Understanding the Generalization of Stochastic
Gradient Adam in Learning Neural Networks

Xuan Tang! Han Zhang' Yuan Cao' Difan Zou'-?
1School of Computing and Data Science, The University of Hong Kong
2Institute of Data Science, The University of Hong Kong
{xuantang8,hzhang23}@connect.hku.hk, {yuancao,dzou}@hku.hk

Abstract

Adam is a popular and widely used adaptive gradient method in deep learning,
which has also received tremendous focus in theoretical research. However, most
existing theoretical work primarily analyzes its full-batch version, which differs
fundamentally from the stochastic variant used in practice. Unlike SGD, stochastic
Adam does not converge to its full-batch counterpart even with infinitesimal learn-
ing rates. We present the first theoretical characterization of how batch size affects
Adam’s generalization, analyzing two-layer over-parameterized CNNs on image
data. Our results reveal that while both Adam and AdamW with proper weight
decay A converge to poor test error solutions, their mini-batch variants can achieve
near-zero test error. We further prove Adam has a strictly smaller effective weight
decay bound than AdamW, theoretically explaining why Adam requires more
sensitive A tuning. Extensive experiments validate our findings, demonstrating the
critical role of batch size and weight decay in Adam’s generalization performance.

1 Introduction

Adaptive gradient methods, such as Adam (Kingma and Ba} 2015) and its variant AdamW (Loshchilov
and Hutter, |2019), have emerged as widely adopted optimizers for training deep learning models
across diverse tasks (He et al., |2016; |[Ma and Hovy, [2016)). More recently, Adam and its variants
have also been used to train large language models (LLMs) like GPT (Brown et al.| 2020), LLaMA
(Touvron et al., [2023)), and Deepseek (Bi et al., [2024). In practice, Adam is known for its fast
convergence during training, yet its generalization performance varies significantly depending on
the task. Despite its empirical success, the theoretical understanding of Adam remains incomplete,
especially regarding its generalization performance.

Recent theoretical work has sought to analyze the task-dependent behavior of Adam and compare it
with other optimizers like gradient descent (GD). For instance, [Wilson et al.[|(2017) demonstrated
that adaptive methods like Adam exhibit poor generalization on linear models, while GD and
stochastic gradient descent (SGD) can achieve zero test error. Further, Zhou et al.[(2020) theoretically
characterized the generalization gap between SGD and Adam through local convergence analysis,
though their work did not account for neural network architectures or test error behavior. Other studies
have focused on the implicit bias of adaptive methods: |Wang et al.| (2022) analyzed momentum’s
role in generalization, proving that GD with momentum and its adaptive variants converge to the
¢ max-margin solution; [Xie and Li| (2024) showed that full-batch AdamW converges only to a
KKT point under an /., norm constraint; and Zhang et al.|(2024) established Adam’s convergence
to a maximum /,-margin classifier in linear logistic regression with separable data. In nonconvex
settings, [Zou et al.| (2023b) revealed that full-batch Adam and GD converge to distinct solutions
with differing generalization performance, which shows that even with weight decay, Adam fails to
achieve low test error in overparameterized CNNs. Following the nonconvex analysis of Adam vs.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

GD by |Zou et al.|(2023b), [L1 et al.|(2025) show that Sign Gradient Descent—a sign-only surrogate
for Adam (Balles and Hennig, 2018} Bernstein et al., [2018)—achieves fast convergence but poor
generalization when training two-layer Transformers.

While existing theoretical analyses have provided valuable insights into the behavior of full-batch
Adam, these results may not fully capture the characteristics of stochastic gradient Adam commonly
used in practice. Notably, although stochastic gradient descent (SGD) and full-batch GD exhibit
similar training dynamics in expectation (Bottou, 2012), stochastic gradient Adam demonstrates
fundamentally different behavior from its full-batch counterpart—a distinction that persists even with
vanishingly small learning rates. This gap raises important questions about how stochastic gradient
Adam, particularly with small batch sizes, affects model generalization, an aspect that remains largely
unexplored in current literature.

Motivated by this, in this paper, we investigate how the generalization of mini-batch Adam and
AdamW differs from that of large-batch Adam. We analyze the convergence and generalization of
Adam (and AdamW) with different batch sizes on two-layer over-parameterized convolutional neural
networks (CNNis) for an image data model. This analysis follows the settings outlined in the recent
study of full-batch Adam in|Zou et al.|(2023b). We also compare the sensitivity of the weight decay
parameters A for effective weight decay in Adam and AdamW.

The main contributions of this paper are summarized as follows.

* Theorem [4.1) and f.4] rigorously prove that in the large-batch regime, both Adam and AdamW
converge to solutions with poor test error in nonconvex settings, even with proper weight decay.
This extends prior results for full-batch Adam to AdamW, showing that adaptive methods inherently
overfit noise in low-stochasticity training. Real-world data experiments in Figure[T]demonstrate
that large-batch Adam and AdamW suffer drastic test error increases, while synthetic experiments
in Appendix [D|confirm this failure stems from noise-dominated solutions.

* For mini-batch training, theorem 4.2 and [4.5] prove that stochastic Adam and AdamW achieve near-
Zero test error in nonconvex settings with appropriate weight decay. The key mechanism is twofold:
(i) stochastic gradients implicitly regularize the optimization trajectory by slowing noise fitting
while preserving feature learning dynamics, preventing Adam from overfitting noise patches; (ii)
weight decay explicitly suppresses residual noise components. This synergy ensures convergence
to solutions dominated by true features. Real-world data experiments in Figure [I| demonstrate
that mini-batch Adam and AdamW significantly improve test performance, with synthetic-data
experiments in Appendix [D|further validating our theoretical insights. Moreover, under constant
b1, B2 hyperparameters, we prove stochastic Adam and AdamW can be rigorously approximated
by SignSGD (Bernstein et al.,[2018)) and SignSGDW (with decoupled decay) respectively. This
extends the known full-batch Adam—SignGD correspondence to stochastic regimes—a crucial
advancement given mini-batch noise fundamentally modifies approximation dynamics. Our analysis
in Appendix [C|reveals this approximation holds precisely when gradient magnitudes dominate

optimization noise (e.g., |g§tj)r[k]\ > O(n) where 7 is the learning rate).

