4500. We use the batch communication version of ERS and encode the index with unary coding.

162 4.1 Synthetic Gaussian Sources

163 We study and compare the performance of ERS, IML and PML in the Gaussian setting. Let
164 $X \sim \mathcal{N}(0, \sigma_X^2)$ with $\sigma_X^2 = 1$ and is truncated within the range $[-2, 2]$ and the side information
165 $X' = X + \zeta$ where $\zeta \sim \mathcal{N}(0, \sigma_{X'|X}^2)$ and $\sigma_{X'|X}^2 = 0.01$. The proposal and target distributions are
166 $Q_{Y'}(\cdot) = \mathcal{N}(0, \sigma_{Y'}^2)$, $P_{Y'|X}(\cdot|x) = \mathcal{N}(x, \sigma_{Y'|X}^2)$, $P_{Y'|X'}(\cdot|x') = \mathcal{N}(x' \sigma_X^2 / \sigma_{X'}^2, \sigma_{Y'}^2 - \sigma_X^4 / \sigma_{X'}^2)$
167 where $\sigma_{Y'}^2 = \sigma_X^2 + \sigma_{Y'|X}^2$, $\sigma_{X'}^2 = \sigma_X^2 + \sigma_{X'|X}^2$, and $\sigma_{Y'|X}^2$ is a fixed variance corresponding to the desired
168 distortion level set by the encoder. The expression for $P_{Y'|X'}(\cdot|x')$ is an approximation derived from
169 the posterior distribution assuming X is unbounded (i.e., not truncated). We jointly compress 4 i.i.d.
170 samples to improve rate-distortion (RD) performance and average the result over 10^6 runs.

171 Figure 2 (left) investigates the RD tradeoff between ERS and IML with similar number of proposals
172 (on average) N^* while targeting a distortion level of -23dB , i.e. $\sigma_{Y'|X}^2 = 5\text{e}^{-3}$. We observe that
173 ERS outperforms IML in distortion regimes close to the target level, i.e. below -22.6dB as the rate
174 increases, since IML samples are inherently biased. This bias also causes IML, with $N^* = 1.6\text{e}6$, to
175 be less effective than ERS, with $N^* = 1.1\text{e}6$, for a distortion regime lower than -22.8dB , despite
176 having more samples. Also, the batch index conveys information that helps improve the matching
177 probability, similar to Figure 7 (middle), compensating for the overhead. Overall, for appropriately
178 chosen N^* , ERS is more effective than IML on achieving low distortion levels while remaining
179 competitive compared to PML, which is unbiased and requires no extra overhead.

180 In Figure 2 (right), we plot the RD tradeoff at different target distortion levels. We compare the
181 distortion achieved by different methods at the rate where ERS reaches distortion within approximately

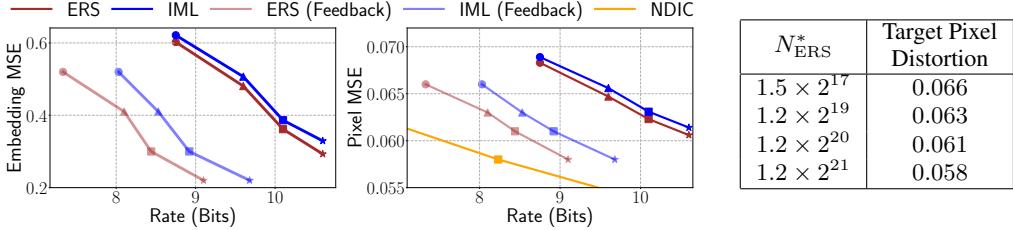


Figure 3: MNIST Rate-distortion comparison for pixels, i.e. $\|X - \hat{X}\|_2^2$ and embeddings domain, i.e. $\|\mu(X) - Y'\|_2^2$, between ERS and IML. Identical markers (from top to bottom) indicate the same target models, with the target distortion levels corresponding to those achieved using feedback.

182 0.2 dB of the target. Again, for appropriately chosen batch size N and rate, ERS outperforms IML
 183 due to the inherent bias in importance sampling, and achieves performance close to that of PML.
 184 Note that PML does not generalize to practical setting when P_Y^B is estimated via machine learning
 185 as the decoder cannot determine the number of samples upfront. In general, all three approaches
 186 outperform the asymptotic baseline $I(X; Y)$ in which there is no side information. Finally, standard
 187 RS achieves -17 dB at 10 bits when targeting -23 dB, falling outside the plotted range.

188 4.2 Distributed Image Compression

189 We apply our method in the task of distributed image compression [39, 28] with the MNIST
 190 dataset[20]. Following the setup in [30], the side information is the cropped bottom-left quadrant
 191 of the image and the source is the remaining. To reduce the complexity caused by high dimen-
 192 sionality, we use an encoder neural network to project the data into a 3D embedding space. This
 193 vector and the side information are input into a decoder network to output the reconstruction \hat{X} ,
 194 and the process is trained end-to-end under the β -VAE framework. For each input $X = x$, we set
 195 the target distribution $P_{Y'|X}(\cdot|x) = \mathcal{N}(\mu(x), \sigma^2(x))$ where $\mu(\cdot), \sigma(\cdot)$ are the outputs of the β -VAE
 196 network. Since $P_{Y'|X}$ is unknown, we employ a neural contrastive estimator [17] to learn the ratio
 197 between $P_{Y'|X}(y'|x')/Q_{Y'}(y')$ from data, where $Q_{Y'} = \mathcal{N}(0, 1)$. Since the upperbound of this ratio
 198 is unknown, PML cannot be applied [36]. Models and training details are in Appendix N and O.

199 Extending the scope of the previous experiment, we study the interaction between matching schemes
 200 and feedback mechanisms for error correction, introduced in previous IML work [30]. Here, the
 201 decoder returns its retrieved index to the encoder, which then confirms or corrects it with the cost of 1
 202 plus $\log(N/\mathcal{V})$ for ERS and $\log(N_{IML}^*/\mathcal{V})$ for IML, see Appendix M. This is relevant when aiming to
 203 mitigate mismatching errors or to generate samples that closely follow the encoder’s target distribution,
 204 as in applications such as differential privacy. Since IML produces biased samples, we reduce this
 205 bias by setting the number of proposals to the maximum feasible value in our simulation system, i.e.,
 206 $N_{IML}^* = 2^{26}$, ensuring it exceeds the ones used by ERS, denoted N_{ERS}^* , in this experiment.

207 We train four models, each targeting a different pixel distortion level, and compare their performance
 208 in Figure 3, where two samples are compressed jointly. With feedback, ERS consistently outperforms
 209 IML in both embedding and pixel domains. This is because the feedback scheme in IML incurs a
 210 higher return message cost due to the large N_{IML}^* , while still introducing slight bias in its output
 211 samples. In contrast, ERS operates with a smaller batch size N , significantly reducing the correction
 212 message size without compromising the sample quality. Without feedback, under a distortion regime
 213 close to the target level, ERS outperforms IML for reasons discussed in the Gaussian experiment,
 214 though the performance gap is smaller. We include NDIC results [28]—a specialized deep learning
 215 approach that targets optimal RD performance. On the other hand, our method operates on a
 216 probabilistic matching nature and can accommodate scenarios with distributional constraints.

217 5 Conclusion

218 This work explores the use of the RS-based family for channel simulation and distributed compression.
 219 We focus on ERS where we develop a new efficient coding scheme for channel simulation and derive
 220 a performance bound for distributed compression that is comparable to PML [22]. We validate our
 221 theoretical results on both synthetic and image datasets, showing their advantages and adaptability
 222 across various setups, including feedback-based error correction schemes. From these results, possible
 223 future directions include improving the current runtime efficiency—which is $O(\omega)$ —by incorporating
 224 acceleration techniques such as space partitioning [16] or importance sampling methods like Multiple
 225 IS [8], as well as extending the distributed compression setup to incorporate differential privacy.

226 **References**

227 [1] Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. *Advances in*
228 *neural information processing systems*, 33:12367–12376, 2020.

229 [2] Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
230 tradeoff. In *International Conference on Machine Learning*, pages 675–685. PMLR, 2019.

231 [3] Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. In
232 *International Colloquium on Automata, Languages, and Programming*, pages 502–513. Springer,
233 2014.

234 [4] Paul Cuff. Distributed channel synthesis. *IEEE Transactions on Information Theory*, 59(11):
235 7071–7096, 2013.

236 [5] Majid Daliri, Christopher Musco, and Ananda Theertha Suresh. Coupling without communica-
237 tion and drafter-invariant speculative decoding. *arXiv preprint arXiv:2408.07978*, 2024.

238 [6] George Deligiannidis, Arnaud Doucet, and Sylvain Rubenthaler. Ensemble rejection sampling.
239 *arXiv preprint arXiv:2001.09188*, 2020.

240 [7] George Deligiannidis, Pierre E Jacob, El Mahdi Khrbch, and Guanyang Wang. On importance
241 sampling and independent metropolis-hastings with an unbounded weight function. *arXiv*
242 *preprint arXiv:2411.09514*, 2024.

243 [8] Víctor Elvira, Luca Martino, David Luengo, and Mónica F Bugallo. Generalized multiple
244 importance sampling. 2019.

245 [9] Gergely Flamich. Greedy poisson rejection sampling. *Advances in Neural Information Process-
246 ing Systems*, 36:37089–37127, 2023.

247 [10] Gergely Flamich and Lucas Theis. Adaptive greedy rejection sampling. *arXiv preprint
248 arXiv:2304.10407*, 2023.

249 [11] Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Fast relative entropy
250 coding with a* coding. In *International Conference on Machine Learning*, pages 6548–6577.
251 PMLR, 2022.

252 [12] Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Faster relative entropy
253 coding with greedy rejection coding. *Advances in Neural Information Processing Systems*, 36:
254 50558–50569, 2023.

255 [13] Gergely Flamich, Sharang M Srivastava, and Aaron B Wagner. The redundancy of non-singular
256 channel simulation. *arXiv preprint arXiv:2501.14053*, 2025.

257 [14] Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The communica-
258 tion complexity of correlation. In *Twenty-Second Annual IEEE Conference on Computational
259 Complexity (CCC'07)*, pages 10–23. IEEE, 2007.

260 [15] Marton Havasi, Robert Peherz, and José Miguel Hernández-Lobato. Minimal random code
261 learning: Getting bits back from compressed model parameters. In *7th International Conference
262 on Learning Representations, ICLR 2019*, 2019.

263 [16] Jiajun He, Gergely Flamich, and José Miguel Hernández-Lobato. Accelerating relative entropy
264 coding with space partitioning. *Advances in Neural Information Processing Systems*, 37:
265 75791–75828, 2024.

266 [17] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized
267 approximate ratio estimators. In *International conference on machine learning*, pages 4239–
268 4248. PMLR, 2020.

269 [18] Berivan Isik, Francesco Pase, Deniz Gunduz, Sanmi Koyejo, Tsachy Weissman, and Michele
270 Zorzi. Adaptive compression in federated learning via side information. In *International
271 Conference on Artificial Intelligence and Statistics*, pages 487–495. PMLR, 2024.

272 [19] Szymon Kobus, Lucas Theis, and Deniz Gündüz. Gaussian channel simulation with rotated
 273 dithered quantization. In *2024 IEEE International Symposium on Information Theory (ISIT)*,
 274 pages 1907–1912. IEEE, 2024.

275 [20] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
 276 to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

277 [21] Cheuk Ting Li. Pointwise redundancy in one-shot lossy compression via poisson functional
 278 representation. In *International Zurich Seminar on Information and Communication (IZS 2024)*.
 279 *Proceedings*, pages 28–29. ETH Zürich, 2024.

280 [22] Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the
 281 poisson matching lemma. *IEEE Transactions on Information Theory*, 67(5):2624–2651, 2021.

282 [23] Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications
 283 to coding theorems. *IEEE Transactions on Information Theory*, 64(11):6967–6978, 2018.

284 [24] Cheuk Ting Li et al. Channel simulation: Theory and applications to lossy compression and
 285 differential privacy. *Foundations and Trends® in Communications and Information Theory*, 21
 286 (6):847–1106, 2024.

287 [25] Jingbo Liu, Paul Cuff, and Sergio Verdú. One-shot mutual covering lemma and marton’s inner
 288 bound with a common message. In *2015 IEEE International Symposium on Information Theory*
 289 (*ISIT*), pages 1457–1461. IEEE, 2015.

290 [26] Zhixin Liu, Samuel Cheng, Angelos D Liveris, and Zixiang Xiong. Slepian-wolf coded nested
 291 lattice quantization for wyner-ziv coding: High-rate performance analysis and code design.
 292 *IEEE Transactions on Information Theory*, 52(10):4358–4379, 2006.

293 [27] Chris J Maddison. A poisson process model for monte carlo. *Perturbation, Optimization, and*
 294 *Statistics*, pages 193–232, 2016.

295 [28] Nitish Mital, Ezgi Özyıldız, Ali Garjani, and Deniz Gündüz. Neural distributed image com-
 296 pression using common information. In *2022 Data Compression Conference (DCC)*, pages
 297 182–191. IEEE, 2022.

298 [29] Ezgi Özyıldız, Johannes Ballé, and Elza Erkip. Learned wyner-ziv compressors recover binning.
 299 *arXiv preprint arXiv:2305.04380*, 2023.

300 [30] Buu Phan, Ashish Khisti, and Christos Louizos. Importance matching lemma for lossy compres-
 301 sion with side information. In *International Conference on Artificial Intelligence and Statistics*,
 302 pages 1387–1395. PMLR, 2024.

303 [31] Anup Rao and Amir Yehudayoff. *Communication Complexity: and Applications*. Cambridge
 304 University Press, 2020.

305 [32] Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, and Lucas Theis. Optimal
 306 compression of locally differentially private mechanisms. In *International Conference on*
 307 *Artificial Intelligence and Statistics*, pages 7680–7723. PMLR, 2022.

308 [33] Eva C Song, Paul Cuff, and H Vincent Poor. The likelihood encoder for lossy compression.
 309 *IEEE Transactions on Information Theory*, 62(4):1836–1849, 2016.

310 [34] Sharang Srivastava, Rochelle Barsz, Elizabeth Polito, and Aaron Wagner. Fast channel simulation
 311 via error-correcting codes. *Advances in Neural Information Processing Systems*, 37:107932–
 312 107959, 2024.

313 [35] Michael Steiner. Towards quantifying non-local information transfer: finite-bit non-locality.
 314 *Physics Letters A*, 270(5):239–244, 2000.

315 [36] Lucas Theis and Noureddin Y Ahmed. Algorithms for the communication of samples. In
 316 *International Conference on Machine Learning*, pages 21308–21328. PMLR, 2022.

317 [37] Aleksei Triastcyn, Matthias Reisser, and Christos Louizos. Dp-rec: Private & communication-
 318 efficient federated learning. *arXiv preprint arXiv:2111.05454*, 2021.

319 [38] Sergio Verdú. Non-asymptotic achievability bounds in multiuser information theory. In *2012*
320 *50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pages
321 1–8. IEEE, 2012.

322 [39] Jay Whang, Anish Acharya, Hyeji Kim, and Alexandros G Dimakis. Neural distributed source
323 coding. *arXiv preprint arXiv:2106.02797*, 2021.

324 [40] Aaron Wyner and Jacob Ziv. The rate-distortion function for source coding with side information
325 at the decoder. *IEEE Transactions on information Theory*, 22(1):1–10, 1976.

326 [41] Yibo Yang, Justus Will, and Stephan Mandt. Progressive compression with universally quantized
327 diffusion models. In *The Thirteenth International Conference on Learning Representations*,
328 2025. URL <https://openreview.net/forum?id=CxXGvKRDnL>.

329 [42] Ram Zamir and Shlomo Shamai. Nested linear/lattice codes for wyner-ziv encoding. In *1998*
330 *Information Theory Workshop (Cat. No. 98EX131)*, pages 92–93. IEEE, 1998.

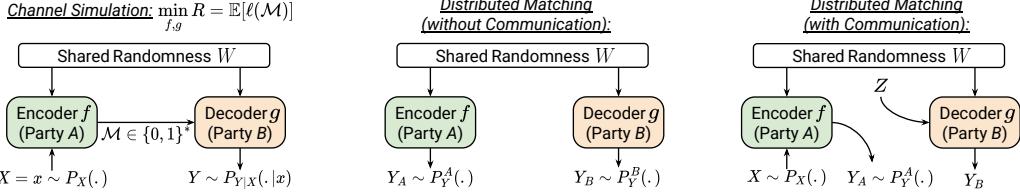


Figure 4: *Left:* Channel simulation setup. *Middle:* Distributed matching without communication. *Right:* Distributed matching with communication where the decoder’s input $Z \sim P_{Z|X, Y_A}$ represents side information and/or messages from the encoder.

331 A Related Work

332 *Channel Simulation.* Our work introduces a novel channel simulation algorithm based on standard
 333 RS and ERS [6]. Our results enhance the coding efficiency compared to prior works [13, 36, 35] for
 334 standard RS and extend the best-known results for RS [3] to continuous settings. A related and more
 335 widely studied scheme in channel simulation is greedy rejection sampling (GRS), which can achieve
 336 a near-optimal coding cost. However, GRS is also more computationally intensive when applied to
 337 continuous distributions [10, 14, 12] as it requires iteratively evaluating a complex and potentially
 338 intractable integral. Our work studies ERS, the generalized version of standard RS, and shows a new
 339 coding scheme to achieve a near-optimal bound for a continuous alphabet. The ERS-based algorithm
 340 can be considered as an extension of the IS-based method for exact sampling setting [30, 36] and
 341 serves as a complementary approach to existing exact algorithms, such as the PFRL [23] and its faster
 342 variants [9, 11, 16]. Finally, there exist other channel simulation methods, though these are restricted
 343 to specific distribution classes [1, 19, 34].

344 *Distributed Compression.* In distributed compression, one requires a generalized form of channel
 345 simulation, i.e. distributed matching, to reduce the coding cost, with current approaches include
 346 PML [22] and IML [30], as discussed earlier. Prior work has examined the matching probability of
 347 standard RS in various settings, primarily for discrete alphabets [5, 31]. Our method builds on ERS,
 348 a new RS-based scheme, and shows that its performance in distributed matching is comparable to
 349 PML, enabling practical applications in distributed compression. Other information-theoretic [25,
 350 33, 38] and quantization-based approaches [26, 42] for this problem are generally impractical for
 351 implementation. Meanwhile, recent work has explored neural networks-based solutions [28, 39],
 352 with some provides empirical evidence that neural networks can learn to perform binning [29].

353 B Background: Channel Simulation

354 Let $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ be a pair of random variables with joint distribution $P_{X,Y}$, with P_X and P_Y
 355 are their respective marginal distributions. In this setup, see Figure 4 (left), the encoder observes
 356 $X = x \sim P_X(\cdot)$ and wants to communicate a sample $Y \sim P_{Y|X}(\cdot|x)$ to the decoder, with the coding
 357 cost of R (bits/sample). Given that both parties share the source of common randomness $W \in \mathcal{W}$
 358 independent of X , we define f and g to be the encoder and decoder mapping as follow:

$$f : \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{M}; \quad g : \mathcal{M} \times \mathcal{W} \rightarrow \mathcal{Y},$$

359 where the encoder message $\mathcal{M} = \{0, 1\}^*$ is a binary string with length $\ell(\mathcal{M})$ and $R = \mathbb{E}[\ell(\mathcal{M})]$.
 360 Here, we require that the decoder’s output follows $P_{Y|X}(\cdot|x)$, i.e., $Y = g(f(x, W), W) \sim P_{Y|X}(\cdot|x)$.
 361 Depending on the encoding and decoding function f and g , the specification of what \mathcal{W} includes
 362 varies. A general requirement for a channel simulation scheme to be efficient is that R satisfies:

$$R \leq I(X; Y) + c_1 \log(I(X; Y) + c_2) + c_3, \quad (7)$$

363 where $I(X; Y)$ is the mutual information between X and Y and the theoretical optimal solution
 364 attainable in the asymptotic (i.e., infinite blocklength) setting [4]. Different techniques may produce
 365 slightly different coding costs, characterized by the positive constants c_1 , c_2 , and c_3 [14, 21], but any
 366 approach that fails to achieve the leading term $I(X; Y)$ is generally considered inefficient.

367 C Rejection Sampling

368 We review the existing coding scheme of standard RS and introduces a new technique that achieves a
 369 bound comparable to (7). We then discuss results on matching probability bounds for RS and GRS.

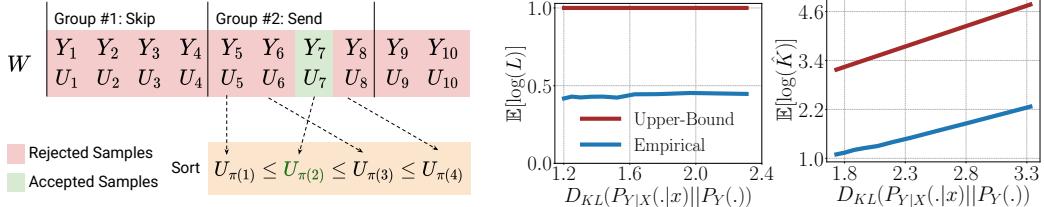


Figure 5: *Left:* Visualization of our Sorting Method for Standard RS. *Right:* Empirical results comparing $E[\log(L)]$ and $E[\log(\hat{K})]$ with their associated theoretical upper-bound across different target distribution. We use $P_Y(\cdot) = \mathcal{N}(0, 1.0)$ and $P_{Y|X}(\cdot|x) = \mathcal{N}(1.0, \sigma^2)$ where $\sigma^2 \in [0.01, 0.1]$.

370 **Sample Selection.** We define the common randomness $W = \{(U_1, Y_1), (U_2, Y_2), \dots\}$, where each
 371 $U_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(0, 1)$ and each $Y_i \stackrel{\text{i.i.d.}}{\sim} P_Y$, and require that the triplet $(P_X, P_{Y|X}, P_Y)$ satisfies the extended
 372 bounding condition in Definition 2.2 with ω . Given $X=x$, the encoder picks the first index K where
 373 $U_K \leq \frac{P_{Y|X}(Y_K|x)}{\omega P_Y(Y_K)}$, obtaining $Y_K \sim P_{Y|X}(\cdot|x)$.

374 **Runtime-Based Coding.** This approach encodes the sample following the entropy of $H(K)$. Since
 375 each individual sample Y_i has the acceptance probability $\Pr(\text{Accept}) = \omega^{-1}$, we can compress K
 376 with a coding cost of $R \leq H[K] + 1 \leq \log(\omega) + 2$, which is inefficient compared to $I(X; Y)$. For
 377 this reason, GRS is often preferred, but with practical limitations as discussed in Section A.

