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Abstract

We study channel simulation and distributed matching, two fundamental prob-1

lems with several applications to machine learning, using a recently introduced2

generalization of the standard rejection sampling (RS) algorithm known as En-3

semble Rejection Sampling (ERS). For channel simulation, we propose a new4

coding scheme based on ERS that achieves a near-optimal coding rate. In this5

process, we demonstrate that standard RS can also achieve a near-optimal coding6

rate and generalize the result of Braverman and Garg (2014) to the continuous7

alphabet setting. Next, as our main contribution, we present a distributed matching8

lemma for ERS, which serves as the rejection sampling counterpart to the Poisson9

Matching Lemma (PML) introduced by Li and Anantharam (2021). Our result10

also generalizes a recent work on importance matching lemma (Phan et al, 2024)11

and, to our knowledge, is the first result on distributed matching in the family12

of rejection sampling schemes where the matching probability is close to PML.13

We demonstrate the practical significance of our approach over prior works by14

applying it to distributed compression. The effectiveness of our proposed scheme is15

validated through experiments involving synthetic Gaussian sources and distributed16

image compression using the MNIST dataset.17

1 Introduction18

One-shot channel simulation is a task of efficiently compressing a finite collection of noisy samples.19

Specifically, this can be described as a two-party communication problem where the encoder obtains20

a sample X ∼ PX and wants to transmit its noisy version Y ∼ PY |X to the decoder, with the21

communication efficiency measured by the coding cost R (bits/sample), see Figure 1 (left). Since22

the conditional distribution PY |X can be designed to target different objectives, channel simulation23

is a generalized version of lossy compression. As a result, it has been widely adopted in various24

machine learning tasks such as data/model compression [1, 2, 41, 15], differential privacy [32, 37],25

and federated learning [18]. While much of the prior work has focused on the point-to-point26

setting described above, recent research has extended channel simulation techniques to more general27

distributed compression scenarios [22, 30]. These scenarios often follow a canonical setup, shown28

in Figure 1 (middle, right), in which the encoder (party A) and the decoder (party B) each aim to29

generate samples YA and YB , respectively, according to their own target distributions PA
Y and PB

Y ,30

using a shared source of randomness W . Although their sampling goals may differ, the selection31

processes are coupled through W , resulting in a non-negligible probability that both parties select32

the same output. We refer to this quantity as the distributed matching probability, which can be33

leveraged to reduce communication overhead in distributed coding schemes. For example, in the34

Wyner-Ziv setup [40], where the decoder has access to side information unavailable to the encoder,35

this framework enables the design of efficient one-shot compression protocols [30].36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



        Shared Randomness 

Distributed Matching 
(without Communication):

Encoder
(Party A)

Decoder
(Party B)

        Shared Randomness 

Encoder
(Party A)

Decoder
(Party B)

Distributed Matching 
(with Communication):

        Shared Randomness 

Encoder
(Party A)

Decoder
(Party B)

Distributed Matching 
(with Communication):

Figure 1: Left: Distributed matching without communication. Middle: Distributed matching with
communication where the decoder’s input Z ∼ PZ|X,YA

represents side information and/or messages
from the encoder. Right: Distributed compression as an application of the middle scenario.

Currently, Poisson Monte Carlo (PMC) [27] and importance sampling (IS) are the two main Monte37

Carlo methods being applied across both scenarios [24]. Particularly, the Poisson Functional Rep-38

resentation Lemma (PFRL) [23] provides a near-optimal coding cost for channel simulation. The39

Poisson Matching Lemma (PML) [22] was later developed for distributed matching scenarios, en-40

abling the analysis of achievable error rates in various compression settings. However, PMC requires41

an infinite number of proposals, which can cause certain issues involving termination of samples in a42

practical scenario when the density functions, typically PB
Y , are estimated via machine learning. IS-43

based approaches, including the importance matching lemma (IML) for distributed compression [30],44

bypass this issue by limiting the number of proposals in W to be finite. Yet, the output distribution45

from IS is biased [15, 36], and thus not favorable in certain applications. It is hence interesting to see46

whether a new Monte Carlo scheme and coding method can be developed to handle both scenarios47

without compromising sample quality or termination guarantees.48

Contributions. In this work, we study a new channel simulation scheme for distributed lossy49

compression based on Ensemble Rejection Sampling (ERS), which combines standard rejection50

sampling (RS) with importance sampling (IS) to generate exact output samples while maintaining51

efficient coding performance. Compared to existing approaches, ERS achieves higher performance52

than traditional RS-based methods and outperforms the Importance Matching Lemma (IML) in53

low-distortion distributed compression by producing exact samples. Furthermore, ERS naturally54

extends to high-dimensional settings where the target distribution PB
Y must be learned via machine55

learning methods, a scenario in which other exact approaches, such as PML, may fail to terminate.56

In addition to our results on distributed compression, we also present in the Appendix B to I the57

coding cost analysis for channel simulation. We revisit the runtime-based coding scheme of standard58

RS in channel simulation [35, 36], which is commonly regarded as inefficient. We then introduce a59

new sorting-based coding scheme achieving a near-optimal coding cost and bypass this limitation.60

This scheme naturally extends to ERS and is also shown to achieve competitive coding performance61

and thus ERS can be applied in both distributed compression and channel simmulation settings.62

2 Distributed Compression63

We describe the two setups, with and without communication. Both setups consider two parties:64

A (the encoder) and B (the decoder) sharing a source of common randomness W ∈ W . We then65

describe distributed lossy compression as an application of distributed matching.66

2.1 Distributed Matching Without Communication67

In this setup, visualized in Figure 1 (left), each party A and B aim to generate samples YA and YB68

from their respective distributions PA
Y and PB

Y , which are locally available to each party, by selecting69

values from W . Each party constructs their respective mapping f and g as follows:70

f : W → Y, g : W → Y,

with the requirement that YA = f(W ) ∼ PA
Y and YB = g(W ) ∼ PB

Y . Following prior work on71

PML [22], we are interested in the lower bound of the conditional probability that both parties select72

the same value, given that YA = y, with the following form:73

Pr(YA = YB | YA = y) ≥ Γ(PA
Y (y), PB

Y (y)), (1)

where in the case of PML, we have Γ(PA
Y (y), PB

Y (y)) = (1 + PA
Y (y)/PB

Y (y))−1. For IML,74

Γ(PA
Y (y), PB

Y (y))=(1+(1+ϵ)PA
Y (y)/PB

Y (y))−1 where ϵ −→ 0 as the number of proposals increases.75
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2.2 Distributed Matching With Communication76

In practice, communication from the encoder to the decoder is allowed to improve the matching77

probability. Also, the target distributions at each end may depend on their respective local inputs.78

Specifically, let (X,Y, Z) ∈ X × Y × Z be a triplet of random variables with joint distribution79

PX,Y,Z . We first define the following mappings, also see Figure 1 (middle):80

f : X ×W → Y, g : W × Z → Y,

where the protocol is as follows:81

1. Encoder (party A): given X = x ∼ PX independent of W , the encoder sets its target82

function PA
Y = PY |X(.|x) and selects a sample YA = f(x,W ) ∼ PA

Y .83

2. Given X = x, YA = y, we generate Z = z ∼ PZ|X,Y (.|x, y), which can be thought as84

some noisy version of (X,YA). Note that the Markov chain Z − (X,YA)−W holds.85

3. Decoder (party B): having access to Z=z, sets its target distribution to PB
Y (·) = P̃Y |Z(· | z),86

where P̃Y |Z can be arbitrary. It then queries a sample YB = g(W, z) from the source W .87

The constraint YB ∼ PB
Y is not necessarily satisfied, but this is not required in this setting [22], where88

the goal is to ensure the decoder selects the same value as the encoder with high probability. As in89

the case without communication, we are interested in establishing the bound with the following form:90

Pr(YA = YB | YA = y, Z = z,X = x) ≥ Γ(PA
Y (y), PB

Y (y)), (2)

where for PML and IML, Γ(PA
Y (y), PB

Y (y)) also follows the form discussed in Section 2.1.91

Remark 2.1. Since Z−(X,YA)−W forms a Markov chain and Z is input to the decoder, the92

communication in this setting happens by designing PZ|X,Y (· |x, y) to include the encoder message.93

Finally, this setup generalizes the no-communication one by setting (X,Z) to fixed constants.94

2.3 Distributed Lossy Compression95

In the Wyner–Ziv distributed compression setting [40], see Figure 1 (middle), the encoder observes96

X = x ∼ PX , while the decoder has access to correlated side information X ′ ∼ PX′|X(· | x) that is97

unavailable to the encoder. Let PY ′|X(· | x) denote the target distribution that the encoder aims to98

simulate, which, together with X ′, induces the joint distribution PX,X′,Y ′ . Given the shared common99

randomness W , the encoder first selects Y ′
KA

∼ PY ′|X(· | x) and sends a message M to the decoder.100

The decoder, upon receiving M along with the common randomness W and its side information X ′,101

computes an output Y ′
KB

, where the goal is to ensure that Y ′
KA

= Y ′
KB

with high probability.102

To see that this is a special case of the previous scenario in Section 2.2, we keep the input X103

unchanged while setting YA = (Y ′
KA

,M) and Z = (M,X ′). Details of Y ′
KA

, Y ′
KB

,W and M will104

be explained in details in Section D.1.105

2.4 Bounding Condition106

In this work, we often consider the ratio PY (y)/QY (y) to be bounded for all y, where PY , QY are107

the target and proposal distribution, respectively. We formalize this in Definition 2.2.108

Definition 2.2. A pair of distributions (PY , QY ) is said to satisfy a bounding condition with constant109

ω ≥ 1 if maxy PY (y)/QY (y) ≤ ω. Furthermore, let (X,Y ) ∼ PX,Y , a triplet (PX , PY |X , QY )110

satisfies an extended bounding condition with constant ω ≥ 1 if maxx,y PY |X(y|x)/QY (y) ≤ ω.111

We note that the extended condition is practically satisfied when (PY |X=x, QY ) satisfies the bounding112

condition for every x, and PX has bounded support.113

3 Ensemble Rejection Sampling114

Setup and Definitions. We begin by defining the common randomness W , which includes a set of115

exponential random variables to employ the Gumbel-Max trick for IS [30, 36], i.e.:116

W = {(B1, U1), (B2, U2), ...}, where Ui ∼ U(0, 1) (3)
Bi = {(Yi1, Si1), (Yi2, Si2), ..., (YiN , SiN )}, where Yij ∼ PY (.), Sij ∼ Exp(1), (4)
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Algorithm 1: Ensemble Rejection Sampling - ERS(W ;PY , QY , ω = maxy
PY (y)
QY (y) , scale = 1)

Input: Target distribution PY , Proposal distribution QY , and the source of randomness W (see
Section D.1). Default value ω = maxy

PY (y)
QY (y) unless override by some value > ω.

Default scaling factor scale = 1 unless override by some value within (0, 1].
Output: Selected Index K and sample YK ∼ PY

1. Observe batch {Bi, Ui}
2. Gumbel-Max IS. Select candidate index: Kcand

i =argmin1≤k≤N
Sik

λik
,where: λik = PY (Yik)

QY (Yik)

3. Compute: Ẑ(Yi,1:N ) =
∑N

k=1 λik , Z̄(Yi,1:N ,Kcand
i ) = Ẑ(Yi,1:N ) + ω − λi,Kcand

i

4. Rejection Step. Set K1 = i, K2 = Kcand
i , K = (N−1)1i+Kcand

i and return YK if:

Ui ≤
Ẑ(Yi,1:N )

Z̄(Yi,1:N ,Kcand
i )

· scale,

else repeat Step 1 with Bi+1.

where we refer to each Bi as a batch. A selected sample YK from W is defined by two indices: the117

batch index K1 and the local index in BK1 , denoted as K2. Its global index within W is K, where118

K = (N − 1)K1 +K2 and we write YK ≜ YK1,K2
.119

Sample Selection. Consider the target distribution PY |X(.|x), for each batch Bi ∈ W , the ERS120

algorithm selects a candidate index Kcand
i via Gumbel-max IS and decides to accept/reject YKcand

i
121

based on Ui. This process ensures that the accepted YK∼PY |X(·|x) and is denoted for simplicity as:122

K = ERS(W ;PY |X=x, PY ), (5)

where the procedure is shown in Figure 6 (top, left) and Algorithm 1. This procedure assumes the123

bounding condition holds for (PY |X(y|x), PY (y)) with ω.124

3.1 Distributed Compression Protocol125

We begin by defining the common randomness W . For any integer V>0 and Ui∼U(0, 1), we126

set Yij=(Y ′
ij , Vij) in batch Bi within W where Y ′

ij ∼ QY ′(·) (i.e., the ideal output) and Vij ∼127

Unif[1:V] (i.e., the random hash value for index j). Algorithm 2 presents the communication proto-128

col, whose analysis relies on studying the distributed matching probabilities, as detailed in Appendix D129

and subsequent sections in the appendix.130

Algorithm 2: Wyner-Ziv Distributed Compression Protocol

1

Encoder: Receives X = x and W , performs:
1. Select KA = ERS(W ;PY ′|X=x, QY ′); 2. Sends (K1,A, VKA

) to the decoder.
Decoder: Receives Z = (VKA

,K1,A, X
′) and W , performs:

1. Keep batch K1,A; 2. Remove all j where VK1,A,j ̸= VKA
; 3. Select KB with PY ′|X′=x′ .

131

Following Algorithm 2, the encoder selects the index KA using the ERS procedure such that the132

selected Y ′
KA

∼ PY ′|X=x. It then construct the message M = (K1,A, VKA
) where K1,A is the batch133

index of the selected value and VKA
is the associated hashed index of K2,A within batch K1,A.134

The decoder, after receiving the message M = (K1,A, VKA
) and the side information X ′, aims135

to infer K2,A with the batch BK1,A
by using the posterior distribution PY ′|X′=x′ . The message136

(VKA
,K1,A) from the encoder will further reduce the decoder’s search space within W and improve137

the matching probability (details in Appendix L). This selection process (step 3) is based on the138

Gumbel-max IS process, i.e. line 2 in Algorithm 1.139

Why communicate the batch index? Compared to the existing protocol using PML, our protocol140

includes the batch index which results in a slight O(1) overhead. This is because, in practice,141

the target distribution at the decoder PY ′|X′=x′ is often learned via deep learning since its closed142

form is unknown. Consequently, it is difficult to obtain an upper bound for the likelihood ratio143
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Figure 2: Left: Comparison of RD performance between different matching results for the Gaussian
setting when targeting −23dB distortion (black dotted line), with the average number of proposals
N∗ ∈ {1.1e6, 1.6e6}. Right: RD curves of different methods. Each group targets the same distortion
levels and uses the same average number of proposals N∗ for ERS and IML, shown in the right table.

PY ′|X′=x′(y)/QY ′(y), which is crucial for guaranteeing algorithmic termination (Step 4 in Algorithm144

1). This challenge is not unique to ERS but also affects other exact sampling algorithms, such as145

Poisson Monte Carlo [36], rendering PML inapplicable in this setting without a strong assumption on146

the posterior distribution, i.e. Gaussian distribution. For ERS, since the cost of transmitting the batch147

size K1,A is O(1) for sufficiently large N , the overall coding cost is not significantly degraded, and148

this overhead becomes negligible when compressing multiple samples jointly.149

Finally, we provide the theoretical guarantee for our communication protocol below.150

Proposition 3.1. Fix any ϵ > 0 and let (PX , PY ′|X , QY ′) satisfies the extended bounding condition151

with ω, for N ≥ max(N0(ϵ), ω) where N0(ϵ) is defined in Remark D.5, we have:152

Pr(Y ′
KA

̸= Y ′
KB

) ≤ EX,Y ′,X′

[
1−

(
1 + ϵ+ (1 + ϵ)V−12i(Y

′;X)−i(Y ′;X′)
)−1

]
(6)

where iY ′;X(y′;x) = logPY ′|X(y′|x)− logPY ′(y′) is the information density. The coding cost is153

log(V) + r where r is the coding cost of sending the selected batch index K1,A and r ≤ 4 bits.154

Proof: See Appendix L155

Remark 3.2. We can reduce the overhead r in Proposition D.6 by jointly compressing n i.i.d. samples,156

i.e., to 4/n per sample. This also improves the matching probability in practice (see Appendix L).157

4 Experiments158

We study the performance of ERS in the Wyner-Ziv distributed compression setting on synthetic159

Gaussian sources and MNIST dataset. All experiments are conducted on a single NVIDIA RTX160

A-4500. We use the batch communication version of ERS and encode the index with unary coding.161

4.1 Synthetic Gaussian Sources162

We study and compare the performance of ERS, IML and PML in the Gaussian setting. Let163

X ∼ N (0, σ2
X) with σ2

X = 1 and is truncated within the range [−2, 2] and the side information164

X ′ = X + ζ where ζ ∼ N (0, σ2
X′|X) and σ2

X′|X = 0.01. The proposal and target distributions are165

QY ′(.) = N (0, σ2
Y ′), PY ′|X(.|x) = N (x, σ2

Y ′|X), PY ′|X′(.|x′) = N
(
x′σ2

X/σ2
X′ , σ2

Y ′−σ4
X/σ2

X′

)
166

where σ2
Y ′=σ2

X+σ2
Y ′|X , σ2

X′=σ2
X+σ2

X′|X , and σ2
Y ′|X is a fixed variance corresponding to the desired167

distortion level set by the encoder. The expression for PY ′|X′(·|x′) is an approximation derived from168

the posterior distribution assuming X is unbounded (i.e., not truncated). We jointly compress 4 i.i.d.169

samples to improve rate-distortion (RD) performance and average the result over 106 runs.170

Figure 2 (left) investigates the RD tradeoff between ERS and IML with similar number of proposals171

(on average) N∗ while targeting a distortion level of −23dB, i.e. σ2
Y ′|X=5e−3. We observe that172