* Corollary and derive distinct theoretical upper bounds for weight decay parameters in
nonconvex settings: Adam permits a strictly smaller maximum effective A than AdamW. This arises
because Adam’s adaptive gradient normalization amplifies the effective impact of weight decay,
causing excessive regularization to destabilize updates. In contrast, AdamW’s decoupled weight
decay mechanism avoids this issue. Experiments in Figure [2] validate that exceeding Adam’s upper
bound (e.g., A > 0.05) leads to catastrophic test error increases, while AdamW tolerates much
larger A values (e.g., A = 0.5) without significant performance degradation. This demonstrates that
the interplay between batch size and weight decay is critical: mini-batch training enables effective
regularization, but Adam’s narrow tolerance demands precise A calibration.

The rest of paper is organized as follows. Section [2]discusses the works that are most closely related
to this paper. Section [3|describes the problem settings. Section [presents the main results of this
paper. Section 5] provides the proof outline of stochastic gradient Adam. Section [6] concludes this
paper and discusses future research directions. Additional experiments and all experimental details
can be found in Appendix [D] All proofs are provided in the remaining appendices (Appendix [A}-[C).

Notation. Scalars are denoted by lowercase letters x, y, . . ., vectors by bold lowercase letters x, . . .,
and matrices by bold uppercase letters A, For any integer d > 1, denote the set [d] = {1,...,d}.

For z € R, define [z]y = max{x,0} and sgn(x) = z/|z| for x # 0, sgn(0) = 0. For x =
(z1,...,24)T € RY, define ||x|, = (30, |2:]?)/? (p > 1) and supp(x) = {i € [d] : x; # 0}. For
real sequences {a,, }, {by }, denote a,, = O(b,,) if there exist C, N > 0, s.t. |a,,| < C|by,|,Vn > N;
denote a,, = Q(b,,) if b, = O(ay,); an = O(by,) if both O(b,,) and ©(b,,) hold; denote a,, = o(by,) if
for any C' > 0, there exist N > 0, s.t. |a,| < Clby|,¥n > N; and denote a,, = w(b,) if b, = o(ay,).
We write O(-), (+), ©(+) to suppress logarithmic factors, a,, = poly(b,) if a,, = ©(b2) for some
D > 0, and a,, = polylog(b,,) if a,, = poly(logb,,).

2 Related Work

Adaptive Optimization Methods. There are a series of papers on adaptive gradient methods,
including AdaGrad (Duchi et al.,[2011), Adam (Kingma and Bal 2015)), AdamW (Loshchilov and
Hutter, [2019), and second-order information methods (Yao et al.l 2021} [Liu et al.l [2024). The
convergence of Adam and related methods has been analyzed in a line of papers under various
conditions (Chen et al.,|2019;|Guo et al.} 2021} Défossez et al., [2022). However, some work presented
the possible case where Adam fails to converge to an optimal solution even in simple one-dimensional
convex settings (Reddi et al.,2018). The generalization performance of Adam has been investigated
and compared with that of gradient descent in|[Wilson et al.| (2017)); |[Zhou et al.| (2020); |Zou et al.
(2023b). To better understand the performance of Adam, |Bernstein et al.| (2018} [2019); Kunstner
et al.| (2023)) analyzed its similarity with signGD. Similar works have also been done for AdamW
(Xie and L1, |2024)). [Loshchilov and Hutter| (2019) demonstrated that improper use of weight decay
in Adam could lead to poor generalization performance, and proposed the AdamW that improves
generalization in comparison to Adam. Recent work has also highlighted the role of weight decay
in modern deep learning setups, showing its impact on optimization dynamics and generalization
(D’ Angelo et al.l 2024). While L, regularization and weight decay are equivalent for standard SGD
and GD (with rescaled by learning rate), that is not the case for adaptive methods like stochastic
gradient Adam and full-batch Adam (Loshchilov and Hutter, 2019; Zhang et al., 2019} Zhuang et al.|
2022). However, the true reason why Adam with weight decay fails to improve the generalization
remains unclear. Therefore, the current understanding of how batch size and weight decay influence
the generalization performance of Adam is still relatively limited.

Implicit bias. Implicit bias refers to the tendency of machine learning algorithms to favor certain
solutions. This phenomenon has also been studied in neural networks theoretically to understand how
they generalize and converge to solutions. [Lyu and Li/ (2019) and Ji and Telgarsky| (2020) studied the
implicit bias of gradient descent on the homogeneous neural networks. [Kunin et al.| (2023)) extended
the results to a wider class of networks with varying degree of homogeneity. |Cai et al.[(2024)) focused
on the large stepsize gradient descent on two-layer non-homogeneous networks. |[Frei et al.| (2022)
analyzed the implicit bias of gradient flow in two-layer fully-connected neural networks with leaky
ReLU activations for nearly-orthogonal data. [Kou et al.| (2024} extended this results and analyzed
the implicit bias of gradient descent on similar settings. For Adam and AdamW, the implicit bias
of Adam have been analyzed in Wang et al.| (2021}, [2022); [Zhang et al.|(2024), and the implicit bias
of AdamW has been analyzed in (Xie and Li, 2024)). Recently, Cattaneo et al.|(2024) showed that
Adam penalizes the ¢1-norm of perturbed gradients, favoring flat minima. Our work complements
this view by analyzing, in a discrete-time feature learning setting, how batch size and weight decay
jointly regulate noise suppression and generalization.