378 **Our Approach.** Unlike the previous method, where the coding of K is independent of W , we aim
 379 to design a scheme that leverages the availability of W at both parties, thereby reducing the coding
 380 cost R through the conditional entropy $H[K \mid W]$. Our *Sorting Method* operates on this idea, where
 381 instead of sending K , we send the rank of U_K within a subset in W . Assume that the encoder and
 382 decoder agree on the value of ω prior to communication, we first collect every $\lfloor \omega \rfloor$ proposals into
 383 one group, ($\lfloor \cdot \rfloor, \lceil \cdot \rceil$ are floor and ceil functions respectively). We encode two messages: one for the
 384 group index L and one for the rank \hat{K} of the selected U_K within that group, in particular:

- 385 1. *Encoding L :* The encoder sends the ceiling $L = \lceil \frac{K}{\lfloor \omega \rfloor} \rceil$, i.e. $L = 2$ in Figure 5 (left). The
 386 decoder then knows $(L-1)\lfloor \omega \rfloor + 1 \leq K \leq L\lfloor \omega \rfloor$, i.e. K is in group L .
- 387 2. *Encoding \hat{K} :* The encoder and decoder sort the list of U_i for $(L-1)\lfloor \omega \rfloor + 1 \leq i \leq L\lfloor \omega \rfloor$:

$$U_{\pi(1)} \leq U_{\pi(2)} \leq \dots \leq U_{\pi(\lfloor \omega \rfloor)}$$

388 where $\pi(\cdot)$ maps the sorted indices with the original ones. The encoder sends the rank of
 389 U_K within this list, i.e. sends the value \hat{K} such that $K = \pi(\hat{K})$, which the decoder uses to
 retrieve Y_K accordingly. This corresponds to $\hat{K} = 2$ in Figure 5 (left).

390 **Coding Cost.** In terms of the coding cost at each step, i.e., $E[\log L]$ and $E[\log \hat{K}]$, we have:

$$E[\log L] \leq 1 \text{ bit}, \quad E[\log \hat{K}] \leq D_{KL}(P_{Y|X}(\cdot|x) \parallel P_Y(\cdot)) + \log(e) \text{ bits}, \quad (8)$$

391 where Figure 5 (right) shows the empirical results verifying the bounds. The proof for these bounds
 392 are shown in Appendix F.2. We then perform entropy coding for each message separately using
 393 Zipf's distribution and prefix-free coding. Proposition C.1 shows their overall coding cost:

394 **Proposition C.1.** *Given $(X, Y) \sim P_{X,Y}$ and K defined as above. Then we have:*

$$R \leq I(X; Y) + \log(I(X; Y) + 1) + 9, \quad (9)$$

395 *Proof:* See Appendix F.4.

396 Note that the approach of Braverman and Garg [3] for discrete distributions can be extended to the
 397 continuous case, included in Appendix F.1 for completeness. Our sorting mechanism is fundamentally
 398 different and can be extended to the more general ERS framework, where incorporating the method
 399 of Braverman and Garg [3] is nontrivial.

400 **Distributed Matching.** In distributed matching setups in Section 2 where both parties use standard RS
 401 to select samples from their respective distributions, we show in Appendix G.2 that RS performance

402 is not as strong compared to PML and IML. For GRS, we provide an analysis via a non-trivial
 403 example in Appendix H.2, where we managed to construct target and proposal distributions such
 404 that $\Pr(Y_A=Y_B \mid Y_A=y) \rightarrow 0.0$, even when $P_Y^A(y) = P_Y^B(y)$. In contrast, this probability is greater
 405 than 1/2 for PML, thus concluding that RS and GRS are less efficient compared to PML and IML.

406 D Ensemble Rejection Sampling

407 We show that ERS[6], an exact sampling scheme that combine RS with IS, can improve the matching
 408 probability and maintain a coding cost close to the theoretical optimum in channel simulation.

409 D.1 Background

410 **Setup and Definitions.** We begin by defining the common randomness W , which includes a set of
 411 exponential random variables to employ the Gumbel-Max trick for IS [30, 36], i.e.:

$$W = \{(B_1, U_1), (B_2, U_2), \dots\}, \text{ where } U_i \sim \mathcal{U}(0, 1) \quad (10)$$

$$B_i = \{(Y_{i1}, S_{i1}), (Y_{i2}, S_{i2}), \dots, (Y_{iN}, S_{iN})\}, \text{ where } Y_{ij} \sim P_Y(\cdot), S_{ij} \sim \text{Exp}(1), \quad (11)$$

412 where we refer to each B_i as a batch. A selected sample Y_K from W is defined by two indices: the
 413 *batch index* K_1 and the *local index* in B_{K_1} , denoted as K_2 . Its *global index* within W is K , where
 414 $K = (N-1)K_1 + K_2$ and we write $Y_K \triangleq Y_{K_1, K_2}$.

415 **Sample Selection.** Consider the target distribution $P_{Y|X}(\cdot|x)$, for each batch $B_i \in W$, the ERS
 416 algorithm selects a candidate index K_i^{cand} via Gumbel-max IS and decides to accept/reject $Y_{K_i^{\text{cand}}}$
 417 based on U_i . This process ensures that the accepted $Y_K \sim P_{Y|X}(\cdot|x)$ and is denoted for simplicity as:

$$K = \text{ERS}(W; P_{Y|X}(\cdot|x), P_Y), \quad (12)$$

418 where the procedure is shown in Figure 6 (top, left) and Algorithm 1 in Appendix I.1. This procedure
 419 assumes the bounding condition holds for $(P_{Y|X}(y|x), P_Y(y))$ with ω . The target and proposal
 420 distributions can be any, e.g., replacing P_Y with Q_Y , as long as the bounding condition holds.

421 **Remark D.1.** Since the accept/reject operation happens on the whole batch B_i , we define the
 422 batch average acceptance probability as Δ (see Appendix I.1) where $\Delta \rightarrow 1.0$ as $N \rightarrow \infty$ and
 423 $N^* = N\Delta^{-1}$ as the average number of proposals (or runtime) required for ERS.

424 D.2 Channel Simulation with ERS

425 For $N = 1$, ERS becomes the standard RS and thus achieves the coding cost shown in Proposition C.1.
 426 When $N \rightarrow \infty$, we have the batch acceptance probability $\Delta \rightarrow 1.0$, meaning that we mostly accept
 427 the first batch and thus achieve the coding cost of Gumbel-max IS schemes [30, 36], which follows
 428 (7). This section presents the result for general N , which is more challenging to establish as discussed
 429 below. We assume the extended bounding condition in Definition 2.2 holds for $(P_X, P_{Y|X}, P_Y)$.

430 **Encoding Scheme.** We view the selection of K_1 as a rejection sampling process on a whole batch
 431 (see Appendix I.1) and apply the Sorting Method to encode K_1 . Specifically, we collect every $\lfloor \Delta^{-1} \rfloor$
 432 batches into one *group of batches*, send the group index and the rank of U_{K_1} within this group. For
 433 the local index K_2 , we use the Gumbel-Max Coding approach [30]. This process is visualized in
 434 Figure 6 (middle), detailed as follow:

- 435 • Encoding K_1 : we represent K_1 by two messages L and \hat{K}_1 . Here, L is the group of batches
 436 index K_1 belongs to and \hat{K}_1 is the rank of U_{K_1} within this L^{th} group, i.e., we sort the list:
 437 $U_{\phi(1)} \leq U_{\phi(2)} \leq \dots \leq U_{\phi(\lfloor \Delta^{-1} \rfloor)}$ and send the rank \hat{K}_1 of U_{K_1} , i.e. $\phi(\hat{K}_1) = K_1$.
- 438 • Encoding K_2 : We first sort the exponential random variables within the selected batch K_1 ,
 439 i.e. $S_{\pi(1)} \leq S_{\pi(2)} \leq \dots \leq S_{\pi(N)}$ and send the rank \hat{K}_2 of S_{K_2} , i.e. $\pi(\hat{K}_2) = K_2$.

440 **Coding Cost.** We outline the main results for the coding costs, details in Appendix I. Specifically:

$$\mathbb{E}[\log L] \leq 1 \text{ bit}, \mathcal{K} = \mathbb{E}[\log \hat{K}_1] + \mathbb{E}[\log \hat{K}_2] \leq D_{KL}(P_{Y|X}(\cdot|x) \parallel P_Y(\cdot)) + 2 \log(e) + 3 \text{ bits}, \quad (13)$$

441 where the second bound is one of the core technical contributions of this work. We empirically
 442 validate the bound on \mathcal{K} in Figure 6(right). Proposition D.2 shows the overall coding cost for K :

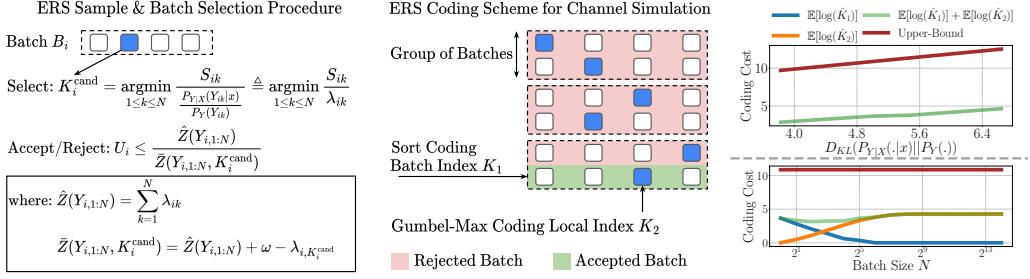


Figure 6: *Left:* Illustration of ERS Selection Method. *Middle:* Coding scheme for channel simulation. *Right:* Empirical results on the coding cost of \hat{K}_1 , \hat{K}_2 and their theoretical upper-bound (in bits). Both figures use $P_Y(\cdot) = \mathcal{N}(0, 1.0)$, where the first figure sets $N = 32$ and varies $P_{Y|X}(\cdot|x) = \mathcal{N}(1.0, \sigma^2)$ with $\sigma^2 \in [0.1, 5] \times 10^{-3}$. The second one fixes $\sigma^2 = 10^{-3}$ while varying N .

443 **Proposition D.2.** *Given $(X, Y) \sim P_{X,Y}$ and K defined as above. For any batch size N , we have:*

$$R \leq I(X; Y) + 2 \log(I(X; Y) + 8) + 12, \quad (14)$$

444 *Proof.* See Appendix I.4.

445 **Remark D.3.** *The upper-bound in (14) is expected to be conservative, as evidenced by the evaluation*
446 *of actual rates in Figure 6 (right). We further demonstrate the improvements in our proposed method*
447 *over the baselines in the distributed compression application, to be elaborated upon in the subsequent*
448 *discussion.*

449 D.3 Distributed Matching Probabilities

450 We consider the communication setup described in Section 2.2, which generalizes the no-
451 communication one in Section 2.1, see Remark 2.1. We use subscripts to distinguish the indices
452 selected by each party, e.g., K_A and K_B denote the global indices chosen by the encoder (party
453 A) and decoder (party B), respectively. Recall that the encoder observes $X = x \sim P_X$ and sets
454 $P_Y^A = P_{Y|X}(\cdot|x)$, while the decoder observes $Z = z$ and sets $P_Y^B = P_{Y|Z}(\cdot|z)$, not necessarily follow
455 $P_{Y|Z}(\cdot|z)$. The target distributions P_Y^A , P_Y^B , and the proposal distribution Q_Y in W must satisfy
456 the bounding conditions outlined in Section 2.4 for the ratio pairs (P_Y^A, Q_Y) and (P_Y^B, Q_Y) . Each
457 party then uses ERS to select their indices:

$$K_A = \text{ERS}(W; P_Y^A, Q_Y), \quad K_B = \text{ERS}(W; P_Y^B, Q_Y), \quad (15)$$

458 where the function $\text{ERS}(\cdot)$ is defined in (12) and we set $Y_A = Y_{K_A}$ and $Y_B = Y_{K_B}$ as the values
459 reported by each party. Proposition D.4 shows a bound on the matching probability in this setting.
460 The bound for the no-communication case naturally follows with appropriate modification, see
461 Appendix J.2.

462 **Proposition D.4.** *Let K_A, K_B, P_Y^A and P_Y^B defined as above. For $N \geq 2$, we have:*

$$\Pr(Y_A = Y_B | Y_A = y, X = x, Z = z) \geq \left(1 + \mu'_1(N) + \frac{P_Y^A(y)}{P_Y^B(y)} (1 + \mu'_2(N))\right)^{-1}, \quad (16)$$

463 where $\mu'_1(N)$ and $\mu'_2(N)$ defined in Appendix J.5 are decay coefficients where $\mu'_1(N), \mu'_2(N) \rightarrow 0$
464 as $N \rightarrow \infty$ with rate N^{-1} under mild assumptions on the distributions $P_Y^A(\cdot)$, $P_Y^B(\cdot)$ and $Q_Y(\cdot)$.

465 *Proof:* See Appendix J.6.

466 **ERS with Batch Index Communication.** In practice, $P_Y^B(y)$ is often learned via deep learning,
467 making it difficult to obtain the upper bound for $P_Y^B(y)/Q_Y(y)$, thus preventing a well-defined select
468 condition. A practical workaround is for the encoder to transmit the selected batch index $K_{1,A}$ to the
469 decoder, limiting the search space to a finite subset. This aligns with Section 2.2 by incorporating
470 $K_{1,A}$ into the construction of Y_A , Z , and Y_B . Its matching bound, see Appendix K, is similar to
471 Proposition D.4, but with different decaying coefficients.

472 **Remark D.5.** *Since the decay coefficients $\mu'_1(N), \mu'_2(N) \rightarrow 0.0$ with the rate N^{-1} , for any small ϵ
473 one can choose $N > N_0(\epsilon)$ such that $\mu'_1(N), \mu'_2(N) \leq \epsilon$.*

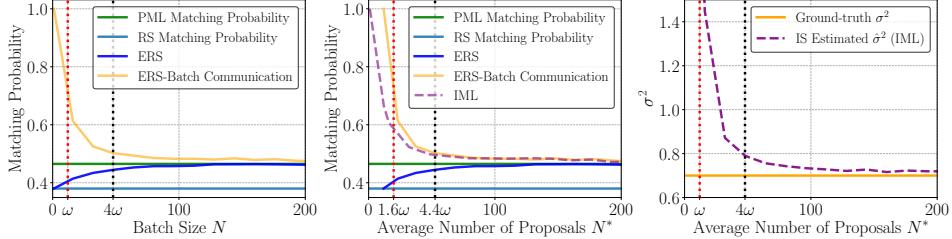


Figure 7: (Best viewed in color) We set $Q_Y = \mathcal{N}(0, 100)$, $P_Y^A = \mathcal{N}(0.5, 0.7)$ and $P_Y^B = \mathcal{N}(-0.5, 0.7)$. *Left*: Matching probabilities versus the batch size N . *Middle*: Matching probabilities versus the average number of proposals where the **red** and **black** dotted lines correspond to the batch sizes ω and 4ω shown in the left figure. *Right*: Sample quality of IS, measured by the estimated variance $\hat{\sigma}^2$.

474 **Empirical Results.** Figure 7 (left, middle) validates and compares ERS matching probability (with
475 and without batch communication) with PML and IML, where we see both ERS approaches converge
476 to PML performance. For the same average number of proposals N^* , Figure 7 (middle) demonstrates
477 that ERS (with batch index communication) achieves consistently higher matching probabilities than
478 IS, while maintaining an unbiased sample distribution. For completeness, Figure 7 (right) shows
479 the bias of IS can remain high even when the number of proposals is sufficiently large, i.e. 4ω . We
480 discuss the overhead of the batch index in Section D.3.1 on application to distributed compression.

481 D.3.1 Lossy Compression with Side Information

482 We apply our matching result with batch index communication to the Wyner-Ziv distributed compres-
483 sion setting [40], where the encoder observes $X=x \sim P_X$ and the decoder has access to correlated side
484 information $X' \sim P_{X'|X}(\cdot|x)$ unavailable to the encoder. Let $P_{Y'|X}(\cdot|x)$ denote the target distribution
485 that the encoder aims to simulate, which, together with X' , induces the joint distribution $P_{X,X',Y'}$.
486 For any integer $\mathcal{V} > 0$ and $U_i \sim \mathcal{U}(0, 1)$, we set $Y_{ij} = (Y'_{ij}, V_{ij})$ in batch B_i within W where:

$$Y'_{ij} \sim Q_{Y'}(\cdot) \text{ (i.e., the ideal output)}, \quad V_{ij} \sim \text{Unif}[1:\mathcal{V}] \text{ (i.e., the hash value for index } j)$$

487 The main idea is, after selecting the index K_A where $Y_{K_A} \sim P_{Y'|X=x}$, the encoder sends its hash V_{K_A}
488 along with the batch index $K_{1,A}$ to the decoder. The decoder, on the other hand, aims to infer K_A
489 by using the posterior $P_{Y'|X'=x'}$. The message $(V_{K_A}, K_{1,A})$ from the encoder will further reduce
490 the decoder's search space within W and improves the matching probability (details in Appendix L).
491 Proposition D.6 provides a bound on the probability the decoder outputs a wrong index:

492 **Proposition D.6.** Fix any $\epsilon > 0$ and let $(P_X, P_{Y'|X}, Q_{Y'})$ satisfies the extended bounding condition
493 with ω , for $N \geq \max(N_0(\epsilon), \omega)$ where $N_0(\epsilon)$ is defined in Remark D.5, we have:

$$\Pr(Y'_{K_A} \neq Y'_{K_B}) \leq \mathbb{E}_{X,Y',X'} \left[1 - \left(1 + \epsilon + (1 + \epsilon) \mathcal{V}^{-1} 2^{i(Y';X) - i(Y';X')} \right)^{-1} \right] \quad (17)$$

494 where $i_{Y';X}(y';x) = \log P_{Y'|X}(y'|x) - \log P_{Y'}(y')$ is the information density. The coding cost is
495 $\log(\mathcal{V}) + r$ where r is the coding cost of sending the selected batch index $K_{1,A}$ and $r \leq 4$ bits.

496 *Proof:* See Appendix L

497 **Remark D.7.** We can reduce the overhead r in Proposition D.6 by jointly compressing n i.i.d.
498 samples, i.e., to $4/n$ per sample. This also improves the matching probability in practice (see
499 Appendix L).

500 E Runtime of ERS.

501 We provide an analysis of ERS runtime. Let $\omega = \max_{x,y} P_{Y|X}(y|x)/Q(y)$ and $\omega_x =$
502 $\max_y P_{Y|X}(y|x)/Q(y)$, where $P_{Y|X}(y|x)$ is the target distribution and Q_Y is the proposal distribution.
503 For the batch size N and input x , we have the following bound on the average batch acceptance
504 probability Δ_x , which we will show in Appendix I.1:

$$\Delta_x \geq \frac{N}{N - 1 + \omega_x} \geq \frac{N}{N - 1 + \omega}, \quad (18)$$

505 Thus, the expected number of batches in ERS is:

$$\text{Expected Number of Batches} = \frac{1}{\Delta_x} \leq \frac{N - 1 + \omega}{N}, \quad (19)$$

506 which leads to the runtime, i.e. the expected number of proposals as:

$$\text{Expected Runtime} = \frac{N}{\Delta_x} \leq N - 1 + \omega. \quad (20)$$

507 In practice, since we typically choose $N = O(\omega)$, the expected runtime is also $O(\omega)$.

508 F Coding Cost of Standard Rejection Sampling

509 For the proof, we generalize and use $P(\cdot)$ and $Q(\cdot)$ as the target and proposal distributions. This
510 allows shorthand the notations while also generalizing the results for arbitrary distributions.

511 F.1 Extension of Braverman and Garg [3]’s Method for Continuous Setting

512 This method is an extension of the work by Braver-
513 man and Garg [3] to the continuous setting. The core
514 idea is to divide the acceptance region into smaller
515 bins, visualized in Figure 8. Specifically, for each pair
516 (U_i, Y_i) from W , we denote $\tilde{U}_i = \omega U_i Q(Y_i)$. The
517 encoder selects the index K according to rejection
518 sampling rule, which is 7 in Figure 8. It then sends
519 the bin index of the first accepted sample, where the
520 bin corresponds to the smallest scaled region that \tilde{U}_K
521 belongs to. In Figure 8, this corresponds to the or-
522 ange region and the content of the message is 3. Then
523 the encoder sends another message which indicates
524 the rank of the selected sample within that bin, which
525 is 1. The decoder then K accordingly. Formally, the two steps are as follow:

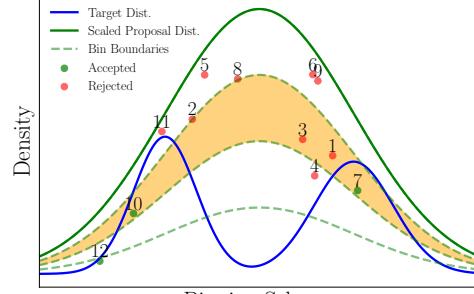


Figure 8: Binning Method for RS.

526 • *Binning*: The encoder sends to the decoder the ceiling $T = \lceil \frac{\tilde{U}_K}{Q(Y_K)} \rceil$. Upon receiving T , the
527 decoder collects the set:

$$\mathcal{S}_T = \{i | (T - 1)Q(Y_i) \leq \tilde{U}_i \leq TQ(Y_i)\}, \quad (21)$$

528 • *Index Selection*: The encoder locates the original chosen index K within \mathcal{S}_T , says G , and
529 send G to the receiver. We have $\mathbb{E}[\log G] \leq 1$.