ERS outperforms IML in distortion regimes close to the target level, i.e. below −22.6dB as the rate173

increases, since IML samples are inherently biased. This bias also causes IML, with N∗ = 1.6e6, to174

be less effective than ERS, with N∗ = 1.1e6, for a distortion regime lower than −22.8dB, despite175

having more samples. Also, the batch index conveys information that helps improve the matching176

probability, similar to Figure 7 (middle), compensating for the overhead. Overall, for appropriately177

chosen N∗, ERS is more effective than IML on achieving low distortion levels while remaining178

competitive compared to PML, which is unbiased and requires no extra overhead.179

In Figure 2 (right), we plot the RD tradeoff at different target distortion levels. We compare the180

distortion achieved by different methods at the rate where ERS reaches distortion within approximately181

5



8 9 10
Rate (Bits)

0.2

0.4

0.6

E
m

b
ed

di
ng

M
S

E
8 9 10

Rate (Bits)

0.055

0.060

0.065

0.070

P
ix

el
M

S
E

ERS IML ERS (Feedback) IML (Feedback) NDIC

N∗
ERS

Target Pixel
Distortion

1.5× 217 0.066
1.2× 219 0.063
1.2× 220 0.061
1.2× 221 0.058

Figure 3: MNIST Rate-distortion comparison for pixels, i.e. ||X − X̂||22 and embeddings domain, i.e.
||µ(X)− Y ′||22, between ERS and IML. Identical markers (from top to bottom) indicate the same
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0.2 dB of the target. Again, for appropriately chosen batch size N and rate, ERS outperforms IML182

due to the inherent bias in importance sampling, and achieves performance close to that of PML.183

Note that PML does not generalize to practical setting when PB
Y is estimated via machine learning184

as the decoder cannot determine the number of samples upfront. In general, all three approaches185

outperform the asymptotic baseline I(X;Y ) in which there is no side information. Finally, standard186

RS achieves −17 dB at 10 bits when targeting −23 dB, falling outside the plotted range.187

4.2 Distributed Image Compression188

We apply our method in the task of distributed image compression [39, 28] with the MNIST189

dataset[20]. Following the setup in [30], the side information is the cropped bottom-left quadrant190

of the image and the source is the remaining. To reduce the complexity caused by high dimen-191

sionality, we use an encoder neural network to project the data into a 3D embedding space. This192

vector and the side information are input into a decoder network to output the reconstruction X̂ ,193

and the process is trained end-to-end under the β-VAE framework. For each input X = x, we set194

the target distribution PY ′|X(.|x) = N (µ(x), σ2(x)) where µ(.), σ(.) are the outputs of the β-VAE195

network. Since PY ′|X′ is unknown, we employ a neural contrastive estimator [17] to learn the ratio196

between PY ′|X′(y′|x′)/QY ′(y′) from data, where QY ′=N (0, 1). Since the upperbound of this ratio197

is unknown, PML cannot be applied [36]. Models and training details are in Appendix N and O.198

Extending the scope of the previous experiment, we study the interaction between matching schemes199

and feedback mechanisms for error correction, introduced in previous IML work [30]. Here, the200

decoder returns its retrieved index to the encoder, which then confirms or corrects it with the cost of 1201

plus log(N/V) for ERS and log(N∗
IML/V) for IML, see Appendix M. This is relevant when aiming to202

mitigate mismatching errors or to generate samples that closely follow the encoder’s target distribution,203

as in applications such as differential privacy. Since IML produces biased samples, we reduce this204

bias by setting the number of proposals to the maximum feasible value in our simulation system, i.e.,205

N∗
IML = 226, ensuring it exceeds the ones used by ERS, denoted N∗

ERS, in this experiment.206

We train four models, each targeting a different pixel distortion level, and compare their performance207

in Figure 3, where two samples are compressed jointly. With feedback, ERS consistently outperforms208

IML in both embedding and pixel domains. This is because the feedback scheme in IML incurs a209

higher return message cost due to the large N∗
IML, while still introducing slight bias in its output210

samples. In contrast, ERS operates with a smaller batch size N , significantly reducing the correction211

message size without compromising the sample quality. Without feedback, under a distortion regime212

close to the target level, ERS outperforms IML for reasons discussed in the Gaussian experiment,213

though the performance gap is smaller. We include NDIC results [28]—a specialized deep learning214

approach that targets optimal RD performance. On the other hand, our method operates on a215

probabilistic matching nature and can accommodate scenarios with distributional constraints.216

5 Conclusion217

This work explores the use of the RS-based family for channel simulation and distributed compression.218

We focus on ERS where we develop a new efficient coding scheme for channel simulation and derive219

a performance bound for distributed compression that is comparable to PML [22]. We validate our220

theoretical results on both synthetic and image datasets, showing their advantages and adaptability221

across various setups, including feedback-based error correction schemes. From these results, possible222

future directions include improving the current runtime efficiency—which is O(ω)—by incorporating223

acceleration techniques such as space partitioning [16] or importance sampling methods like Multiple224

IS [8], as well as extending the distributed compression setup to incorporate differential privacy.225
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Figure 4: Left: Channel simulation setup. Middle: Distributed matching without communication.
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represents
side information and/or messages from the encoder.

A Related Work331

Channel Simulation. Our work introduces a novel channel simulation algorithm based on standard332

RS and ERS [6]. Our results enhance the coding efficiency compared to prior works [13, 36, 35] for333

standard RS and extend the best-known results for RS [3] to continuous settings. A related and more334

widely studied scheme in channel simulation is greedy rejection sampling (GRS), which can achieve335

a near-optimal coding cost. However, GRS is also more computationally intensive when applied to336

continuous distributions [10, 14, 12] as it requires iteratively evaluating a complex and potentially337

intractable integral. Our work studies ERS, the generalized version of standard RS, and shows a new338

coding scheme to achieve a near-optimal bound for a continuous alphabet. The ERS-based algorithm339

can be considered as an extension of the IS-based method for exact sampling setting [30, 36] and340

serves as a complementary approach to existing exact algorithms, such as the PFRL [23] and its faster341

variants [9, 11, 16]. Finally, there exist other channel simulation methods, though these are restricted342

to specific distribution classes [1, 19, 34].343

Distributed Compression. In distributed compression, one requires a generalized form of channel344

simulation, i.e. distributed matching, to reduce the coding cost, with current approaches include345

PML [22] and IML [30], as discussed earlier. Prior work has examined the matching probability of346

standard RS in various settings, primarily for discrete alphabets [5, 31]. Our method builds on ERS,347

a new RS-based scheme, and shows that its performance in distributed matching is comparable to348

PML, enabling practical applications in distributed compression. Other information-theoretic [25,349

33, 38] and quantization-based approaches [26, 42] for this problem are generally impractical for350

implementation. Meanwhile, recent work has explored neural networks-based solutions [28, 39],351

with some provides empirical evidence that neural networks can learn to perform binning [29].352

B Background: Channel Simulation353

Let (X,Y ) ∈ X × Y be a pair of random variables with joint distribution PX,Y , with PX and PY354

are their respective marginal distributions. In this setup, see Figure 4 (left), the encoder observes355

X = x ∼ PX(.) and wants to communicate a sample Y ∼ PY |X(.|x) to the decoder, with the coding356

cost of R (bits/sample). Given that both parties share the source of common randomness W ∈ W357

independent of X , we define f and g to be the encoder and decoder mapping as follow:358

f : X ×W −→ M; g : M×W −→ Y,

where the encoder message M ∈ M = {0, 1}∗ is a binary string with length ℓ(M) and R = E[ℓ(M)].359

Here, we require that the decoder’s output follows PY |X(.|x), i.e., Y = g(f(x,W ),W ) ∼ PY |X(.|x).360

Depending on the encoding and decoding function f and g, the specification of what W includes361

varies. A general requirement for a channel simulation scheme to be efficient is that R satisfies:362

R ≤ I(X;Y ) + c1 log(I(X;Y ) + c2) + c3, (7)

where I(X;Y ) is the mutual information between X and Y and the theoretical optimal solution363

attainable in the asymptotic (i.e., infinite blocklength) setting [4]. Different techniques may produce364

slightly different coding costs, characterized by the positive constants c1, c2, and c3[14, 21], but any365

approach that fails to achieve the leading term I(X;Y ) is generally considered inefficient.366

C Rejection Sampling367

We review the existing coding scheme of standard RS and introduces a new technique that achieves a368

bound comparable to (7). We then discuss results on matching probability bounds for RS and GRS.369
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Figure 5: Left: Visualization of our Sorting Method for Standard RS. Right: Empirical results
comparing E[log(L)] and E[log(K̂)] with their associated theoretical upper-bound across different
target distribution. We use PY (.) = N (0, 1.0) and PY |X(.|x) = N (1.0, σ2) where σ2 ∈ [0.01, 0.1].

Sample Selection. We define the common randomness W = {(U1, Y1), (U2, Y2), . . . }, where each370

Ui
i.i.d.∼ U(0, 1) and each Yi

i.i.d.∼ PY , and require that the triplet (PX , PY |X , PY ) satisfies the extended371

bounding condition in Definition 2.2 with ω. Given X=x, the encoder picks the first index K where372

UK≤PY |X(YK |x)
ωPY (YK) , obtaining YK∼PY |X(.|x).373

Runtime-Based Coding. This approach encodes the sample following the entropy of H(K). Since374

each individual sample Yi has the acceptance probability Pr(Accept) = ω−1, we can compress K375

with a coding cost of R ≤ H[K] + 1 ≤ log(ω) + 2, which is inefficient compared to I(X;Y ). For376

this reason, GRS is often preferred, but with practical limitations as discussed in Section A.377

Our Approach. Unlike the previous method, where the coding of K is independent of W , we aim378

to design a scheme that leverages the availability of W at both parties, thereby reducing the coding379

cost R through the conditional entropy H[K | W ]. Our Sorting Method operates on this idea, where380

instead of sending K, we send the rank of UK within a subset in W . Assume that the encoder and381

decoder agree on the value of ω prior to communication, we first collect every ⌊ω⌋ proposals into382

one group, ( ⌊.⌋, ⌈.⌉ are floor and ceil functions respectively). We encode two messages: one for the383

group index L and one for the rank K̂ of the selected UK within that group, in particular:384

1. Encoding L: The encoder sends the ceiling L = ⌈ K
⌊ω⌋⌉, i.e. L = 2 in Figure 5 (left). The385

decoder then knows (L− 1)⌊ω⌋+ 1 ≤ K ≤ L⌊ω⌋, i.e. K is in group L.386

2. Encoding K̂: The encoder and decoder sort the list of Ui for (L− 1)⌊ω⌋+ 1 ≤ i ≤ L⌊ω⌋:

Uπ(1) ≤ Uπ(2) ≤ ... ≤ Uπ(⌊ω⌋)

where π(.) maps the sorted indices with the original ones. The encoder sends the rank of387

UK within this list, i.e. sends the value K̂ such that K = π(K̂), which the decoder uses to388

retrieve YK accordingly. This corresponds to K̂ = 2 in Figure 5 (left).389

Coding Cost. In terms of the coding cost at each step, i.e., E[logL] and E[log K̂], we have:390

E[logL] ≤ 1 bit , E[log K̂] ≤ DKL(PY |X(.|x)||PY (.)) + log(e) bits, (8)

where Figure 5 (right) shows the empirical results verifying the bounds. The proof for these bounds391

are shown in Appendeix F.2. We then perform entropy coding for each message separately using392

Zipf’s distribution and prefix-free coding. Proposition C.1 shows their overall coding cost:393

Proposition C.1. Given (X,Y ) ∼ PX,Y and K defined as above. Then we have:394

R ≤ I(X;Y ) + log(I(X;Y ) + 1) + 9, (9)

Proof: See Appendix F.4.395

Note that the approach of Braverman and Garg [3] for discrete distributions can be extended to the396

continuous case, included in Appendix F.1 for completeness. Our sorting mechanism is fundamentally397

different and can be extended to the more general ERS framework, where incorporating the method398

of Braverman and Garg [3] is nontrivial.399

Distributed Matching. In distributed matching setups in Section 2 where both parties use standard RS400

to select samples from their respective distributions, we show in Appendix G.2 that RS performance401
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is not as strong compared to PML and IML. For GRS, we provide an analysis via a non-trivial402

example in Appendix H.2, where we managed to construct target and proposal distributions such403

that Pr(YA=YB | YA=y) → 0.0, even when PA
Y (y) = PB

Y (y). In contrast, this probability is greater404

than 1/2 for PML, thus concluding that RS and GRS are less efficient compared to PML and IML.405

D Ensemble Rejection Sampling406

We show that ERS[6], an exact sampling scheme that combine RS with IS, can improve the matching407

probability and maintain a coding cost close to the theoretical optimum in channel simulation.408

D.1 Background409

Setup and Definitions. We begin by defining the common randomness W , which includes a set of410

exponential random variables to employ the Gumbel-Max trick for IS [30, 36], i.e.:411

W = {(B1, U1), (B2, U2), ...}, where Ui ∼ U(0, 1) (10)
Bi = {(Yi1, Si1), (Yi2, Si2), ..., (YiN , SiN )}, where Yij ∼ PY (.), Sij ∼ Exp(1), (11)

where we refer to each Bi as a batch. A selected sample YK from W is defined by two indices: the412

batch index K1 and the local index in BK1 , denoted as K2. Its global index within W is K, where413

K = (N − 1)K1 +K2 and we write YK ≜ YK1,K2
.414

Sample Selection. Consider the target distribution PY |X(.|x), for each batch Bi ∈ W , the ERS415

algorithm selects a candidate index Kcand
i via Gumbel-max IS and decides to accept/reject YKcand

i
416

based on Ui. This process ensures that the accepted YK∼PY |X(·|x) and is denoted for simplicity as:417

K = ERS(W ;PY |X=x, PY ), (12)

where the procedure is shown in Figure 6 (top, left) and Algorithm 1 in Appendix I.1. This procedure418

assumes the bounding condition holds for (PY |X(y|x), PY (y)) with ω. The target and proposal419

distributions can be any, e.g., replacing PY with QY , as long as the bounding condition holds.420

Remark D.1. Since the accept/reject operation happens on the whole batch Bi, we define the421

batch average acceptance probability as ∆ (see Appendix I.1) where ∆ −→ 1.0 as N −→ ∞ and422

N∗ = N∆−1 as the average number of proposals (or runtime) required for ERS.423

D.2 Channel Simulation with ERS424

For N = 1, ERS becomes the standard RS and thus achieves the coding cost shown in Proposition C.1.425

When N −→ ∞, we have the batch acceptance probability ∆ −→ 1.0, meaning that we mostly accept426

the first batch and thus achieve the coding cost of Gumbel-max IS schemes [30, 36], which follows427

(7). This section presents the result for general N , which is more challenging to establish as discussed428

below. We assume the extended bounding condition in Definition 2.2 holds for (PX , PY |X , PY ).429

Encoding Scheme. We view the selection of K1 as a rejection sampling process on a whole batch430

(see Appendix I.1) and apply the Sorting Method to encode K1. Specifically, we collect every ⌊∆−1⌋431

batches into one group of batches, send the group index and the rank of UK1 within this group. For432

the local index K2, we use the Gumbel-Max Coding approach [30]. This process is visualized in433

Figure 6 (middle), detailed as follow:434

• Encoding K1: we represent K1 by two messages L and K̂1. Here, L is the group of batches435

index K1 belongs to and K̂1 is the rank of UK1
within this Lth group, i.e., we sort the list:436

Uϕ(1) ≤ Uϕ(2) ≤ ... ≤ Uϕ(⌊∆−1⌋) and send the rank K̂1 of UK1
, i.e. ϕ(K̂1) = K1.437

• Encoding K2: We first sort the exponential random variables within the selected batch K1,438

i.e. Sπ(1) ≤ Sπ(2) ≤ ... ≤ Sπ(N) and send the rank K̂2 of SK2
, i.e. π(K̂2)=K2.439

Coding Cost. We outline the main results for the coding costs, details in Appendix I. Specifically:440

E[logL] ≤ 1 bit , K = E[log K̂1] +E[log K̂2] ≤ DKL(PY |X(.|x)||PY (.))+2 log(e)+3 bits, (13)

where the second bound is one of the core technical contributions of this work. We empirically441

validate the bound on K in Figure 6(right). Proposition D.2 shows the overall coding cost for K:442
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Right: Empirical results on the coding cost of K̂1, K̂2 and their theoretical upper-bound (in bits). Both
figures use PY (.)=N (0, 1.0), where the first figure sets N = 32 and varies PY |X(.|x)=N (1.0, σ2)

with σ2 ∈ [0.1, 5]×10−3. The second one fixes σ2=10−3 while varying N .