Feature learning. There are a series of papers that studied the feature learning theory in neural
networks. |Allen-Zhu and Li| (2020) investigated the feature learning of ensemble methods and
knowledge distillation in deep learning when applied to data with multi-view features. (Cao et al.
(2022)) examined the benign overfitting in the supervised learning of two-layer convolutional neural
networks, and proved that under certain conditions on signal-to-noise ratio (SNR), arbitrary small
training and test loss can be achieved. [Zou et al.|(2023b) compared the feature learning of full-batch
Adam and GD on two-layer convolutional neural networks. It demonstrated that GD learns the
features, but full-batch Adam, even with proper regularization, may still fail. Some works have
studied the feature learning of contrastive learning method (Zhang and Caol [2024), federated learning
(Huang et al., [2024b)) on two-layer convolutional neural networks, and multi-modal contrastive
learning on single-layer ReLU networks (Huang et al.| 2024a). Additionally, some papers have
analyzed feature learning on other architectures, such as transformers (Jelassi et al.| 2022; |Li et al.}

2025)), and diffusion models (Han et al., 2025alb)); and other training configurations (Zou et al.|[2023a;}
Lu et al.||2024). Unlike the aforementioned works, this paper focuses on the feature learning of Adam
and AdamW algorithms with different batch sizes on the two-layer convolutional neural networks.

3 Problem Setup

In this paper, we train the two-layer convolutional neural network (CNN) with Adam and AdamW on
the training dataset S := {(x;, v;)}7, of size n, which is generated from a data model D. In this
section, we introduce the data model D , the two-layer CNN model, and the training details of two
algorithms (Adam and AdamW) analyzed in this paper.

Data Model. We adopt the feature-noise patch concatenation framework from Definition [3.1]
aligning with previous studies (Allen-Zhu and L1, 2020; (Cao et al., [2022; Jelassi et al., [2022; [Zou
et al.| 2023b; [Huang et al.,[2024blla; Zhang and Cao, [2024; [Li et al.,|2025; Han et al., 2025al).

Definition 3.1. Let each data point (x,y) consist of a feature vector x € R?® and a label y € {—1,1}.
The data is generated as follows:
T T
x=[x;,%] ,
where x1 and X9 represent two distinct feature patches. One of these patches corresponds to the
signal patch and consists of a feature vector y - v, where v € R? is assumed to be a sparse vector,
specifically 1-sparse. The other patch represents the noise patch and is a noise vector denoted by &.
Without loss of generality, we assume v = [1,0,...,0]". The data is generated from the following
distribution D:

1. The label y is generated as a Rademacher random variable with y € {—1,+1}.

2. Randomly select s coordinates from the set [d]\{1} with equal probability. This selection is
represented by a binary vector s € {0,1}2. Then generate & from the Gaussian distribution
N(O0, O'2I 1) and apply the masking operation such that € = € © s, where © denotes element-wise
multlpllcatwn Finally, add feature noise to the vector £ by updating it as £ = € — ayv, where
a € (0,1) controls the strength of the feature noise.

3. One of the two patches x1,Xs is randomly selected and is assigned as vy - v, representing the
signal patch, while the other patch is assigned as &, representing the noise patch.

We set s = © (d'/? /n?), 02 =0 (1/(s - polylog(n))), a = O (g, - polylog(n)) in this paper.

The data model formalizes image classification dynamics where localized label-relevant features
coexist with global noise—aligning with CNN behaviors: sparse mid-layer activations (Papyan et al.,
2017) vs. non-informative regions as independent noise (Yang} 2019). By isolating 1-sparse feature
and s-sparse noise patches, we distill the feature learning vs. noise memorization interplay. Though
our analysis uses a simplified single feature/noise patch model for clarity, the results can be extended
to broader settings (e.g., multi-patch or denser features/noises) by assuming sub-Gaussian noise
and using concentration inequalities (e.g., Bernstein bounds) to control overlapping or structured
perturbations, with similar qualitative behavior expected as long as the total noise remains controlled.

Two-layer CNN model. We define the two-layer CNN considered in this paper as follows.

Definition 3.2. Given the data (x,y) ~ D and the activation function o(x) = [x|% with ¢ > 3, the
j-th output of the neural network F with width m is

m

Fj(W,x) =) [0({Wjr,x1)) + 0 (Wi, x2))] = D [0 (Wi, yv)) + 0 ({W0, €))],

r=1 r=1

where w . is the weight at the r-th neuron and initialized from Gaussian distribution N'(0,031,).
In this paper, we assume j € {x1} for clarity, ensuring the logit index matches the data label.
Additionally, we also assume m = polylog(n) and g = ©(d—/4).

Training algorithm. We investigate the behavior of stochastic Adam and AdamW, starting from

same initializations and training on the same dataset S = {(x;,y;)}"_. The loss function for each
F'Ui (W,x;)

data point (x;, y;) is denoted as L;(W) = — log

T (W,x;
ZJE{ 1,1} € G W)

For stochastic Adam and AdamW, the CNN model is trained by minimizing the empirical loss
function

n

1 A
Ad LW)= =) Li(W)+ Z|W|3 3.1
(Adam) L(W) = 3 L(W) + 5 W] (1)
1 n
(AdamW) L(W) =~ ; Li(W), (3.2)
where || - || p denotes the Frobenius norm, A is the weight decay regularization of Adam. Therefore,

the stochastic gradient ggtj)r can be calculated as

(Adam) g”r: Zv o L W)+ aw'!),
zEIt

(AdamW) gt(] = Z \% (t)L (W®),
’LGIf
where the subscript ¢ of g()

of g,g) represents the model W () at the t-th iteration. Herein, we emphasize a fundamental

dlstmctlon Adam’s stochastic gradients inherently incorporate weight decay regularization, whereas
AdamW’s gradients remain regularization-free—a deliberate design choice to prevent momentum-
based normalization from destabilizing regularization effects (Loshchilov and Hutter, [2019)). This
architectural distinction, also analytically demonstrated in our proof, crucially impacts the training

represents the batch Z, at the ¢-th iteration and the superscript ¢

process. The momentum estimates m() (t) of Adam/AdamW are updated as follows
m{ ™ = gm{) + (1 - py) - gﬁ?r, (3.3)
j(t+1) BQVj,T (62) [gt 7 r]27 (34)

where (31, 32 are the hyperparameters of Adam/AdamW and we initialize m() (0) = 0. Finally,
the update rule of stochastic Adam/AdamW for model W can be formulated as