530 *Binning Step*. We will show the $\mathbb{E}[\log T] \leq D_{KL}(P||Q) + \log(e)$, adapting the proof for the discrete
531 case presented in [31]. First, we note that:

$$Y_K \sim P(\cdot), \quad U_K | Y_K \sim \mathcal{U} \left(0, \frac{P(Y_K)}{\omega Q(Y_K)} \right) \quad (22)$$

532 We then have:

$$\mathbb{E}[\log T] = \mathbb{E} \left[\log \left(\left[\frac{\tilde{U}_K}{Q(Y_K)} \right] \right) \right] \quad (23)$$

$$\leq \mathbb{E} \left[\log \left(1 + \frac{\tilde{U}_K}{Q(Y_K)} \right) \right] \quad (24)$$

$$= \mathbb{E} [\log (1 + \omega U_K)] \quad (25)$$

$$= \mathbb{E} [\mathbb{E} [\log (1 + \omega U_K) | Y_K]] \quad (26)$$

$$= \int_{-\infty}^{+\infty} P(y) \left[\frac{\omega Q(y)}{P(y)} \int_0^{\omega^{-1} P(y)/Q(y)} \log (1 + \omega u) du \right] dy \quad (\text{Due to (22)}) \quad (27)$$

$$\leq \int_{-\infty}^{+\infty} P(y) \left[\frac{\omega Q(y)}{P(y)} \int_0^{\omega^{-1} P(y)/Q(y)} \log \left(1 + \frac{P(y)}{Q(y)} \right) du \right] dy \quad (28)$$

$$\leq \int_{-\infty}^{+\infty} P(y) \left[\frac{\omega Q(y)}{P(y)} \int_0^{\omega^{-1} P(y)/Q(y)} \log \left(\frac{P(y)}{Q(y)} \right) + \frac{Q(y) \log(e)}{P(y)} du \right] dy \quad (29)$$

$$= \int_{-\infty}^{+\infty} P(y) \log \left(\frac{P(y)}{Q(y)} \right) dy + \int_{-\infty}^{+\infty} Q(y) \log(e) dy \quad (30)$$

$$= D_{KL}(P||Q) + \log(e), \quad (31)$$

533 where we use the following results for the last inequality:

$$\log(1 + x) \leq \log(x) + \frac{\log(e)}{x} \quad (\text{for all } x > -1). \quad (32)$$

534 *Index Selection Step.* We first show that $\mathbb{E}[G] \leq 2$ by using recursion. We define \mathcal{A} as an event
535 where the first samples is accepted, i.e. $U_1 \leq \frac{P(Y_1)}{\omega Q(Y_1)}$. Then, if \mathcal{A} happens then we have $G = 1$, i.e.
536 $\mathbb{E}[G|\mathcal{A}] = 1$, since it is also the first sample in \mathcal{S}_T .

537 Before proceeding to the case where \mathcal{A} does not happen, i.e. $\bar{\mathcal{A}}$, we define the following random
538 variable $M = \mathbb{1}[1 \in \mathcal{S}_T]$, i.e. $M = 1$ if the first proposed sample from W stays within the ceiling
539 $(T-1)Q(Y_1) \leq \tilde{U}_1 \leq TQ(Y_1)$ and $M = 0$ otherwise.

540 Then we have the two following recursion identities:

$$\begin{cases} \mathbb{E}[G|\bar{\mathcal{A}}, M = 0] = \mathbb{E}[G] \\ \mathbb{E}[G|\bar{\mathcal{A}}, M = 1] = 1 + \mathbb{E}[G] \end{cases} \quad (33)$$

541 For the first equality, given that the first sample U_1, Y_1 does not stay within \mathcal{S}_T does not implies any
542 information about G , since all the samples are i.i.d. For the second equality takes into account the
543 fact that we now accept the first sample (U_1, Y_1) and repeat the counting process. Hence, we have:

$$\mathbb{E}[G|\bar{\mathcal{A}}] = \Pr(M = 0|\bar{\mathcal{A}})\mathbb{E}[G|\bar{\mathcal{A}}, M = 0] + \Pr(M = 1|\bar{\mathcal{A}})\mathbb{E}[G|\bar{\mathcal{A}}, M = 1] \quad (34)$$

$$= \mathbb{E}[G] + \Pr(M = 1|\bar{\mathcal{A}}) \quad (35)$$

544 We now express $\mathbb{E}[G]$ as follows:

$$\mathbb{E}[G] = \Pr(A)\mathbb{E}[G|A] + \Pr(\bar{A})\mathbb{E}[G|\bar{A}] \quad (36)$$

$$= \Pr(A) + \Pr(\bar{A})(\mathbb{E}[G] + \Pr(M = 1|\bar{A})) \quad (37)$$

545 Rearranging the terms, we obtain:

$$\mathbb{E}[G] = 1 + \frac{\Pr(M = 1, \bar{A})}{\Pr(A)} \quad (38)$$

546 We have $\Pr(A) = \int_{-\infty}^{\infty} \omega^{-1} P(y) Q^{-1}(y) Q(y) dy = \omega^{-1}$. For $\Pr(M = 1, \bar{A})$, we have:

$$\Pr(M = 1, \bar{A}) \leq \Pr(M = 1) \quad (39)$$

$$= \sum_{t=0}^{\infty} \Pr((T-1)Q(Y_1) \leq \tilde{U}_1 \leq (T-1)Q(y), T = t) \quad (40)$$

$$= \sum_{t=0}^{\infty} \Pr((t-1)Q(Y_1) \leq \tilde{U}_1 \leq (t-1)Q(y)) \Pr(T = t) \quad (41)$$

$$= \sum_{t=0}^{\infty} \omega^{-1} \Pr(T = t) \quad (42)$$

$$= \omega^{-1} \quad (43)$$

547 Thus, we obtain $\mathbb{E}[G] \leq 2$ and hence $\mathbb{E}[\log G] \leq 1$.

548 F.2 The Sorting Method

549 The encoding process is as follows:

- 550 • *Grouping*: the encoder sends the ceiling $L = \lceil \frac{K}{\lfloor \omega \rfloor} \rceil$ to the decoder. The decoder then knows $(L-1)\omega + 1 \leq K \leq L\omega$, i.e. K is in range L . We have $\mathbb{E}[\log L] = 1$ bit.
- 551 • *Sorting*: The encoder and decoder both sort the uniform random variables U_i within the selected range $(L-1)\lfloor \omega \rfloor + 1 \leq i \leq L\lfloor \omega \rfloor$. Let the sorted list be $U_{\pi(1)} \leq U_{\pi(2)} \leq \dots \leq U_{\pi(\lfloor \omega \rfloor)}$ where $\pi(\cdot)$ is the mapping between the sorted index and the original unsorted one. The encoder sends the rank of U_K within this list, i.e. sends the value \hat{K} such that $K = \pi(\hat{K})$. The decoder receives \hat{K} and retrieves Y_K accordingly. The coding cost for this step is $D_{KL}(P||Q) + \log(e)$.

558 We provide detail analysis for each step below:

559 *Grouping Step*. Since each proposal is accepted with probability ω^{-1} , this means:

$$\Pr(K > \ell \lfloor \omega \rfloor) = (1 - \omega^{-1})^{\ell \lfloor \omega \rfloor} < \left(\frac{1}{2}\right)^{\ell}, \quad (44)$$

560 where we will prove the RHS inequality in Appendix F.3. Hence, we have $\Pr(L > \ell) < \left(\frac{1}{2}\right)^{-\ell}$ and:

$$\mathbb{E}[L] = \sum_{\ell=0}^{\infty} \Pr(L > \ell) < 1 + 0.5^{-1} + 0.5^{-2} + \dots = 2. \quad (45)$$

561 Finally, using Jensen's inequality, we have:

$$\mathbb{E}[\log L] \leq \log(\mathbb{E}[L]) = 1. \quad (46)$$

562 *Sorting Step*. To bound the coding cost in step 2, we first express $\mathbb{E}[\log \hat{K}]$ with the rule of conditional expectation as follows:

$$\mathbb{E}[\log \hat{K}] = \int_{-\infty}^{\infty} P(y) \mathbb{E}[\log \hat{K} | Y_K = y] dy \quad (47)$$

$$= \int_{-\infty}^{\infty} P(y) \left(\int_{-\infty}^{\infty} \mathbb{E}[\log \hat{K} | Y_K = y, U_K = u] P(U_K = u | Y_K = y) du \right) dy \quad (48)$$

$$= \int_{-\infty}^{\infty} P(y) \left(\int_0^{\frac{P(y)}{\omega Q(y)}} \mathbb{E}[\log \hat{K} | Y_K = y, U_K = u] \frac{\omega Q(y)}{P(y)} du \right) dy, \quad (49)$$

564 where the last step, $P(U_K = u | Y_K = y) = \frac{\omega Q(y)}{P(y)}$ for $0 \leq u \leq \frac{P(y)}{\omega Q(y)}$ is due to the acceptance condition in rejection sampling. We will show in Section F.3.1 that:

$$\mathbb{E}[\log \hat{K} | Y_K = y, U_K = u] \leq \log(\omega u + 1) \quad (50)$$

566 Then, combining this with Equation (49), we obtain:

$$\mathbb{E}[\log \hat{K}] \leq \int_{-\infty}^{\infty} P(y) \left(\int_0^{\frac{P(y)}{\omega Q(y)}} \frac{\omega Q(y)}{P(y)} \log(\omega u + 1) du \right) dy \quad (51)$$

$$\leq \int_{-\infty}^{\infty} P(y) \left(\int_0^{\frac{P(y)}{\omega Q(y)}} \frac{\omega Q(y)}{P(y)} \log \left(\frac{P(y)}{Q(y)} + 1 \right) du \right) dy \quad (52)$$

$$= \int_{-\infty}^{\infty} P(y) \left[\frac{P(y)}{\omega Q(y)} \frac{\omega Q(y)}{P(y)} \log \left(\frac{P(y)}{Q(y)} + 1 \right) \right] dy \quad (53)$$

$$= \int_{-\infty}^{\infty} P(y) \log \left(\frac{P(y)}{Q(y)} + 1 \right) dy \quad (54)$$

$$\leq \int_{-\infty}^{\infty} P(y) \left[\log \left(\frac{P(y)}{Q(y)} \right) + \frac{\log(e)Q(y)}{P(y)} \right] dy \quad (55)$$

$$= D_{KL}(P||Q) + \log(e) \quad (56)$$

567 Hence, we have $\mathbb{E}[\log \hat{K}] \leq D_{KL}(P||Q) + \log(e)$ on average.

568 F.3 Proof for Inequality (44)

569 The proof for this inequality is self-contained. We want to prove that for any $\omega \geq 1$, we have:

$$f(\omega) = (1 - \omega^{-1})^{\lfloor \omega \rfloor} \leq \frac{1}{2}. \quad (57)$$

Consider the behavior of $f(\omega)$ at every interval $[n, n+1)$ where $n \in \mathbb{Z}^+, n \geq 1$. Since $\omega \geq 1$, the function $f_n(\omega) = (1 - \omega^{-1})^n$ is increasing and hence:

$$\sup_{\omega} f_n(\omega) = \left(1 - \frac{1}{n+1}\right)^n = \left(\frac{n}{n+1}\right)^n$$

570 for every interval $[n, n+1)$. We will show that $\sup_{\omega} f_n(\omega)$ is decreasing for $n \geq 1$ and thus we have
571 $\sup_{\omega} f(\omega) = \sup_{\omega} f_1(\omega) = \frac{1}{2}$.

572 Consider the function $g(x) = \left(\frac{x}{x+1}\right)^n$ for $x \geq 1, x \in \mathbb{R}$. Let $h(x) = \ln(g(x)) = x \ln(\frac{x}{x+1})$, then
573 we simply need to show $h(x)$ is decreasing. Consider its first derivative:

$$h'(x) = \ln \left(\frac{x}{x+1} \right) + \frac{1}{x+1} \leq 0, \quad (58)$$

574 since:

$$\ln \left(\frac{x}{x+1} \right) = \ln \left(1 - \frac{1}{x+1} \right) \leq -\frac{1}{x+1} \quad (59)$$

575 due to the inequality $\ln(1 + y) < y$ for all y .

576 F.3.1 Proof for Inequality (50)

577 We begin by applying Jensen's inequality for concave function $\log(x)$:

$$\mathbb{E}[\log \hat{K}|Y_K = y, U_K = u] \leq \log \mathbb{E}[\hat{K}|Y_K = y, U_K = u] \quad (\text{by Jensen's Inequality}) \quad (60)$$

$$= \log \mathbb{E}_L[\mathbb{E}[\hat{K}|Y_K = y, U_K = u, L = \ell]] \quad (61)$$

578 Given K is within the range $L = \ell$ and $U_K = u$, we can express \hat{K} as follows:

$$\hat{K} = |\{U_i < u, (\ell - 1)\lfloor \omega \rfloor + 1 \leq i \leq \ell \lfloor \omega \rfloor\}| + 1, \quad (62)$$

$$= \Omega(u, \ell) + 1 \quad (63)$$

579 i.e. the number of U_i (plus 1 for the ranking) within the range L that has value lesser than u .

580 We can see that the the index i within the range L satisfying $U_i < u$ are from the index that are either
 581 (1) rejected, i.e. index $i < K$ or (2) not examined by the algorithm, i.e. index $i > K$. The rest of this
 582 proof will show the following upperbound:

$$\mathbb{E}[\Omega(u, \ell) | Y_K = y, U_K = u, L = \ell] \leq \omega u, \text{ for any } \ell \quad (64)$$

583 For readability, we split the proof into different proof steps.

584 **Proof Step 1:** We condition on the mapped index of $\pi(\hat{K})$ on the original array:

$$\mathbb{E}[\hat{K} | Y_K = y, U_K = u, L = \ell] \quad (65)$$

$$= \mathbb{E}_{\pi(\hat{K})} \left[\mathbb{E}[\hat{K} | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] \right] \quad (66)$$

$$= \mathbb{E}_{\pi(\hat{K})} \left[\mathbb{E}[\Omega(u, \ell) + 1 | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] \right] \quad (67)$$

$$= \mathbb{E}_{\pi(\hat{K})} \left[\mathbb{E}[\Omega(u, \ell) | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] \right] + 1 \quad (68)$$

$$= \mathbb{E}_{\pi(\hat{K})} \left[\mathbb{E}[\Omega_1(u, \ell, k) + \Omega_2(u, \ell, k) | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] \right] + 1, \quad (69)$$

585 where $\Omega_1(u, \ell, k), \Omega_2(u, \ell, k)$ are the number of $U_i < u$ within the range $L = \ell$ that occurs before
 586 and after the selected index k respectively. Specifically:

$$\Omega_1(u, \ell, k) = |\{U_i < u, (\ell - 1)\lfloor \omega \rfloor + 1 \leq i < (\ell - 1)\lfloor \omega \rfloor + k\}| \quad (70)$$

$$\Omega_2(u, \ell, k) = |\{U_i < u, (\ell - 1)\lfloor \omega \rfloor + k + 1 \leq i \leq \ell\lfloor \omega \rfloor\}|, \quad (71)$$

587 which also naturally gives $\Omega(u, \ell) = \Omega_1(u, \ell, k) + \Omega_2(u, \ell, k)$.

Proof Step 2: Consider $\Omega_2(u, \ell, k)$, since each proposal (Y_i, U_i) is i.i.d distributed and the fact that k is the index of the accepted sample, for every $i > K$, we have:

$$\Pr(U_i < u | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k) = \Pr(U_i < u)$$

588 This gives us:

$$\mathbb{E}[\Omega_2(u, \ell, k) | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] = (\lfloor \omega \rfloor - k) \Pr(U_i < u) \quad (72)$$

$$= (\lfloor \omega \rfloor - k)u \quad (73)$$

$$\leq \frac{(\lfloor \omega \rfloor - k)u}{\Pr(\text{reject a sample})} \quad (74)$$

$$\leq \frac{(\lfloor \omega \rfloor - k)u}{1 - \omega^{-1}} \quad (75)$$

589 **Proof Step 3:** For $\Omega_1(u, \ell, k)$, we do not have such independent property since for every sample
 590 with index $i < K$, we know that they are rejected samples, and hence for $i < k$:

$$\Pr(U_i < u | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k) = \Pr(U_i < u | Y_i \text{ is rejected}) \quad (76)$$

$$= \frac{\Pr(U_i < u, Y_i \text{ is rejected})}{\Pr(Y_i \text{ is rejected})} \quad (77)$$

$$\leq \frac{\Pr(U_i < u)}{\Pr(Y_i \text{ is rejected})} \quad (78)$$

$$= \frac{u}{1 - \omega^{-1}}, \quad (79)$$

591 which gives us:

$$\mathbb{E}[\Omega_2(u, \ell, k) | Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k] \leq \frac{(k - 1)u}{1 - \omega^{-1}} \quad (80)$$

592 To prove Equation (76), note that the following events are equivalent:

$$\{Y_K = y, U_K = u, L = \ell, \pi(\hat{K}) = k\} = \{Y_k = y, U_k = u, Y_{1\dots k-1} \text{ are rejected}\} \quad (81)$$

$$\triangleq \Lambda(u, y, k) \quad (82)$$

593 Here, we note that Y_k, U_k denote the value at index k within W , which is different from Y_K, U_K , the
 594 value selected by the rejection sampler. Hence:

$$\Pr(U_i < u | \Lambda(u, y, k)) = \frac{\Pr(U_i < u, Y_{1\dots k-1} \text{ are rejected} | Y_k = y, U_k = u)}{\Pr(Y_{1\dots k-1} \text{ are rejected} | Y_k = y, U_k = u)} \quad (83)$$

$$= \frac{\Pr(U_i < u, Y_{1\dots k-1} \text{ are rejected})}{\Pr(Y_{1\dots k-1} \text{ are rejected})} \quad (\text{Since } (Y_i, U_i) \text{ are i.i.d}) \quad (84)$$

$$= \Pr(U_i < u | Y_i \text{ is rejected}), \quad (85)$$

595 **Proof Step 4:** From the above result from Step 2 and 3, we have $\Omega(u, \ell) = \Omega_1(u, \ell, k) +$
 596 $\Omega_2(u, \ell, k) \leq \omega u$ and as a result:

$$\mathbb{E}[K | Y_K = y, U_K = u, L = \ell] \leq \frac{(\lfloor \omega \rfloor - 1)u}{1 - \omega^{-1}} + 1 \quad (86)$$

$$\leq \frac{(\omega - 1)u}{1 - \omega^{-1}} + 1 \quad (\text{Since } \lfloor \omega \rfloor \leq \omega) \quad (87)$$

$$= \omega u + 1 \quad (88)$$

597 which completes the proof.

598 F.4 Overall Coding Cost.

599 We now provide the upperbound on $H[K]$ for our *Sorting Method*. Since the message in the *Binning*
 600 *Method* also consists of two parts, the results are the same. For each part of the message, namely L
 601 and K , we encode it with a prefix-code from Zipf distribution [23]. For $H[L]$, we have:

$$H[L] \leq \mathbb{E}_X[\mathbb{E}[\log L | X = x]] + \log(\mathbb{E}_X[\mathbb{E}[\log L | X = x]] + 1) + 1 \quad (89)$$

$$= 3 \text{ bits} \quad (90)$$

602 Hence, the rate for the first message is $R_1 \leq H[L] + 1 = 4$ bits.

603 Similarly, for $H[\hat{K}]$:

$$H[\hat{K}] \leq \mathbb{E}_X[\mathbb{E}[\log \hat{K} | X = x]] + \log(\mathbb{E}_X[\mathbb{E}[\log \hat{K} | X = x]] + 1) + 1 \quad (91)$$

$$= I(X; Y) + \log(e) + \log(I(X; Y) + \log(e) + 1) + 1 \quad (92)$$

$$\leq I(X; Y) + \log(I(X; Y) + 1) + 2 \log(e) + 1 \quad (93)$$

604 Hence, the rate for the second message is $R_2 \leq H[\hat{K}] + 1 = I(X; Y) + \log(I(X; Y) + 1) +$
 605 $2 \log(e) + 2$ bits. Also note that:

$$H[K|W] = H[L, \hat{K}|W] \quad (\text{Given } W, K \text{ and } (L, \hat{K}) \text{ are bijective}) \quad (94)$$

$$\leq H[L|W] + H[\hat{K}|W] \quad (95)$$

$$\leq H[L] + H[\hat{K}] \quad (96)$$

$$\leq I(X; Y) + \log(I(X; Y) + 1) + 7 \text{ (bits)} \quad (97)$$

606 Since we are compressing two messages separately, we have: $R \leq R_1 + R_2 = I(X; Y) +$
 607 $\log(I(X; Y) + 1) + 9$ (bits)

608 G Matching Probability of Rejection Sampling

609 G.1 Distributed Matching Probabilities of RS

610 Follow the setup in Section 2.1, each party independently performs RS using the proposal distribution
 611 $Q_Y(\cdot)$ to select indices K_A and K_B and set $(Y_A, Y_B) = (Y_{K_A}, Y_{K_B})$. We assume the bounding
 612 condition holds for both parties, i.e. $\max_y (P_Y^A(y)Q_Y^{-1}(y), P_Y^B(y)Q_Y^{-1}(y)) \leq \omega$, Proposition G.1
 613 shows the probability that they select the same index, given that $Y_{K_A} = y$.

614 **Proposition G.1.** Let $W, Q(\cdot), P_Y^A(\cdot)$ and $P_Y^B(\cdot)$ defined as above. Then we have:

$$\Pr(Y_A = Y_B | Y_A = y) = \frac{\min(1, P_Y^B(y)/P_Y^A(y))}{1 + \text{TV}(P_Y^A, P_Y^B)} \geq \frac{1}{2(1 + P_Y^A(y)/P_Y^B(y))} \quad (98)$$

615 Furthermore, we have:

$$\Pr(Y_{K_A} = Y_{K_B}) = \frac{1 - \text{TV}(P_Y^A, P_Y^B)}{1 + \text{TV}(P_Y^A, P_Y^B)}. \quad (99)$$

616 where $\text{TV}(P_Y^A, P_Y^B)$ is the total variation distance between two distribution P_Y^A and P_Y^B .

617 This matching probability is not as strong, compared to PML as well as IML, details in Appendix
618 G.2¹. In the case of GRS, we provide an analysis via a non-trivial example in Appendix H.2,
619 where we demonstrate that it is possible to construct target and proposal distributions such that
620 $\Pr(K_A = K_B | Y_{K_A} = y) \rightarrow 0.0$, even when $P_Y^A(y) = P_Y^B(y)$. In contrast, this probability is greater
621 than 1/4 for standard RS. In summary, while GRS and RS can achieve a coding cost in (7), its
622 matching probability remains lower than that attainable by PML and IML.

623 **G.1.1 Proof.**

624 We denote by K_A, K_B the index selected by parties A and B , respectively. We first note that the
625 event $\{K_A = K_B = i, Y_i = y\}$ is equivalent to the event $\{K_A = K_B = i, Y_{K_A} = y\}$, thus:

$$\Pr(K_A = K_B = i | Y_{K_A} = y) = \frac{\Pr(K_A = K_B = i | Y_i = y) Q_Y(y)}{P_Y^A(y)}, \quad (100)$$

626 where the denominator is due to $Y_{K_A} \sim P_Y^A(\cdot)$. Since:

$$\Pr(K_A = K_B | Y_{K_A} = y) = \sum_{i=1}^{\infty} \Pr(K_A = K_B = i | Y_{K_A} = y) \quad (101)$$

$$= \frac{Q_Y(y)}{P_Y^A(y)} \sum_{i=1}^{\infty} P(K_A = K_B = i | Y_i = y) \quad (102)$$

627 We will later show that:

$$\Pr(K_A = K_B = i | Y_i = y) = \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \left[1 - \frac{1}{\omega} \int \max(P_Y^A(y), P_Y^B(y)) dy \right]^{i-1}, \quad (103)$$

628 which gives us:

$$\Pr(K_A = K_B | Y_{K_A} = y) \quad (104)$$

$$= \frac{Q_Y(y) \cdot \min(P_Y^A(y), P_Y^B(y))}{P_Y^A(y) \cdot \omega Q_Y(y)} \sum_{i=1}^{\infty} \left[1 - \frac{1}{\omega} \int \max(P_Y^A(y), P_Y^B(y)) dy \right]^{i-1} \quad (105)$$

$$= \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega P_Y^A(y)} \sum_{i=0}^{\infty} \left[1 - \frac{1}{\omega} \int \max(P_Y^A(y), P_Y^B(y)) dy \right]^i \quad (106)$$

$$= \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega P_Y^A(y)} \frac{\omega}{\int \max(P_Y^A(y), P_Y^B(y)) dy} \quad (107)$$

$$= \frac{\min(1, P_Y^B(y)/P_Y^A(y))}{\int \max(P_Y^A(y), P_Y^B(y)) dy} \quad (108)$$

$$= \frac{\min(1, P_Y^B(y)/P_Y^A(y))}{1 + \text{TV}(P_Y^A, P_Y^B)}, \quad (109)$$

¹Daliri et al. [5] also arrives to a similar conclusion but for discrete case, targeting a different problem.