Proposition D.2. Given (X,Y ) ∼ PX,Y and K defined as above. For any batch size N , we have:443

R ≤ I(X;Y ) + 2 log(I(X;Y ) + 8) + 12, (14)

Proof. See Appendix I.4.444

Remark D.3. The upper-bound in (14) is expected to be conservative, as evidenced by the evaluation445

of actual rates in Figure 6 (right). We further demonstrate the improvements in our proposed method446

over the baselines in the distributed compression application, to be elaborated upon in the subsequent447

discussion.448

D.3 Distributed Matching Probabilities449

We consider the communication setup described in Section 2.2, which generalizes the no-450

communication one in Section 2.1, see Remark 2.1. We use subscripts to distinguish the indices451

selected by each party, e.g., KA and KB denote the global indices chosen by the encoder (party452

A) and decoder (party B), respectively. Recall that the encoder observes X=x∼PX and sets453

PA
Y =PY |X(· | x), while the decoder observes Z=z and sets PB

Y =P̃Y |Z(· | z), not necessarily follow454

PY |Z(· | z). The target distributions PA
Y , PB

Y , and the proposal distribution QY in W must satisfy455

the bounding conditions outlined in Section 2.4 for the ratio pairs (PA
Y , QY ) and (PB

Y , QY ). Each456

party then uses ERS to select their indices:457

KA = ERS(W ;PA
Y , QY ), KB = ERS(W ;PB

Y , QY ), (15)

where the function ERS(.) is defined in (12) and we set YA=YKA
and YB=YKB

as the values458

reported by each party. Proposition D.4 shows a bound on the matching probability in this setting.459

The bound for the no-communication case naturally follows with appropriate modification, see460

Appendix J.2.461

Proposition D.4. Let KA,KB , P
A
Y and PB

Y defined as above. For N ≥ 2, we have:462

Pr(YA = YB |YA = y,X = x, Z = z) ≥
(
1+µ′

1(N)+
PA
Y (y)

PB
Y (y)

(1 + µ′
2(N))

)−1

, (16)

where µ′
1(N) and µ′

2(N) defined in Appendix J.5 are decay coefficients where µ′
1(N), µ′

2(N) −→ 0463

as N −→ ∞ with rate N−1under mild assumptions on the distributions PA
Y (.), PB

Y (.) and QY (.).464

Proof: See Appendix J.6.465

ERS with Batch Index Communication. In practice, PB
Y (y) is often learned via deep learning,466

making it difficult to obtain the upper bound for PB
Y (y)/QY (y), thus preventing a well-defined select467

condition. A practical workaround is for the encoder to transmit the selected batch index K1,A to the468

decoder, limiting the search space to a finite subset. This aligns with Section 2.2 by incorporating469

K1,A into the construction of YA, Z, and YB . Its matching bound, see Appendix K, is similar to470

Proposition D.4, but with different decaying coefficients.471

Remark D.5. Since the decay coefficients µ′
1(N), µ′

2(N) −→ 0.0 with the rate N−1, for any small ϵ472

one can choose N > N0(ϵ) such that µ′
1(N), µ′

2(N) ≤ ϵ.473
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Figure 7: (Best viewed in color) We set QY =N (0, 100), PA
Y =N (0.5, 0.7) and PB
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Left: Matching probabilities versus the batch size N . Middle: Matching probabilities versus the
average number of proposals where the red and black dotted lines correspond to the batch sizes ω
and 4ω shown in the left figure. Right: Sample quality of IS, measured by the estimated variance σ̂2.

Empirical Results. Figure 7 (left, middle) validates and compares ERS matching probability (with474

and without batch communication) with PML and IML, where we see both ERS approaches converge475

to PML performance. For the same average number of proposals N∗, Figure 7 (middle) demonstrates476

that ERS (with batch index communication) achieves consistently higher matching probabilities than477

IS, while maintaining an unbiased sample distribution. For completeness, Figure 7 (right) shows478

the bias of IS can remain high even when the number of proposals is sufficiently large, i.e. 4ω. We479

discuss the overhead of the batch index in Section D.3.1 on application to distributed compression.480

D.3.1 Lossy Compression with Side Information481

We apply our matching result with batch index communication to the Wyner-Ziv distributed compres-482

sion setting [40], where the encoder observes X=x∼PX and the decoder has access to correlated side483

information X ′∼PX′|X(·|x) unavailable to the encoder. Let PY ′|X(·|x) denote the target distribution484

that the encoder aims to simulate, which, together with X ′, induces the joint distribution PX,X′,Y ′ .485

For any integer V>0 and Ui∼U(0, 1), we set Yij=(Y ′
ij , Vij) in batch Bi within W where:486

Y ′
ij ∼ QY ′(·) (i.e., the ideal output), Vij ∼ Unif[1:V] (i.e., the hash value for index j)

The main idea is, after selecting the index KA where YKA
∼PY ′|X=x, the encoder sends its hash VKA

487

along with the batch index K1,A to the decoder. The decoder, on the other hand, aims to infer KA488

by using the posterior PY ′|X′=x′ . The message (VKA
,K1,A) from the encoder will further reduce489

the decoder’s search space within W and improves the matching probability (details in Appendix L).490

Proposition D.6 provides a bound on the probability the decoder outputs a wrong index:491

Proposition D.6. Fix any ϵ > 0 and let (PX , PY ′|X , QY ′) satisfies the extended bounding condition492

with ω, for N ≥ max(N0(ϵ), ω) where N0(ϵ) is defined in Remark D.5, we have:493

Pr(Y ′
KA

̸= Y ′
KB

) ≤ EX,Y ′,X′

[
1−

(
1 + ϵ+ (1 + ϵ)V−12i(Y

′;X)−i(Y ′;X′)
)−1

]
(17)

where iY ′;X(y′;x) = logPY ′|X(y′|x)− logPY ′(y′) is the information density. The coding cost is494

log(V) + r where r is the coding cost of sending the selected batch index K1,A and r ≤ 4 bits.495

Proof: See Appendix L496

Remark D.7. We can reduce the overhead r in Proposition D.6 by jointly compressing n i.i.d.497

samples, i.e., to 4/n per sample. This also improves the matching probability in practice (see498

Appendix L).499

E Runtime of ERS.500

We provide an analysis of ERS runtime. Let ω = maxx,y PY |X(y|x)/Q(y) and ωx =501

maxy PY |X(y|x)/Q(y), where PY |X=x is the target distribution and QY is the proposal distribution.502

For the batch size N and input x, we have the following bound on the average batch acceptance503

probability ∆x, which we will show in Appendix I.1:504

∆x ≥ N

N − 1 + ωx
≥ N

N − 1 + ω
, (18)

Thus, the expected number of batches in ERS is:505

Expected Number of Batches =
1

∆x
≤ N − 1 + ω

N
, (19)
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which leads to the runtime, i.e. the expected number of proposals as:506

Expected Runtime =
N

∆x
≤ N − 1 + ω. (20)

In practice, since we typically choose N = O(ω), the expected runtime is also O(ω).507

F Coding Cost of Standard Rejection Sampling508

For the proof, we generalize and use P (.) and Q(.) as the target and proposal distributions. This509

allows shorthand the notations while also generalizing the results for arbitrary distributions.510

F.1 Extension of Braverman and Garg [3]’s Method for Continuous Setting511

Binning Scheme

D
en

si
ty

7
10

12

1

2
3

4

5 68 9

11

Target Dist.

Scaled Proposal Dist.

Bin Boundaries

Accepted

Rejected

Figure 8: Binning Method for RS.

This method is an extension of the work by Braver-512

man and Garg [3] to the continuous setting. The core513

idea is to divide the acceptance region into smaller514

bins, visualized in Figure 8. Specifically, for each pair515

(Ui, Yi) from W , we denote Ũi = ωUiQ(Yi). The516

encoder selects the index K according to rejection517

sampling rule, which is 7 in Figure 8. It then sends518

the bin index of the first accepted sample, where the519

bin corresponds to the smallest scaled region that ŨK520

belongs to. In Figure 8, this corresponds to the or-521

ange region and the content of the message is 3. Then522

the encoder sends another message which indicates523

the rank of the selected sample within that bin, which524

is 1. The decoder then K accordingly. Formally, the two steps are as follow:525

• Binning: The encoder sends to the decoder the ceiling T = ⌈ ŨK

Q(YK)⌉. Upon receiving T , the526

decoder collects the set:527

ST = {i|(T − 1)Q(Yi) ≤ Ũi ≤ TQ(Yi)}, (21)

• Index Selection: The encoder locates the original chosen index K within ST , says G, and528

send G to the receiver. We have E[logG] ≤ 1.529

Binning Step. We will show the E[log T ] ≤ DKL(P ||Q)+log(e)., adapting the proof for the discrete530

case presented in [31]. First, we note that:531

YK ∼ P (.), UK |YK ∼ U
(
0,

P (YK)

ωQ(YK)

)
(22)
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We then have:532

E[log T ] = E

[
log

(⌈
ŨK

Q(YK)

⌉)]
(23)

≤ E

[
log

(
1 +

ŨK

Q(YK)

)]
(24)

= E [log (1 + ωUK)] (25)
= E [E [log (1 + ωUK)|YK ]] (26)

=

∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log (1 + ωu) du

]
dy (Due to (22)) (27)

≤
∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log

(
1 +

P (y)

Q(y)

)
du

]
dy (28)

≤
∫ +∞

−∞
P (y)

[
ωQ(y)

P (y)

∫ ω−1P (y)/Q(y)

0

log

(
P (y)

Q(y)

)
+

Q(y) log(e)

P (y)
du

]
dy (29)

=

∫ +∞

−∞
P (y) log

(
P (y)

Q(y)

)
dy +

∫ +∞

−∞
Q(y) log(e)dy (30)

= DKL(P ||Q) + log(e), (31)

where we use the following results for the last inequality:533

log(1 + x) ≤ log(x) +
log(e)

x
(for all x > −1). (32)

Index Selection Step. We first show that E[G] ≤ 2 by using recursion. We define A as an event534

where the first samples is accepted, i.e. U1 ≤ P (Y1)
ωQ(Y1)

. Then, if A happens then we have G = 1, i.e.535

E[G|A] = 1, since it is also the first sample in ST .536

Before proceeding to the case where A does not happen, i.e. Ā, we define the following random537

variable M = 1[1 ∈ ST ], i.e. M = 1 if the first proposed sample from W stays within the ceiling538

(T − 1)Q(Y1) ≤ Ũ1 ≤ TQ(Y1) and M = 0 otherwise.539

Then we have the two following recursion identities:540 {
E[G|Ā,M = 0] = E[G]

E[G|Ā,M = 1] = 1 + E[G]
(33)

For the first equality, given that the first sample U1, Y1 does not stay within ST does not implies any541

information about G, since all the samples are i.i.d. For the second equality takes into account the542

fact that we now accept the first sample (U1, Y1) and repeat the counting process. Hence, we have:543

E[G|Ā] = Pr(M = 0|Ā)E[G|Ā,M = 0] + Pr(M = 1|Ā)E[G|Ā,M = 1] (34)

= E[G] + Pr(M = 1|Ā) (35)

We now express E[G] as follows:544

E[G] = Pr(A)E[G|A] + Pr(Ā)E[G|Ā] (36)

= Pr(A) + Pr(Ā)(E[G] + Pr(M = 1|Ā)) (37)

Rearranging the terms, we obtain:545

E[G] = 1 +
Pr(M = 1, Ā)

Pr(A)
(38)
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We have Pr(A) =
∫∞
−∞ ω−1P (y)Q−1(y)Q(y)dy = ω−1. For Pr(M = 1, Ā), we have:546

Pr(M = 1, Ā) ≤ Pr(M = 1) (39)

=

∞∑
t=0

Pr((T − 1)Q(Y1) ≤ Ũ1 ≤ (T − 1)Q(y), T = t) (40)

=

∞∑
t=0

Pr((t− 1)Q(Y1) ≤ Ũ1 ≤ (t− 1)Q(y)) Pr(T = t) (41)

=

∞∑
t=0

ω−1 Pr(T = t) (42)

= ω−1 (43)

Thus, we obtain E[G] ≤ 2 and hence E[logG] ≤ 1.547

F.2 The Sorting Method548

The encoding process is as follows:549

• Grouping: the encoder sends the ceiling L = ⌈ K
⌊ω⌋⌉ to the decoder. The decoder then knows550

(L− 1)ω + 1 ≤ K ≤ Lω, i.e. K is in range L. We have E[logL] = 1 bit.551

• Sorting: The encoder and decoder both sort the uniform random variables Ui within the552

selected range (L − 1)⌊ω⌋ + 1 ≤ i ≤ L⌊ω⌋. Let the sorted list be Uπ(1) ≤ Uπ(2) ≤553

... ≤ Uπ(⌊ω⌋) where π(.) is the mapping between the sorted index and the original unsorted554

one. The encoder sends the rank of UK within this list, i.e. sends the value K̂ such that555

K = π(K̂). The decoder receive K̂ and retrieve YK accordingly. The coding cost for this556

step is DKL(P ||Q) + log(e).557

We provide detail analysis for each step below:558

Grouping Step. Since each proposal is accepted with probability ω−1, this means:559

Pr(K > ℓ⌊ω⌋) =
(
1− ω−1

)ℓ⌊ω⌋
<

(
1

2

)ℓ

, (44)

where we will prove the RHS inequality in Appendix F.3. Hence, we have Pr(L > ℓ) <
(
1
2

)−ℓ
and:560

E[L] =
∞∑
ℓ=0

Pr(L > ℓ) < 1 + 0.5−1 + 0.5−2 + ... = 2. (45)

Finaly, using Jensen’s inequality, we have:561

E[logL] ≤ log(E[L]) = 1. (46)

Sorting Step. To bound the coding cost in step 2, we first express E[log K̂] with the rule of conditional562

expectation as follows:563

E[log K̂] =

∫ ∞

−∞
P (y)E[log K̂|YK = y]dy (47)

=

∫ ∞

−∞
P (y)

(∫ ∞

−∞
E[log K̂|YK = y, UK = u]P (UK = u|YK = y)du

)
dy (48)

=

∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

E[log K̂|YK = y, UK = u]
ωQ(y)

P (y)
du

)
dy, (49)

where the last step, P (UK = u|YK = y) = ωQ(y)
P (y) for 0 ≤ u ≤ P (y)

ωQ(y) is due to the acceptance564

condition in rejection sampling. We will show in Section F.3.1 that:565

E[log K̂|YK = y, UK = u] ≤ log(ωu+ 1) (50)
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Then, combining this with Equation (49), we obtain:566

E[log K̂] ≤
∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

ωQ(y)

P (y)
log(ωu+ 1)du

)
dy (51)

≤
∫ ∞

−∞
P (y)

(∫ P (y)
ωQ(y)

0

ωQ(y)

P (y)
log

(
P (y)

Q(y)
+ 1

)
du

)
dy (52)

=

∫ ∞

−∞
P (y)

[
P (y)

ωQ(y)

ωQ(y)

P (y)
log

(
P (y)

Q(y)
+ 1

)]
dy (53)

=

∫ ∞

−∞
P (y) log

(
P (y)

Q(y)
+ 1

)
dy (54)

≤
∫ ∞

−∞
P (y)

[
log

(
P (y)

Q(y)

)
+

log(e)Q(y)

P (y)

]
dy (55)

= DKL(P ||Q) + log(e) (56)

Hence, we have E[log K̂] ≤ DKL(P ||Q) + log(e) on average.567

F.3 Proof for Inequality (44)568

The proof for this inequality is self-contained. We want to prove that for any ω ≥ 1, we have:569

f(ω) = (1− ω−1)⌊ω⌋ ≤ 1

2
. (57)

Consider the behavior of f(ω) at every interval [n, n+ 1) where n ∈ Z+, n ≥ 1. Since ω ≥ 1, the
function fn(ω) =

(
1− ω−1

)n
is increasing and hence:

sup
ω

fn(ω) =

(
1− 1

n+ 1

)n

=

(
n

n+ 1

)n

for every interval [n, n+1). We will show that supω fn(ω) is decreasing for n ≥ 1 and thus we have570

supω f(ω) = supω f1(ω) =
1
2 .571

Consider the function g(x) =
(

x
x+1

)n
for x ≥ 1, x ∈ R. Let h(x) = ln(g(x)) = x ln( x

x+1 ), then572

we simply need to show h(x) is decreasing. Consider its first derivative:573

h′(x) = ln

(
x

x+ 1

)
+

1

x+ 1
≤ 0, (58)

since:574

ln

(
x

x+ 1

)
= ln

(
1− 1

x+ 1

)
≤ − 1

x+ 1
(59)

due to the inquality ln(1 + y) < y for all y.575

F.3.1 Proof for Inequality (50)576

We begin by applying Jensen’s inequality for concave function log(x):577

E[log K̂|YK = y, UK = u] ≤ logE[K̂|YK = y, UK = u] (by Jensen’s Inequality) (60)

= logEL[E[K̂|YK = y, UK = u, L = ℓ]] (61)

Given K is within the range L = ℓ and UK = u, we can express K̂ as follows:578

K̂ = |{Ui < u, (ℓ− 1)⌊ω⌋+ 1 ≤ i ≤ ℓ⌊ω⌋}|+ 1, (62)
= Ω(u, ℓ) + 1 (63)

i.e. the number of Ui (plus 1 for the ranking) within the range L that has value lesser than u.579
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We can see that the the index i within the range L satisfying Ui < u are from the index that are either580

(1) rejected, i.e. index i < K or (2) not examined by the algorithm, i.e. index i > K. The rest of this581

proof will show the following upperbound:582

E[Ω(u, ℓ)|YK = y, UK = u, L = ℓ] ≤ ωu, for any ℓ (64)

For readability, we split the proof into different proof steps.583

Proof Step 1: We condition on the mapped index of π(K̂) on the original array:584

E[K̂|YK = y, UK = u, L = ℓ] (65)

= Eπ(K̂)

[
E[K̂ | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
(66)

= Eπ(K̂)

[
E[Ω(u, ℓ) + 1 | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
(67)

= Eπ(K̂)

[
E[Ω(u, ℓ) | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
+ 1 (68)

= Eπ(K̂)

[
E[Ω1(u, ℓ, k) + Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k]

]
+ 1, (69)

where Ω1(u, ℓ, k),Ω2(u, ℓ, k) are the number of Ui < u within the range L = ℓ that occurs before585

and after the selected index k respectively. Specifically:586

Ω1(u, ℓ, k) = |{Ui < u, (ℓ− 1)⌊ω⌋+ 1 ≤ i < (ℓ− 1)⌊ω⌋+ k}| (70)
Ω2(u, ℓ, k) = |{Ui < u, (ℓ− 1)⌊ω⌋+ k + 1 ≤ i ≤ ℓ⌊ω⌋}|, (71)

which also naturally gives Ω(u, ℓ) = Ω1(u, ℓ, k) + Ω2(u, ℓ, k).587

Proof Step 2: Consider Ω2(u, ℓ, k), since each proposal (Yi, Ui) is i.i.d distributed and the fact that
k is the index of the accepted sample, for every i > K, we have:

Pr(Ui < u | YK = y, UK = u, L = ℓ, π(K̂) = k) = Pr(Ui < u)