(Adam) wg;rl) = wﬁ)a —-n- %, (3.5)
jr T €
m
(AdamW) w§t:r1) (I —=nX) § 72 R %, (3.6)
,TE€

where 7 is the learning rate, ¢ = ©(\n) is stability constant and X is the decoupled weight decay
parameter of AdamW. In particular, in (34), (3.5) and (3.6)), the square (-)2, square root /-, and
division -/ all denote entry-wise calculations. The details of gradient calculation and its expansion
can be found in Appendix [A]

4 Main Results

In this section, we present the main results of our study. We begin by introducing the primary metric
used to evaluate generalization performance: the classification error rate.

Given training dataset S = {(x;, y;)}"_, generated from data model D in Definition We define
the training error errs(W) and test error errp (W) of model W as follows,

errs (W) = Ex yyos 1[Fy (W, x) < F_ (W, x)],

32| = veG1e 26| —=- VGG16

30 ResNet18 24 ResNet18
28 —
X X22
o7 5
= £20
w22 w
0 w18
220 IS

18 16

15 o——= < 14 oo —

10! 102 103 104 10T 102 163 104
Batch Size Batch Size
(a) Test error vs. batch size under Adam (b) Test error vs. batch size under AdamW

Figure 1: Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

errp(W) = E yyop 1 [Fy(W,x) < F_ (W, x)].

While theoretical analyses often prioritize mathematically tractable surrogate losses (e.g., cross-
entropy, hinge loss), classification error rate remains the most direct and practical performance
metric. Unlike continuously approximated surrogate losses, error rate directly quantifies discrete
misclassification events, better reflecting models’ true decision-making ability in classification tasks.

4.1 Theoretical Results for Adam

The following Theorem [4.1| characterizes the behavior of Adam in the large-batch regime.

—2
Theorem 4.1 (Large-batch Adam). Suppose n = poly(n) and X satisfies 0 < A = 0(7‘71’), we

train our CNN model in Deﬁnitionon loss function (3.1)) for T = %(”) epochs using Adam (3.5)
with batch size B satisfies & = O(1). Then with probability at least 1 — n=1, we have

e The training error is zero: errs (W(T)) = 0.
* The test error is high: errp(WD)) > 1 —o(1).

Theorem extends |Zou et al.| (2023b)’s full-batch analysis to large-batch regimes (B = ©(n)).
Basically, it states that under the nearly same data model in|Zou et al.| (2023b), large-batch Adam
cannot effectively learn the feature vector from the training dataset, and finally attains a nearly 0.5
test accuracy, despite its perfect fitting on the training data points.

In stark contrast, we further provide Theorem [4.2] which proves that stochastic gradient Adam with a
smaller batch size can achieve good generalization performance.

—2
Theorem 4.2 (Mini-batch Adam). Suppose n = poly(”) and 0 < X = of ”0 72, we train our CNN

model in Deﬁnitionon loss B for T = %(”) epochs using stochasnc Adam (3.3) with batch

size B satisfies 7 > O(log e —1), where € is the hyperparameter of Adam. Then with high probability
atleast1 —n 1, we have

o The training error is zero: errs (W(T)) =0.
* The test error is near-zero: errp(W(T)) = o(1).

Our theoretical results demonstrate that mini-batch Adam achieves near-perfect test accuracy when
the ratio n/B is large, significantly outperforming its large-batch counterpart which exhibits only
random-guessing performance. This advantage can be attributed to three fundamental properties
of stochastic Adam optimization: First, since the feature vector is shared across all data points,
its learning remains robust regardless of batch size. In contrast, noise vectors are data-specific
and vary across different samples. When using mini-batches, only a subset of noise vectors is
exposed during each update, creating an inherent asymmetry in learning dynamics. More importantly,
Adam’s coordinate-wise normalization amplifies this effect: it maintains consistent learning rates for
shared features while substantially slowing down noise memorization. This selective suppression of

noise learning explains the superior generalization performance of mini-batch Adam compared to
large-batch implementations.

Besides the results on the generalization performance, we further deliver the following corollary,
which states the feasible range of the weight decay in Adam. Theorems .1 and 4.2 directly yield:
Corollary 4.3 (Effective weight decay in Adam). Suppose the same conditions as in Theorem .1
and If\= w(ag%), then with probability at least 1 — n™", training stuck at the initialization.

This corollary provides a theoretical upper bound on the effective weight decay that allows Adam to
successfully train models, aligning well with previous empirical observations that Adam typically
performs better with small weight decay values compared to AdamW (Loshchilov and Hutter,
2019). This sensitivity arises because weight decay regularization is implicitly entangled with the
normalization step in Adam, i.e., when the gradient of weight decay is greater than that of the
cross-entropy loss, it will fully dominate the Adam update. In the next subsection, we will show that
weight decay will exhibit a different behavior in AdamW, leading to a different feasible range for A.

4.2 Theoretical Results for AdamW

We first establish the theoretical results of Adamw in Theorem@]under large-batch training.
Theorem 4.4 (Large-batch AdamW). Suppose n = poly(n), A= Q(B> \ 1) and A = O(1), we train

our CNN model in Deﬁ”ifionon loss function B.2) for T = %(”) epochs using AdamW (3:6)
with batch size B satisfies & = ©(1) or % = o(soy,). Then with probability at least 1 — n™*, we
have

* The training error is zero: errs(W (1)) = 0.
* The test error is high: errp(W(T)) > 3 —o(1).