629 where $TV(P_Y^A, P_Y^B)$ is the total variation distance between $P_Y^A(\cdot)$ and $P_Y^B(\cdot)$. Using the inequality
630 $\min(u, v) \geq \frac{uv}{u+v}$ and the fact that $TV(P_Y^A, P_Y^B) \leq 1$ gives us the latter inequality.

631 To show (103), we first compute the following probabilities where A and B both accept/terminate a
632 given sample $Y = y$:

$$\gamma(y) = \Pr(A \text{ and } B \text{ accepts } Y|Y=y) \quad (110)$$

$$= \Pr(U \leq \min(P_Y^A(y), P_Y^B(y)))|Y=y) \quad (111)$$

$$= \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \quad (112)$$

633 and,

$$\hat{\gamma}(y) = \Pr(A \text{ and } B \text{ rejects } Y|Y=y) \quad (113)$$

$$= \Pr(U > \max(P_Y^A(y), P_Y^B(y)))|Y=y) \quad (114)$$

$$= 1 - \frac{\max(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \quad (115)$$

634 Then we have:

$$\Pr(K_A = K_B = i|Y_i = y_i) \quad (116)$$

$$= \int \Pr(K_A = K_B = i|Y_{1:i} = y_{1:i})Q_Y(Y_{1:i-1} = y_{1:i-1}|Y_i = y)dy_{1:i-1} \quad (117)$$

$$= \int \Pr(K_A = K_B = i|Y_{1:i} = y_{1:i})Q_Y(Y_{1:i-1} = y_{1:i-1})dy_{1:i-1} \quad (118)$$

$$= \int \Pr(K_A = K_B = i|Y_{1:i} = y_{1:i})Q_Y(Y_{1:i-1} = y_{1:i-1})dy_{1:i-1} \quad (119)$$

$$= \gamma(y_i) \int \prod_{j=1}^{i-1} \hat{\gamma}(y_j)Q_Y(y_j)dy_{1:i-1} \quad (120)$$

$$= \gamma(y_i) \prod_{j=1}^{i-1} \int \hat{\gamma}(y)Q_Y(y)dy \quad (121)$$

$$= \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \left[\int \left(1 - \frac{\max(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \right) Q_Y(y)dy \right]^{i-1} \quad (122)$$

$$= \frac{\min(P_Y^A(y), P_Y^B(y))}{\omega Q_Y(y)} \left[1 - \frac{1}{\omega} \int \max(P_Y^A(y), P_Y^B(y))dy \right]^{i-1} \quad (123)$$

635 Finally, we note that:

$$\Pr(B \text{ outputs } y|A \text{ outputs } y) \quad (124)$$

$$= \Pr(K_B = K_A|Y_{K_P} = y) + \Pr(\text{party } B \text{ outputs } y, K_B \neq K_A|Y_{K_A} = y) \quad (125)$$

636 Finally, note that in the case where $P_A(\cdot), P_B(\cdot)$ are continuous distribution, we have:

$$\Pr(\text{party } B \text{ outputs } y, K_{P_B} \neq K_{P_A}|Y_{K_P} = y) = 0.0 \quad (126)$$

637 This completes the proof.

638 G.2 Comparision with Poisson Matching Lemma

639 We will compare the average matching probability $\Pr(K_A = K_B)$ between RS and PML in the
640 continuous case. Starting from equation (30) in [22] and assume $P_Y^A(y) \leq P_Y^B(y)$, we have:

$$P(Y_A = Y_B = y) \quad (127)$$

$$= \Pr(K_A = K_B | Y_A = y) P(Y_A = y) \quad (128)$$

$$= \frac{1}{\int_{-\infty}^{\infty} \max \left\{ \frac{P_Y^A(v)}{P_Y^A(y)}, \frac{P_Y^B(v)}{P_Y^B(y)} \right\} dv} \quad (129)$$

$$= \frac{P_Y^A(y)}{\int_{-\infty}^{\infty} \max \left\{ \frac{P_Y^A(v)}{P_Y^A(y)}, \frac{P_Y^B(v)}{P_Y^B(y)} P_Y^A(y) \right\} dv} \quad (130)$$

$$\geq \frac{P_Y^A(y)}{\int_{-\infty}^{\infty} \max \left\{ P_Y^A(v), P_Y^B(v) \right\} dv} \quad (\text{Since we assume } P_Y^A(y) \leq P_Y^B(y)) \quad (131)$$

$$= \frac{P_Y^A(y)}{1 + \text{TV}(P_Y^A, P_Y^B)} \quad (132)$$

641 Repeating the same step for $P_Y^A(y) \geq P_Y^B(y)$, we have:

$$P(Y_A = Y_B = y) \geq \frac{\min(P_Y^A(y), P_Y^B(y))}{1 + \text{TV}(P_Y^A, P_Y^B)} \quad (133)$$

642 Taking the integral with respect to y for both sides gives us the desired inequality where the RHS
 643 expression is the average matching probability of RS. Finally, the same conclusion holds for IML
 644 since the matching probability of IML converges to that of PML.

645 H Greedy Rejection Sampling.

646 H.1 Coding Cost

647 Compared to the standard RS approach described above, GRS is a more well-known tool for channel
 648 simulation [10, 14], as its runtime entropy, i.e., $H[K]$, is significantly lower than that of standard RS.
 649 Unlike standard RS, where the acceptance probability remains the same on average at each step, GRS
 650 greedily accepts samples from high-density regions as early as possible (see [10] for more details).
 651 Using these properties, Flamich and Theis [10] provide the following upper bound on $H[K]$, which
 652 generalizes the discrete version established by Harsha et al. [14]:

$$H[K] \leq I[X; Y] + \log(I[X; Y] + 1) + 4, \quad (134)$$

653 which has a smaller constant compared to the bound for standard RS. We conclude with a note on the
 654 coding cost of GRS, highlighting that, unlike standard RS, which is relatively easy to implement in
 655 practice, GRS can be more challenging to deploy as it requires repeatedly computing a complex and
 656 potentially intractable integral.

657 H.2 Matching Probability in Greedy Rejection Sampling

658 **Setup.** Let the proposal distribution Q_Y be a discrete uniform $\text{Unif}[1, n]$, i.e. $Q_Y(y) = q = 1/n$ and
 659 $U \sim \mathcal{U}(0, 1)$ as in standard RS. Then, we define W as follow:

$$W = \{(Y_1, U_1), (Y_2, U_2), \dots\} \quad (135)$$

660 Our goal is to show that, for this proposal distribution Q_Y , there exists the target distributions
 661 $P_Y^A(\cdot)$ and $P_Y^B(\cdot)$ such that the GRS matching probability $\Pr(Y_A = Y_B | Y_A = y) \rightarrow 0.0$ even when
 662 $P_Y^A(y) = P_Y^B(y)$. Let $n = 2k + 1$, we construct the following P_Y^A and P_Y^B :

$$P_Y^A(Y = 1) = \frac{k+1}{2k+1}, \quad P_Y^A(Y = i) = \begin{cases} \frac{1}{2k+1}, & \text{for } 1 < i \leq k+1 \\ 0.0, & \text{for } i > k+1 \end{cases}, \quad (136)$$

$$P_Y^B(Y = 1) = \frac{k+1}{2k+1}, \quad P_Y^B(Y = i) = \begin{cases} \frac{1}{2k+1}, & \text{for } i > k+1 \\ 0.0, & \text{for } 1 < i \leq k+1 \end{cases}, \quad (137)$$

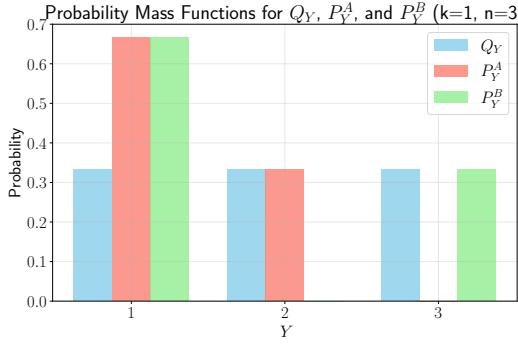


Figure 9: Visualization of example distributions in Section H.2 for $k = 1$.

663 where we visualize this in Figure 9.

664 **GRS Matching Probability.** Given party A has target distribution $P_Y^A(\cdot)$ and party B has target
 665 distribution $P_Y^B(\cdot)$, with each running the GRS procedure to obtain their samples Y_A, Y_B respectively.
 666 We want to characterize the probability that party A and party B outputs the same value, give party
 667 A 's output. We denote K_A and K_B as the index within W that party A and party B select respectively,
 668 i.e., $Y_{K_A} = Y_A$ and $Y_{K_B} = Y_B$.

669 Consider the event $Y_A = 1$, with the construction above, we have the following properties:

- If party A and party B both see the first proposal $Y_1 = 1$, they will greedily accept it, since $P_Y^A(Y = 1) = P_Y^B(Y = 1) \geq Q_Y(Y = 1)$. So in this case:

$$\Pr(K_A = K_B = 1, Y_A = 1) = Q_Y(Y = 1) = \frac{1}{2k + 1}$$

- On the other hand, if the first proposal $Y_1 \neq 1$ then either party A or B must accept and output $Y_1 \neq 1$ since for $y \neq 1$, the probability distribution complement each other and equal to $Q_Y(y) = \frac{1}{2k+1}$. For example, for $n = 3$ and $Y_2 = 2$, then party A will accept it while party B must reject it. Therefore, we have:

$$\Pr(K_A = K_B > 1, Y_A = 1) = 0.0.$$

- Finally, from the previous analysis, for any positive integers $i \neq j$, we have

$$\Pr(K_A = i, K_B = j, Y_A = 1, Y_B = 1) = 0.0,$$

670 Indeed, consider $i = 1$ then $\Pr(K_A = 1, K_B = j, Y_A = 1, Y_B = 1) = 0.0$ since both of
 671 them must accept the first proposal $Y_1 = 1$. On the other hand, if $i > 1$ then we must have
 672 $j = 1$ since we know that $Y_1 \neq 1$ in this case and thus one of the party must stop. Since
 673 $i > 1$, it has to be party B and in this case, $Y_B \neq 1$.

674 For this reason, we have:

$$\Pr(Y_A = Y_B = 1) \tag{138}$$

$$= \Pr(K_A = K_B, Y_A = 1, Y_B = 1) + \Pr(K_A \neq K_B, Y_A = 1, Y_B = 1) \tag{139}$$

$$= \Pr(K_A = K_B, Y_A = 1) + \sum_{i \neq j} \Pr(K_A = i, K_B = j, Y_A = 1, Y_B = 1) \tag{140}$$

$$= \Pr(K_A = K_B, Y_A = 1) \tag{141}$$

$$= \Pr(K_A = K_B = 1, Y_A = 1) + \Pr(K_A = K_B > 1, Y_A = 1) \tag{142}$$

$$= Q_Y(Y = 1) \tag{143}$$

$$= \frac{1}{2k + 1} \tag{144}$$

675 and hence:

$$\Pr(Y_A = Y_B | Y_A = 1) = \frac{1}{k + 1} \tag{145}$$

676 which approaches 0.0 as $n \rightarrow \infty$. Overall, due to its greedy selection approach, GRS may yield
 677 lower matching probabilities compared to other methods such as PML which we provide the analysis
 678 below.

679 **Matching Probability of PML.** In PML, the matching probability is $\Pr(Y_A = Y_B \mid Y_A = 1) = 1$.
 680 This results from PML's more global selection process compared to GRS, as it evaluates all candidates
 681 comprehensively. In particular, let $W = (S_1, Y_1), \dots, (S_n, Y_n)$ where $S_i \sim \text{Exp}(1)$ and let K_A, K_B
 682 be the value within W that each party respectively select in this case. Note that the construction of
 683 W in the discrete case for PML does not require Q_Y . The selection process according to PML is as
 684 follows:

$$K_A = \arg \min_{1 \leq i \leq n} \frac{S_i}{P_Y^A(Y_i)} \quad K_B = \arg \min_{1 \leq i \leq n} \frac{S_i}{P_Y^B(Y_i)}, \quad (146)$$

685 and each party outputs $Y_A = Y_{K_A}, Y_B = Y_{K_B}$. We see that if $K_A = 1$, then we must have
 686 $K_B = 1$. This is because for any $i > 1$, we have $P_Y^A(Y = 1) = P_Y^B(Y = 1) > P_Y^B(Y = i)$ and
 687 $P_Y^A(Y = i) = P_Y^B(Y = i + 1 + k)$. Thus, this gives $\Pr(Y_A = Y_B \mid Y_A = 1) = 1$.

688 **I ERS Coding Scheme**

689 **I.1 Prelimaries**

690 We show the standard ERS algorithm in Algorithm 1, following the original version introduced by
691 Deligiannidis et al. [6] with a slight generalization in terms of the scaling factor ($0 < \text{scale} \leq 1$)
692 that we will use for channel simulation purpose. This section begins by establishing some detailed
693 quantities that will be used repeatedly. For simplicity, we use $P_x(\cdot)$ for the target distribution $P_{Y|X=x}$
694 and $Q(\cdot)$ for the proposal distribution. Let $\omega_x = \max_y P_x(y)/Q(y)$, we define the quantities:

$$\hat{Z}_x(y_{1:N}) = \sum_{j=1}^N \frac{P_x(y_j)}{Q(y_j)}, \quad \bar{Z}_x(y_{1:N}, k) = \hat{Z}_x(y_{1:N}) - \frac{P_x(y_k)}{Q(y_k)} + \omega_x \quad (147)$$

695 and denote the following constants:

$$\Delta_x = \mathbb{E}_{Y_{1:N} \sim Q} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right], \quad \Delta = \frac{N}{N-1+\omega}, \quad (148)$$

696 where we recall that $\omega = \max_{x,y} P_x(y)/Q(y)$, by Jensen's inequality we have the following:

$$\Delta_x \geq \frac{N}{N-1+\omega_x} \geq \frac{N}{N-1+\omega} = \Delta \text{ for every } x. \quad (149)$$

697 From this, we can see that as $N \rightarrow \infty$, we achieve $\Delta \rightarrow 1.0$. This value Δ turns out to be the average
698 batch acceptance probability when we set scale = $\frac{\Delta}{\Delta_x}$, which we elaborate on below.

699 **Scaled Acceptance Probability.** For the channel simulation setting in this section, we slightly modify
700 the acceptance probability in Algorithm 1 (step 4) with a scaling factor scale = $\frac{\Delta}{\Delta_x} \leq 1$ such that
701 the average batch acceptance probability is the same, regardless of the target distribution P_x ². In
702 particular, the encoder selects the index according to:

$$K = \text{ERS}(W; P_x, Q, \text{scale} = \frac{\Delta}{\Delta_x}), \quad (150)$$

703 which means for a batch i containing samples $Y_{i,1:N} = y_{1:N}$, we accept it within step 4 if:

$$\text{Accept if } U_i \leq \frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, k)} \frac{\Delta}{\Delta_x}, \quad (151)$$

704 where we modify the scaling scale = $\frac{\Delta}{\Delta_x} \leq 1$ in Algorithm 1, which is a constant and does not
705 affect the resulting output distribution. The value of k is determined via the Gumbel-Max selection
706 procedure in Step 2. The intuition is, within every accepted batch without scaling, we randomly reject
707 $(1 - \text{scale})$ of them. Formally, first consider the following **ERS proposal distribution**:

$$\bar{Q}_{Y_{1:N}, K}(y_{1:N}, k; x) = \left(\frac{P_x(y_k)/Q(y_k)}{\sum_{j=1}^N P_x(y_j)/Q(y_j)} \right) \prod_{j=1}^N Q(y_j) \quad (152)$$

$$= \left(\frac{P_x(y_k)/Q(y_k)}{\hat{Z}_x(y_{1:N})} \right) \prod_{j=1}^N Q(y_j), \quad (153)$$

708 where the first product in the RHS is the likelihood we obtain the samples $y_{1:N}$ from the original
709 proposal distribution $Q_Y(\cdot)$ and the ratio is due to the IS process. Now, the **ERS target distribution**
710 is $\bar{P}_{Y_{1:N}, K}(y_{1:N}, k; x)$ where

$$\bar{P}_{Y_{1:N}, K}(y_{1:N}, k; x) = \frac{1}{\alpha} \left(\frac{P_x(y_k)/Q(y_k)}{\hat{Z}_x(y_{1:N})} \frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, k)} \frac{\Delta}{\Delta_x} \right) \prod_{j=1}^N Q(y_j) \quad (154)$$

$$= \left(\frac{P_x(y_k)/Q(y_k)}{\Delta_x \bar{Z}_x(y_{1:N}, k)} \right) \prod_{j=1}^N Q(y_j), \quad (155)$$

²This is similar to the case of standard RS where we accept/reject based on the global ratio bound ω instead of ω_x .

711 which is the batch target distribution that yields $Y \sim P_x$ when no scaling occur (see [6], Section 2.2),
712 since the normalization factor α is:

$$\alpha = \sum_{k=1}^N \int_{-\infty}^{\infty} \left(\frac{P_x(y_k)/Q(y_k)}{\bar{Z}_x(y_{1:N}, k)} \right) \frac{\Delta}{\Delta_x} \left(\prod_{j=1}^N Q(y_j) \right) dy_{1:N} \quad (156)$$

$$= N \frac{\Delta}{\Delta_x} \int_{-\infty}^{\infty} \left(\frac{P_x(y_k)/Q(y_k)}{\bar{Z}_x(y_{1:N}, 1)} \right) \left(\prod_{j=1}^N Q(y_j) \right) dy_{1:N} \quad (\text{Due to symmetry}) \quad (157)$$

$$= N \frac{\Delta}{\Delta_x} \int_{-\infty}^{\infty} \frac{1}{\bar{Z}_x(y_{1:N}, 1)} \left(\prod_{j=2}^N Q(y_j) \right) dy_2^N \quad (158)$$

$$= \Delta \quad (159)$$

713 It turns out that Δ is also the **batch acceptance probability** since:

$$\Pr(\text{Accept batch } B) = \mathbb{E}_{(Y_{1:N}, K) \sim \bar{Q}} \left[\frac{\Delta}{\Delta_x} \frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, k)} \right] \quad (160)$$

$$= \frac{\Delta}{\Delta_x} \sum_{k=1}^N \int_{-\infty}^{\infty} \left(\frac{P_x(y_k)/Q(y_k)}{\bar{Z}_x(y_{1:N}, k)} \right) \quad (161)$$

$$= \frac{\Delta}{\Delta_x} N \int_{-\infty}^{\infty} \left(\frac{P_x(y_1)/Q(y_1)}{\bar{Z}_x(y_{1:N}, 1)} \right) \left(\prod_{j=1}^N Q(y_j) \right) dy_{1:N} \quad (162)$$

$$= \Delta, \quad (163)$$

714 and it can be observed that, without the scaling factor $\frac{\Delta}{\Delta_x}$, the batch acceptance probability is Δ_x .
715 Finally, we can view the ERS as a standard RS procedure with proposal distribution $\bar{Q}_{Y_1^N, K}$ and
716 target distribution $\bar{P}_{Y_1^N, K}$.

717 **Harris-FKG/Chebyshev Inequality.** We introduce the following inequality (Harris-
718 FKG/Chebyshev), which will be used in the proof:

719 **Proposition I.1.** *For function f, g on $Y \sim P(\cdot)$ where f is non-increasing and g is non-decreasing,
720 we have:*

$$\mathbb{E}[f(Y)g(Y)] \leq \mathbb{E}[f(Y)]\mathbb{E}[g(Y)]$$

721 *Proof.* Let $Y_1, Y_2 \sim P(\cdot)$ and they are independent. Then we have:

$$[f(Y_1) - f(Y_2)][g(Y_1) - g(Y_2)] \leq 0 \quad (164)$$

722 Hence:

$$\mathbb{E}\{[f(Y_1) - f(Y_2)][g(Y_1) - g(Y_2)]\} \leq 0 \quad (165)$$

723 This gives us:

$$\mathbb{E}[f(Y_1)g(Y_1)] + \mathbb{E}[f(Y_2)g(Y_2)] \leq \mathbb{E}[f(Y_1)]\mathbb{E}[g(Y_2)] + \mathbb{E}[f(Y_2)]\mathbb{E}[g(Y_1)], \quad (166)$$

724 which completes the proof. \square

725 I.2 Encoding K_1 .

726 We encode K_1 the same way as the scheme for standard RS. Similar to standard RS, we encode K_1
727 into two messages. Specifically:

728 • Step 1: the encoder sends the ceiling $L = \lceil \frac{K_1}{\lfloor \Delta^{-1} \rfloor} \rceil$ to the decoder. The decoder then knows
729 $(L-1)\lfloor \Delta^{-1} \rfloor^{-1} + 1 \leq L \leq L\lfloor \Delta^{-1} \rfloor^{-1}$, i.e. K_1 is in chunk L that consists of $\lfloor \Delta^{-1} \rfloor^{-1}$
730 batches. We have $\mathbb{E}[\log(L)] \leq 1$ bit.

731 • Step 2: The encoder and decoder both sort the uniform random variables U_i within the
 732 selected chunk $(L-1)\lfloor\Delta^{-1}\rfloor^{-1} + 1 \leq i \leq L\lfloor\Delta^{-1}\rfloor^{-1}$. Let the sorted list be $U_{\pi(1)} \leq$
 733 $U_{\pi(2)} \leq \dots \leq U_{\pi(\lfloor\Delta^{-1}\rfloor)}$ where $\pi(\cdot)$ is the mapping between the sorted index and the
 734 original unsorted one. The encoder sends the rank of U_{K_1} within this list, i.e. sends the
 735 value T such that $K_1 = \pi(\hat{K}_1)$. The decoder receive \hat{K}_1 and retrieve B_{K_1} accordingly.
 736 Section I.2.2 shows the coding cost for this step.