This gives us:588

E[Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k] = (⌊ω⌋ − k) Pr(U < u) (72)
= (⌊ω⌋ − k)u (73)

≤ (⌊ω⌋ − k)u

Pr(reject a sample)
(74)

≤ (⌊ω⌋ − k)u

1− ω−1
(75)

Proof Step 3: For Ω1(u, ℓ, k), we do not have such independent property since for every sample589

with index i < K, we know that they are rejected samples, and hence for i < k:590

Pr(Ui < u | YK = y, UK = u, L = ℓ, π(K̂) = k) = Pr(Ui < u|Yi is rejected) (76)

=
Pr(Ui < u, Yi is rejected)

Pr(Yi is rejected)
(77)

≤ Pr(Ui < u)

Pr(Yi is rejected)
(78)

=
u

1− ω−1
, (79)

which gives us:591

E[Ω2(u, ℓ, k) | YK = y, UK = u, L = ℓ, π(K̂) = k] ≤ (k − 1)u

1− ω−1
(80)

To prove Equation (76), note that the following events are equivalent:592

{YK = y, UK = u, L = ℓ, π(K̂) = k} = {Yk = y, Uk = u, Y1...k−1 are rejected} (81)

≜ Λ(u, y, k) (82)
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Here, we note that Yk, Uk denote the value at index k within W , which is different from YK , UK , the593

value selected by the rejection sampler. Hence:594

Pr(Ui < u|Λ(u, y, k)) = Pr(Ui < u, Y1...k−1 are rejected|Yk = y, Uk = u)

Pr(Y1...k−1 are rejected|Yk = y, Uk = u)
(83)

=
Pr(Ui < u, Y1...k−1 are rejected)

Pr(Y1...k−1 are rejected)
(Since (Yi, Ui) are i.i.d) (84)

= Pr(Ui < u|Yi is rejected), (85)

Proof Step 4: From the above result from Step 2 and 3, we have Ω(u, ℓ) = Ω1(u, ℓ, k) +595

Ω2(u, ℓ, k) ≤ ωu and as a result:596

E[K|YK = y, UK = u, L = ℓ] ≤ (⌊ω⌋ − 1)u

1− ω−1
+ 1 (86)

≤ (ω − 1)u

1− ω−1
+ 1 (Since⌊ω⌋ ≤ ω) (87)

= ωu+ 1 (88)

which completes the proof.597

F.4 Overall Coding Cost.598

We now provide the upperbound on H[K] for our Sorting Method. Since the message in the Binning599

Method also consists of two parts, the results are the same. For each part of the message, namely L600

and K, we encode it with a prefix-code from Zipf distribution [23]. For H[L], we have:601

H[L] ≤ EX [E[logL|X = x]] + log(EX [E[logL|X = x]] + 1) + 1 (89)
= 3 bits (90)

Hence, the rate for the first message is R1 ≤ H[L] + 1 = 4bits.602

Similarly, for H[K̂]:603

H[K̂] ≤ EX [E[log K̂|X = x] + log(EX [E[log K̂|X = x] + 1) + 1 (91)
= I(X;Y ) + log(e) + log(I(X;Y ) + log(e) + 1) + 1 (92)
≤ I(X;Y ) + log(I(X;Y ) + 1) + 2 log(e) + 1 (93)

Hence, the rate for the second message is R2 ≤ H[K̂] + 1 = I(X;Y ) + log(I(X;Y ) + 1) +604

2 log(e) + 2bits . Also note that:605

H[K|W ] = H[L, K̂|W ] (Given W,K and (L, K̂) are bijective ) (94)

≤ H[L|W ] +H[K̂|W ] (95)

≤ H[L] +H[K̂] (96)
≤ I(X;Y ) + log(I(X;Y ) + 1) + 7 (bits) (97)

Since we are compressing two messages separately, we have: R ≤ R1 + R2 = I(X;Y ) +606

log(I(X;Y ) + 1) + 9 (bits)607

G Matching Probability of Rejection Sampling608

G.1 Distributed Matching Probabilities of RS609

Follow the setup in Section 2.1, each party independently performs RS using the proposal distribution610

QY (·) to select indices KA and KB and set (YA, YB) = (YKA
, YKB

). We assume the bounding611

condition holds for both parties, i.e. maxy
(
PA
Y (y)Q−1

Y (y), PB
Y (y)Q−1

Y (y)
)
≤ ω, Proposition G.1612

shows the probability that they select the same index, given that YKA
= y.613
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Proposition G.1. Let W,Q(.), PA
Y (.) and PB

Y (.) defined as above. Then we have:614

Pr(YA = YB |YA = y) =
min(1, PB

Y (y)/PA
Y (y))

1 + TV(PA
Y , PB

Y )
≥ 1

2
(
1 + PA

Y (y)/PB
Y (y)

) (98)

Furthermore, we have:615

Pr(YKA
= YKB

) =
1− TV(PA

Y , PB
Y )

1 + TV(PA
Y , PB

Y )
. (99)

where TV(PA
Y , PB

Y ) is the total variation distance between two distribution PA
Y and PB

Y .616

This matching probability is not as strong, compared to PML as well as IML, details in Appendix617

G.21. In the case of GRS, we provide an analysis via a non-trivial example in Appendix H.2,618

where we demonstrate that it is possible to construct target and proposal distributions such that619

Pr(KA=KB | YKA
=y) → 0.0, even when PA

Y (y) = PB
Y (y). In contrast, this probability is greater620

than 1/4 for standard RS. In summary, while GRS and RS can achieve a coding cost in (7), its621

matching probability remains lower than that attainable by PML and IML.622

G.1.1 Proof.623

We denote by KA,KB the index selected by parties A and B, respectively. We first note that the624

event {KA = KB = i, Yi = y} is equivalent to the event {KA = KB = i, YKA
= y}, thus:625

Pr(KA = KB = i|YKA
= y) =

Pr(KA = KB = i|Yi = y)QY (y)

PA
Y (y)

, (100)

where the denominator is due to YKA
∼ PA

Y (.). Since:626

Pr(KA = KB |YKA
= y) =

∞∑
i=1

Pr(KA = KB = i|YKA
= y) (101)

=
QY (y)

PA
Y (y)

∞∑
i=1

P (KA = KB = i|Yi = y) (102)

We will later show that:627

Pr(KA = KB = i|Yi = y)=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i−1

,

(103)

which gives us:628

Pr(KA=KB |YKA
=y) (104)

=
QY (y)

PA
Y (y)

·min(PA
Y (y), PB

Y (y))

ωQY (y)

∞∑
i=1

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i−1

(105)

=
min(PA

Y (y), PB
Y (y))

ωPA
Y (y)

∞∑
i=0

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y))dy

]i
(106)

=
min(PA

Y (y), PB
Y (y))

ωPA
Y (y)

ω∫
max(PA

Y (y), PB
Y (y))dy

(107)

=
min(1, PB

Y (y)/PA
Y (y))∫

max(PA
Y (y), PB

Y (y))dy
(108)

=
min(1, PB

Y (y)/PA
Y (y))

1 + TV(PA
Y , PB

Y )
, (109)

1Daliri et al. [5] also arrives to a similar conclusion but for discrete case, targeting a different problem.
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where TV (PA
Y , PB

Y ) is the total variation distance between PA
Y (.) and PB

Y (.). Using the inequality629

min(u, v) ≥ uv
u+v and the fact that TV (PA

Y , PB
Y ) ≤ 1 gives us the latter inequality.630

To show (103), we first compute the following probabilities where A and B both accept/terminate a631

given sample Y = y:632

γ(y) = Pr(A and B accepts Y |Y = y) (110)

= Pr(U ≤ min(PA
Y (y), PB

Y (y)))|Y = y) (111)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)
(112)

and,633

γ̂(y) = Pr(A and B rejects Y |Y = y) (113)

= Pr(U > max(PA
Y (y), PB

Y (y)))|Y = y) (114)

= 1− max(PA
Y (y), PB

Y (y))

ωQY (y)
(115)

Then we have:634

Pr(KA = KB = i|Yi = yi) (116)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1|Yi = y)dy1:i−1 (117)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1)dy1:i−1 (118)

=

∫
Pr(KA = KB = i|Y1:i = y1:i)QY (Y1:i−1 = y1:i−1)dy1:i−1 (119)

= γ(yi)

∫ i−1∏
j=1

γ̂(yj)QY (yj)dy1:i−1 (120)

= γ(yi)

i−1∏
j=1

∫
γ̂(y)QY (y)dy (121)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[∫ (
1− max(PA

Y (y), PB
Y (y))

ωQY (y)

)
QY (y)dy

]i−1

(122)

=
min(PA

Y (y), PB
Y (y))

ωQY (y)

[
1− 1

ω

∫
max(PA

Y (y), PB
Y (y)dy

]i−1

(123)

Finally, we note that:635

Pr(B outputs y|A outputs y) (124)
= Pr(KB = KA|YKPA

=y) + Pr(party B outputs y,KB ̸= KA|YKA=y) (125)

Finally, note that in the case where PA(.), PB(.) are continuous distribution, we have:636

Pr(party B outputs y,KPB
̸= KPA

|YKPA
=y) = 0.0 (126)

This completes the proof.637

G.2 Comparision with Poisson Matching Lemma638

We will compare the average matching probability Pr(KA = KB) between RS and PML in the639

continuous case. Starting from equation (30) in [22] and assume PA
Y (y) ≤ PB

Y (y), we have:640
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P (YA = YB = y) (127)
= Pr(KA = KB |YA = y)P (YA = y) (128)

=
1∫∞

−∞ max
{

PA
Y (v)

PA
Y (y)

,
PB

Y (v)

PB
Y (y)

}
dv

(129)

=
PA
Y (y)∫∞

−∞ max
{
PA
Y (v),

PB
Y (v)

PB
Y (y)

PA
Y (y)

}
dv

(130)

≥ PA
Y (y)∫∞

−∞ max
{
PA
Y (v), PB

Y (v)
}
dv

(Since we assume PA
Y (y) ≤ PB

Y (y)) (131)

=
PA
Y (y)

1 + TV(PA
Y , PB

Y )
(132)

Repeating the same step for PA
Y (y) ≥ PB

Y (y), we have:641

P (YA = YB = y) ≥ min(PA
Y (y), PB

Y (y)

1 + TV(PA
Y , PB

Y )
(133)

Taking the integral with respect to y for both sides gives us the desired inequality where the RHS642

expression is the average matching probability of RS. Finally, the same conclusion holds for IML643

since the matching probability of IML converges to that of PML.644

H Greedy Rejection Sampling.645

H.1 Coding Cost646

Compared to the standard RS approach described above, GRS is a more well-known tool for channel647

simulation [10, 14], as its runtime entropy, i.e., H[K], is significantly lower than that of standard RS.648

Unlike standard RS, where the acceptance probability remains the same on average at each step, GRS649

greedily accepts samples from high-density regions as early as possible (see [10] for more details).650

Using these properties, Flamich and Theis [10] provide the following upper bound on H[K], which651

generalizes the discrete version established by Harsha et al. [14]:652

H[K] ≤ I[X;Y ] + log(I[X;Y ] + 1) + 4, (134)

which has a smaller constant compared to the bound for standard RS. We conclude with a note on the653

coding cost of GRS, highlighting that, unlike standard RS, which is relatively easy to implement in654

practice, GRS can be more challenging to deploy as it requires repeatedly computing a complex and655

potentially intractable integral.656

H.2 Matching Probability in Greedy Rejection Sampling657

Setup. Let the proposal distribution QY be a discrete uniform Unif[1, n], i.e. QY (y) = q = 1/n and658

U ∼ U(0, 1) as in standard RS. Then, we define W as follow:659

W = {(Y1, U1), (Y2, U2), ...} (135)

Our goal is to show that, for this proposal distribution QY , there exists the target distributions660

PA
Y (.) and PB

Y (.) such that the GRS matching probability Pr(YA = YB |YA = y) −→ 0.0 even when661

PA
Y (y) = PB

Y (y). Let n = 2k + 1, we construct the following PA
Y and PB

Y :662

PA
Y (Y = 1) =

k + 1

2k + 1
, PA

Y (Y = i) =

{
1

2k+1 , for 1 < i ≤ k + 1

0.0, for i > k + 1
, (136)

PB
Y (Y = 1) =

k + 1

2k + 1
, PB

Y (Y = i) =

{
1

2k+1 , for i > k + 1

0.0, for 1 < i ≤ k + 1
, (137)
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Figure 9: Visualization of example distributions in Section H.2 for k = 1.

where we visualize this in Figure 9.663

GRS Matching Probability. Given party A has target distribution PA
Y (.) and party B has target664

distribution PB
Y (.), with each running the GRS procedure to obtain their samples YA, YB respectively.665

We want to characterize the probability that party A and party B outputs the same value, give party666

A’s output. We denote KA and KB as the index within W that party A and party B select respectively,667

i.e., YKA
= YA and YKB

= YB .668

Consider the event YA = 1, with the construction above, we have the following properties:669

• If party A and party B both see the first proposal Y1 = 1, they will greedily accept it, since
PA
Y (Y = 1) = PB

Y (Y = 1) ≥ QY (Y = 1). So in this case:

Pr(KA = KB = 1, YA = 1) = QY (Y = 1) =
1

2k + 1

• On the other hand, if the first proposal Y1 ̸= 1 then either party A or B must accept and
output Y1 ̸= 1 since for y ̸= 1, the probability distribution complement each other and equal
to QY (y) =

1
2k+1 . For example, for n = 3 and Y2 = 2, then party A will accept it while

party B must reject it. Therefore, we have:

Pr(KA = KB > 1, YA = 1) = 0.0.

• Finally, from the previous analysis, for any positive integers i ̸= j, we have

Pr(KA = i,KB = j, YA = 1, YB = 1) = 0.0,

Indeed, consider i = 1 then Pr(KA = 1,KB = j, YA = 1, YB = 1) = 0.0 since both of670

them must accept the first proposal Y1 = 1. On the other hand, if i > 1 then we must have671

j = 1 since we know that Y1 ̸= 1 in this case and thus one of the party must stop. Since672

i > 1, it has to be party B and in this case, YB ̸= 1.673

For this reason, we have:674

Pr(YA = YB = 1) (138)
= Pr(KA = KB , YA = 1, YB = 1) + Pr(KA ̸= KB , YA = 1, YB = 1) (139)

= Pr(KA = KB , YA = 1) +
∑
i ̸=j

Pr(KA = i,KB = j, YA = 1, YB = 1) (140)

= Pr(KA = KB , YA = 1) (141)
= Pr(KA = KB = 1, YA = 1) + Pr(KA = KB > 1, YA = 1) (142)
= QY (Y = 1) (143)

=
1

2k + 1
(144)

and hence:675

Pr(YA = YB |YA = 1) =
1

k + 1
(145)
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which approaches 0.0 as n −→ ∞. Overall, due to its greedy selection approach, GRS may yield676

lower matching probabilities compared to other methods such as PML which we provide the analysis677

below.678

Matching Probability of PML. In PML, the matching probability is Pr(YA = YB | YA = 1) = 1.679

This results from PML’s more global selection process compared to GRS, as it evaluates all candidates680

comprehensively. In particular, let W = (S1, Y1), ..., (Sn, Yn) where Si ∼ Exp(1) and let KA,KB681

be the value within W that each party respectively select in this case. Note that the construction of682

W in the discrete case for PML does not require QY . The selection process according to PML is as683

follows:684

KA = arg min
1≤i≤n

Si

PA
Y (Yi)

KB = arg min
1≤i≤n

Si

PB
Y (Yi)

, (146)

and each party outputs YA = YKA
, YB = YKB

. We see that if KA = 1, then we must have685

KB = 1. This is because for any i > 1, we have PA
Y (Y = 1) = PB

Y (Y = 1) > PB
Y (Y = i) and686

PA
Y (Y = i) = PB

Y (Y = i+ 1 + k). Thus, this gives Pr(YA = YB | YA = 1) = 1.687
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I ERS Coding Scheme688

I.1 Prelimaries689

We show the standard ERS algorithm in Algorithm 1, following the original version introduced by690

Deligiannidis et al. [6] with a slight generalization in terms of the scaling factor (0 < scale ≤ 1)691

that we will use for channel simulation purpose. This section begins by establishing some detailed692

quantities that will be used repeatedly. For simplicity, we use Px(.) for the target distribution PY |X=x693

and Q(.) for the proposal distribution. Let ωx = maxy Px(y)/Q(y), we define the quantities:694

Ẑx(y1:N ) =

N∑
j=1

Px(yj)

Q(yj)
, Z̄x(y1:N , k) = Ẑx(y1:N )− Px(yk)

Q(yk)
+ ωx (147)

and denote the following constants:695

∆x = EY1:N∼Q

[
N

Z̄x(Y1:N , 1)

]
, ∆ =

N

N − 1 + ω
, (148)

where we recall that ω = maxx,y Px(y)/Q(y), by Jensen’s inequality we have the following:696

∆x ≥ N

N − 1 + ωx
≥ N

N − 1 + ω
= ∆ for every x. (149)

From this, we can see that as N −→ ∞, we achieve ∆ −→ 1.0. This value ∆ turns out to be the average697

batch acceptance probability when we set scale = ∆
∆x

, which we elaborate on below.698

Scaled Acceptance Probability. For the channel simulation setting in this section, we slightly modify699

the acceptance probability in Algorithm 1 (step 4) with a scaling factor scale = ∆
∆x

≤ 1 such that700

the average batch acceptance probability is the same, regardless of the target distribution Px
2. In701

particular, the encoder selects the index according to:702

K = ERS(W ;Px, Q, scale =
∆

∆x
), (150)

which means for a batch i containing samples Yi,1:N = y1:N , we accept it within step 4 if:703

Accept if Ui ≤
Ẑx(y1:N )

Z̄x(y1:N , k)