The results for large-batch AdamW closely resemble those of large-batch Adam in Theorem
the learned model consistently exhibit test errors of at least 1/2 — o(1), performing no better than
random guessing. This phenomenon arises from the training dynamics in the early stages, where the
influence of weight decay is minimal. As a result, both Adam and AdamW exhibit similar behavior,
tending to fit noise. By the time the decoupled weight decay in AdamW begins to take effect, the
model has already overfit to the feature noise —ayv. The weight decay then guides the model toward
nearby local minima, effectively preserving the previously memorized noise. Then at test time, this
overfitting to feature noise causes the model to predict labels that are systematically misaligned with
the true labels, leading to test performance that is no better than random guessing.

In contrast to the results for large-batch in Theorem 4.4} the following Theorem 4.5] characterizes the
generalization ability of mini-batch AdamW.
Theorem 4.5 (Mini-batch AdamW). Suppose n = poly(n), A= Q(B\ 1) and X = O(1), we train

our CNN model in Definition on loss function (3.2) for T = %(n) epochs using stochastic
AdamW (3:6) with batch size B satisfies %5 > O(loge™ ') and % = w(so, V n'/?). Then with
probability at least 1 — n™', we have

* The training error is zero: errs (W(T)) = 0.
* The test error is near-zero: errp(W(T)) = o(1).

Under mini-batch training, AdamW achieves near-zero test error with partial similarity to Adam. The
extended iterations per epoch slow early-stage noise overfitting (notably for s-sparse noise). However,
AdamW’s decoupled weight decay penalizes weights independently of gradients, exerting significant
regularization only in later phases to converge toward generalizable minima. Thus, AdamW can
leverage a much larger A than Adam, which is shown as follows:

Corollary 4.6. Regarding the effective weight decay coefficients of Adam and AdamW for achieving
good generalization performance, we have Apdam ~ 0872 < %2 A1~ Aadamw-

Corollary .6 reveals a fundamental gap between the effective weight decay regimes of Adam and
AdamW, consistent with empirical observations. For Adam, the admissible weight decay Aagam

—=— Adam 20 —=— Adam
24 AdamW AdamW
;\322 3 19
§ 20 § 18
& &gy
018 @
L6 - 16 7
. o __/)/k 1s x,—‘\v'/a\v/,h—
14 v) [\
6 10° 10+ 103 1062 10! 4 166 165 10¢ 10 102 10"
Weight Decay for Adam Weight Decay for Adam
Weight Decay x 1/25 for AdamW Weight Decay x 1/25 for AdamW
(a) Training VGG16 (b) Training ResNet18

Figure 2: Test error vs. weight decay (batch size = 16), comparing Adam and AdamW on each model.

is extremely small, bounded above by an initialization-dependent term 0872. Consequently, even
moderate weight decay values can destabilize training due to the entanglement between gradient
updates and weight decay, leading to suboptimal generalization. In contrast, AdamW decouples
Weight decay from the gradient update, applying regularization directly on the weights. As a result, it
requires a larger welght decay to effectively suppress noise overfitting and exhibits greater robustness.

The lower bound Q(— A 1) serves as a sufficient condition ensuring that weight decay is strong
enough to prevent noise amplification. This robustness is reflected in its much broader effective

range—from Q(BT2 A 1) up to O(1)—representing a large, constant-order window independent of
initialization. This theoretical separation explains the empirical fact that Adam requires delicate
tuning and is highly sensitive to weight decay, whereas AdamW is considerably more robust and
easier to tune [Loshchilov and Hutter] (2019). Our experiments (Figure [2)) further corroborate this
prediction.

Experiments. We train VGG16 and ResNet18 on CIFAR-10 with Adam (A = 5 x 10~%) and
AdamW (\ = 1x 1072), selecting the optimal learning rate from {5x10~%, 1x10~%, 1x107°} and
varying the batch size to measure test error (Figure[I). Both optimizers exhibit a sharp performance
degradation once the batch size exceeds a critical threshold, in line with theoretical predictions of
large-batch generalization collapse (Theorem [4.T|and [4.4). Separately, at a fixed batch size of 16
(Figure[2)), we find that Adam’s error spikes for A > 0.05, whereas AdamW remains robust even up to
A = 0.5, highlighting the benefit of decoupled weight decay in adaptive optimizers. This observation
is consistent with our theoretical analysis (Corollary 4.3]and 4.6). Additional experiments, including
the dynamics of feature learning and noise memorization (Figures 3] @), sensitivity to weight decay
(Figures [5] [6)), error bars across random seeds and momentum parameters (Figures 7] [8] Pl [I0)), and
large-scale vision experiments with ResNet-50 on ImageNet-1K (Figures [[T] [I2),, all corroborate our
theoretical findings. Complete experimental details and results are provided in Appendix

5 Proof Outline of the Main Results

In this section, we mainly outline the proof sketch for the theorem in Sectiond Proof sketches
for remaining theorems are deferred to Appendix [B] Following the two-stage analysis framework of
Cao et al.[(2022);[Zou et al.|(2023b)), we decompose the proof into two distinct stages:

Stage I: Pattern Learning. During the initial phase of training, the effect of regularization is
negligible. The model operates in an underfitting regime, where it rapidly learns dominant patterns in
the training data, leading to improved empirical performance on test error.

Stage II: Regularization. As training progresses, the model’s classification accuracy on the training
set approaches convergence, resulting in diminished gradient magnitudes. At this stage, regularization
dominates the optimization dynamics, steering the model converge to a local minima. Due to the
nonconvex nature of the loss landscape, the model retains the patterns acquired during the pattern
learning stage.