737 We provide the detail analysis in Section I.2.1 and I.2.2. Notice that the role Δ plays here is similar
 738 to that of ω in standard RS.

739 **I.2.1 Coding Cost of L**

Similar to RS, since each batch is accepted with probability Δ (see (163)), this means:

$$\Pr(K_1 > \ell\Delta^{-1}) = (1 - \Delta)^{\ell\lfloor\Delta^{-1}\rfloor} < 0.5^{-\ell},$$

740 which is equivalent to $\Pr(L > \ell) < 0.5^{-\ell}$. Note that we reuse the inequality in Appendix F.3. We
 741 have:

$$\mathbb{E}[L] = \sum_{\ell=0}^{\infty} \Pr(L > \ell) < 1 + 0.5^{-1} + 0.5^{-2} + \dots = 2, \quad (167)$$

742 implying $\mathbb{E}[\log L] \leq 1$.

743 **I.2.2 Coding Cost of \hat{K}_1**

744 We will show that:

$$\mathbb{E}[\log \hat{K}_1] \leq \frac{N}{\Delta_x} \mathbb{E}_{Y_{1:N} \sim Q} \left[\frac{P_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{\hat{Z}_x(Y_{1:N})}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right) \right], \quad (168)$$

745 where we provide the result of (168) in Section I.4.2.

746 **I.3 Encoding K_2 .**

747 Given an accepted batch $\{(Y_i, S_i)\}_{i=1}^N$, we have:

$$K_2 = \arg \min_{1 \leq i \leq N} \frac{S_i}{\lambda_i}; \quad \Theta_P = \min_{1 \leq i \leq N} \frac{S_i}{\lambda_i}, \quad (169)$$

748 where we have the weights λ_i defined as:

$$\lambda_i = \frac{P(Y_i)}{Q(Y_i)} \quad (170)$$

749 After communicating the selected batch index K_1 , the encoder and decoder sort the exponential
 750 random variables $\{S_{K_1, i}\}_{i=1}^N$, i.e.

$$S_{K_2, \pi(1)} \leq S_{K_2, \pi(2)} \leq \dots \leq S_{K_2, \pi(N)}, \quad (171)$$

and send the sorted index \hat{K}_2 of K_2 , i.e. $\pi(\hat{K}_2) = K_2$. The decoder also performs the sorting
 operation and retrieve K_2 accordingly. Since K_2 are obtained from the batch selected by ERS, we
 analyze $\mathbb{E}[\log \hat{K}_2' | Y_{1:N} \text{ are selected}]$, where \hat{K}_2' and K_2' are defined the same as \hat{K}_2 and K_2 (follows
 the same Gumbel-Max procedure) but for arbitrary N i.i.d. proposals $Y_{1:N} \sim Q(\cdot)$. In this case:

$$\mathbb{E}[\log \hat{K}_2] = \mathbb{E}[\log \hat{K}_2' | Y_{1:N} \text{ are selected}]$$

Notice the following identity:

$$\bar{P}(y_{1:N}, k_2; x) = P(Y_{1:N} = y_{1:N} | Y_{1:N} \text{ are selected}, K_2' = k_2) \Pr(K_2' = k_2 | Y_{1:N} \text{ are selected})$$

751 where $\bar{P}(y_{1:N}, k_2; x)$ is the ERS target distribution described previously in Appendix I.1. Then, we
752 obtain the following likelihood:

$$P(Y_{1:N} = y_{1:N} | Y_{1:N} \text{ are selected}, K'_2 = 1) \quad (172)$$

$$= \frac{\bar{P}(y_{1:N}, j; x)}{\Pr(K'_2 = 1 | Y_{1:N} \text{ are selected})} \quad (173)$$

$$= N \frac{P_x(y_1)/Q(y_1)}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \prod_{i=1}^N Q(y_i) \quad (174)$$

753 With this, we now bound the expectation term of interest $\mathbb{E}[\log \hat{K}_2]$ as follows:

$$\mathbb{E}[\log \hat{K}_2] \quad (175)$$

$$= \mathbb{E}[\log \hat{K}'_2 | Y_{1:N} \text{ are selected}] \quad (176)$$

$$= \mathbb{E}[\log \hat{K}'_2 | Y_{1:N} \text{ are selected}, K'_2 = 1] \quad (\text{Due to Symmetry}) \quad (177)$$

$$= \mathbb{E}_{Y_{1:N}} [\mathbb{E}[\log \hat{K}'_2 | Y_{1:N} \text{ are selected}, K'_2 = 1, Y_{1:N} = y_{1:N}]] \quad (178)$$

$$= N \int_{-\infty}^{\infty} \frac{P_x(y_1)/Q(y_1)}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \mathbb{E}[\log \hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1] \left(\prod_{i=1}^N Q(y_i) \right) dy_{1:N} \quad (179)$$

$$= N \int_{-\infty}^{\infty} \frac{P_x(y_1)/Q(y_1)}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \mathbb{E}[\log \hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1] \left(\prod_{i=1}^N Q(y_i) \right) dy_{1:N}, \quad (180)$$

754 where the last equality is because, given $\{Y_{1:N} = y_{1:N}, K'_2 = 1\}$, the event $\{Y_{1:N} \text{ are selected}\}$ and the
755 random variable \hat{K}'_2 are independent. In particular, the decision whether to accept a batch or not does
756 not depends on the rank of $S_{K'_2}$, that is:

$$\Pr(Y_{1:N} \text{ are selected} | Y_{1:N} = y_{1:N}, K'_2 = 1, \hat{K}'_2 = k_2) \quad (181)$$

$$= \Pr(Y_{1:N} \text{ are selected} | Y_{1:N} = y_{1:N}, K'_2 = 1) \quad (182)$$

$$= \frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, 1)} \frac{\Delta}{\Delta_x} \quad (183)$$

757 We then have:

$$\mathbb{E}[\log \hat{K}'_2 | Y_{1:N} \text{ are selected}] \quad (184)$$

$$= N \int_{-\infty}^{\infty} \prod_{i=1}^N Q(y_i) \frac{P_x(y_1)/Q(y_1)}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \left(\int_0^{\infty} e^{-\theta} \mathbb{E}[\log \hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta] d\theta \right) dy_{1:N}, \quad (185)$$

758 since, given $Y_{1:N}, \Theta_P$ is independent of K'_2 and $\Theta_P \sim \text{Exp}(1)$ (see [30], Appendix 18). We now pro-
759 vide an upperbound of $\mathbb{E}[\log \hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta]$, which follows the argument presented
760 in [30], and is repeated here. Applying Jensen's inequality, we have:

$$\mathbb{E}[\log \hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta] \leq \log \mathbb{E}[\hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta], \quad (186)$$

761 We then rewrite \hat{K}'_2 as the following:

$$\hat{K}'_2 = |\{S_i < S_{K'_2}\}| + 1, \quad (187)$$

762 which gives us:

$$\mathbb{E}[\hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta] \quad (188)$$

$$= 1 + \mathbb{E}[|\{S_i < S_{K'_2}\}| | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta] \quad (189)$$

$$= 1 + \mathbb{E} \left[\left| \left\{ S_i < \theta \frac{P_x(Y_{K'_2})/Q(Y_{K'_2})}{\hat{Z}_x(Y_{1:N})} \right\} \right| \middle| Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta \right] \quad (190)$$

$$= 1 + \sum_{i=2}^N \Pr \left(S_i < \theta \frac{P_x(Y_{K'_2})/Q(Y_{K'_2})}{\hat{Z}_x(Y_{1:N})} \middle| Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta \right) \quad (191)$$

$$= 1 + \sum_{i=2}^N \Pr \left(S_i < \theta \frac{P_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \middle| Y_{1:N} = y_{1:N}, \frac{S_j}{\frac{P_x(y_j)/Q(y_j)}{\hat{Z}_x(y_{1:N})}} \geq \theta \text{ for } j \neq 1, \frac{S_1}{\frac{P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})}} = \theta \right) \quad (192)$$

$$= 1 + \sum_{i=2}^N \Pr \left(S_i < \theta \frac{P_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \middle| Y_{1:N} = y_{1:N}, \frac{S_j}{\frac{P_x(y_j)/Q(y_j)}{\hat{Z}_x(y_{1:N})}} \geq \theta \text{ for } j \neq 1, \frac{S_1}{\frac{P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})}} = \theta \right) \quad (193)$$

$$= 1 + \sum_{i=2}^N \Pr \left(S_i < \theta \frac{P_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \middle| Y_{1:N} = y_{1:N}, \frac{S_i}{\frac{P_x(y_i)/Q(y_i)}{\hat{Z}_x(y_{1:N})}} \geq \theta \right) \quad (194)$$

763 Note that:

$$\Pr \left(S_i < \theta \frac{P_x(Y_1)/Q(Y_1)}{\hat{Z}_x(y_{1:N})} \middle| Y_{1:N} = y_{1:N}, \frac{S_i}{\frac{P_x(y_i)/Q(y_i)}{\hat{Z}_x(y_{1:N})}} \geq \theta \right) \quad (195)$$

$$= 1 \left\{ \theta \frac{P_x(Y_1)/Q(Y_1)}{\hat{Z}_x(y_{1:N})} \geq \theta \frac{P_x(Y_i)/Q(Y_i)}{\hat{Z}_x(y_{1:N})} \right\} \left[1 - \exp \left(-\theta \frac{P_x(y_1)/Q(y_1) - P_x(y_i)/Q(y_i)}{\hat{Z}_x(y_{1:N})} \right) \right] \quad (196)$$

$$\leq 1 - \exp \left(-\theta \frac{P_x(y_1)/Q(y_1) - P_x(y_i)/Q(y_i)}{\hat{Z}_x(y_{1:N})} \right) \quad (197)$$

$$\leq \frac{\theta [P_x(y_1)/Q(y_1) - P_x(y_i)/Q(y_i)]}{\hat{Z}_x(y_{1:N})} \quad (198)$$

$$\leq \frac{\theta P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})} \quad (199)$$

764 As such:

$$\mathbb{E}[\hat{K}'_2 | Y_{1:N} = y_{1:N}, K'_2 = 1, \Theta_P = \theta] \leq 1 + \sum_{i=2}^N \frac{\theta P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})} \quad (200)$$

$$\leq 1 + \frac{N\theta P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})} \quad (201)$$

765 and thus:

$$\int_0^\infty e^{-\theta} \mathbb{E}[\log K | Y_{1:N} = y_{1:N}, K_2 = 1, \Theta_P = \theta] d\theta \quad (202)$$

$$\leq \int_0^\infty e^{-\theta} \log \left(1 + \frac{N\theta P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})} \right) d\theta \quad (203)$$

$$\leq \log \left(\frac{N P_x(y_1)/Q(y_1)}{\hat{Z}_x(y_{1:N})} + 1 \right), \quad (204)$$

766 which is due to Jensen's inequality for concave function $\log(\cdot)$. Finally, we have:

$$\mathbb{E}[\log \hat{K}_2] \quad (205)$$

$$\leq \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} + 1 \right) \right] \quad (206)$$

$$\leq \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \right) + \frac{\log(e) \hat{Z}_x(Y_{1:N})}{NP_x(Y_1)/Q(Y_1)} \frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right] \quad (207)$$

$$= \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \right) \right] + \log(e) \quad (208)$$

767 The last inequality is due to the FKG inequality:

$$\mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{\log(e) \hat{Z}_x(Y_{1:N})}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right] \quad (209)$$

$$= \log(e) \mathbb{E}_{Y_2^N \sim Q(\cdot)} \left[\left(1 + \sum_{i=2}^N \frac{P_x(Y_i)}{Q(Y_i)} \right) \left(\frac{1}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (210)$$

$$\leq \log(e) \mathbb{E}_{Y_2^N \sim Q(\cdot)} \left[1 + \sum_{i=2}^N \frac{P_x(Y_i)}{Q(Y_i)} \right] \mathbb{E}_{Y_2^N \sim Q(\cdot)} \left[\frac{1}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right] \quad (211)$$

$$= \log(e) \quad (212)$$

768 So we have the bound on $\mathbb{E}[\log(\hat{K}_2)]$ as:

$$\mathbb{E}[\log(\hat{K}_2)] \leq \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \right) \right] + \log(e) \quad (213)$$

769 I.4 Total Coding Cost of K

770 We now provide an upperbound on the total coding cost of K . We have:

$$H(K|W) = H(L, \hat{K}_1, \hat{K}_2|W) \quad (214)$$

$$\leq H(L|W) + H(\hat{K}_1|W) + H(\hat{K}_2|W) \quad (215)$$

$$\leq H(L) + H(\hat{K}_1) + H(\hat{K}_2) \quad (216)$$

For each of the message, we encode using Zipf distribution. Since $\mathbb{E}[\log(L)] \leq 1$, then:

$$H(L) \leq 3$$

771 For $H(\hat{K}_1)$, we have:

$$H(\hat{K}_1) \leq \mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + \log(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + 1) + 1 \quad (217)$$

772 and $H(\hat{K}_2)$, we have:

$$H(\hat{K}_2) \leq \mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + \log(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + 1) + 1 \quad (218)$$

773 and thus we have:

$$H(K|W) \quad (219)$$

$$\leq (\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + \mathbb{E}[\log(\hat{K}_2)]) + \log((\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + 1)(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + 1)) + 5 \quad (220)$$

774 By AM-GM inequality, we have:

$$\log((\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + 1)(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + 1)) \quad (221)$$

$$\leq \log\left(\frac{1}{4}(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + 1 + \mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + 1)^2\right) \quad (222)$$

$$= 2\log(\mathbb{E}_X[\mathbb{E}[\log(\hat{K}_1)]] + \mathbb{E}_X[\mathbb{E}[\log(\hat{K}_2)]] + 2) - 2 \quad (223)$$

775 We will show $\mathbb{E}[\log(\hat{K}_1)] + \mathbb{E}[\log(\hat{K}_2)] \leq D_{KL}(P_x||Q) + 3 + 2\log(e)$ at the end of this section.

776 Given this, we have:

$$H(K|W) \leq I(X;Y) + 3 + 2\log(e) + 2\log(I(X;Y) + 5 + 2\log(e)) - 2 + 5 \quad (224)$$

$$\leq I(X;Y) + 2\log(I(X;Y) + 8) + 9. \quad (225)$$

777 Since we are encoding 3 messages separately, we add 1 bit overhead for each message and thus arrive to the constant 12 as in the original result.

779 The rest is to bound $\mathbb{E}[\log(\hat{K}_1)] + \mathbb{E}[\log(\hat{K}_2)]$, note that:

$$\mathbb{E}[\log(\hat{K}_1)] + \mathbb{E}[\log(\hat{K}_2)] \quad (226)$$

$$\leq 2\log(e) + \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \left(\log\left(\frac{\hat{Z}_x(Y_{1:N})}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)}\right) + \log\left(\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})}\right) \right) \right] \quad (227)$$

$$= 2\log(e) + \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log\left(\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)}\right) \right] \quad (228)$$

$$= 2\log(e) + \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \left(\log\frac{P_x(Y_1)}{Q(Y_1)} + \log\left(\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)}\right) \right) \right] \quad (229)$$

$$= 2\log(e) + D_{KL}(P_x||Q) + \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log\left(\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)}\right) \right] \quad (230)$$

$$= 2\log(e) + D_{KL}(P_x||Q) + E_1 \quad (231)$$

780 where:

$$E_1 = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log\left(\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)}\right) \right] \quad (232)$$

781 We will show in Appendix I.4.1 that:

$$E_1 \leq 3 \quad (233)$$

782 and thus:

$$\mathbb{E}[\log(\hat{K}_1)] + \mathbb{E}[\log(\hat{K}_2)] \leq 2\log(e) + 3 + D_{KL}(P_x||Q) \quad (234)$$

783 L4.1 Bound on E_1

784 We consider two cases, when the batch size $N \leq 7\omega_x$ and when $N > 7\omega_x$.

785 Case 1: $N \leq 7\omega_x$

786 Recall that $\bar{Z}_x(Y_{1:N}, 1) > \omega_x$ and $\Delta_x \geq \frac{N}{N-1+\omega_x}$, we have:

$$\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \leq \frac{N-1+\omega_x}{\omega_x} \quad (235)$$

$$< \frac{8\omega_x - 1}{\omega_x} \quad (\text{Since } N \leq 7\omega_x) \quad (236)$$

$$< 8 \quad (237)$$

787 Thus, we have:

$$E_1 = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (238)$$

$$\leq \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log(8) \right] \quad (239)$$

$$= 3 \quad (\text{Since } \Delta_x = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right]), \quad (240)$$

788 and hence $E_1 \leq 3$ bit.

789 Case 2: $N > 7\omega$

790 To upper-bound E_2 in this regime, we first note that:

$$\Delta_x = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right] = \Pr(\text{Accept batch } B) \leq 1 \quad (241)$$

791 Another way to see this is through the following arguments:

$$\mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right] \quad (242)$$

$$= \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \right] \quad (243)$$

$$= \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \frac{\hat{Z}_x(Y_{1:N})}{\bar{Z}_x(Y_{1:N}, 1)} \right] \quad (244)$$

$$\leq \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \right] \quad \left(\text{Since } \frac{\hat{Z}_x(Y_{1:N})}{\bar{Z}_x(Y_{1:N}, 1)} \leq 1 \right) \quad (245)$$

$$= \sum_{i=1}^N \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{P_x(Y_i)/Q(Y_i)}{\hat{Z}_x(Y_{1:N})} \right] \quad (\text{Due to symmetry}) \quad (246)$$

$$= 1, \quad (247)$$

792 and as a consequence (which we will be using later), we have:

$$\mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N+1}{\omega_x + \hat{Z}_x(Y_{1:N})} \right] \quad (248)$$

$$= \mathbb{E}_{Y_1^{N+1} \sim Q(\cdot)} \left[\frac{N+1}{\omega_x + \hat{Z}_x(Y_{1:N})} \right] \quad (249)$$

$$\leq 1. \quad (250)$$

793 Then, observe that:

$$E_1 = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (251)$$

$$= \frac{1}{\Delta_x} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right) \right] + \log \frac{1}{\Delta_x} \quad (252)$$

$$\leq 3 \text{ bits} \quad (253)$$

794 where, to show the inequality at the end, we will prove the following two inequalities:

$$\log \frac{1}{\Delta_x} \leq \log \left(\frac{8}{7} \right) \quad (254)$$

$$\frac{1}{\Delta_x} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right) \right] \leq \frac{16}{7}, \quad (255)$$

⁷⁹⁵ and hence $E_2 \leq 3$ (bits). For the first inequality, we have:

$$\Delta_x = \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right] \quad (256)$$

$$\geq \frac{N}{\mathbb{E}_{Y_{1:N} \sim Q(\cdot)} [\bar{Z}_x(Y_{1:N}, 1)]} \quad (\text{Jensen's Inequality}) \quad (257)$$

$$= \frac{N}{N - 1 + \omega_x} \quad (258)$$

$$\geq \frac{N}{N - 1 + N/7} \quad (\text{Since } N > 7\omega_x) \quad (259)$$

$$\geq \frac{7}{8}, \quad (260)$$

⁷⁹⁶ hence, we have:

$$\frac{1}{\Delta_x} \leq 8/7, \quad (261)$$

⁷⁹⁷ which yields the first inequality after taking the $\log(\cdot)$ in both sides.

⁷⁹⁸ For the second inequality, we begin by establishing the following key inequality:

$$\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \leq \frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x}, \quad (262)$$

⁷⁹⁹ which is due to:

$$\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} = \frac{N}{\omega_x + \sum_{i=2}^N \frac{P_x(Y_i)}{Q(Y_i)}} \quad (263)$$

$$\leq \frac{N}{\omega_x + \frac{1}{2} \sum_{i=2}^N \frac{P_x(Y_i)}{Q(Y_i)}} \quad (\text{Since } \frac{P_x(Y_i)}{Q(Y_i)} \geq 0 \text{ for all } i) \quad (264)$$

$$= \frac{2N}{2\omega_x + \sum_{i=2}^N \frac{P_x(Y_i)}{Q(Y_i)}} \quad (265)$$

$$\leq \frac{2N}{\omega_x + \sum_{i=1}^N \frac{P_x(Y_i)}{Q(Y_i)}} \quad (\text{Since } \frac{P_x(Y_i)}{Q(Y_i)} \leq \omega \text{ for all } i) \quad (266)$$

$$= \frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x}, \quad (267)$$

800 Then, we have:

$$\frac{1}{\Delta_x} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (268)$$

$$\leq \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (\text{Since } \Delta_x \geq \frac{7}{8} \text{ from (260)}) \quad (269)$$

$$= \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (270)$$

$$\leq \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{N}{\bar{Z}_x(Y_{1:N}, 1)} + 1 \right) \right] \quad (271)$$

$$\leq \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right) \right] \quad (\text{Due to Inequality (262) }) \quad (272)$$

$$\leq \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{NP_x(Y_1)/Q(Y_1)}{\hat{Z}_x(Y_{1:N})} \log \left(\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right) \right] \quad (\text{Since } \hat{Z}_x(Y_{1:N}) \leq \bar{Z}_x(Y_{1:N}, 1)) \quad (273)$$

$$= \frac{8}{7} \sum_{i=1}^N \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{P_x(Y_i)/Q(Y_i)}{\hat{Z}_x(Y_{1:N})} \log \left(\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right) \right] \quad (\text{Due to symmetry}) \quad (274)$$

$$= \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{\sum_{i=1}^N P_x(Y_i)/Q(Y_i)}{\hat{Z}_x(Y_{1:N})} \log \left(\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right) \right] \quad (275)$$

$$= \frac{8}{7} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\log \left(\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right) \right] \quad (276)$$

$$\leq \frac{8}{7} \log \left(\mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{2N}{\hat{Z}_x(Y_{1:N}) + \omega_x} + 1 \right] \right) \quad (\text{Jensen's Inequality}) \quad (277)$$

$$= \frac{8}{7} \log \left(1 + \frac{2N}{N+1} \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N+1}{\hat{Z}_x(Y_{1:N}) + \omega_x} \right] \right) \quad (278)$$

$$\leq \frac{8}{7} \log \left(1 + \frac{2N}{N+1} \right) \quad (\text{Since } \mathbb{E}_{Y_{1:N} \sim Q(\cdot)} \left[\frac{N+1}{\hat{Z}_x(Y_{1:N}) + \omega_x} \right] < 1 \text{ due to Inequality (250)}) \quad (279)$$

$$\leq \frac{8}{7} \log(4) \quad (280)$$

$$= \frac{16}{7} \text{(bits)} \quad (281)$$

801 which completes the proof for this part.