∆

∆x
, (151)

where we modify the scaling scale = ∆
∆x

≤ 1 in Algorithm 1, which is a constant and does not704

affect the resulting output distribution. The value of k is determined via the Gumbel-Max selection705

procedure in Step 2. The intuition is, within every accepted batch without scaling, we randomly reject706

(1− scale) of them. Formally, first consider the following ERS proposal distribution:707

Q̄Y1:N ,K(y1:N , k;x) =

(
Px(yk)/Q(yk)∑N
j=1 Px(yj)/Q(yj)

)
N∏
j=1

Q(yj) (152)

=

(
Px(yk)/Q(yk)

Ẑx(y1:N )

)
N∏
j=1

Q(yj), (153)

where the first product in the RHS is the likelihood we obtain the samples y1:N from the original708

proposal distribution QY (.) and the ratio is due to the IS process. Now, the ERS target distribution709

is P̄Y1:N ,K(y1:N , k;x) where710

P̄Y1:N ,K(y1:N , k;x) =
1

α

(
Px(yk)/Q(yk)

Ẑx(y1:N )

Ẑx(y1:N )

Z̄x(y1:N , k)

∆

∆x

)
N∏
j=1

Q(yj) (154)

=

(
Px(yk)/Q(yk)

∆xZ̄x(y1:N , k)

) N∏
j=1

Q(yj), (155)

2This is similar to the case of standard RS where we accept/reject based on the global ratio bound ω instead
of ωx.
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which is the batch target distribution that yields Y ∼ Px when no scaling occur (see [6], Section 2.2),711

since the normalization factor α is:712

α =

N∑
k=1

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , k)

)
∆

∆x

 N∏
j=1

Q(yj)

 dy1:N (156)

= N
∆

∆x

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , 1)

) N∏
j=1

Q(yj)

 dy1:N (Due to symmetry) (157)

= N
∆

∆x

∫ ∞

−∞

1

Z̄x(y1:N , 1)

 N∏
j=2

Q(yj)

 dyN2 (158)

= ∆ (159)

It turns out that ∆ is also the batch acceptance probability since:713

Pr(Accept batch B) = E(Y1:N ,K)∼Q̄

[
∆

∆x

Ẑx(y1:N )

Z̄x(y1:N , k)

]
(160)

=
∆

∆x

N∑
k=1

∫ ∞

−∞

(
Px(yk)/Q(yk)

Z̄x(y1:N , k)

)
(161)

=
∆

∆x
N

∫ ∞

−∞

(
Px(y1)/Q(y1)

Z̄x(y1:N , 1)

) N∏
j=1

Q(yj)

 dy1:N (162)

= ∆, (163)

and it can be observed that, without the scaling factor ∆
∆x

, the batch acceptance probability is ∆x.714

Finally, we can view the ERS as a standard RS procedure with proposal distribution Q̄Y N
1 ,K and715

target distribution P̄Y N
1 ,K .716

Harris-FKG/Chebyshev Inequality. We introduce the following inequality (Harris-717

FKG/Chebyshev), which will be used in the proof:718

Proposition I.1. For function f, g on Y ∼ P (.) where f is non-increasing and g is non-decreasing,719

we have:720

E[f(Y )g(Y )] ≤ E[f(Y )]E[g(Y )]

Proof. Let Y1, Y2 ∼ P (.) and they are independent. Then we have:721

[f(Y1)− f(Y2)][g(Y1)− g(Y2)] ≤ 0 (164)

Hence:722

E{[f(Y1)− f(Y2)][g(Y1)− g(Y2)]} ≤ 0 (165)

This gives us:723

E[f(Y1)g(Y1)] + E[f(Y2)g(Y2)] ≤ E[f(Y1)]E[g(Y2)] + E[f(Y2)]E[g(Y1)], (166)

which completes the proof.724

I.2 Encoding K1.725

We encode K1 the same way as the scheme for standard RS. Similar to standard RS, we encode K1726

into two messages. Specifically:727

• Step 1: the encoder sends the ceiling L = ⌈ K1

⌊∆−1⌋⌉ to the decoder. The decoder then knows728

(L− 1)⌊∆−1⌋−1 + 1 ≤ L ≤ L⌊∆−1⌋−1, i.e. K1 is in chunk L that consists of ⌊∆−1⌋−1729

batches. We have E[log(L)] ≤ 1 bit.730
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• Step 2: The encoder and decoder both sort the uniform random variables Ui within the731

selected chunk (L − 1)⌊∆−1⌋−1 + 1 ≤ i ≤ L⌊∆−1⌋−1. Let the sorted list be Uπ(1) ≤732

Uπ(2) ≤ ... ≤ Uπ(⌊∆−1⌋) where π(.) is the mapping between the sorted index and the733

original unsorted one. The encoder sends the rank of UK1
within this list, i.e. sends the734

value T such that K1 = π(K̂1). The decoder receive K̂1 and retrieve BK1
accordingly.735

Section I.2.2 shows the coding cost for this step.736

We provide the detail analysis in Section I.2.1 and I.2.2. Notice that the role ∆ plays here is similar737

to that of ω in standard RS.738

I.2.1 Coding Cost of L739

Similar to RS, since each batch is accepted with probability ∆ (see (163)), this means:

Pr(K1 > ℓ∆−1) = (1−∆)
ℓ⌊∆−1⌋

< 0.5−ℓ,

which is equivalent to Pr(L > ℓ) < 0.5−ℓ. Note that we reuse the inequality in Appendix F.3. We740

have:741

E[L] =
∞∑
ℓ=0

Pr(L > ℓ) < 1 + 0.5−1 + 0.5−2 + ... = 2, (167)

implying E[logL] ≤ 1.742

I.2.2 Coding Cost of K̂1743

We will show that:744

E[log K̂1] ≤
N

∆x
EY1:N∼Q

[
Px(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
Ẑx(Y1:N )

∆xZ̄x(Y1:N , 1)

)]
, (168)

where we provide the result of (168) in Section I.4.2.745

I.3 Encoding K2.746

Given an accepted batch {(Yi, Si)}Ni=1 , we have:747

K2 = arg min
1≤i≤N

Si

λi
; ΘP = min

1≤i≤N

Si

λi
, (169)

where we have the weights λi defined as:748

λi =
P (Yi)

Q(Yi)
(170)

After communicating the selected batch index K1, the encoder and decoder sort the exponential749

random variables {SK1,i}Ni=1, i.e.750

SK2,π(1) ≤ SK2,π(2) ≤ ... ≤ SK2,π(N), (171)

and send the sorted index K̂2 of K2, i.e. π(K̂2) = K2. The decoder also performs the sorting
operation and retrieve K2 accordingly. Since K2 are obtained from the batch selected by ERS, we
analyze E[log K̂ ′

2|Y1:N are selected], where K̂ ′
2 and K ′

2 are defined the same as K̂2 and K2 (follows
the same Gumbel-Max procedure) but for arbitrary N i.i.d. proposals Y1:N ∼ Q(.). In this case:

E[log K̂2] = E[log K̂ ′
2|Y1:N are selected]

Notice the following identity:

P̄ (y1:N , k2;x) = P (Y1:N = y1:N |Y1:N are selected,K ′
2 = k2) Pr(K

′
2 = k2|Y1:N are selected)
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where P̄ (y1:N , k2;x) is the ERS target distribution described previously in Appendix I.1. Then, we751

obtain the following likelihood:752

P (Y1:N = y1:N |Y1:N are selected,K ′
2 = 1) (172)

=
P̄ (y1:N , j;x)

Pr(K ′
2 = 1|Y1:N are selected)

(173)

= N
Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)

N∏
i=1

Q(yi) (174)

With this, we now bound the expectation term of interest E[log K̂2] as follows:753

E[log K̂2] (175)

= E[log K̂ ′
2|Y1:N are selected] (176)

= E[log K̂ ′
2|Y1:N are selected,K ′

2 = 1] ( Due to Symmetry) (177)

= EY1:N
[E[log K̂ ′

2|Y1:N are selected,K ′
2 = 1, Y1:N = y1:N ]] (178)

= N

∫ ∞

−∞

Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)
E[log K̂ ′

2|Y1:N are selected, Y1:N = y1:N ,K ′
2 = 1]

(
N∏
i=1

Q(yi)

)
dy1:N

(179)

= N

∫ ∞

−∞

Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)
E[log K̂ ′

2|Y1:N = y1:N ,K ′
2 = 1]

(
N∏
i=1

Q(yi)

)
dy1:N , (180)

where the last equality is because, given {Y1:N=y1:N ,K ′
2=1}, the event {Y1:N are selected} and the754

random variable K̂ ′
2 are independent. In particular, the decision whether to accept a batch or not does755

not depends on the rank of SK′
2
, that is:756

Pr(Y1:N are selected|Y1:N = y1:N ,K ′
2 = 1, K̂ ′

2 = k2) (181)

= Pr(Y1:N are selected|Y1:N = y1:N ,K ′
2 = 1) (182)

=
Ẑx(y1:N )

Z̄x(y1:N , 1)

∆

∆x
(183)

We then have:757

E[log K̂ ′
2|Y1:N are selected] (184)

=N

∫ ∞

−∞

N∏
i=1

Q(yi)
Px(y1)/Q(y1)

∆xZ̄x(y1:N , 1)

(∫ ∞

0

e−θE[log K̂ ′
2|Y1:N=y1:N ,K ′

2=1,ΘP=θ]dθ

)
dy1:N ,

(185)

since, given Y1:N , ΘP is independent of K ′
2 and ΘP∼Exp(1) (see [30], Appendix 18). We now pro-758

vide an upperbound of E[log K̂2|Y1:N=y1:N ,K2=1,ΘP=θ], which follows the argument presented759

in [30], and is repeated here. Applying Jensen’s inequality, we have:760

E[log K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] ≤ logE[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ], (186)

We then rewrite K̂ ′
2 as the following:761

K̂ ′
2 = |{Si < SK′

2
}|+ 1, (187)
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which gives us:762

E[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] (188)

= 1 + E[|{Si < SK′
2
}||Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] (189)

= 1 + E

[∣∣∣∣∣
{
Si < θ

Px(YK′
2
)/Q(YK′

2
)

Ẑx(Y1:N )

}∣∣∣∣∣
∣∣∣∣∣Y1:N = y1:N ,K ′

2 = 1,ΘP = θ

]
(190)

= 1 +

N∑
i=2

Pr

(
Si < θ

Px(YK′
2
)/Q(YK′

2
)

Ẑx(Y1:N )

∣∣∣∣∣Y1:N = y1:N ,K ′
2 = 1,ΘP = θ

)
(191)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N )

∣∣∣∣∣Y1:N = y1:N ,
Sj

Px(yj)/Q(yj)

Ẑx(y1:N )

≥θ for j ̸=1,
S1

Px(y1)/Q(y1)

Ẑx(y1:N )

=θ


(192)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N )

∣∣∣∣∣Y1:N=y1:N ,
Sj

Px(yj)/Q(yj)

Ẑx(y1:N )

≥θ for j ̸=1,
S1

Px(y1)/Q(y1)

Ẑx(y1:N )

=θ


(193)

= 1 +

N∑
i=2

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(Y1:N )

∣∣∣∣∣Y1:N = y1:N ,
Si

Px(yi)/Q(yi)

Ẑx(y1:N )

≥ θ

 (194)

Note that:763

Pr

Si < θ
Px(Y1)/Q(Y1)

Ẑx(y1:N )

∣∣∣∣∣Y1:N = y1:N ,
Si

Px(yi)/Q(yi)

Ẑx(y1:N )

≥ θ

 (195)

= 1

{
θ
Px(Y1)/Q(Y1)

Ẑx(y1:N )
≥ θ

Px(Yi)/Q(Yi)

Ẑx(y1:N )

}[
1− exp

(
−θ

Px(y1)/Q(y1)− Px(yi)/Q(yi)

Ẑx(y1:N )

)]
(196)

≤ 1− exp

(
−θ

Px(y1)/Q(y1)− Px(yi)/Q(yi)

Ẑx(y1:N )

)
(197)

≤ θ[Px(y1)/Q(y1)− Px(yi)/Q(yi)]

Ẑx(y1:N )
(198)

≤ θPx(y1)/Q(y1)

Ẑx(y1:N )
(199)

As such:764

E[K̂ ′
2|Y1:N = y1:N ,K ′

2 = 1,ΘP = θ] ≤ 1 +

N∑
i=2

θPx(y1)/Q(y1)

Ẑx(y1:N )
(200)

≤ 1 +
NθPx(y1)/Q(y1)

Ẑx(y1:N )
(201)

and thus:765 ∫ ∞

0

e−θE[logK|Y1:N = y1:N ,K2 = 1,ΘP = θ]dθ (202)

≤
∫ ∞

0

e−θ log

(
1 +

NθPx(y1)/Q(y1)

Ẑx(y1:N )

)
dθ (203)

≤ log

(
NPx(y1)/Q(y1)

Ẑx(y1:N )
+ 1

)
, (204)
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which is due to Jensen’s inequality for concave function log(.). Finally, we have:766

E[log K̂2] (205)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )
+ 1

)]
(206)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

)
+

log(e)Ẑx(Y1:N )

NPx(Y1)/Q(Y1)

NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

]
(207)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

)]
+ log(e) (208)

The last inequality is due to the FKG inequality:767

EY1:N∼Q(.)

[
log(e)Ẑx(Y1:N )

∆xZ̄x(Y1:N , 1)

]
(209)

= log(e)EY N
2 ∼Q(.)

[(
1 +

N∑
i=2

Px(Yi)

Q(Yi)

)(
1

∆xZ̄x(Y1:N , 1)

)]
(210)

≤ log(e)EY N
2 ∼Q(.)

[
1 +

N∑
i=2

Px(Yi)

Q(Yi)

]
EY N

2 ∼Q(.)

[
1

∆xZ̄x(Y1:N , 1)

]
(211)

= log(e) (212)

So we have the bound on E[log(K̂2)] as:768

E[log(K̂2)] ≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

)]
+ log(e) (213)

I.4 Total Coding Cost of K769

We now provide an upperbound on the total coding cost of K. We have:770

H(K|W ) = H(L, K̂1, K̂2|W ) (214)

≤ H(L|W ) +H(K̂1|W ) +H(K̂2|W ) (215)

≤ H(L) +H(K̂1) +H(K̂2) (216)

For each of the message, we encode using Zipf distribution. Since E[log(L)] ≤ 1, then:

H(L) ≤ 3

For H(K̂1), we have:771

H(K̂1) ≤ EX [E[log(K̂1)]] + log(EX [E[log(K̂1)]] + 1) + 1 (217)

and H(K̂2), we have:772

H(K̂2) ≤ EX [E[log(K̂2)]] + log(EX [E[log(K̂2)]] + 1) + 1 (218)

and thus we have:773

H(K|W ) (219)

≤ (EX [E[log(K̂1)] + E[log(K̂2)]])+ log((EX [E[log(K̂1)]] + 1)(EX [E[log(K̂2)]] + 1))+5
(220)
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By AM-GM inequality, we have:774

log((EX [E[log(K̂1)]] + 1)(EX [E[log(K̂2)]] + 1)) (221)

≤ log(
1

4
(EX [E[log(K̂1)]] + 1 + EX [E[log(K̂2)]] + 1)2) (222)

= 2 log(EX [E[log(K̂1)]] + EX [E[log(K̂2)]] + 2)− 2 (223)

We will show E[log(K̂1)] + E[log(K̂2)] ≤ DKL(Px||Q) + 3 + 2 log(e) at the end of this section.775

Given this, we have:776

H(K|W ) ≤ I(X;Y ) + 3 + 2 log(e) + 2 log(I(X;Y ) + 5 + 2 log(e))− 2 + 5 (224)
≤ I(X;Y ) + 2 log(I(X;Y ) + 8) + 9. (225)

Since we are encoding 3 messages separately, we add 1 bit overhead for each message and thus arrive777

to the constant 12 as in the original result.778

The rest is to bound E[log(K̂1)] + E[log(K̂2)], note that:779

E[log(K̂1)] + E[log(K̂2)] (226)

≤2 log(e)+EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

(
log

(
Ẑx(Y1:N )

∆xZ̄x(Y1:N , 1)

)
+ log

(
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

))]
(227)

= 2 log(e) + EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)
log

(
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

)]
(228)

= 2 log(e) + EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

∆xZ̄x(Y1:N , 1)

(
log

Px(Y1)

Q(Y1)
+ log

(
N

∆xZ̄x(Y1:N , 1)

))]
(229)

= 2 log(e) +DKL(Px||Q) + EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(230)

= 2 log(e) +DKL(Px||Q) + E1 (231)

where:780

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(232)

We will show in Appendix I.4.1 that:781

E1 ≤ 3 (233)

and thus:782

E[log(K̂1)] + E[log(K̂2)] ≤ 2 log(e) + 3 +DKL(Px||Q) (234)

I.4.1 Bound on E1783

We consider two cases, when the batch size N ≤ 7ωx and when N > 7ωx.784

Case 1: N ≤ 7ωx785

Recall that Z̄x(Y1:N , 1) > ωx and ∆x ≥ N
N−1+ωx

, we have:786

N

∆xZ̄x(Y1:N , 1)
≤ N − 1 + ωx

ωx
(235)

<
8ωx − 1

ωx
( Since N ≤ 7ω) (236)

< 8 (237)
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Thus, we have:787

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(238)

≤ EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log (8)

]
(239)

= 3 (Since ∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
), (240)

and hence E1 ≤ 3 bit.788

Case 2: N > 7ω789

To upper-bound E2 in this regime, we first note that:790

∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
= Pr(Accept batch B) ≤ 1 (241)

Another way to see this is through the following arguments:791

EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
(242)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)

]
(243)

= EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

Ẑx(Y1:N )

Z̄x(Y1:N , 1)

]
(244)

≤ EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )

] (
Since

Ẑx(Y1:N )

Z̄x(Y1:N , 1)
≤ 1

)
(245)

=

N∑
i=1

EY1:N∼Q(.)