Furthermore, motivated by the behavioral similarity between Adam and SignGD when the learning
rate is sufficiently small or 51, 85 approach zero (Balles and Hennig, [2018}; | Bernstein et al., 2018)),

we present results for SignSGD. We subsequently extend these results to stochastic Adam, which
provided in Appendix [C] The update rules for SignSGD are given as follows:

(SignSGD) wi"V = wl) — - sgn(g")), (5.1)

where gt in (3.I) denotes the stochastic gradient of (3.1I). The detailed update rules of Adam with
the SlgnSiGD approximation are provided in Egs. (B.3) and (B.4), while those of AdamW are given
in Egs. (B:3) and (B.6).
Next, following the framework of feature learning (Allen-Zhu and Li}, [2020; |Cao et al.l 2022} Zou
et al.| 2023b; Han et al.| 2025a), we primarily focus on two key quantities: 1) Feature Learning
(wjr, jv): This term captures the alignment between the learned weight vector w . and the true
feature direction jv, reflecting the model’s ability to extract meaningful latent structures from the data.
2) Noise Memorization (w,, ., &;): This term measures the correlation between w, , and the noise
patch &; of individual samples, characterizing the extent to which the model overfits to stochastic
perturbations or idiosyncrasies in the training set. This decomposition allows us to separately analyze
the model’s generalization behavior (driven by feature learning) and its memorization capacity
(influenced by noise fitting).

We first clarify that, although the sketch appears straightforward, the underlying process is non-trivial.
Numerous intricate and interesting details arise, which we elaborate on in the proof presented in

Appendix [C]

We begin by characterizing the dynamics of feature learning and noise memorization under large-batch
training, to facilitate a comparative analysis with mini-batch regimes, as formalized in Lemmal[5.1]
Large-batch Adam. We consider 5 = ©(1), which is the large-batch setting.

Lemma 5.1. Given the training dataset S, if % = ©(1), n = 1/poly(d) and 0 < A\ = 0(0872017/71),
then for any t < Ty with Ty = 5(

nslgp) and any i € [n],

(Wit vy < (Wi vy o), (witD &) = (W), &) + O(nsay).

We observe that Lemmais identical to Lemma 5.2 in (Zou et al.| [2023b), allowing us to directly
extend their full-batch Adam results to the large-batch setting. The remainder of the proof follows
identically, as the underlying theoretical machinery remains unchanged under this batch size scaling
% = O(1). We observe that under large-batch setting, the optimization dynamics of Adam closely
resemble those of the full-batch setting. This similarity arises because the algorithm traverses
the entire dataset within few iterations, resulting in nearly identical momentum estimates and,

consequently, comparable training dynamics between large-batch and full-batch regimes.

We next consider the mini-batch setting, which yields conclusions that differ fundamentally from
those in the large-batch setting.

Mini-batch Adam. We consider % > ©(log e~ '), which is the mini-batch setting.

Lemma 5.2 (Stage D). Given the training dataset S, if % > ©(loge™'), n = 1/poly(d) and
0 < X=o(cd ?a,/n), then for any t < Ty with Ty = O(-L

T) and any i € [n],
t+1

wlTED o) = Wl v 16), (w6 < S(asor).
Compared to Lemma [5.1] Lemma [5.2]reveals fundamentally different optimization dynamics. Specif-
ically, feature learning progressively increases throughout Stage I, whereas noise memorization
remains suppressed near the initialization. The key distinction from the large-batch setting lies in
the fact that, under the mini-batch regime, traversing the entire dataset requires many iterations.
Since noise is sparse and uncorrelated across samples while features are dense and shared, feature
learning can proceed effectively during the early training phase without being hindered by weight
decay regularization. In contrast, noise memorization is strongly suppressed by weight decay due to
its sparsity. As training progresses, the momentum estimates in Adam gradually forget the gradient
contributions from noise, allowing weight decay to dominate. As a result, recently acquired noise

memorization is continually erased, keeping noise-related parameters close to their initialization
throughout Stage I.

In the following lemma we show that the patterns learned by the model during Stage I are
preserved in Stage II, due to the nature of our non-convex optimization landscape.

Lemma 5.3 (Stage II). Suppose the same conditions hold as in Lemma Fort > Ty, 5 €
(?) jv) = ©(1) and

{£1},r € [m], ¢ € [n], let r* = argmaxre[m]<w§-2,jv>, then (w; ..

(wi)r &) < O(nsay).

Given Lemma[5.2]and Lemma[5.3] we can characterize the convergence rate of Adam as follows.

Lemma 5.4 (Convergence). Suppose the same conditions hold as in Lemma|[5.2)and[5.3] if the step
size n = O(d™2), then for any t,

E[LWED) = LW)| <~ VLW D)y + 6(5%0).

Combine Lemma[5.3]and Lemma[5.4] we observe that the model successfully learns the true features
and eventually converges to a local minimum, retaining strong generalization performance.

6 Conclusion and Limitation

In this work, we theoretically and empirically analyze the impact of varying batch sizes and weight
decay parameters on the generalization of Adam and AdamW when learning two-layer CNNs. Our
results demonstrate that large-batch Adam and AdamW inherently overfit noise-dominated solutions
even with weight decay, while their mini-batch counterparts achieve strong generalization through
the synergy of implicit stochastic gradient regularization and explicit weight decay. Furthermore, we
establish that Adam’s adaptive gradient normalization imposes stricter constraints on weight decay
parameters compared to AdamW, necessitating precise calibration for stable optimization.

While our theoretical framework provides insights into the interplay between batch size, weight
decay, and generalization, several limitations highlight critical directions for future research. First,
the current analysis is restricted to two-layer networks. Extending the results to deeper architectures
and investigating how batch size influences the dynamics of hierarchical feature learning presents
a promising direction. Second, our work focuses on image data, and an important direction is to
extend the analysis to domains with fundamentally different data structures, such as NLP, where
batch size and weight decay may impact model performance through different mechanisms. Finally,
other critical hyperparameters, such as momentum, learning rate schedules, and gradient clipping, are
not considered in our analysis, and some modern vision architectures succeed with large batches (Liu
et al.} 2022, [2023} (Chen et al., 2024) despite our theoretical predictions, suggesting that additional
factors like architectural design and normalization may play a significant role.