802 I.4.2 Proof of Inequality (168)

803 We first express the quantity $\mathbb{E}[\log \hat{K}_1]$ with conditional expectation. The accepted batch and selected
804 local index K_2 are distributed according to $Y_{K_1,1:N}, K_2 \sim \bar{P}_{Y_{1:N}, K;x}$, then:

$$\mathbb{E}[\log \hat{K}_1] \quad (282)$$

$$= \mathbb{E}[\mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = k_2]] \quad (283)$$

$$= \sum_{k_2=1}^N \int_{-\infty}^{\infty} \left(\prod_{j=1, j \neq k_2}^N Q(y_j) \right) \frac{P_x(y_k)}{\bar{Z}_x(y_{1:N}, k) \Delta_x} \mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = k_2] dy_{1:N} \quad (284)$$

$$= N \int_{-\infty}^{\infty} \left(\prod_{j=2}^N Q(y_j) \right) \frac{P_x(y_1)}{\bar{Z}_x(y_{1:N}, 1) \Delta_x} \mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1] dy_{1:N} \quad (285)$$

Notice that, since we accept a batch i when $U_i \leq \frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, 1)} \frac{\Delta}{\Delta_x}$, we have that:

$$P(U_{K_1} = u | Y_{K_1,1:N} = y_{1:N}, K_2 = 1) = \frac{\bar{Z}_x(y_{1:N}, 1)}{\hat{Z}_x(y_{1:N})} \frac{\Delta_x}{\Delta}, \quad (285)$$

then conditioning on U_{K_1} for the last expectation term above:

$$\mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = k] \quad (286)$$

$$= \int_{-\infty}^{\infty} \mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u] P(U_{K_1} = u | Y_{K_1,1:N} = y_{1:N}, K_2 = 1) du \quad (287)$$

$$= \int_0^{\frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, 1)} \frac{\Delta}{\Delta_x}} \mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u] \frac{\bar{Z}_x(y_{1:N}, 1)}{\hat{Z}_x(y_{1:N})} \frac{\Delta_x}{\Delta} du \quad (288)$$

$$\leq \frac{\Delta_x}{\Delta} \int_0^{\frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, 1)} \frac{\Delta}{\Delta_x}} \frac{\bar{Z}_x(y_{1:N}, 1)}{\hat{Z}_x(y_{1:N})} \log \left[1 + \frac{u}{\Delta} \right] du \quad (\text{See the Sort Coding bound below.}) \quad (289)$$

$$\leq \frac{\Delta_x}{\Delta} \int_0^{\frac{\hat{Z}_x(y_{1:N})}{\bar{Z}_x(y_{1:N}, 1)} \frac{\Delta}{\Delta_x}} \frac{\bar{Z}_x(y_{1:N}, 1)}{\hat{Z}_x(y_{1:N})} \log \left[1 + \frac{\hat{Z}_x(y_{1:N})}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \right] du \quad (290)$$

$$= \log \left[1 + \frac{\hat{Z}_x(y_{1:N})}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \right], \quad (291)$$

Finally, we have:

$$\mathbb{E}[\log \hat{K}_1] \quad (292)$$

$$= N \int_{-\infty}^{\infty} \left(\prod_{j=2}^N Q(y_j) \right) \frac{P_x(y_1)}{\bar{Z}_x(y_{1:N}, 1) \Delta_x} \log \left[1 + \frac{\hat{Z}_x(y_{1:N})}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \right] dy_{1:N} \quad (293)$$

$$\leq N \int_{-\infty}^{\infty} \left(\prod_{j=2}^N Q(y_j) \right) \frac{P_x(y_1)}{\bar{Z}_x(y_{1:N}, 1) \Delta_x} \left(\log \left[\frac{\hat{Z}_x(y_{1:N})}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \right] + \log e \frac{\Delta_x \bar{Z}_x(y_{1:N}, 1)}{\hat{Z}_x(y_{1:N})} \right) dy_{1:N} \quad (294)$$

$$= N \int_{-\infty}^{\infty} \left(\prod_{j=2}^N Q(y_j) \right) \frac{P_x(y_1)}{\bar{Z}_x(y_{1:N}, 1) \Delta_x} \log \left[\frac{\hat{Z}_x(y_{1:N})}{\Delta_x \bar{Z}_x(y_{1:N}, 1)} \right] dy_{1:N} + \log(e) \quad (295)$$

$$= \frac{N}{\Delta_x} \mathbb{E}_{Y_{1:N} \sim Q} \left[\frac{P_x(Y_1)/Q(Y_1)}{\bar{Z}_x(Y_{1:N}, 1)} \log \left(\frac{\hat{Z}_x(Y_{1:N})}{\Delta_x \bar{Z}_x(Y_{1:N}, 1)} \right) \right] \quad (296)$$

We show the proof for (289) below.

Sort Coding Bound. To bound the expectation term, we first apply Jensen's inequality and conditioning on the accepted chunk of batches $L = \ell$:

$$\mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u] \quad (297)$$

$$\leq \log(\mathbb{E}[\hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u]) \quad (298)$$

$$= \log(\mathbb{E}[\hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u]) \quad (299)$$

$$= \log(\mathbb{E}_L[\mathbb{E}[\hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell]]) \quad (300)$$

We now repeat the previous argument in standard RS. Specifically, given \hat{K}_1 is within the range $L = \ell$ and $U_{K_1} = u$, we can express \hat{K}_1 as follows:

$$\hat{K}_1 = |\{U_i < u, (\ell - 1)\lfloor \Delta^{-1} \rfloor + 1 \leq i \leq \ell \lfloor \Delta^{-1} \rfloor\}| + 1, \quad (301)$$

$$= \Omega(u, \ell) + 1 \quad (302)$$

812 i.e. the number of U_i (plus 1 for the ranking) within the range L that has value lesser than u .

813 We can see that the the index i within the range L satisfying $U_i < u$ are from the indices that are
814 either (1) rejected, i.e. index $i < \hat{K}_1$ or (2) not examined by the algorithm, i.e. index $i > \hat{K}_1$. The
815 rest of this proof will show the following bound:

$$\mathbb{E}[\Omega(u, \ell) | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell] \leq \Delta^{-1}u, \text{ for any } \ell \quad (303)$$

816 For readability, we split the proof into different proof steps.

817 **Proof Step 1:** We condition on the mapped index of $\pi(\hat{K})$ on the original array:

$$\mathbb{E}[\hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell] \quad (304)$$

$$= \mathbb{E}_{\pi(\hat{K}_1)} \left[\mathbb{E}[\hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \right] \quad (305)$$

$$= \mathbb{E}_{\pi(\hat{K}_1)} \left[\mathbb{E}[\Omega(u, \ell) + 1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \right] \quad (306)$$

$$= \mathbb{E}_{\pi(\hat{K}_1)} \left[\mathbb{E}[\Omega(u, \ell) | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \right] + 1 \quad (307)$$

$$= \mathbb{E}_{\pi(\hat{K}_1)} \left[\mathbb{E}[\Omega_1(u, \ell, k_1) + \Omega_2(u, \ell, k_1) | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \right] + 1, \quad (308)$$

818 where $\Omega_1(u, \ell, k_1), \Omega_2(u, \ell, k_1)$ are the number of $U_i < u$ within the range $L = \ell$ that occurs before
819 and after the selected index k_1 respectively. Specifically:

$$\Omega_1(u, \ell, k_1) = |\{U_i < u, (\ell - 1)\lfloor \Delta^{-1} \rfloor + 1 \leq i < (\ell - 1)\lfloor \Delta^{-1} \rfloor + k_1\}| \quad (309)$$

$$\Omega_2(u, \ell, k_1) = |\{U_i < u, (\ell - 1)\lfloor \Delta^{-1} \rfloor + k_1 + 1 \leq i \leq \ell\lfloor \Delta^{-1} \rfloor\}|, \quad (310)$$

820 which also naturally gives $\Omega(u, \ell) = \Omega_1(u, \ell, k_1) + \Omega_2(u, \ell, k_1)$.

Proof Step 2: Consider $\Omega_2(u, \ell, k_1)$, since each proposal $(Y_{i,1:N}, U_i)$ is i.i.d distributed and the fact
that k_1 is the index of the *first accepted batch*, for every $i > k_1$, we have:

$$\Pr(U_i < u | \bar{Y}_{1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1) = \Pr(U_i < u)$$

821 This gives us:

$$\mathbb{E}[\Omega_2(u, \ell, k_1) | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \quad (311)$$

$$= (\lfloor \Delta^{-1} \rfloor - k_1) \Pr(U_i < u) \quad (312)$$

$$= (\lfloor \Delta^{-1} \rfloor - k_1)u \quad (313)$$

$$\leq \frac{(\lfloor \Delta^{-1} \rfloor - k_1)u}{\Pr(\text{Batch is rejected})} \quad (314)$$

$$\leq \frac{(\lfloor \Delta^{-1} \rfloor - k_1)u}{1 - \Delta} \quad (315)$$

822 **Proof Step 3:** For $\Omega_1(u, \ell, \hat{K}_1)$, we do not have such independent property since for every batch
823 with index $i < k_1$, we know that they are rejected batches, and hence for $i < k_1$:

$$\Pr(U_i < u | Y_{K_1,1:N} = y_{1:N}, K_2 = k, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1) \quad (316)$$

$$= \Pr(U_i < u | Y_{i,1:N} \text{ is rejected}) \quad (317)$$

$$= \frac{\Pr(U_i < u, Y_{i,1:N} \text{ is rejected})}{\Pr(Y_{i,1:N} \text{ is rejected})} \quad (318)$$

$$\leq \frac{\Pr(U_i < u)}{\Pr(Y_{i,1:N} \text{ is rejected})} \quad (319)$$

$$= \frac{u}{1 - \Delta}, \quad (320)$$

824 which gives us:

$$\mathbb{E}[\Omega_2(u, \ell, k_1) | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1] \leq \frac{(k_1 - 1)u}{1 - \Delta} \quad (321)$$

825 To prove Equation (317), note that the following events are equivalent:

$$\{Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u, L = \ell, \pi(\hat{K}_1) = k_1\} \quad (322)$$

$$= \{Y_{k_1,1:N} = y_{1:N}, K_2 = 1, U_k = u, B_{1,\dots,k-1} \text{ are rejected}\} \quad (323)$$

$$\triangleq \Lambda(u, y, k_1) \quad (324)$$

826 Here, we note that Y_{k_1}, U_{k_1} denote the value at batch index k within W , which is different from
827 Y_{K_1}, U_{K_1} , the value selected by the rejection sampler. Hence:

$$\Pr(U_i < u | \Lambda(u, y, k_1)) \quad (325)$$

$$= \frac{\Pr(U_i < u, B_{1,\dots,k_1-1} \text{ are rejected} | Y_{k_1,1:N} = y_{1:N}, U_k = u, K_2 = 1)}{\Pr(B_{1,\dots,k_1-1} \text{ are rejected} | Y_{k_1,1:N} = y_{1:N}, U_k = u, K_2 = 1)} \quad (326)$$

$$= \frac{\Pr(U_i < u, B_{1,\dots,k_1-1} \text{ are rejected})}{\Pr(B_{1,\dots,k_1-1} \text{ are rejected})} \quad (\text{Since } (Y_i, U_i) \text{ are i.i.d}) \quad (327)$$

$$= \Pr(U_i < u | B_i \text{ is rejected}), \quad (328)$$

828 **Proof Step 4:** From the above result from Step 2 and 3, we have $\Omega(u, \ell) = \Omega_1(u, \ell, k) +$
829 $\Omega_2(u, \ell, k) \leq \frac{(\lfloor \Delta^{-1} \rfloor - 1)u}{1 - \Delta}$ and as a result:

$$\mathbb{E}[\log \hat{K}_1 | Y_{K_1,1:N} = y_{1:N}, K_2 = 1, U_{K_1} = u] \leq \frac{(\lfloor \Delta^{-1} \rfloor - 1)u}{1 - \Delta} + 1 \quad (329)$$

$$\leq \frac{(\Delta^{-1} - 1)u}{1 - \Delta} + 1 \quad (\text{Since } \lfloor \Delta^{-1} \rfloor \leq \Delta^{-1}) \quad (330)$$

$$= \Delta^{-1}u + 1 \quad (331)$$

830 which completes the proof.

831 **J ERS Matching Lemmas**

832 **J.1 Preliminaries**

833 We begin by providing the following bounds on inverse moments of averages.

834 **Proposition J.1.** *Let $Y_1, Y_2, \dots, Y_N \sim Q_Y(\cdot)$ and suppose the target distribution P_Y satisfies:*

$$d_2(Q_Y \| P_Y) \triangleq \mathbb{E}_{Y \sim Q_Y(\cdot)} \left[\frac{Q_Y(Y)}{P_Y(Y)} \right] < \infty, \quad (332)$$

835 *then we have:*

$$\mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{N}{\sum_{i=1}^N \frac{P_Y(Y_i)}{Q_Y(Y_i)}} \right] \leq d_2(Q_Y \| P_Y). \quad (333)$$

836 *Proof.* Applying the Cauchy-Schwarz inequality, we have:

$$\frac{N}{\sum_{i=1}^N \frac{P_Y(Y_i)}{Q_Y(Y_i)}} \leq \frac{1}{N} \sum_{j=1}^N \frac{Q_Y(Y_i)}{P_Y(Y_i)} \quad (334)$$

837 Taking the expectation of both sides yield the desired inequality. \square

838 **Remark J.2.** *In general, stronger results on the inverse moments of averages exist under weaker moment assumptions, specifically:*

$$\mathbb{E}_{Y \sim Q_Y} \left[\left(\frac{Q_Y(Y)}{P_Y(Y)} \right)^\eta \right]$$

840 *is finite for some $\eta < 0$. The resulting bound has a similar form (some power terms involved) to that of Proposition J.1 but requires a mild threshold on N . For further details, see Proposition A.1 in [7].*

842 We show an application of Proposition J.1, which we will use repeatedly:

843 **Corollary J.3.** *Let $Y_1, Y_2, \dots, Y_N \sim Q_Y(\cdot)$ and suppose the target distributions P_Y^A, P_Y^B satisfy:*

$$d_2(Q_Y \| P_Y^A) \triangleq \mathbb{E}_{Y \sim Q_Y(\cdot)} \left[\frac{Q_Y(Y)}{P_Y^A(Y)} \right] < \infty, \quad \text{and} \quad \frac{P_Y^A(y)}{Q_Y(y)}, \frac{P_Y^B(y)}{Q_Y(y)} \leq \omega \text{ for all } y. \quad (335)$$

844 *Then, for any $N \geq 1$,*

$$\mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{\sum_{j=1}^N \frac{P_Y^B(Y_j)}{Q_Y(Y_j)}}{\sum_{i=1}^N \frac{P_Y^A(Y_i)}{Q_Y(Y_i)}} \right] \leq \mathbb{I}_N(\omega, 1) \cdot d_2(Q_Y \| P_Y), \quad (336)$$

845 *where we define $\mathbb{I}_N(\omega, i) \triangleq (2\mathbb{1}_{N>i} + \omega\mathbb{1}_{N=i})$.*

846 *Proof.* For $N = 1$, applying the conditions for P_Y^A and P_Y^B gives us an upper-bound of $\omega d_2(Q_Y \| P_Y^A)$.
847 For $N > 1$, we have:

$$\mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{\sum_{j=1}^N \frac{P_Y^B(Y_j)}{Q_Y(Y_j)}}{\sum_{i=1}^N \frac{P_Y^A(Y_i)}{Q_Y(Y_i)}} \right] = N \mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{\frac{P_Y^B(Y_1)}{Q_Y(Y_1)}}{\sum_{i=1}^N \frac{P_Y^A(Y_i)}{Q_Y(Y_i)}} \right] \quad (\text{Due to symmetry}) \quad (337)$$

$$\leq N \mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{\frac{P_Y^B(Y_1)}{Q_Y(Y_1)}}{\sum_{i=2}^N \frac{P_Y^A(Y_i)}{Q_Y(Y_i)}} \right] \quad (\text{since } \frac{P_Y^A(Y_i)}{Q_Y(Y_i)} \geq 0) \quad (338)$$

$$= \frac{N}{N-1} \mathbb{E}_{Y_{1:N} \sim Q_Y(\cdot)} \left[\frac{N-1}{\sum_{i=2}^N \frac{P_Y^A(Y_i)}{Q_Y(Y_i)}} \right] \quad (339)$$

$$\leq 2d_2(Q_Y \| P_Y^A) \quad (\text{Proposition J.1 and } N > 1), \quad (340)$$

848 which completes the proof. \square

849 **J.2 Distributed Matching Without Batch Communication**

850 Before the proof, we outline the details of each case in Section 2, covering scenarios without and
851 with communication between the encoder and decoder.

852 **Without-Communication.** In this scenario, let $P_Y^A(\cdot)$ and $P_Y^B(\cdot)$ be the target distributions at the
853 encoder and decoder respectively, where we use the same shared randomness W as in Section D.1
854 where we use the proposal distribution $Q_Y(\cdot)$. Furthermore, we assume that:

$$\max_y \left(\frac{P_Y^A(y)}{Q_Y(y)} \right) = \omega_A, \quad \max_y \left(\frac{P_Y^B(y)}{Q_Y(y)} \right) = \omega_B, \quad \max_y \left(\frac{P_Y^A(y)}{Q_Y(y)}, \frac{P_Y^B(y)}{Q_Y(y)} \right) \leq \omega, \quad (341)$$

855 Using the ERS procedure, the encoder and decoder select the indices K_A and K_B respectively.

$$K_A = \text{ERS}(W; P_Y^A, Q_Y), \quad K_B = \text{ERS}(W; P_Y^B, Q_Y), \quad (342)$$

856 The ERS(\cdot) function follows Algorithm 1, without requiring any specific scaling factor. During the
857 selection process, the calculation of \bar{Z} in Step 3 of this algorithm, which determines the acceptance
858 probability, uses the ratio upper bounds ω_A and ω_B for parties A and B , respectively. Proposition J.4
859 establishes the bound on the probability that both parties produce the same output, conditioned on
860 $Y_{K_A} = y$.

861 **Proposition J.4.** *Let K_A, K_B and P_Y^A, P_Y^B defined as above and $N \geq 2$, we have:*

$$\Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y) \geq \left(1 + \mu_1(N) + \frac{P_Y^A(y)}{P_Y^B(y)} (1 + \mu_2(N)) \right)^{-1}, \quad (343)$$

862 where $\mu_1(N)$ and $\mu_2(N)$ are defined as in Appendix J.3 and we note that $\mu_1(N), \mu_2(N) \rightarrow 0$ as
863 $N \rightarrow \infty$ under mild assumptions on the distributions P_Y^A, P_Y^B and Q_Y .

864 *Proof.* See Appendix J.4. □

865 **With Communication.** Following the setup described in Section D.3, we define the ratio upperbounds
866 in the communication case as below:

$$\max_z \left(\frac{P_{Y|Z}(y|x)}{Q_Y(y)} \right) = \omega_x, \quad \max_z \left(\frac{\tilde{P}_{Y|Z}(y|z)}{Q_Y(y)} \right) = \omega_z, \quad \max_{y,z} \left(\frac{P_{Y|X}(y|x)}{Q_Y(y)}, \frac{\tilde{P}_{Y|Z}(y|z)}{Q_Y(y)} \right) \leq \omega,$$

867 and similar to the case without communication, the ERS(\cdot) selection process at the encoder and
868 decoder also follows Algorithm 1, with the calculation of \bar{Z} in Step 3 uses the upperbound ω_x and ω_z
869 respectively for the encoder and decoder. The bound for this case is shown below.

870 **Proposition J.5.** *For $N \geq 2$ and X, Y, Z defined as above, we have:*

$$\Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y, X = x, Z = z) \geq \left(1 + \mu_1^{\text{cond}}(N) + \frac{P_{Y|X}(y|x)}{\tilde{P}_{Y|Z}(y|z)} (1 + \mu_2^{\text{cond}}(N)) \right)^{-1}, \quad (344)$$

871 where $\mu_1^{\text{cond}}(N)$ and $\mu_2^{\text{cond}}(N)$ are defined as in Appendix J.5 and we note that
872 $\mu_1^{\text{cond}}(N), \mu_2^{\text{cond}}(N) \rightarrow 0$ as $N \rightarrow \infty$ under mild assumptions on the distributions
873 $P_{Y|X}(\cdot|x), \tilde{P}_{Y|Z}(\cdot|z)$ and $Q_Y(\cdot)$.

874 *Proof.* See Appendix J.6. □

875 **J.3 Coefficients in Proposition J.4**

876 We first define the coefficient $\mu_1(N)$ and $\mu_2(N)$ in Proposition J.4.

$$\mu_1(N) = \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^B) + \frac{\omega^2}{N-1} d_2(Q_Y || P_Y^B) \right] \quad (345)$$

$$\mu_2(N) = \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) + \frac{\omega^2}{N-1} d_2(Q_Y || P_Y^A) \right] \quad (346)$$

877 where we define $\mathbb{I}_N(\omega, i) \triangleq (2\mathbb{1}_{N>i} + \omega\mathbb{1}_{N=i})$ as in Proposition J.3.