[
Px(Yi)/Q(Yi)

Ẑx(Y1:N )

]
(Due to symmetry) (246)

= 1, (247)

and as a consequence (which we will be using later), we have:792

EY1:N∼Q(.)

[
N + 1

ωx + Ẑx(Y1:N )

]
(248)

= EY N+1
1 ∼Q(.)

[
N + 1

ωx + Ẑx(Y1:N )

]
(249)

≤ 1. (250)

Then, observe that:793

E1 = EY1:N∼Q(.)

[
N

∆xZ̄x(Y1:N , 1)
log

(
N

∆xZ̄x(Y1:N , 1)

)]
(251)

=
1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
+ log

1

∆x
(252)

≤ 3 bits (253)

where, to show the inequality at the end, we will prove the following two inequalities:794

log
1

∆x
≤ log

(
8

7

)
(254)

1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
≤ 16

7
, (255)
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and hence E2 ≤ 3 (bits). For the first inequality, we have:795

∆x = EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)

]
(256)

≥ N

EY1:N∼Q(.)[Z̄x(Y1:N , 1)]
( Jensen’s Inequality ) (257)

=
N

N − 1 + ωx
(258)

≥ N

N − 1 +N/7
( Since N > 7ωx) (259)

≥ 7

8
, (260)

hence, we have:796

1

∆x
≤ 8/7, (261)

which yields the first inequality after taking the log(.) in both sides.797

For the second inequality, we begin by establishing the following key inequality:798

N

Z̄x(Y1:N , 1)
≤ 2N

Ẑx(Y1:N ) + ωx

, (262)

which is due to:799

N

Z̄x(Y1:N , 1)
=

N

ωx +
∑N

i=2
Px(Yi)
Q(Yi)

(263)

≤ N

ωx + 1
2

∑N
i=2

Px(Yi)
Q(Yi)

(Since
Px(Yi)

Q(Yi)
≥ 0 for all i) (264)

=
2N

2ωx +
∑N

i=2
Px(Yi)
Q(Yi)

(265)

≤ 2N

ωx +
∑N

i=1
Px(Yi)
Q(Yi)

(Since
Px(Yi)

Q(Yi)
≤ ω for all i) (266)

=
2N

Ẑx(Y1:N ) + ωx

, (267)
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Then, we have:800

1

∆x
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(268)

≤8

7
EY1:N∼Q(.)

[
N

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(Since ∆x ≥ 7

8
from (260)) (269)

=
8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)

)]
(270)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
N

Z̄x(Y1:N , 1)
+ 1

)]
(271)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
2N

Ẑx(Y1:N ) + ωx

+ 1

)]
(Due to Inequality (262) )

(272)

≤8

7
EY1:N∼Q(.)

[
NPx(Y1)/Q(Y1)

Ẑx(Y1:N )
log

(
2N

Ẑx(Y1:N ) + ωx

+1

)]
(Since Ẑx(Y1:N )≤Z̄x(Y1:N , 1))

(273)

=
8

7

N∑
i=1

EY1:N∼Q(.)

[
Px(Yi)/Q(Yi)

Ẑx(Y1:N )
log

(
2N

Ẑx(Y1:N ) + ωx

+ 1

)]
(Due to symmetry) (274)

=
8

7
EY1:N∼Q(.)

[∑N
i=1 Px(Yi)/Q(Yi)

Ẑx(Y1:N )
log

(
2N

Ẑx(Y1:N ) + ωx

+ 1

)]
(275)

=
8

7
EY1:N∼Q(.)

[
log

(
2N

Ẑx(Y1:N ) + ωx

+ 1

)]
(276)

≤8

7
log

(
EY1:N∼Q(.)

[
2N

Ẑx(Y1:N ) + ωx

+ 1

])
(Jensen’s Inequality) (277)

=
8

7
log

(
1 +

2N

N + 1
EY1:N∼Q(.)

[
N + 1

Ẑx(Y1:N ) + ωx

])
(278)

≤8

7
log

(
1 +

2N

N + 1

)
(Since EY1:N∼Q(.)

[
N + 1

Ẑx(Y1:N ) + ωx

]
< 1 due to Inequality (250)) (279)

≤8

7
log(4) (280)

=
16

7
(bits) (281)

which completes the proof for this part.801

I.4.2 Proof of Inequality (168)802

We first express the quantity E[log K̂1] with conditional expectation. The accepted batch and selected803

local index K2 are distributed according to YK1,1:N ,K2 ∼ P̄Y1:N ,K;x, then:804

E[log K̂1] (282)

= E[E[log K̂1|YK1,1:N = y1:N ,K2 = k2]] (283)

=

N∑
k2=1

∫ ∞

−∞

 N∏
j=1,j ̸=k2

Q(yj)

 Px(yk)

Z̄x(y1:N , k)∆x
E[log K̂1|YK1,1:N = y1:N ,K2 = k2]dy1:N

(284)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
E[log K̂1|YK1,1:N = y1:N ,K2 = 1]dy1:N (285)
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Notice that, since we accept a batch i when Ui ≤ Ẑx(y1:N )
Z̄x(y1:N ,1)

∆
∆x

, we have that:

P (UK1
= u|YK,1:N = y1:N ,K2 = 1) =

Z̄x(y1:N , 1)

Ẑx(y1:N )

∆x

∆
,

then conditioning on UK1
for the last expectation term above:805

E[log K̂1|YK1,1:N = y1:N ,K2 = k] (286)

=

∫ ∞

−∞
E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u]P (UK1 = u|YK1,1:N = y1:N ,K2 = 1)du

(287)

=

∫ Ẑx(y1:N )

Z̄x(y1:N,1)
∆
∆x

0

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u]

Z̄x(y1:N , 1)

Ẑx(y1:N )

∆x

∆
du (288)

≤ ∆x

∆

∫ Ẑx(y1:N )

Z̄x(y1:N,1)
∆
∆x

0

Z̄x(y1:N , 1)

Ẑx(y1:N )
log
[
1 +

u

∆

]
du (See the Sort Coding bound below.) (289)

≤ ∆x

∆

∫ Ẑx(y1:N )

Z̄x(y1:N,1)
∆
∆x

0

Z̄x(y1:N , 1)

Ẑx(y1:N )
log

[
1 +

Ẑx(y1:N )

∆xZ̄x(y1:N , 1)

]
du (290)

= log

[
1 +

Ẑx(y1:N )

∆xZ̄x(y1:N , 1)

]
, (291)

Finally, we have:806

E[log K̂1] (292)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
log

[
1 +

Ẑx(y1:N )

∆xZ̄x(y1:N , 1)

]
dy1:N (293)

≤ N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x

(
log

[
Ẑx(y1:N )

∆xZ̄x(y1:N , 1)

]
+ log e

∆xZ̄x(y1:N , 1)

Ẑx(y1:N )

)
dy1:N

(294)

= N

∫ ∞

−∞

 N∏
j=2

Q(yj)

 Px(y1)

Z̄x(y1:N , 1)∆x
log

[
Ẑx(y1:N )

∆xZ̄x(y1:N , 1)

]
dy1:N + log(e) (295)

=
N

∆x
EY1:N∼Q

[
Px(Y1)/Q(Y1)

Z̄x(Y1:N , 1)
log

(
Ẑx(Y1:N )

∆xZ̄x(Y1:N , 1)

)]
(296)

We show the proof for (289) below.807

Sort Coding Bound. To bound the expectation term, we first apply Jensen’s inequality and condi-808

tioning on the accepted chunk of batches L = ℓ:809

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u] (297)

≤ log(E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u]) (298)

= log(E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u]) (299)

= log(EL[E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ]]) (300)

We now repeat the previous argument in standard RS. Specifically, given K̂1 is within the range810

L = ℓ and UK1
= u, we can express K̂1 as follows:811

K̂1 = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ 1 ≤ i ≤ ℓ⌊∆−1⌋}|+ 1, (301)
= Ω(u, ℓ) + 1 (302)
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i.e. the number of Ui (plus 1 for the ranking) within the range L that has value lesser than u.812

We can see that the the index i within the range L satisfying Ui < u are from the indices that are813

either (1) rejected, i.e. index i < K̂1 or (2) not examined by the algorithm, i.e. index i > K̂1. The814

rest of this proof will show the following bound:815

E[Ω(u, ℓ)|YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ] ≤ ∆−1u, for any ℓ (303)

For readability, we split the proof into different proof steps.816

Proof Step 1: We condition on the mapped index of π(K̂) on the original array:817

E[K̂1|YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ] (304)

= Eπ(K̂1)

[
E[K̂1 | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
(305)

= Eπ(K̂1)

[
E[Ω(u, ℓ) + 1 | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
(306)

= Eπ(K̂1)

[
E[Ω(u, ℓ) | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
+ 1 (307)

= Eπ(K̂1)

[
E[Ω1(u, ℓ, k1) + Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1 = u, L = ℓ, π(K̂1) = k1]

]
+ 1,

(308)

where Ω1(u, ℓ, k1),Ω2(u, ℓ, k1) are the number of Ui < u within the range L = ℓ that occurs before818

and after the selected index k1 respectively. Specifically:819

Ω1(u, ℓ, k1) = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ 1 ≤ i < (ℓ− 1)⌊∆−1⌋+ k1}| (309)

Ω2(u, ℓ, k1) = |{Ui < u, (ℓ− 1)⌊∆−1⌋+ k1 + 1 ≤ i ≤ ℓ⌊∆−1⌋}|, (310)

which also naturally gives Ω(u, ℓ) = Ω1(u, ℓ, k1) + Ω2(u, ℓ, k1).820

Proof Step 2: Consider Ω2(u, ℓ, k1), since each proposal (Yi,1:N , Ui) is i.i.d distributed and the fact
that k1 is the index of the first accepted batch, for every i > k1, we have:

Pr(Ui < u | Ȳ1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1) = Pr(Ui < u)

This gives us:821

E[Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1] (311)

= (⌊∆−1⌋ − k1) Pr(U < u) (312)

= (⌊∆−1⌋ − k1)u (313)

≤ (⌊∆−1⌋ − k1)u

Pr(Batch is rejected)
(314)

≤ (⌊∆−1⌋ − k1)u

1−∆
(315)

Proof Step 3: For Ω1(u, ℓ, k̂1), we do not have such independent property since for every batch822

with index i < k1, we know that they are rejected batches, and hence for i < k1:823

Pr(Ui < u | YK1,1:N = y1:N ,K2 = k, UK1
= u, L = ℓ, π(K̂1) = k1) (316)

= Pr(Ui < u|Yi,1:N is rejected) (317)

=
Pr(Ui < u, Yi,1:N is rejected)

Pr(Yi,1:N is rejected)
(318)

≤ Pr(Ui < u)

Pr(Yi,1:N is rejected)
(319)

=
u

1−∆
, (320)

which gives us:824

E[Ω2(u, ℓ, k1) | YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1] ≤

(k1 − 1)u

1−∆
(321)
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To prove Equation (317), note that the following events are equivalent:825

{YK1,1:N = y1:N ,K2 = 1, UK1
= u, L = ℓ, π(K̂1) = k1} (322)

= {Yk1,1:N = y1:N ,K2 = 1, Uk = u,B1,..,k−1 are rejected} (323)

≜ Λ(u, y, k1) (324)

Here, we note that Yk1
, Uk1

denote the value at batch index k within W , which is different from826

YK1 , UK1 , the value selected by the rejection sampler. Hence:827

Pr(Ui < u|Λ(u, y, k1)) (325)

=
Pr(Ui < u,B1...k1−1 are rejected|Yk,1:N = y1:N , Uk = u,K2 = 1)

Pr(B1...k1−1 are rejected|Yk,1:N = y1:N , Uk = u,K2 = 1)
(326)

=
Pr(Ui < u, B1...k1−1 are rejected)

Pr(B1...k1−1 are rejected)
(Since (Yi, Ui) are i.i.d) (327)

= Pr(Ui < u|Bi is rejected), (328)

Proof Step 4: From the above result from Step 2 and 3, we have Ω(u, ℓ) = Ω1(u, ℓ, k) +828

Ω2(u, ℓ, k) ≤ (⌊∆−1⌋−1)u
1−∆ and as a result:829

E[log K̂1|YK1,1:N = y1:N ,K2 = 1, UK1
= u] ≤ (⌊∆−1⌋ − 1)u

1−∆
+ 1 (329)

≤ (∆−1 − 1)u

1−∆
+ 1 (Since⌊∆−1⌋ ≤ ∆−1)

(330)

= ∆−1u+ 1 (331)

which completes the proof.830
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J ERS Matching Lemmas831

J.1 Preliminaries832

We begin by providing the following bounds on inverse moments of averages.833

Proposition J.1. Let Y1, Y2, ..., YN ∼ QY (.) and suppose the target distribution PY satifies:834

d2(QY ||PY ) ≜ EY∼QY (.)

[
QY (Y )

PY (Y )

]
< ∞, (332)

then we have:835

EY1:N∼QY (.)

 N∑N
i=1

PY (Yi)
QY (Yi)

 ≤ d2(QY ||PY ). (333)

Proof. Applying the Cauchy-Schwarz inequality, we have:836

N∑N
i=1

PY (Yi)
QY (Yi)

≤ 1

N

N∑
j=1

QY (Yi)

PY (Yi)
(334)

Taking the expectation of both sides yield the desired inequality.837

Remark J.2. In general, stronger results on the inverse moments of averages exist under weaker838

moment assumptions, specifically:839

EY∼QY

[(
QY (Y )

PY (Y )

)η]
is finite for some η < 0. The resulting bound has a similar form (some power terms involved) to that840

of Proposition J.1 but requires a mild threshold on N . For further details, see Proposition A.1 in [7].841

We show an application of Proposition J.1, which we will use repeatly:842

Corollary J.3. Let Y1, Y2, ..., YN ∼ QY (.) and suppose the target distributions PA
Y , PB

Y satisfy:843

d2(QY ||PA
Y ) ≜ EY∼QY (.)

[
QY (Y )

PA
Y (Y )

]
< ∞, and

PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)
≤ ω for all y. (335)

Then, for any N ≥ 1,844

EY1:N∼QY (.)

∑N
j=1

PB
Y (Yj)

QY (Yj)∑N
i=1

PA
Y (Yi)

QY (Yi)

 ≤ IN (ω, 1) · d2(QY ||PY ), (336)

where we define IN (ω, i) ≜ (21N>i + ω1N=i).845

Proof. For N = 1, applying the conditions for PA
Y and PB

Y gives us an upper-bound of ωd2(QY ||PA
Y ).846

For N > 1, we have:847

EY1:N∼QY (.)

∑N
j=1

PB
Y (Yi)

QY (Yi)∑N
i=1

PA
Y (Yi)

QY (Yi)

 = NEY1:N∼QY (.)

 PB
Y (Y1)

QY (Y1)∑N
i=1

PA
Y (Yi)

QY (Yi)

 (Due to symmetry) (337)

≤ NEY1:N∼QY (.)

 PB
Y (Y1)

QY (Y1)∑N
i=2

PA
Y (Yi)

QY (Yi)

 (since
PA
Y (Yi)

QY (Yi)
≥ 0) (338)

=
N

N − 1
EY1:N∼QY (.)

 N − 1∑N
i=2

PA
Y (Yi)

QY (Yi)

 (339)

≤ 2d2(QY ||PA
Y ) (Proposition J.1 and N > 1), (340)

which completes the proof.848
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J.2 Distributed Matching Without Batch Communication849

Before the proof, we outline the details of each case in Section 2, covering scenarios without and850

with communication between the encoder and decoder.851

Without-Communication. In this scenario, let PA
Y (.) and PB

Y (.) be the target distributions at the852

encoder and decoder respectively, where we use the same shared randomness W as in Section D.1853

where we use the proposal distribution QY (.). Furthermore, we assume that:854

max
y

(
PA
Y (y)

QY (y)

)
= ωA, max

y

(
PB
Y (y)

QY (y)

)
= ωB , max

y

(
PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)

)
≤ ω, (341)

Using the ERS procedure, the encoder and decoder select the indices KA and KB respectively.855

KA = ERS(W ;PA
Y , QY ), KB = ERS(W ;PB

Y , QY ), (342)

The ERS(·) function follows Algorithm 1, without requiring any specific scaling factor. During the856

selection process, the calculation of Z̄ in Step 3 of this algorithm, which determines the acceptance857

probability, uses the ratio upper bounds ωA and ωB for parties A and B, respectively. Proposition J.4858

establishes the bound on the probability that both parties produce the same output, conditioned on859

YKA
= y.860

Proposition J.4. Let KA,KB and PA
Y , PB

Y defined as above and N ≥ 2, we have:861

Pr(YKA
= YKB

|YKA
= y) ≥

(
1 + µ1(N) +

PA
Y (y)

PB
Y (y)

(1 + µ2(N))

)−1

, (343)

where µ1(N) and µ2(N) are defined as in Appendix J.3 and we note that µ1(N), µ2(N) −→ 0 as862

N −→ ∞ under mild assumptions on the distributions PA
Y , PB

Y and QY .863

Proof. See Appendix J.4.864

With Communication. Following the setup described in Section D.3, we define the ratio upperbounds865

in the communication case as below:866

max
z

(
PY |Z(y|x)
QY (y)

)
= ωx, max

z

(
P̃Y |Z(y|z)
QY (y)

)
= ωz, max

y,z

(
PY |X(y|x)
QY (y)

,
P̃Y |Z(y|z)
QY (y)

)
≤ ω,

and similar to the case without communication, the ERS(.) selection process at the encoder and867

decoder also follows Algorithm 1, with the calculation of Z̄ in Step 3 uses the upperbound ωx and ωz868

respectively for the encoder and decoder. The bound for this case is shown below.869

Proposition J.5. For N ≥ 2 and X,Y, Z defined as above, we have:870

Pr(YKA
=YKB

|YKA
=y,X=x, Z=z) ≥

(
1+µcond

1 (N)+
PY |X(y|x)
P̃Y |Z(y|z)