Acknowledgments

We would like to thank the anonymous reviewers and area chairs for their helpful comments. Xuan
Tang and Difan Zou acknowledge the support from NSFC 62306252, Hong Kong ECS award
27309624, Guangdong NSF 2024A 1515012444, and the central fund from HKU IDS. Yuan Cao is
partially supported by NSFC 12301657 and Hong Kong ECS award 27308624.

References

ALLEN-ZHU, Z. and L1, Y. (2020). Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816 .

BALLES, L. and HENNIG, P. (2018). Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning. PMLR.

BERNSTEIN, J., WANG, Y.-X., AZIZZADENESHELI, K. and ANANDKUMAR, A. (2018). signsgd:

Compressed optimisation for non-convex problems. In International Conference on Machine
Learning. PMLR.

10

BERNSTEIN, J., ZHAO, J., AZIZZADENESHELI, K. and ANANDKUMAR, A. (2019). signSGD
with majority vote is communication efficient and fault tolerant. In International Conference on
Learning Representations.

BI1, X., CHEN, D., CHEN, G., CHEN, S., DAI, D., DENG, C., DING, H., DONG, K., DU, Q., Fu, Z.
ET AL. (2024). Deepseek 1lm: Scaling open-source language models with longtermism. arXiv
preprint arXiv:2401.02954 .

BotTou, L. (2012). Neural Networks: Tricks of the Trade: Second Edition. Springer Berlin
Heidelberg.

BROWN, T., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J. D., DHARIWAL, P., NEELAKAN-
TAN, A., SHYAM, P., SASTRY, G., ASKELL, A. ET AL. (2020). Language models are few-shot
learners. Advances in neural information processing systems 33 1877-1901.

CaL Y., WU, J., MEL, S., LINDSEY, M. and BARTLETT, P. (2024). Large stepsize gradient descent
for non-homogeneous two-layer networks: Margin improvement and fast optimization. Advances
in Neural Information Processing Systems 37 71306-71351.

CAo0, Y., CHEN, Z., BELKIN, M. and GU, Q. (2022). Benign overfitting in two-layer convolutional
neural networks. Advances in neural information processing systems 35 25237-25250.

CATTANEO, M. D., KLUSOWSKI, J. M. and SHIGIDA, B. (2024). On the implicit bias of adam. In
Proceedings of the 41st International Conference on Machine Learning, vol. 235 of Proceedings
of Machine Learning Research. PMLR.

CHEN, H., CHU, X, REN, Y., ZHAO, X. and HUANG, K. (2024). Pelk: Parameter-efficient large
kernel convnets with peripheral convolution. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition.

CHEN, X., L1u, S., SUN, R. and HONG, M. (2019). On the convergence of a class of adam-
type algorithms for non-convex optimization. In 7th International Conference on Learning
Representations, ICLR 2019.

D’ ANGELO, F., ANDRIUSHCHENKO, M., VARRE, A. V. and FLAMMARION, N. (2024). Why do

we need weight decay in modern deep learning? Advances in Neural Information Processing
Systems 37 23191-23223.

DEFOSSEZ, A., BOTTOU, L., BACH, F. R. and USUNIER, N. (2022). A simple convergence proof
of adam and adagrad. Trans. Mach. Learn. Res. .

DucHI, J., HAZAN, E. and SINGER, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research 12.

FREI, S., VARDI, G., BARTLETT, P., SREBRO, N. and HU, W. (2022). Implicit bias in leaky relu
networks trained on high-dimensional data. In The Eleventh International Conference on Learning
Representations.

Guo, Z., Xu, Y., YIN, W,, JIN, R. and YANG, T. (2021). A novel convergence analysis for
algorithms of the adam family. arXiv preprint arXiv:2112.03459 .

HAN, A., HUANG, W., CAO, Y. and ZoU, D. (2025a). On the feature learning in diffusion models.
In The Thirteenth International Conference on Learning Representations.

HAN, Y., HAN, A., HUANG, W., LU, C. and ZoU, D. (2025b). Can diffusion models learn hidden
inter-feature rules behind images? In Forty-second International Conference on Machine Learning.

HE, K., ZHANG, X., REN, S. and SUN, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

HUANG, W., HAN, A., CHEN, Y., CAO, Y., ZHIQIANG XU and SUZUKI, T. (2024a). On the
comparison between multi-modal and single-modal contrastive learning. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems.

11

HUANG, W., SHI, Y., CAIL, Z. and SUZUKI, T. (2024b). Understanding convergence and generaliza-
tion in federated learning through feature learning theory. In The Twelfth International Conference
on Learning Representations.

JELASSI, S., SANDER, M. and L1, Y. (2022). Vision transformers provably learn spatial structure.
In Advances in Neural Information Processing Systems (S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho and A. Oh, eds.), vol. 35. Curran Associates, Inc.

JI, Z. and TELGARSKY, M. (2020). Directional convergence and alignment in deep learning.
Advances in Neural Information Processing Systems 33 17176-17186.

KINGMA, D. P. and BA, J. (2015). Adam: A method for stochastic optimization. International
Conference on Learning Representations .

Kou, Y., CHEN, Z. and GU, Q. (2024). Implicit bias of gradient descent for two-layer relu and leaky
relu networks on nearly-orthogonal data. Advances in Neural Information Processing Systems 36.

KUNIN, D., YAMAMURA, A., MA, C. and GANGULI, S. (2023). The asymmetric maximum
margin bias of quasi-homogeneous neural networks. In The Eleventh International Conference on
Learning Representations.

KUNSTNER, F., CHEN, J., LAVINGTON, J. W. and SCHMIDT, M. (2023). Noise is not the main
factor behind the gap between sgd and adam on transformers, but sign descent might be. In The
Eleventh International Conference on Learning Representations.