878 **J.4 Proof of Proposition J.4**

879 We prove the matching probability for the case of ERS. We note that in this proof, we will use the
880 global index for the proposals $Y_1, \dots, Y_N \sim Q(\cdot)$ instead of $Y_{1,1}, \dots, Y_{1,N}$ unless otherwise stated. First,
881 consider:

$$\Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y_1) \quad (347)$$

$$\geq \Pr(K_A = K_B | Y_{K_A} = y_1) \quad (348)$$

$$= \sum_{k=1}^{\infty} \Pr(K_A = K_B = k | Y_{K_A} = y_1) \quad (349)$$

$$\geq \sum_{k=1}^N \Pr(K_A = K_B = k | Y_{K_A} = y_1) \quad (350)$$

$$= N \Pr(K_A = K_B = 1 | Y_{K_A} = y_1) \quad (351)$$

$$= \frac{N Q_Y(y_1)}{P_Y^A(y_1)} \Pr(K_{2,A} = K_{2,B} = 1, K_{1,A} = K_{1,B} = 1 | Y_1 = y_1) \quad (352)$$

$$= \frac{N Q_Y(y_1)}{P_Y^A(y_1)} \int \Pr(K_{2,A} = K_{2,B} = 1, K_{1,A} = K_{1,B} = 1, Y_{2:N} = y_{2:N} | Y_1 = y_1) dy_{2:N} \quad (353)$$

$$= \frac{N Q_Y(y_1)}{P_Y^A(y_1)} \int \Pr(K_{2,A} = K_{2,B} = 1, K_{1,A} = K_{1,B} = 1 | Y_{1:N} = y_{1:N}) Q_Y(y_{2:N}) dy_{2:N} \quad (354)$$

$$= \frac{N Q_Y(y_1)}{P_Y^A(y_1)} \int \Pr(K_{2,A} = K_{2,B} = 1 | Y_{1:N} = y_{1:N}) \\ \times \Pr(K_{1,A} = K_{1,B} = 1 | K_{2,A} = K_{2,B} = 1, Y_{1:N} = y_{1:N}) Q_Y(y_{2:N}) dy_{2:N} \quad (355)$$

$$= \frac{N Q_Y(y_1)}{P_Y^A(y_1)} \mathbb{E}_{Y_{2:N} \sim Q_Y(\cdot)} [\Pr(K_{2,A} = K_{2,B} = 1 | Y_{1:N} = y_{1:N}) \\ \times \Pr(K_{1,A} = K_{1,B} = 1 | K_{2,A} = K_{2,B} = 1, Y_{1:N} = y_{1:N})] \quad (356)$$

882 where (352) is due to the following fact that:

$$\{K_A = K_B = 1, Y_{K_A} = y_1\} = \{K_A = K_B = 1, Y_1 = y_1\}, \quad (357)$$

883 and thus:

$$\Pr(K_A = K_B = 1 | Y_{K_A} = y_1) = \frac{\Pr(K_A = K_B = 1 | Y_1 = y_1) Q_Y(y_1)}{P(Y_{K_A} = y_1)} \quad (358)$$

$$= \frac{\Pr(K_A = K_B = 1 | Y_1 = y_1) Q_Y(y_1)}{P_Y^A(y_1)} \quad (359)$$

$$(360)$$

884 Define:

$$\hat{Z}(P_Y^A, y_{1:N}) = \sum_{i=1}^N \frac{P_Y^A(y_i)}{Q_Y(y_i)}, \quad \hat{Z}(P_Y^B, y_{1:N}) = \sum_{i=1}^N \frac{P_Y^B(y_i)}{Q_Y(y_i)} \quad (361)$$

885 Now, we note that:

$$\Pr(K_{2,A} = K_{2,B} = 1 | Y_{1:N} = y_{1:N}) \quad (362)$$

$$= \Pr(K_{2,A} = 1 | Y_{1:N} = y_{1:N}) \Pr(K_{2,B} = 1 | Y_{1:N} = y_{1:N}, K_{2,A} = 1) \quad (363)$$

$$= \frac{P_Y^A(y_1) / Q_Y(y_1)}{\sum_{i=1}^N P_Y^A(y_i) / Q_Y(y_i)} \Pr(K_{2,B} = 1 | Y_{1:N} = y_{1:N}, K_{2,A} = 1) \quad (364)$$

$$\geq \frac{P_Y^A(y_1) / Q_Y(y_1)}{\hat{Z}(P_Y^A, y_{1:N})} \left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \cdot \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right)^{-1}, \quad (365)$$

886 where we denote $\hat{Z}(P_Y^A, y_{1:N}) = \sum_{i=1}^N P_Y^A(y_i)/Q_Y(y_i)$ and the last inequality is due to Proposition
887 1 in [30]. Also:

$$\Pr(K_{1,A}(1)=K_{1,B}(1)=1|K_{2,A}=K_{2,B}=1, Y_{1:N}=y_{1:N}) \quad (366)$$

$$\geq \min \left(\frac{\hat{Z}(P_Y^A, y_{1:N})}{\hat{Z}(P_Y^A, y_{2:N}) + \omega}, \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^B, y_{2:N}) + \omega} \right) \left(\text{Since } \omega \geq \max_y \left(\frac{P_Y^A(y)}{Q_Y(y)}, \frac{P_Y^B(y)}{Q_Y(y)} \right) \right) \quad (367)$$

$$\geq \left(\frac{\hat{Z}(P_Y^A, y_{1:N})}{\hat{Z}(P_Y^A, y_{2:N}) + \omega} \right) \left(\frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^B, y_{2:N}) + \omega} \right), \quad (368)$$

888 where we use the inequality $\min(a, b) \geq ab$ for $0 \leq a, b \leq 1$. Plug both in (356), we have:

$$\Pr(K_A=K_B|Y_{K_A}=y_1) \quad (369)$$

$$\geq \mathbb{E}_{Y_{2:N} \sim Q_Y(\cdot)} \left[\frac{1}{\left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \cdot \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right)} \left(\frac{N}{\hat{Z}(P_Y^A, y_{2:N}) + \omega} \right) \left(\frac{\hat{Z}(P_Y^B, y_{1:N})}{\sum_{i=2}^N \hat{Z}(P_Y^B, y_{2:N}) + \omega} \right) \right] \quad (370)$$

$$= \mathbb{E}_{Y_{2:N} \sim Q_Y(\cdot)} \left[\frac{1}{\left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \cdot \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right) \left(\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right) \left(\frac{\hat{Z}(P_Y^B, y_{2:N}) + \omega}{\hat{Z}(P_Y^B, y_{1:N})} \right)} \right] \quad (371)$$

$$\geq \left(\mathbb{E}_{Y_{2:N} \sim Q_Y(\cdot)} \left[\left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \cdot \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right) \left(\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right) \left(\frac{\hat{Z}(P_Y^B, y_{2:N}) + \omega}{\hat{Z}(P_Y^B, y_{1:N})} \right) \right] \right)^{-1} \quad (371)$$

$$= \left(\mathbb{E}_{Y_{2:N} \sim Q_Y(\cdot)} \left[\zeta_1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \zeta_2 \right] \right)^{-1}, \quad (372)$$

889 where we use Jensen's inequality for the convex function $1/x$ in line (371) and set:

$$\zeta_1 = \left(\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right) \left(\frac{\hat{Z}(P_Y^B, y_{2:N}) + \omega}{\hat{Z}(P_Y^B, y_{1:N})} \right) \quad (373)$$

$$= \frac{\hat{Z}(P_Y^A, y_{2:N}) \cdot \hat{Z}(P_Y^B, y_{2:N})}{N \hat{Z}(P_Y^B, y_{1:N})} + \frac{\omega}{N} \cdot \frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^B, y_{1:N})} + \frac{\omega}{N} \cdot \frac{\hat{Z}(P_Y^B, y_{2:N})}{\hat{Z}(P_Y^B, y_{1:N})} + \frac{\omega^2}{N \cdot \hat{Z}(P_Y^B, y_{1:N})} \quad (374)$$

$$\leq \frac{1}{N} \hat{Z}(P_Y^A, y_{2:N}) + \frac{\omega}{N} \cdot \frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^B, y_{2:N})} + \frac{\omega}{N} + \frac{\omega^2}{N \hat{Z}(P_Y^B, y_{2:N})}, \quad (374)$$

890 with the last inequality due to $\sum_{i=1}^N z_i \geq \sum_{i=2}^N z_i$ for any positive z . We then have:

$$\mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} [\zeta_1] \quad (375)$$

$$\leq \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{\hat{Z}(P_Y^A, y_{2:N})}{N} + \frac{\omega}{N} \cdot \frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^B, y_{2:N})} + \frac{\omega}{N} + \frac{\omega^2}{N \hat{Z}(P_Y^B, y_{2:N})} \right] \quad (376)$$

$$= \frac{N-1}{N} + \frac{\omega}{N} + \frac{\omega}{N} \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^B, y_{2:N})} \right] + \frac{\omega^2}{N} \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{1}{\hat{Z}(P_Y^B, y_{2:N})} \right] \quad (377)$$

$$\leq 1 + \frac{1}{N} \left(\omega + \omega \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^B, y_{2:N})} \right] + \omega^2 \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{1}{\hat{Z}(P_Y^B, y_{2:N})} \right] \right) \quad (378)$$

$$\leq 1 + \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^B) + \frac{\omega^2}{N-1} d_2(Q_Y || P_Y^B) \right] \quad (379)$$

$$= 1 + \mu_1(N), \quad (380)$$

891 where the last inequality is due to Proposition J.1 and Corollary J.3.. For the other term, we have:

$$\zeta_2 = \left(\frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right) \left(\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right) \left(\frac{\hat{Z}(P_Y^B, y_{2:N}) + \omega}{\hat{Z}(P_Y^B, y_{1:N})} \right) \quad (381)$$

$$= \frac{1}{N} \left(\frac{\hat{Z}(P_Y^A, y_{2:N})}{\hat{Z}(P_Y^A, y_{1:N})} + \frac{\omega}{\hat{Z}(P_Y^A, y_{1:N})} \right) (\hat{Z}(P_Y^B, y_{2:N}) + \omega) \quad (382)$$

$$\leq \frac{1}{N} \left(1 + \frac{\omega}{\hat{Z}(P_Y^A, y_{2:N})} \right) (\hat{Z}(P_Y^B, y_{2:N}) + \omega) \quad (383)$$

$$= \frac{\hat{Z}(P_Y^B, y_{2:N})}{N} + \frac{1}{N} \left(\omega + \frac{\omega \hat{Z}(P_Y^B, y_{2:N})}{\hat{Z}(P_Y^A, y_{2:N})} + \frac{\omega^2}{\hat{Z}(P_Y^A, y_{2:N})} \right). \quad (384)$$

892 where we again repeatedly use the inequality $\sum_{i=1}^N z_i \geq \sum_{i=2}^N z_i$ for any positive z . This gives us:

$$\mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} [\zeta_2] \quad (385)$$

$$\leq \frac{1}{N} \left(\omega + \omega \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{\hat{Z}(P_Y^B, y_{2:N})}{\hat{Z}(P_Y^A, y_{2:N})} \right] + \omega^2 \mathbb{E}_{y_{2:N} \sim Q_Y(\cdot)} \left[\frac{1}{\hat{Z}(P_Y^A, y_{2:N})} \right] \right) \quad (386)$$

$$\leq \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) + \frac{\omega^2}{N-1} d_2(Q_Y || P_Y^A) \right] \quad (387)$$

$$= \mu_2(N), \quad (388)$$

893 where the last inequality is due to Proposition J.1 and Corollary J.3. This completes the proof.

894 J.5 Coefficients in Proposition J.5

895 We define the coefficient $\mu_1^{\text{cond}}(N)$ and $\mu_2^{\text{cond}}(N)$ in Proposition J.5.

$$\mu_1^{\text{cond}}(N) = \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || \tilde{P}_{Y|Z}(\cdot|z)) + \frac{\omega^2}{N-1} d_2(Q_Y || \tilde{P}_{Y|Z}(\cdot|z)) \right] \quad (389)$$

$$\mu_2^{\text{cond}}(N) = \frac{1}{N} \left[\omega + \omega \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_{Y|X}(\cdot|x)) + \frac{\omega^2}{N-1} d_2(Q_Y || P_{Y|X}(\cdot|x)) \right] \quad (390)$$

896 where we define $\mathbb{I}_N(\omega, i) \triangleq (2\mathbb{1}_{N>i} + \omega\mathbb{1}_{N=i})$ as in Proposition J.3.

897 J.6 Proof of Proposition J.5

898 We will use the global index for the proposals $Y_1, \dots, Y_N \sim Q(\cdot)$ instead of $Y_{1,1}, \dots, Y_{1,N}$ unless
899 otherwise stated. For the communication version, we have:

$$\Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y_1, X = x, Z = z) \quad (391)$$

$$\geq \Pr(K_A = K_B | Y_{K_A} = y_1, X = x, Z = z) \quad (392)$$

$$= \sum_{k=1}^{\infty} \Pr(K_A = K_B = k | Y_{K_A} = y_1, X = x, Z = z) \quad (393)$$

$$\geq \sum_{k=1}^N \Pr(K_A = K_B = k | Y_{K_A} = y_1, X = x, Z = z) \quad (394)$$

$$= N \Pr(K_A = K_B = 1 | Y_{K_A} = y_1, X = x, Z = z) \quad (395)$$

$$= N \Pr(K_{1,A} = K_{1,B} = 1, K_{2,A} = K_{2,B} = 1 | Y_{K_A} = y_1, X = x, Z = z) \quad (396)$$

900 Define:

$$\hat{Z}(P_{Y|X=x}, y_{1:N}) = \sum_{i=1}^N \frac{P_{Y|X}(y_i|x)}{Q_Y(y_i)}, \quad \hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N}) = \sum_{i=1}^N \frac{\tilde{P}_{Y|Z}(y_i|z)}{Q_Y(y_i)} \quad (397)$$

901 Now consider the following terms:

$$E_1 = \Pr(K_{1,A} = 1, K_{2,A} = 1 | Y_{K_A} = y_1, Y_{2:N} = y_{2:N}, X = x, Z = z) \\ \times P(Y_{2:N} = y_{2:N} | Y_{K_A} = y_1, X = x, Z = z) \quad (398)$$

$$= \frac{1}{P_{X,Y,Z}(x, y_1, z)} Q_Y(y_{1:N}) P_X(x) \Pr(K_{2,A} = 1 | Y_{1:N} = y_{1:N}, X = x) \\ \times \Pr(K_{1,A} = 1 | Y_{1:N} = y_{1:N}, X = x, K_{2,A} = 1) P_Z(z | Y_{1:N} = y_{1:N}, X = x, K_A = 1) \quad (399)$$

$$= \frac{1}{P_{X,Y,Z}(x, y_1, z)} Q_Y(y_{1:N}) P_X(x) \Pr(K_{2,A} = 1 | Y_{1:N} = y_{1:N}, X = x) \\ \times \Pr(K_{1,A} = 1 | Y_{1:N} = y_{1:N}, X = x, K_{2,A} = 1) P_{Z|X,Y}(z | X = x, Y = y_1) \quad (400)$$

$$= \frac{Q_Y(y_{1:N})}{P_{Y|X}(y_1|x)} \Pr(K_{2,A} = 1 | Y_{1:N} = y_{1:N}, X = x) \\ \times \Pr(K_{1,A} = 1 | Y_{1:N} = y_{1:N}, X = x, K_{2,A} = 1) \quad (401)$$

$$= \frac{Q_Y(y_{1:N})}{P_{Y|X}(y_1|x)} \frac{P_{Y|X}(y_1|x) / Q_Y(y_1)}{\hat{Z}(P_{Y|X=x}, y_{2:N}) + \omega_x} \quad (402)$$

$$= \frac{Q_Y(y_{2:N})}{\hat{Z}(P_{Y|X=x}, y_{2:N}) + \omega_x} \quad (403)$$

902 and:

$$E_2 \quad (404)$$

$$= \Pr(K_{2,B} = 1 | K_A = 1, Y_{1:N} = y_{1:N}, X = x, Z = z) \quad (405)$$

$$= 1 - \Pr(K_{2,B} \neq 1 | K_A = 1, Y_{1:N} = y_{1:N}, X = x, Z = z) \quad (406)$$

$$= 1 - \Pr \left(\min_{j \neq 1} \frac{S_j}{\frac{\tilde{P}_{Y|Z}(y_j|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \leq \frac{S_1}{\frac{\tilde{P}_{Y|Z}(y_1|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \middle| K_A = 1, Y_{1:N} = y_{1:N}, X = x, Z = z \right) \quad (407)$$

$$= 1 - \Pr \left(\min_{j \neq 1} \frac{S_j}{\frac{\tilde{P}_{Y|Z}(y_j|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \leq \frac{S_1}{\frac{\tilde{P}_{Y|Z}(y_1|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \middle| K_A = 1, Y_{1:N} = y_{1:N}, X = x \right) \quad (408)$$

$$= 1 - \Pr \left(\min_{j \neq 1} \frac{S_j}{\frac{\tilde{P}_{Y|Z}(y_j|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \leq \frac{S_1}{\frac{\tilde{P}_{Y|Z}(y_1|z)}{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}} \middle| K_{2,A} = 1, Y_{1:N} = y_{1:N}, X = x \right) \quad (409)$$

$$\geq \left(1 + \frac{P_{Y|X}(y_1|x)}{\tilde{P}_{Y|Z}(y_1|z)} \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}{\hat{Z}(P_{Y|X=x}, y_{1:N})} \right)^{-1}, \quad (410)$$

903 where (408) is due to the Markov condition $Z - (X, Y) - W$, (409) is due to the fact that the uniform
904 random variable U is independent of S_1^N and (410) is due to the conditional importance matching
905 lemma [30]. We note the following events are equivalent:

$$\{K_A = 1, Y_{1:N} = y_{1:N}, X = x, Z = z, K_{2,B} = 1\} \quad (411)$$

$$\triangleq \left\{ U \leq \frac{\hat{Z}(P_{Y|X=x}, y_{1:N})}{\hat{Z}(P_{Y|X=x}, y_{2:N}) + \omega_x}, Y_{1:N} = y_{1:N}, X = x, Y_{K_A} = y_1, Z = z \right\} \quad (412)$$

$$\triangleq \mathcal{E} \cap \{Z = z\} \quad (413)$$

906 where $\mathcal{E} = \left\{ U \leq \frac{\hat{Z}(P_{Y|X=x, Y_{1:N}})}{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega_x}, Y_{1:N} = y_{1:N}, X = x, Y_{K_A} = y_1 \right\}$. Then, we have:

$$E_3 = \Pr(K_{1,B} = 1 | K_A = 1, Y_{1:N} = y_{1:N}, X = x, Z = z, K_{2,B} = 1) \quad (414)$$

$$= \Pr\left(U \leq \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega_z} \middle| \mathcal{E}, Z = z\right) \quad (415)$$

$$= \Pr\left(U \leq \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega_z} \middle| \mathcal{E}\right) \quad (416)$$

$$= \min\left(1, \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega_z} \cdot \frac{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega_x}{\hat{Z}(P_{Y|X=x, Y_{1:N}})}\right), \quad (417)$$

907 where the second to last equality is due to the Markov condition $Z - (X, Y) - W$.

908 Combining all three terms E_1, E_2, E_3 and continue from step (396), we have:

$$\Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y_1, X = x, Z = z) \quad (418)$$

$$\geq N \int \frac{Q_Y(y_{2:N})}{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega_x} \left(1 + \frac{P_{Y|X}(y_1|x)}{\tilde{P}_{Y|Z}(y_1|z)} \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(P_{Y|X=x, Y_{1:N}})}\right)^{-1} \times \min\left(1, \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega_z} \cdot \frac{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega_x}{\hat{Z}(P_{Y|X=x, Y_{1:N}})}\right) dy_{2:N} \quad (419)$$

$$= N \int \frac{Q_Y(y_{2:N})}{\hat{Z}(P_{Y|X=x, Y_{1:N}})} \left(1 + \frac{P_{Y|X}(y_1|x)}{\tilde{P}_{Y|Z}(y_1|z)} \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(P_{Y|X=x, Y_{1:N}})}\right)^{-1} \times \min\left(\frac{\hat{Z}(P_{Y|X=x, Y_{1:N}})}{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega_x}, \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega_z}\right) dy_{2:N} \quad (420)$$

$$\geq \int \frac{NQ_Y(y_{2:N})}{\hat{Z}(P_{Y|X=x, Y_{1:N}})} \left(1 + \frac{P_{Y|X}(y_1|x)}{\tilde{P}_{Y|Z}(y_1|z)} \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(P_{Y|X=x, Y_{1:N}})}\right)^{-1} \times \left(\frac{\hat{Z}(P_{Y|X=x, Y_{1:N}})}{\hat{Z}(P_{Y|X=x, Y_{2:N}}) + \omega} \cdot \frac{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{1:N})}{\hat{Z}(\tilde{P}_{Y|Z=z}, Y_{2:N}) + \omega}\right) dy_{2:N} \quad (421)$$

909 with the last inequality follows the fact that $\omega > \max(\omega_x, \omega_z)$. The rest of the proof follows similar
910 steps as in the proof of Proposition J.4. This completes the proof.

911 **K ERS Matching with Batch Communication**

912 **Setup.** We first describe the setup in the case where the selected batch index is communicated from
913 the encoder to the decoder. The main difference between this and the setup in Section D.3 is that the
914 decoder (party B) will use the Gumbel-Max selection method instead of the ERS one, since it knows
915 which batch the encoder index belongs to. Furthermore, we note this scheme requires a noiseless
916 channel between the encoder and decoder, which is available in the distributed compression scenario.
917 Similarly to Section 2.2, let $(X, Y, Z) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ with a joint distribution $P_{X,Y,Z}$. We use the
918 same common randomness W as in Section D.3, with the proposal distribution Q_Y requiring that the
919 bounding condition hold for the tuple $(P_{Y|X=x}, Q_Y)$. The protocol is as follows:

920 1. The encoder receives the input $X = x \sim P_X$ and selects its value using ERS procedure:

$$K_A = \text{ERS}(W; P_{Y|X=x}, Q_Y), \quad (422)$$

921 and sends the batch index $K_{1,A}$ to the decoder. It then sets $Y_A = Y_{K_A}$

922 2. Given $X = x, Y_A = y$, we generate $Z = z \sim P_{Z|X,Y}(\cdot|x, y)$ and note that the Markov
923 chain $Z - (X, Y_A) - W$ holds.

924 3. The decoder receives the batch index $K_{1,A}$ and $Z = z$ will use the Gumbel Max process to
925 queries a sample from the common randomness W :

$$K_{1,B} = K_{1,A} \quad K_{2,B} = \text{Gumbel}(B_{K_{1,A}}; \tilde{P}_{Y|Z=z}, Q_Y) \quad K_B = (K_{1,B} - 1)N + K_{2,B},$$

926 and output $Y_B = Y_{K_B}$. The procedure Gumbel(.) corresponds to Step 1,2 in Algoirhm 1.

927 Given the above setup, we have the following bound on the matching event $\{Y_A = Y_B\}$:

928 **Proposition K.1.** *Let $K_A, K_B, P_{Y|X}(\cdot|X = x)$ and $\tilde{P}_{Y|Z}(\cdot|z)$ defined above and set $P_Y^A =$
929 $P_{Y|X=x}, P_Y^B = \tilde{P}_{Y|Z=z}$. For $N \geq 2$, we have:*

$$\Pr(Y_A = Y_B | Y_A = y, X = x, Z = z) \geq \left(1 + \mu'_1(N) + \frac{P_Y^A(y)}{P_Y^B(y)} (1 + \mu'_2(N))\right)^{-1}, \quad (423)$$

930 where $\mu'_1(N)$ and $\mu'_2(N)$ are defined as in Appendix K.1 and we note that $\mu'_1(N), \mu'_2(N) \rightarrow 0$ as
931 $N \rightarrow \infty$ with rate N^{-1} under mild assumptions on the distributions $P_{Y|X}(y|x)$ and $Q_Y(\cdot)$.