(
1+µcond

2 (N)
))−1

, (344)

where µcond
1 (N) and µcond

2 (N) are defined as in Appendix J.5 and we note that871

µcond
1 (N), µcond

2 (N) −→ 0 as N −→ ∞ under mild assumptions on the distributions872

PY |X(.|x), P̃Y |Z(.|z) and QY (.).873

Proof. See Appendix J.6.874

J.3 Coefficients in Proposition J.4875

We first define the coefficient µ1(N) and µ2(N) in Proposition J.4.876

µ1(N) =
1

N

[
ω + ωIN (ω, 2)d2(QY ||PB

Y ) +
ω2

N − 1
d2(QY ||PB

Y )

]
(345)

µ2(N) =
1

N

[
ω + ωIN (ω, 2)d2(QY ||PA

Y ) +
ω2

N − 1
d2(QY ||PA

Y )

]
(346)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition J.3.877
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J.4 Proof of Proposition J.4878

We prove the matching probability for the case of ERS. We note that in this proof, we will use the879

global index for the proposals Y1, ...YN ∼ Q(.) instead of Y1,1, ...Y1,N unless otherwise stated. First,880

consider:881

Pr(YKA
= YKB

|YKA
= y1) (347)

≥ Pr(KA=KB |YKA
=y1) (348)

=

∞∑
k=1

Pr(KA = KB = k|YKA
= y1) (349)

≥
N∑

k=1

Pr(KA = KB = k|YKA
= y1) (350)

=N Pr(KA = KB = 1|YKA
= y1) (351)

=
NQY (y1)

PA
Y (y1)

Pr(K2,A = K2,B = 1,K1,A = K1,B = 1|Y1 = y1) (352)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A = K2,B = 1,K1,A = K1,B = 1, Y2:N = y2:N |Y1 = y1)dy2:N (353)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A = K2,B = 1,K1,A = K1,B = 1|Y1:N=y1:N )QY (y2:N )dy2:N (354)

=
NQY (y1)

PA
Y (y1)

∫
Pr(K2,A=K2,B=1|Y1:N=y1:N )

× Pr(K1,A=K1,B=1|K2,A=K2,B=1, Y1:N=y1:N )QY (y2:N )dy2:N (355)

=
NQY (y1)

PA
Y (y1)

EY2:N∼QY (.)[Pr(K2,A=K2,B=1|Y1:N=y1:N )

× Pr(K1,A=K1,B=1|K2,A=K2,B=1, Y1:N=y1:N )] (356)

where (352) is due to the following fact that:882

{KA = KB = 1, YKA
= y1} = {KA = KB = 1, Y1 = y1}, (357)

and thus:883

Pr(KA = KB = 1|YKA
= y1) =

Pr(KA = KB = 1|Y1 = y1)QY (y1)

P (YKA
= y1)

(358)

=
Pr(KA = KB = 1|Y1 = y1)QY (y1)

PA
Y (y1)

(359)

(360)

Define:884

Ẑ(PA
Y , y1:N ) =

N∑
i=1

PA
Y (yi)

QY (yi)
, Ẑ(PB

Y , y1:N ) =

N∑
i=1

PB
Y (yi)

QY (yi)
(361)

Now, we note that:885

Pr(K2,A=K2,B=1|Y1:N=y1:N ) (362)
= Pr(K2,A=1|Y1:N=y1:N ) Pr(K2,B=1|Y1:N=y1:N ,K2,A = 1) (363)

=
PA
Y (y1)/QY (y1)∑N

i=1 P
A
Y (yi)/QY (yi)

Pr(K2,B=1|Y1:N=y1:N ,K2,A = 1) (364)

≥ PA
Y (y1)/QY (y1)

Ẑ(PA
Y , y1:N )

(
1 +

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y , y1:N )

Ẑ(PA
Y , y1:N )

)−1

, (365)
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where we denote Ẑ(PA
Y , y1:N ) =

∑N
i=1 P

A
Y (yi)/QY (yi) and the last inequality is due to Proposition886

1 in [30]. Also:887

Pr(K1,A(1)=K1,B(1)=1|K2,A=K2,B=1, Y1:N=y1:N ) (366)

≥ min

(
Ẑ(PA

Y , y1:N )

Ẑ(PA
Y , y2:N ) + ω

,
Ẑ(PB

Y , y1:N )

Ẑ(PB
Y , y2:N ) + ω

)
( Since ω ≥ max

y

(
PA
Y (y)

QY (y)
,
PB
Y (y)

QY (y)

)
) (367)

≥
(

Ẑ(PA
Y , y1:N )

Ẑ(PA
Y , y2:N ) + ω

)(
Ẑ(PB

Y , y1:N )

Ẑ(PB
Y , y2:N ) + ω

)
, (368)

where we use the inequality min(a, b) ≥ ab for 0 ≤ a, b ≤ 1. Plug both in (356), we have:888

Pr(KA=KB |YKA
=y1) (369)

≥EY2:N∼QY (.)

 1(
1 +

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y ,y1:N )

Ẑ(PA
Y ,y1:N )

) ( N

Ẑ(PA
Y , y2:N )+ω

)(
Ẑ(PB

Y , y1:N )∑N
i=2 Ẑ(PB

Y , y2:N )+ω

)
=EY2:N∼QY (.)

 1(
1+

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y ,y1:N )

Ẑ(PA
Y ,y1:N )

)(
Ẑ(PA

Y ,y2:N )+ω

N

)(
Ẑ(PB

Y ,y2:N )+ω

Ẑ(PB
Y ,y1:N )

)
 (370)

≥
(
EY2:N∼QY (.)

[(
1+

PA
Y (y1)

PB
Y (y1)

· Ẑ(PB
Y , y1:N )

Ẑ(PA
Y , y1:N )

)(
Ẑ(PA

Y , y2:N )+ω

N

)(
Ẑ(PB

Y , y2:N )+ω

Ẑ(PB
Y , y1:N )

)])−1

(371)

=

(
EY2:N∼QY (.)

[
ζ1 +

PA
Y (y1)

PB
Y (y1)

ζ2

])−1

, (372)

where we use Jensen’s inequality for the convex function 1/x in line (371) and set:889

ζ1 =

(
Ẑ(PA

Y , y2:N )+ω

N

)(
Ẑ(PB

Y , y2:N )+ω

Ẑ(PB
Y , y1:N )

)
(373)

=
Ẑ(PA

Y , y2:N ) · Ẑ(PB
Y , y2:N )

NẐ(PB
Y , y1:N )

+
ω

N
· Ẑ(PA

Y , y2:N )

Ẑ(PB
Y , y1:N )

+
ω

N
· Ẑ(PB

Y , y2:N )

Ẑ(PB
Y , y1:N )

+
ω2

N · Ẑ(PB
Y , y1:N )

≤ 1

N
Ẑ(PA

Y , y2:N ) +
ω

N
· Ẑ(PA

Y , y2:N )

Ẑ(PB
Y , y2:N )

+
ω

N
+

ω2

NẐ(PB
Y , y2:N )

, (374)

with the last inequality due to
∑N

i=1 zi ≥
∑N

i=2 zi for any positive z. We then have:890

Ey2:N∼QY (.)[ζ1] (375)

≤ Ey2:N∼QY (.)

[
Ẑ(PA

Y , y2:N )

N
+

ω

N
· Ẑ(PA

Y , y2:N )

Ẑ(PB
Y , y2:N )

+
ω

N
+

ω2

NẐ(PB
Y , y2:N )

]
(376)

=
N − 1

N
+

ω

N
+

ω

N
Ey2:N∼QY (.)

[
Ẑ(PA

Y , y2:N )

Ẑ(PB
Y , y2:N )

]
+

ω2

N
Ey2:N∼QY (.)

[
1

Ẑ(PB
Y , y2:N )

]
(377)

≤ 1 +
1

N

(
ω + ωEy2:N∼QY (.)

[
Ẑ(PA

Y , y2:N )

Ẑ(PB
Y , y2:N )

]
+ ω2Ey2:N∼QY (.)

[
1

Ẑ(PB
Y , y2:N )

])
(378)

≤ 1 +
1

N

[
ω + ωIN (ω, 2)d2(QY ||PB

Y ) +
ω2

N − 1
d2(QY ||PB

Y )

]
(379)

= 1 + µ1(N), (380)

where the last inequality is due to Proposition J.1 and Corollary J.3.. For the other term, we have:891
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ζ2 =

(
Ẑ(PB

Y , y1:N )

Ẑ(PA
Y , y1:N )

)(
Ẑ(PA

Y , y2:N )+ω

N

)(
Ẑ(PB

Y , y2:N )+ω

Ẑ(PB
Y , y1:N )

)
(381)

=
1

N

(
Ẑ(PA

Y , y2:N )

Ẑ(PA
Y , y1:N )

+
ω

Ẑ(PA
Y , y1:N )

)(
Ẑ(PB

Y , y2:N ) + ω
)

(382)

≤ 1

N

(
1 +

ω

Ẑ(PA
Y , y2:N )

)(
Ẑ(PB

Y , y2:N ) + ω
)

(383)

=
Ẑ(PB

Y , y2:N )

N
+

1

N

(
ω +

ωẐ(PB
Y , y2:N )

Ẑ(PA
Y , y2:N )

+
ω2

Ẑ(PA
Y , y2:N )

)
. (384)

where we again repeatly use the inequality
∑N

i=1 zi ≥
∑N

i=2 zi for any positive z. This gives us:892

Ey2:N∼QY (.)[ζ2] (385)

≤ 1

N

(
ω + ωEy2:N∼QY ()

[
Ẑ(PB

Y , y2:N )

Ẑ(PA
Y , y2:N )

]
+ ω2Ey2:N∼QY ()

[
1

Ẑ(PA
Y , y2:N )

])
(386)

≤ 1

N

[
ω + ωIN (ω, 2)d2(QY ||PA

Y ) +
ω2

N − 1
d2(QY ||PA

Y )

]
(387)

= µ2(N), (388)

where the last inequality is due to Proposition J.1 and Corollary J.3. This completes the proof.893

J.5 Coefficients in Proposition J.5894

We define the coefficient µcond
1 (N) and µcond

2 (N) in Proposition J.5.895

µcond
1 (N) =

1

N

[
ω + ωIN (ω, 2)d2(QY ||P̃Y |Z(.|z)) +

ω2

N − 1
d2(QY ||P̃Y |Z(.|z))

]
(389)

µcond
2 (N) =

1

N

[
ω + ωIN (ω, 2)d2(QY ||PY |X(.|x)) + ω2

N − 1
d2(QY ||PY |X(.|x))

]
(390)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition J.3.896

J.6 Proof of Proposition J.5897

We will use the global index for the proposals Y1, ...YN ∼ Q(.) instead of Y1,1, ...Y1,N unless898

otherwise stated. For the communication version, we have:899

Pr(YKA
= YKB

|YKA
= y1, X = x, Z = z) (391)

≥ Pr(KA=KB |YKA
=y1, X = x, Z = z) (392)

=

∞∑
k=1

Pr(KA = KB = k|YKA
= y1, X = x, Z = z) (393)

≥
N∑

k=1

Pr(KA = KB = k|YKA
= y1, X = x, Z = z) (394)

=N Pr(KA = KB = 1|YKA
= y1, X = x, Z = z) (395)

= N Pr(K1,A = K1,B = 1,K2,A = K2B = 1|YKA
= y1, X = x, Z = z) (396)

Define:900

Ẑ(PY |X=x, y1:N ) =

N∑
i=1

PY |X(yi|x)
QY (yi)

, Ẑ(P̃Y |Z=z, y1:N ) =

N∑
i=1

P̃Y |Z(yi|z)
QY (yi)

(397)
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Now consider the following terms:901

E1 = Pr(K1,A = 1,K2,A = 1|YKA
= y1, Y2:N = y2:N , X = x, Z = z)

× P (Y2:N = y2:N |YKA
= y1, X = x, Z = z) (398)

=
1

PX,Y,Z(x, y1, z)
QY (y1:N )PX(x) Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1)PZ(z|Y1:N = y1:N , X = x,KA = 1) (399)

=
1

PX,Y,Z(x, y1, z)
QY (y1:N )PX(x) Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1)PZ|X,Y (z|X = x, Y = y1) (400)

=
QY (y1:N )

PY |X(y1|x)
Pr(K2,A = 1|Y1:N = y1:N , X = x)

× Pr(K1,A = 1|Y1:N = y1:N , X = x,K2,A = 1) (401)

=
QY (y1:N )

PY |X(y1|x)
PY |X(y1|x)/QY (y1)

Ẑ(PY |X=x, y2:N ) + ωx

(402)

=
QY (y2:N )

Ẑ(PY |X=x, y2:N ) + ωx

(403)

and:902

E2 (404)
= Pr(K2,B = 1|KA = 1, Y1:N = y1:N , X = x, Z = z) (405)
= 1− Pr(K2,B ̸= 1|KA = 1, Y1:N = y1:N , X = x, Z = z) (406)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

∣∣∣∣∣KA = 1, Y1:N = y1:N , X = x, Z = z


(407)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

∣∣∣∣∣KA = 1, Y1:N = y1:N , X = x

 (408)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

∣∣∣∣∣K2,A = 1, Y1:N = y1:N , X = x

 (409)

≥
(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N )

Ẑ(PY |X=x, y1:N )

)−1

, (410)

where (408) is due to the Markov condtion Z − (X,Y )−W , (409) is due to the fact that the uniform903

random variable U is independent of SN
1 and (410) is due to the conditional importance matching904

lemma [30]. We note the following events are equivalent:905

{KA = 1, Y1:N = y1:N , X = x, Z = z,K2,B = 1} (411)

≜

{
U ≤ Ẑ(PY |X=x, y1:N )

Ẑ(PY |X=x, y2:N ) + ωx

, Y1:N = y1:N , X = x, YKA
= y1, Z = z

}
(412)

≜ E ∩ {Z = z} (413)
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where E =
{
U ≤ Ẑ(PY |X=x,y1:N )

Ẑ(PY |X=x,y2:N )+ωx
, Y1:N = y1:N , X = x, YKA

= y1

}
. Then, we have:906

E3 = Pr(K1,B = 1|KA = 1, Y1:N = y1:N , X = x, Z = z,K2,B = 1) (414)

= Pr

(
U ≤ Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ωz

∣∣∣∣∣E , Z = z

)
(415)

= Pr

(
U ≤ Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ωz

∣∣∣∣∣E
)

(416)

= min

(
1,

Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ωz

· Ẑ(PY |X=x, y2:N ) + ωx

Ẑ(PY |X=x, y1:N )

)
, (417)

where the second to last equality is due to the Markov condition Z − (X,Y )−W .907

Combining all three terms E1, E2, E3 and continue from step (396), we have:908

Pr(YKA
= YKB

|YKA
= y1, X = x, Z = z) (418)

≥ N

∫
QY (y2:N )

Ẑ(PY |X=x, y2:N ) + ωx

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N )

Ẑ(PY |X=x, y1:N )

)−1

×min

(
1,

Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ωz

· Ẑ(PY |X=x, y2:N ) + ωx

Ẑ(PY |X=x, y1:N )

)
dy2:N (419)

= N

∫
QY (y2:N )

Ẑ(PY |X=x, y1:N )

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N )

Ẑ(PY |X=x, y1:N )

)−1

×min

(
Ẑ(PY |X=x, y1:N )

Ẑ(PY |X=x, y2:N ) + ωx

,
Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ωz

)
dy2:N (420)

≥
∫

NQY (y2:N )

Ẑ(PY |X=x, y1:N )

(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N )

Ẑ(PY |X=x, y1:N )

)−1

×
(

Ẑ(PY |X=x, y1:N )

Ẑ(PY |X=x, y2:N ) + ω
· Ẑ(P̃Y |Z=z, Y1:N )

Ẑ(P̃Y |Z=z, Y2:N ) + ω

)
dy2:N (421)

with the last inequality follows the fact that ω > max(ωx, ωz). The rest of the proof follows similar909

steps as in the proof of Proposition J.4. This completes the proof.910
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K ERS Matching with Batch Communication911

Setup. We first describe the setup in the case where the selected batch index is communicated from912

the encoder to the decoder. The main difference between this and the setup in Section D.3 is that the913

decoder (party B) will use the Gumbel-Max selection method instead of the ERS one, since it knows914

which batch the encoder index belongs to. Furthermore, we note this scheme requires a noiseless915

channel between the encoder and decoder, which is available in the distributed compression scenario.916

Similarly to Section 2.2, let (X,Y, Z) ∈ X × Y × Z with a joint distribution PX,Y,Z . We use the917

same common randomness W as in Section D.3, with the proposal distribution QY requiring that the918

bounding condition hold for the tuple (PY |X=x, QY ). The protocol is as follows:919

1. The encoder receives the input X = x ∼ PX and selects its value using ERS procedure:920

KA = ERS(W ;PY |X=x, QY ), (422)

and sends the batch index K1,A to the decoder. It then sets YA = YKA
921

2. Given X = x, YA = y, we generate Z = z ∼ PZ|X,Y (.|x, y) and note that the Markov922

chain Z − (X,YA)−W holds.923

3. The decoder receives the batch index K1,A and Z = z will use the Gumbel Max process to924

queries a sample from the common randomness W :925

K1,B = K1,A K2,B = Gumbel(BK1,A
; P̃Y |Z=z, QY ) KB = (K1,B − 1)N +K2,B ,

and output YB = YKB
. The procedure Gumbel(.) corresponds to Step 1,2 in Algoirhm 1.926

Given the above setup, we have the following bound on the matching event {YA = YB}:927

Proposition K.1. Let KA,KB , PY |X(.|X = x) and P̃Y |Z(.|z) defined above and set PA
Y =928

PY |X=x, P
B
Y = P̃Y |Z=z . For N ≥ 2, we have:929

Pr(YA = YB |YA = y,X = x, Z = z) ≥
(
1+µ′

1(N)+
PA
Y (y)

PB
Y (y)

(1 + µ′
2(N))