932 *Proof.* See Appendix K.2. □

933 **K.1 Coefficients in Proposition K.1**

934 We define the coefficient $\mu'_1(N)$ and $\mu'_2(N)$ in Proposition K.1.

$$\mu'_1(N) = \frac{3\omega}{N} \quad (424)$$

$$\mu'_2(N) = \frac{\omega}{N} \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_{Y|X=x}) \quad (425)$$

935 where we define $\mathbb{I}_N(\omega, i) \triangleq (2\mathbb{1}_{N>i} + \omega\mathbb{1}_{N=i})$ as in Proposition J.3 and $\omega = \max_y \frac{P_{Y|X}(y|x)}{Q_Y(y)}$.

936 **K.2 Proof of Proposition K.1**

937 We now formally prove the bound Proposition K.1. First, we define:

$$\hat{Z}(P_{Y|X=x}, y_{1:N}) = \sum_{i=1}^N \frac{P_{Y|X}(y_i|x)}{Q_Y(y_i)}, \quad \hat{Z}(\tilde{P}_{Y|Z=z}, y_{1:N}) = \sum_{i=1}^N \frac{\tilde{P}_{Y|Z}(y_i|z)}{Q_Y(y_i)} \quad (426)$$

938 Recall that $K_{2,A}$ is the local index within the selected batch by party A and $Y_{K_{1,A},1:N}$ are the samples
939 within the selected batch, we have:

$$\Pr(Y_A = Y_B | Y_A = y_1, X = x, Z = z) \quad (427)$$

$$= \Pr(Y_{K_A} = Y_{K_B} | Y_{K_A} = y_1, X = x, Z = z) \quad (428)$$

$$\geq \Pr(K_{2,A} = K_{2,B} | Y_{K_A} = y_1, X = x, Z = z) \quad (429)$$

$$= \sum_{i=1}^N \Pr(K_{2,A} = K_{2,B} = i | Y_{K_A} = y_1, X = x, Z = z) \quad (430)$$

$$= N \Pr(K_{2,A} = K_{2,B} = 1 | Y_{K_A} = y_1, X = x, Z = z) \quad (\text{Due to Symmetry}) \quad (431)$$

$$= N \Pr(K_{2,A} = K_{2,B} | Y_{K_A} = y_1, K_{2,A} = 1, X = x, Z = z) \times \Pr(K_{2,A} = 1 | Y_{K_A} = y_1, X = x, Z = z) \quad (432)$$

$$= \Pr(K_{2,A} = K_{2,B} | Y_{K_A} = y_1, K_{2,A} = 1, X = x, Z = z) \quad (433)$$

$$= \int_{-\infty}^{\infty} P(Y_{K_{1,A},2:N} = y_{2:N} | Y_{K_A} = y_1, K_{2,A} = 1, X = x, Z = z) \times \Pr(K_{2,A} = K_{2,B} | Y_{K_A} = y_1, K_{2,A} = 1, Y_{K_{1,A},2:N} = y_{2:N}, X = x, Z = z) dy_{2:N}, \quad (434)$$

940 where (433) is due to $\Pr(K_{2,A} = 1 | Y_{K_A} = y_1, X = x, Z = z) = N^{-1}$. Let $Y_{1:N} \sim Q$ are N i.i.d.
941 proposal samples, then $\{Y_{K_A,1:N} = y_{1:N}\} = \{Y_{1:N} = y_{1:N}, A \text{ accepts } Y_{1:N}\}$ and we have:

$$\Pr(K_{2,A} = K_{2,B} | Y_{K_A} = y_1, K_{2,A} = 1, Y_{K_{1,A},2:N} = y_{2:N}, X = x, Z = z) \quad (435)$$

$$= 1 - \Pr(K_{2,B} \neq 1 | Y_{K_{1,A},1:N} = y_{1:N}, K_{2,A} = 1, Y_{K_A} = y_1, X = x, Z = z)$$

$$= 1 - \Pr(\min_{j \neq 1} \frac{S_j}{\tilde{Z}(\tilde{P}_{Y|Z}(y_j|z))} \leq \frac{S_1}{\tilde{Z}(\tilde{P}_{Y|Z}(y_1|z))} | Y_{1:N} = y_{1:N}, A \text{ selects 1st index}, A \text{ accepts } Y_{1:N}, Y_{K_A} = y_1, X = x, Z = z) \quad (436)$$

$$= 1 - \Pr(\min_{j \neq 1} \frac{S_j}{\tilde{Z}(\tilde{P}_{Y|Z}(y_j|z))} \leq \frac{S_1}{\tilde{Z}(\tilde{P}_{Y|Z}(y_1|z))} | Y_{1:N} = y_{1:N}, A \text{ selects 1st index}, A \text{ accepts } Y_{1:N}, Y_{K_A} = y_1, X = x) \quad (437)$$

$$= 1 - \Pr \left(\min_{j \neq 1} \frac{S_j}{\tilde{Z}(\tilde{P}_{Y|Z}(y_j|z))} \leq \frac{S_1}{\tilde{Z}(\tilde{P}_{Y|Z}(y_1|z))} | Y_{1:N} = y_{1:N}, A \text{ selects 1st index}, X = x \right) \quad (438)$$

$$\geq \left(1 + \frac{P_{Y|X}(y_1|x)}{\tilde{P}_{Y|Z}(y_1|z)} \frac{\tilde{Z}(\tilde{P}_{Y|Z=z}, y_{1:N})}{\tilde{Z}(P_{Y|X=x}, y_{1:N})} \right), \quad (439)$$

942 where (437) is due to Markov property $Z - (X, Y) - W$, i.e. Z has no effects on the statistics of the
943 exponential random variables. Line (438) is due to the fact that conditioning on A selected the 1st
944 index, whether A selects $Y_{1:N}$ or not depends only on U . The final inequality is due to conditional
945 matching lemma from [30].

946 Recall that $\omega = \max_y \frac{P_{Y|X}(y|x)}{Q_Y(y)}$, we have:

$$P(Y_{K_{1,A},2:N} = y_{2:N} | Y_{K_A} = y_1, K_{2,A} = 1, X = x, Z = z) \quad (440)$$

$$= P(Y_{K_{1,A},2:N} = y_{2:N} | Y_{K_A} = y_1, K_{2,A} = 1, X = x) \quad (441)$$

$$= \frac{\tilde{P}_{Y,K_{2,A}|X}(y_{1:N}, 1|x)}{P_{Y|X}(y_1|x)N^{-1}} \quad (442)$$

$$= \frac{NQ_Y(y_{2:N})}{\Delta_{P_{Y|X=x}}(\tilde{Z}(P_{Y|X=x}, y_{2:N}) + \omega)} \quad (443)$$

947 where $\tilde{P}_{Y,K_{2,A}|X}(y_{1:N}, 1|x)$ is the ERS target distribution (155) where we use $P_{Y|X}(\cdot|x)$ as the
948 target distribution and $\Delta_{P_{Y|X=x}} < 1$ is the normalized constant. We now shorthand $P_Y^A \triangleq P_{Y|X=x}$,

949 $P_Y^B \triangleq \tilde{P}(Y|Z=z)$ and $\Delta_{P_Y^A} \triangleq \Delta_{P_{Y|X=x}}$, and combining the two expressions, we have:

$$\Pr(Y_A = Y_B | Y_A = y_1, X = x, Z = z) \quad (444)$$

$$\geq \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{N}{(\hat{Z}(P_Y^A, y_{2:N}) + \omega) \Delta_{P_Y^A} \left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right)} \right] \quad (445)$$

$$\geq \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{N}{(\hat{Z}(P_Y^A, y_{2:N}) + \omega) \left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right)} \right] \quad (\text{Since } \Delta_{P_Y^A} \leq 1) \quad (446)$$

$$\geq \left(\mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{(\hat{Z}(P_Y^A, y_{2:N}) + \omega)}{N} \left(1 + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right) \right] \right)^{-1} \quad (\text{By Jensen's Inequality}) \quad (447)$$

950 Since:

$$\mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right] \leq \frac{N-1}{N} + \frac{\omega}{N} \quad (448)$$

951 and:

$$\mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\left(\frac{\hat{Z}(P_Y^A, y_{2:N}) + \omega}{N} \right) \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right] \quad (449)$$

$$= \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{\hat{Z}(P_Y^A, y_{2:N})}{N} \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} + \frac{\omega}{N} \frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right] \quad (450)$$

$$\leq \frac{N-1}{N} + \frac{P_Y^B(y_1)/Q_Y(y_1)}{N} + \frac{\omega}{N} \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right] \quad (451)$$

952 where we have:

$$\mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{\hat{Z}(P_Y^B, y_{1:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right] = \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{P_Y^B(y_1)/Q_Y(y_1)}{\hat{Z}(P_Y^A, y_{1:N})} + \frac{\hat{Z}(P_Y^B, y_{2:N})}{\hat{Z}(P_Y^A, y_{1:N})} \right] \quad (452)$$

$$\leq \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{P_Y^B(y_1)/Q_Y(y_1)}{P_Y^A(y_1)/Q_Y(y_1)} \right] + \mathbb{E}_{Y_{2:N} \sim Q_Y} \left[\frac{\hat{Z}(P_Y^B, y_{2:N})}{\hat{Z}(P_Y^A, y_{2:N})} \right] \quad (453)$$

$$\leq \frac{P_Y^B(y_1)}{P_Y^A(y_1)} + \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) \quad (454)$$

953 Then, combining (454) into (451), then combine with (448) into the term (447), we have:

$$\Pr(Y_A = Y_B | Y_A = y_1, X = x, Z = z) \quad (455)$$

$$\geq \left(1 + \frac{\omega}{N} + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \left(\frac{N-1}{N} + \frac{P_Y^B(y_1)/Q_Y(y_1)}{N} + \frac{\omega}{N} \left(\frac{P_Y^B(y_1)}{P_Y^A(y_1)} + \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) \right) \right) \right)^{-1} \quad (456)$$

$$= \left(1 + \frac{\omega}{N} + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \left(\frac{N-1}{N} + \frac{P_Y^B(y_1)/Q_Y(y_1)}{N} + \frac{\omega}{N} \left(\frac{P_Y^B(y_1)}{P_Y^A(y_1)} + \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) \right) \right) \right)^{-1} \quad (457)$$

$$\geq \left(1 + \frac{3\omega}{N} + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} \left(1 + \frac{\omega}{N} \mathbb{I}_N(\omega, 2) d_2(Q_Y || P_Y^A) \right) \right)^{-1} \quad (458)$$

$$= \left(1 + \mu'_1(N) + \frac{P_Y^A(y_1)}{P_Y^B(y_1)} (1 + \mu'_2(N)) \right)^{-1}, \quad (459)$$

954 where we repeatedly use the fact that $P_Y^A(y)/Q_Y(y) \leq \omega$. This completes the proof.

955 **L Proof of Proposition D.6**

956 **Main Proof.** We remind the protocol in Algorithm 2. The encoder and decoder's target distribution
957 for this case are:

$$P_Y^A(y, v) = P_{Y|X}(y|x)P_V(v) \quad P_Y^B(y, v) = P_{Y|X'}(y|x)\mathbb{I}_V(v) \quad (460)$$

958 For a sufficient large batch size N and apply Proposition K.1, we have:

$$\Pr(Y'_{K_A} \neq Y'_{K_B} | (Y'_{K_A}, V_{K_A}) = (y', v), X = x, Z = (x', v)) \quad (461)$$

$$= \Pr((Y'_{K_A}, V_{K_A}) \neq (Y'_{K_B}, V_{K_B}) | (Y'_{K_A}, V_{K_A}) = (y', v), X = x, Z = (x', v)) \quad (462)$$

$$\leq 1 - \left(1 + \epsilon + \frac{P_{Y'|X}(y'|x)P_V(v)}{P_{Y'|X'}(y'|x')\mathbb{I}_V(v)} (1 + \epsilon) \right)^{-1} \quad (463)$$

$$\leq 1 - \left(1 + \epsilon + \mathcal{V}^{-1}(1 + \epsilon) \frac{P_{Y'|X}(y'|x)}{P_{Y'|X'}(y'|x')} \right)^{-1} \quad (464)$$

$$= 1 - \left(1 + \epsilon + \mathcal{V}^{-1}(1 + \epsilon) \frac{P_{Y'|X}(y'|x)}{P'_Y(y')} \frac{P'_Y(y')}{P_{Y'|X'}(y'|x')} \right)^{-1} \quad (465)$$

$$= 1 - \left(1 + \epsilon + \mathcal{V}^{-1}(1 + \epsilon) 2^{i_{Y';X}(y';x) - i_{Y';X'}(y';x')} \right)^{-1} \quad (466)$$

959 Finally, taking the expectation of both sides yields the final result.

960 **Coding Cost.** In terms of the bound on r , recall the following bound on batch acceptance probability:

$$\Delta = \mathbb{E}_{Y_{1:N} \sim P_Y(\cdot)} \left[\frac{N}{\bar{Z}(1, Y'_{1:N})} \right] \geq \frac{N}{\mathbb{E}_{Y'_{1:N} \sim P_Y(\cdot)} [\bar{Z}(1)]} = \frac{N}{N - 1 + \omega} \quad (467)$$

961 Here for $N = \omega$, we have $\Delta > \frac{1}{2}$ and thus the chunk size $L = \lfloor \Delta^{-1} \rfloor$ in the ERS coding scheme is 1
962 and thus do not need to send \hat{K}_1 . Using the fact that $\mathbb{E}[\log L] \leq 1$, we have $r \leq H[L] + 1 = 4$ bits
963 by entropy coding with Zipf distribution [23].

Compressing Multiple Samples. When compressing n samples jointly, let the rate per sample
964 (without the overhead for batch communication) be r' where $\log(V) = nr'$ consider the following
965 approximation:

$$\sum_{i=1}^n i(y'_i; x_i) - i(y'_i; x'_i) \approx nI(X; Y'|X'),$$

964 Then we have:

$$2^{\sum_{i=1}^n [i(y'_i; x_i) - i(y'_i; x'_i)] - \log(V)} \approx 2^{nI(X; Y'|X') - \log(V)} \quad (468)$$

$$= 2^{n(I(X; Y'|X') - r')}, \quad (469)$$

965 and thus, if $r' > I(X; Y'|X')$, by increasing n we reduces the mismatching probability while
966 maintaining the compression rate per sample. We visualize this in the experimental results with
967 $N = 2^{19}$ in Figure 10.

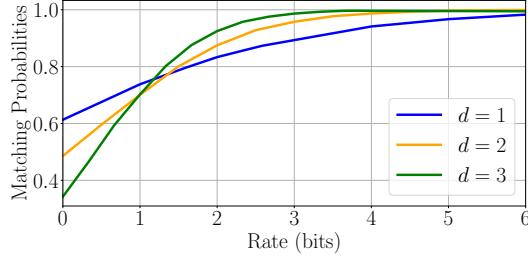


Figure 10: Matching Probabilities with $N = 2^{19}$ and jointly compressing 1, 2, 3 i.i.d. samples respectively. Target distortion $\sigma_{Y'|X}^2 = 0.008$ for every samples.

968 M Feedback Scheme

969 In distributed compression, decoding errors can lead to significant average reconstruction distortion.
970 To address this, feedback communication from the decoder can be employed to correct errors and
971 enhance rate-distortion performance, as proposed in [30]. The feedback mechanism is identical for
972 both ERS and IML, except that ERS additionally transmits the batch index to the decoder.

973 We recall that $K_{1,A}$ and $K_{2,A}$ denote the batch index and local index, respectively, of samples
974 selected by party A through the ERS sample selection. On the other hand, party B uses Gumbel-Max
975 selection process to output its selected local index $K_{2,B}$ within the $K_{1,A}$ batch, then the ERS process
976 can be described as follows:

- 977 1. *Index Selection.* After transmitting the batch index $K_{1,A}$, the encoder sends the $\log_2(\mathcal{V})$
978 least significant bits (LSB) of the selected index $K_{2,A}$ to the decoder.
- 979 2. *Decoding and Feedback.* The decoder outputs $K_{2,B}$ and sends the $\log_2(N/\mathcal{V})$ most signifi-
980 cant bits (MSB) of K_B to the encoder.
- 981 3. *Re-transmission.* Based on the received MSB feedback, if the index is correct, the encoder
982 responds with an acknowledgment bit, say 1. Otherwise, it sends 0 along with the MSB of
983 its selection to the decoder.

984 We note that, in this context, using LSB instead of random bits in step 1 does not yield a noticeable
985 difference in performance. For the rate-distortion analysis, the rate is computed based on the
986 total length of messages transmitted during index selection and re-transmission, including any
987 acknowledgment messages. However, the rate of the feedback message is excluded from this
988 calculation, which can be justified in scenarios with asymmetric communication costs in the forward
989 and reverse directions, such as in wireless channels.

990 N Neural Contrastive Estimator

991 In our ERS scheme, the selection rule requires estimating the following ratio at the decoder side:

$$\tilde{K}_B = \operatorname{argmin}_{1 \leq k \leq N} \frac{S_{ik}}{\frac{P_{Y|X'}(y|x')\mathbb{I}_V(v)}{Q_Y(Y_{ik})V^{-1}}}, \text{ where } i = K_{1,A}, \quad (470)$$

992 where the normalization term can be ignored as it is the same for every sample in the batch $K_{1,A}$.
993 Our goal is to learn the ratio $P_{Y|X'}(Y_{ik}|x')/Q_Y(Y_{ik})$ from data. In particular, we can access the data
994 samples from the joint distribution $P_{X,Y,X'}$.

995 To this end, we construct a binary neural classifier $h'(y, x') = \frac{1}{1+\exp[-h(y, x')]}$ which classifies if the
996 input (y, x') is distributed according to the marginal distribution $Q_Y(\cdot) \times P_{X'}(\cdot)$ (positive samples) or
997 the joint $P_{Y,X'}$ (negative samples). Once converged, we can use the logits value $h(y, x')$ to compute
998 the log of the ratio of interest [17]. In particular:

$$h(y, x') \approx -\log \frac{P_{Y|X'}(Y_{ik}|x')}{Q_Y(y)} \quad (471)$$

999 This allows us to estimate the ratio without needing to obtain the exact ratio’s value. Finally, to
1000 generate the positive samples, we simply generate $Y \sim Q_Y(\cdot)$ and get a random X' from the training
1001 data. For negative samples, we generate the data according to the Markov sequence $X' - X - Y$.
1002 The ratio between the two labels should be the same.

1003 O Distributed Compression with MNIST

1004 O.0.1 Training Details

1005 **β -VAE Architecture.** We adopt a setup similar to [30]. Our neural encoder-decoder model comprises
1006 an encoder network $y = \text{enc}(x)$, a projection network $\text{proj}(x')$, and a decoder network $\hat{x} =$
1007 $\text{dec}(y, \text{proj}(x'))$, as detailed in Table 1. The encoder network converts an image into two vectors
1008 of size 3 (total 6D output), with the first vector representing the output mean $\mu(x)$ and the second
1009 representing the output variance $\sigma^2(x)$. Here, we define $p_{Y|X}(\cdot|x) = \mathcal{N}(\mu(x), \sigma^2(x))$ and use the
1010 prior distribution $p_Y(\cdot) = \mathcal{N}(0, 1)$. At the decoder side (party B), the projection network first
1011 maps the side information image X' to a 128-dimensional vector, which is then combined with a
1012 3-dimensional vector from the encoder. This concatenated vector is input to the decoder network,
1013 producing a reconstructed output of size 28×28 .

Table 1: Architecture of the encoder, projection network, and decoder for distributed MNIST image compression. Convolutional and transposed convolutional layers are denoted as “conv” and “upconv,” respectively, with specifications for the number of filters, kernel size, stride, and padding. For “upconv,” an additional output padding parameter is included.

(a)Encoder	(b)Projection Network	(c)Decoder Network
Input $28 \times 28 \times 1$	Input $14 \times 14 \times 1$	Input-(3+128)
conv (128:3:1:1), ReLU	conv (32:3:1:1), ReLU	Linear-(132, 512), ReLU
conv (128:3:2:1), ReLU	conv (64:3:2:1), ReLU	upconv (64:3:2:1:1), ReLU
conv (128:3:2:1), ReLU	conv (128:3:2:1), ReLU	upconv (32:3:2:1:1), ReLU
Flatten	Flatten	upconv (1:3:1:1), Tanh
Linear (6272, 512), ReLU	Linear (2048, 512), ReLU	
Linear (512, 6)	Linear (512, 128)	

1014 **Loss Function** We train our β -VAE network by optimizing the following rate-distortion loss function:

$$\mathcal{L} = \beta(X - \hat{X})^2 + E_X[D_{\text{KL}}(p_{Y|X}(\cdot|x) || p_Y(\cdot))] \quad (472)$$

1015 where we vary β for different rate-distortion tradeoff. Each model is trained for 30 epochs on
1016 an NVIDIA RTX A4500, requiring approximately 30 minutes per model. We use random hor-
1017 izontal flipping and random rotation within the range $\pm 15^\circ$. We use the following values of
1018 $\beta \in \{0.225, 0.28, 0.31, 0.4\}$ that corresponds to the target distortions $\{6.6, 6.3, 6.1, 5.8\} \times 10^{-2}$ in
1019 Figure 3.

1020 **Neural Contrastive Estimator Network.** The neural estimator network comprises two subnetworks.
1021 The first subnetwork projects the side information into a 128-dimensional embedding. The second
1022 subnetwork combines this 128D embedding with a 4D embedding, derived from either $p_{Y|X}$ or the
1023 prior p_Y , and outputs the probability that X', Y originate from the joint or marginal distributions.
1024 The model is trained for 100 epochs.

Table 2: Neural Estimator Networks for Distributed Image Compression.

(a)Projection Network	(b) Combine and Classify
Input $14 \times 14 \times 1$	Input 128 + 3
conv (32:3:1:1), ReLU	Linear (132, 128), l-ReLU
conv (64:3:2:1), ReLU	Linear (128,128), l-ReLU
conv (128:3:2:1), ReLU	Linear (128,128), l-ReLU
Flatten	Linear (128, 1)
Linear (2048, 512), ReLU	
Linear (512, 128)	

$\log \mathcal{V}$	N	N^*	Target dB
9.6	0.6e6	1.0e6	-21.5dB
10.6	0.7e6	1.1e6	-22dB
11.6	0.8e6	1.5e6	-22.5dB
12.6	1.04	1.6e6	-23dB

Table 3: Details for ERS Gaussian Experiment in Figure 2 (right)

1025 **P Wyner-Ziv Gaussian Experiment**

1026 In Figure 2 (left), the batch size of ERS are $N \in \{2^{19}, 2^{20}\}$ respectively for the average number of
 1027 proposals $N^* \in \{1.1, 1.6\} \times 10^6$. For Figure 2 (right), details for ERS are shown in Table 3.