)−1

, (423)

where µ′
1(N) and µ′

2(N) are defined as in Appendix K.1 and we note that µ′
1(N), µ′

2(N) −→ 0 as930

N −→ ∞ with rate N−1under mild assumptions on the distributions PY |X(y|x) and QY (.).931

Proof. See Appendix K.2.932

K.1 Coefficients in Proposition K.1933

We define the coefficient µ′
1(N) and µ′

2(N) in Proposition K.1.934

µ′
1(N) =

3ω

N
(424)

µ′
2(N) =

ω

N
IN (ω, 2)d2(QY ||PY |X=x) (425)

where we define IN (ω, i) ≜ (21N>i + ω1N=i) as in Proposition J.3 and ω = maxy
PY |X(y|x)

QY (y) .935

K.2 Proof of Proposition K.1936

We now formally prove the bound Proposition K.1. First, we define:937

Ẑ(PY |X=x, y1:N ) =

N∑
i=1

PY |X(yi|x)
QY (yi)

, Ẑ(P̃Y |Z=z, y1:N ) =

N∑
i=1

P̃Y |Z(yi|z)
QY (yi)

(426)
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Recall that K2,A is the local index within the selected batch by party A and YK1,A,1:N are the samples938

within the selected batch, we have:939

Pr(YA = YB |YA = y1, X = x, Z = z) (427)
= Pr(YKA

= YKB
|YKA

= y1, X = x, Z = z) (428)
≥ Pr(K2,A = K2,B |YKA

= y1, X = x, Z = z) (429)

=

N∑
i=1

Pr(K2,A = K2,B = i|YKA
= y1, X = x, Z = z) (430)

= N Pr(K2,A = K2,B = 1|YKA
= y1, X = x, Z = z) (Due to Symmetry) (431)

= N Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, X = x, Z = z)

nothinghere× Pr(K2,A = 1|YKA
= y1, X = x, Z = z) (432)

= Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, X = x, Z = z) (433)

=

∫ ∞

−∞
P (YK1,A,2:N = y2:N |YKA

= y1,K2,A = 1, X = x, Z = z)

× Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, YK1,A,2:N = y2:N , X = x, Z = z)dy2:N , (434)

where (433) is due to Pr(K2,A = 1|YKA
= y1, X = x, Z = z) = N−1. Let Y1:N ∼ Q are N i.i.d.940

proposal samples, then {YKA,1:N = y1:N} = {Y1:N = y1:N , A accepts Y1:N} and we have:941

Pr(K2,A = K2,B |YKA
= y1,K2,A = 1, YK1,A,2:N = y2:N , X = x, Z = z) (435)

= 1− Pr(K2,B ̸= 1|YK1,A,1:N = y1:N ,K2,A = 1, YKA
= y1, X = x, Z = z)

= 1− Pr(min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

|Y1:N = y1:N , A selects 1st index,

A accepts Y1:N , YKA
= y1, X = x, Z = z) (436)

= 1− Pr(min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

|Y1:N = y1:N , A selects 1st index,

A accepts Y1:N , YKA
= y1, X = x) (437)

= 1− Pr

min
j ̸=1

Sj

P̃Y |Z(yj |z)
Ẑ(P̃Y |Z=z,y1:N )

≤ S1

P̃Y |Z(y1|z)
Ẑ(P̃Y |Z=z,y1:N )

|Y1:N = y1:N , A selects 1st index, X = x


(438)

≥
(
1 +

PY |X(y1|x)
P̃Y |Z(y1|z)

Ẑ(P̃Y |Z=z, y1:N )

Ẑ(PY |X=x, y1:N )

)
, (439)

where (437) is due to Markov property Z − (X,Y )−W ,i.e. Z has no effects on the statistics of the942

exponential random variables. Line (438) is due to the fact that conditioning on A selected the 1st943

index, whether A selects Y1:N or not depends only on U . The final inequality is due to conditional944

matching lemma from [30].945

Recall that ω = maxy
PY |X(y|x)

QY (y) , we have:946

P (YK1,A,2:N = y2:N |YKA
= y1,K2,A = 1, X = x, Z = z) (440)

= P (YK1,A,2:N = y2:N |YKA
= y1,K2,A = 1, X = x) (441)

=
P̄Y,K2,A|X(y1:N , 1|x)
PY |X(y1|x)N−1

(442)

=
NQY (y2:N )

∆PY |X=x
(Ẑ(PY |X=x, y2:N ) + ω)

(443)

where P̄Y,K2,A|X(y1:N , 1|x) is the ERS target distribution (155) where we use PY |X(.|x) as the947

target distribution and ∆PY |X=x
< 1 is the normalized constant. We now shorthand PA

Y ≜ PY |X=x ,948
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PB
Y ≜ P̃ (Y |Z = z) and ∆PA

Y
≜ ∆PY |X=x

, and combining the two expressions, we have:949

Pr(YA = YB |YA = y1, X = x, Z = z) (444)

≥ EY2:N∼QY

 N

(Ẑ(PA
Y , y2:N ) + ω)∆PA

Y

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y ,y1:N )

Ẑ(PA
Y ,y1:N )

)
 (445)

≥ EY2:N∼QY

 N

(Ẑ(PA
Y , y2:N ) + ω)

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y ,y1:N )

Ẑ(PA
Y ,y1:N )

)
 (Since ∆PA

Y
≤ 1) (446)

≥
(
EY2:N∼QY

[
(Ẑ(PA

Y , y2:N ) + ω)

N

(
1 +

PA
Y (y1)

PB
Y (y1)

Ẑ(PB
Y , y1:N )

Ẑ(PA
Y , y1:N )

)])−1

( By Jensen’s Inequality)

(447)

Since:950

EY2:N∼QY

[
Ẑ(PA

Y , y2:N ) + ω

N

]
≤ N − 1

N
+

ω

N
(448)

and:951

EY2:N∼QY

[(
Ẑ(PA

Y , y2:N ) + ω

N

)
Ẑ(PB

Y , y1:N )

Ẑ(PA
Y , y1:N )

]
(449)

= EY2:N∼QY

[
Ẑ(PA

Y , y2:N )

N

Ẑ(PB
Y , y1:N )

Ẑ(PA
Y , y1:N )

+
ω

N

Ẑ(PB
Y , y1:N )

Ẑ(PA
Y , y1:N )

]
(450)

≤ N − 1

N
+

PB
Y (y1)/QY (y1)

N
+

ω

N
EY2:N∼QY

[
Ẑ(PB

Y , y1:N )

Ẑ(PA
Y , y1:N )

]
(451)

where we have:952

EY2:N∼QY

[
Ẑ(PB

Y , y1:N )

Ẑ(PA
Y , y1:N )

]
= EY2:N∼QY

[
PB
Y (y1)/QY (y1)

Ẑ(PA
Y , y1:N )

+
Ẑ(PB

Y , y2:N )

Ẑ(PA
Y , y1:N )

]
(452)

≤ EY2:N∼QY

[
PB
Y (y1)/QY (y1)

PA
Y (y1)/QY (y1)

]
+ EY2:N∼QY

[
Ẑ(PB

Y , y2:N )

Ẑ(PA
Y , y2:N )

]
(453)

≤ PB
Y (y1)

PA
Y (y1)

+ IN (ω, 2)d2(QY ||PA
Y ) (454)

Then, combining (454) into (451), then combine with (448) into the term (447), we have:953

Pr(YA = YB |YA = y1, X = x, Z = z) (455)

≥
(
1+

ω

N
+
PA
Y (y1)

PB
Y (y1)

(
N−1

N
+
PB
Y (y1)/QY (y1)

N
+

ω

N

(
PB
Y (y1)

PA
Y (y1)

+IN (ω, 2)d2(QY ||PA
Y )

)))−1

(456)

=

(
1+

ω

N
+
PA
Y (y1)

PB
Y (y1)

(
N−1

N
+
PB
Y (y1)/QY (y1)

N
+

ω

N

(
PB
Y (y1)

PA
Y (y1)

+IN (ω, 2)d2(QY ||PA
Y )

)))−1

(457)

≥
(
1 +

3ω

N
+

PA
Y (y1)

PB
Y (y1)

(
1 +

ω

N
IN (ω, 2)d2(QY ||PA

Y )
))−1

(458)

=

(
1 + µ′

1(N) +
PA
Y (y1)

PB
Y (y1)

(1 + µ′
2(N))

)−1

, (459)

where we repeatly use the fact that PA
Y (y)/QY (y) ≤ ω. This completes the proof.954
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L Proof of Proposition D.6955

Main Proof. We remind the protocol in Algorithm 2. The encoder and decoder’s target distribution956

for this case are:957

PA
Y (y, v) = PY |X(y|x)PV (v) PB

Y (y, v) = PY |X′(y|x)IV (v) (460)

For a sufficient large batch size N and apply Proposition K.1, we have:958

Pr(Y ′
KA

̸= Y ′
KB

|(Y ′
KA

, VKA
) = (y′, v), X = x, Z = (x′, v)) (461)

= Pr((Y ′
KA

, VKA
) ̸= (Y ′

KB
, VKB

)|(Y ′
KA

, VKA
) = (y′, v), X = x, Z = (x′, v)) (462)

≤ 1−
(
1 + ϵ+

PY ′|X(y′|x)PV (v)

PY ′|X′(y′|x′)Iv(v)
(1 + ϵ)

)−1

(463)

≤ 1−
(
1 + ϵ+ V−1(1 + ϵ)

PY ′|X(y′|x)
PY ′|X′(y′|x′)

)−1

(464)

= 1−
(
1 + ϵ+ V−1(1 + ϵ)

PY ′|X(y′|x)
P ′
Y (y

′)

P ′
Y (y

′)

PY ′|X′(y′|x′)

)−1

(465)

= 1−
(
1 + ϵ+ V−1(1 + ϵ)2iY ′;X(y′;x)−iY ′;X′ (y′;x′)

)−1

(466)

Finally, taking the expectation of both sides yields the final result.959

Coding Cost. In terms of the bound on r, recall the following bound on batch acceptance probability:960

∆ = EY1:N∼PY (.)

[
N

Z̄(1, Y ′
1:N )

]
≥ N

EY ′
1:N∼PY (.)[Z̄(1)]

=
N

N − 1 + ω
(467)

Here for N = ω, we have ∆ > 1
2 and thus the chunk size L = ⌊∆−1⌋ in the ERS coding scheme is 1961

and thus do not need to send K̂1. Using the fact that E[logL] ≤ 1, we have r ≤ H[L] + 1 = 4bits962

by entropy coding with Zipf distribution [23].963

Compressing Multiple Samples. When compressing n samples jointly, let the rate per sample
(without the overhead for batch communication) be r′ where log(V ) = nr′ consider the following
approximation:

n∑
i=1

i(y′i;xi)− i(y′i;x
′
i) ≈ nI(X;Y ′|X ′),

Then we have:964

2
∑n

i=1[i(y
′
i;xi)−i(y′

i;x
′
i)]−log(V ) ≈ 2nI(X;Y ′|X′)−log(V ) (468)

= 2n(I(X;Y ′|X′)−r′), (469)

and thus, if r′ > I(X;Y ′|X ′), by increasing n we reduces the mismatching probability while965

maintaining the compression rate per sample. We visualize this in the experimental results with966

N = 219 in Figure 10.967
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Figure 10: Matching Probabilities with N = 219 and jointly compressing 1, 2, 3 i.i.d. samples
respectively. Target distortion σ2

Y ′|X = 0.008 for every samples.

M Feedback Scheme968

In distributed compression, decoding errors can lead to significant average reconstruction distortion.969

To address this, feedback communication from the decoder can be employed to correct errors and970

enhance rate-distortion performance, as proposed in [30]. The feedback mechanism is identical for971

both ERS and IML, except that ERS additionally transmits the batch index to the decoder.972

We recall that K1,A and K2,A denote the batch index and local index, respectively, of samples973

selected by party A through the ERS sample selection. On the other hand, party B uses Gumbel-Max974

selection process to output its selected local index K2,B within the K1,A batch, then the ERS process975

can be described as follows:976

1. Index Selection. After transmitting the batch index K1,A, the encoder sends the log2(V)977

least significant bits (LSB) of the selected index K2,A to the decoder.978

2. Decoding and Feedback. The decoder outputs K2,B and sends the log2(N/V) most signifi-979

cant bits (MSB) of KB to the encoder.980

3. Re-transmission. Based on the received MSB feedback, if the index is correct, the encoder981

responds with an acknowledgment bit, say 1. Otherwise, it sends 0 along with the MSB of982

its selection to the decoder.983

We note that, in this context, using LSB instead of random bits in step 1 does not yield a noticeable984

difference in performance. For the rate-distortion analysis, the rate is computed based on the985

total length of messages transmitted during index selection and re-transmission, including any986

acknowledgment messages. However, the rate of the feedback message is excluded from this987

calculation, which can be justified in scenarios with asymmetric communication costs in the forward988

and reverse directions, such as in wireless channels.989

N Neural Contrastive Estimator990

In our ERS scheme, the selection rule requires estimating the following ratio at the decoder side:991

K̃B = argmin
1≤k≤N

Sik

PY |X′ (y|x′)IV (v)

QY (Yik)V−1

, where i = K1,A, (470)

where the normalization term can be ignored as it is the same for every sample in the batch K1,A.992

Our goal is to learn the ratio PY |X′(Yik|x′)/QY (Yik) from data. In particular, we can access the data993

samples from the joint distribution PX,Y,X′ .994

To this end, we construct a binary neural classifier h′(y, x′) = 1
1+exp[−h(y,x′)] which classifies if the995

input (y, x′) is distributed according to the marginal distribution QY (.)×PX′(.) (positive samples) or996

the joint PY,X′ (negative samples). Once converged, we can use the logits value h(y, x′) to compute997

the log of the ratio of interest [17]. In particular:998

h(y, x′) ≈ − log
PY |X′(Yik|x′)

QY (y)
(471)
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This allows us to estimate the ratio without needing to obtain the exact ratio’s value. Finally, to999

generate the positive samples, we simply generate Y ∼ QY (.) and get a random X ′ from the training1000

data. For negative samples, we generate the data according to the Markov sequence X ′ −X − Y .1001

The ratio between the two labels should be the same.1002

O Distributed Compression with MNIST1003

O.0.1 Training Details1004

β-VAE Architecture. We adopt a setup similar to [30]. Our neural encoder-decoder model comprises1005

an encoder network y = enc(x), a projection network proj(x′), and a decoder network x̂ =1006

dec(y,proj(x′)), as detailed in Table 1. The encoder network converts an image into two vectors1007

of size 3 (total 6D output), with the first vector representing the output mean µ(x) and the second1008

representing the output variance σ2(x). Here, we define pY |X(.|x) = N (µ(x), σ2(x)) and use the1009

prior distribution pY (.) = N (0, 1). At the decoder side (party B), the projection network first1010

maps the side information image X ′ to a 128-dimensional vector, which is then combined with a1011

3-dimensional vector from the encoder. This concatenated vector is input to the decoder network,1012

producing a reconstructed output of size 28× 28.1013

Table 1: Architecture of the encoder, projection network, and decoder for distributed MNIST image
compression. Convolutional and transposed convolutional layers are denoted as “conv” and “upconv,”
respectively, with specifications for the number of filters, kernel size, stride, and padding. For
“upconv,” an additional output padding parameter is included.

(a)Encoder
Input 28× 28× 1

conv (128:3:1:1), ReLU
conv (128:3:2:1), ReLU
conv (128:3:2:1), ReLU

Flatten
Linear (6272, 512), ReLU

Linear (512, 6)

(b)Projection Network
Input 14× 14× 1

conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU

conv (128:3:2:1), ReLU
Flatten

Linear (2048, 512), ReLU
Linear (512, 128)

(c)Decoder Network
Input-(3+128)

Linear-(132, 512), ReLU
upconv (64:3:2:1:1), ReLU
upconv (32:3:2:1:1), ReLU

upconv (1:3:1:1), Tanh

Loss Function We train our β-VAE network by optimizing the following rate-distortion loss function:1014

L = β(X − X̂)2 + EX [DKL(pY |X(.|v)||pY (.))] (472)

where we vary β for different rate-distortion tradeoff.Each model is trained for 30 epochs on1015

an NVIDIA RTX A4500, requiring approximately 30 minutes per model. We use random hor-1016

izontal flipping and random rotation within the range ±15o. We use the following values of1017

β ∈ {0.225, 0.28, 0.31, 0.4} that corresponds to the target distortions {6.6, 6.3, 6.1, 5.8} × 10−2 in1018

Figure 3.1019

Neural Contrastive Estimator Network. The neural estimator network comprises two subnetworks.1020

The first subnetwork projects the side information into a 128-dimensional embedding. The second1021

subnetwork combines this 128D embedding with a 4D embedding, derived from either pY |X or the1022

prior pY , and outputs the probability that X ′, Y originate from the joint or marginal distributions.1023

The model is trained for 100 epochs.1024

Table 2: Neural Estimator Networks for Distributed Image Compression.
(a)Projection Network

Input 14× 14× 1
conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU

conv (128:3:2:1), ReLU
Flatten

Linear (2048, 512), ReLU
Linear (512, 128)

(b) Combine and Classify
Input 128 + 3

Linear (132, 128), l-ReLU
Linear (128,128), l-ReLU
Linear (128,128), l-ReLU

Linear (128, 1)
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logV N N∗ Target dB
9.6 0.6e6 1.0e6 −21.5dB
10.6 0.7e6 1.1e6 −22dB
11.6 0.8e6 1.5e6 −22.5dB
12.6 1.04 1.6e6 −23dB

Table 3: Details for ERS Gaussian Experiment in Figure 2 (right)

P Wyner-Ziv Gaussian Experiment1025

In Figure 2 (left), the batch size of ERS are N ∈ {219, 220} respectively for the average number of1026

proposals N∗ ∈ {1.1, 1.6} × 106. For Figure 2 (right), details for ERS are shown in Table 3.1027
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