L1, B., HUANG, W., HAN, A., ZHOU, Z., SUZUKI, T., ZHU, J. and CHEN, J. (2025). On the
optimization and generalization of two-layer transformers with sign gradient descent. In The
Thirteenth International Conference on Learning Representations.

Liu, H., L1, Z., HALL, D. L. W,, LIANG, P. and MA, T. (2024). Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In The Twelfth International Conference
on Learning Representations.

Liu, S., CHEN, T., CHEN, X., CHEN, X., XIAO, Q., WU, B., KARKKAINEN, T., PECHENIZKIY,
M., MocaNu, D. C. and WANG, Z. (2023). More convnets in the 2020s: Scaling up kernels
beyond 51x51 using sparsity. In /ICLR.

Liu, Z., Mao, H., Wu, C.-Y., FEICHTENHOFER, C., DARRELL, T. and XIE, S. (2022). A
convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition.

LOSHCHILOV, I. and HUTTER, F. (2019). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Lu, M., Wu, B., YANG, X. and ZoU, D. (2024). Benign oscillation of stochastic gradient descent
with large learning rates. In The Twelfth International Conference on Learning Representations
(ICLR)(07/05/2024-11/05/2024, Vienna).

Lyu, K. and L1, J. (2019). Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890 .

MA, X. and HOVY, E. (2016). End-to-end sequence labeling via bi-directional Istm-cnns-crf. arXiv
preprint arXiv:1603.01354 .

PAPYAN, V., ROMANO, Y. and ELAD, M. (2017). Convolutional neural networks analyzed via
convolutional sparse coding. Journal of Machine Learning Research 18 1-52.

REDDI, S. J., KALE, S. and KUMAR, S. (2018). On the convergence of adam and beyond. In
International Conference on Learning Representations.

TOUVRON, H., LAVRIL, T., IZACARD, G., MARTINET, X., LACHAUX, M.-A., LACROIX, T.,
ROZIERE, B., GOYAL, N., HAMBRO, E., AZHAR, F. ET AL. (2023). LLaMA: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 .

12

WANG, B., MENG, Q., CHEN, W. and L1U, T.-Y. (2021). The implicit bias for adaptive optimization
algorithms on homogeneous neural networks. In International Conference on Machine Learning.
PMLR.

WANG, B., MENG, Q., ZHANG, H., SUN, R., CHEN, W., MA, Z.-M. and L1U, T.-Y. (2022). Does
momentum change the implicit regularization on separable data? Advances in Neural Information
Processing Systems 35 26764-26776.

WILSON, A. C., ROELOFS, R., STERN, M., SREBRO, N. and RECHT, B. (2017). The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems 30.

XIE, S. and L1, Z. (2024). Implicit bias of adamw: ¢,-norm constrained optimization. In Forty-first
International Conference on Machine Learning.

YANG, G. (2019). Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760 .

YAO, Z., GHOLAMI, A., SHEN, S., MUSTAFA, M., KEUTZER, K. and MAHONEY, M. (2021).
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the AAAI
conference on artificial intelligence, vol. 35.

ZHANG, C., Zou, D. and CAO0, Y. (2024). The implicit bias of adam on separable data. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems.

ZHANG, G., WANG, C., XU, B. and GROSSE, R. (2019). Three mechanisms of weight decay
regularization. In International Conference on Learning Representations.

ZHANG, H. and CAO, Y. (2024). Understanding the benefits of simclr pre-training in two-layer
convolutional neural networks. arXiv preprint arXiv:2409.18685 .

ZHou, P., FENG, J., MA, C., XIONG, C., Hol, S. C. H. and E, W. (2020). Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In Advances in Neural
Information Processing Systems, vol. 33.

ZHUANG, Z., L1Uu, M., CUTKOSKY, A. and ORABONA, F. (2022). Understanding adamw through
proximal methods and scale-freeness. Transactions on Machine Learning Research .

Zou, D., Cao, Y., L1, Y. and GU, Q. (2023a). The benefits of mixup for feature learning. In
International Conference on Machine Learning. PMLR.

Zou, D., Cao, Y, L1, Y. and GU, Q. (2023b). Understanding the generalization of adam in
learning neural networks with proper regularization. In International Conference on Learning
Representations.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work in the conclusion section,
which are also our future research directions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]

Justification: We provide the main results in the main paper, and state all the assumptions
and the complete proof in Appendix. We also provide a proof outline in Section [5]in the
main paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the configuration of the experiments in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use VGG16, ResNet18, ResNet50 models and the CIFAR-10, ImageNet-
1K datasets, which are easily available on the Internet. All the experimental details are
provided in Appendix

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the experimental details in Appendix [D]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the error bars in Figures [} [10]in Appendix [D]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide all the experimental details in Appendix D]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper is a theoretical analysis paper on the generalization of stochastic
gradient Adam (AdamW) and does not have potential societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Preliminaries

In this section, we give the asymptotic equations for all the parameters we use, some useful lemmas,
and the gradient and weight update equations.

A.1 Asymptotic Equations

First, we give the asymptotic equations for all the parameters we use in the proof.
Condition A.1. Suppose that the following conditions on data model (3. 1| hold,

1. The dimension d satisfies d = poly(n).

. . . 1/2
2. The number of noise coordinates s satisfies s = © (dn2)

. 2 . . 2 _ 1
3. The variance parameter o, of the noise vector satisfies o, = © (7S_polylog(n))

4. The feature noise strength « satisfies o = © (o, - polylog(n)).
Condition A.2. Suppose that the following conditions on hyper-parameters hold,

1. The initialization variance of the model weights o3 satisfies o3 = © (dl%)
2. The width of the network m satisfies m = polylog(n).

3. The learning rate n satisfies n = ﬁ(n)'

4. The parameter € in Stochastic Adam and Stochastic AdamW satisfies e = ©(\n).

Based on the parameter configuration, we claim that the following equations hold, which will be
frequently used in the subsequent proof.

2
1-q _q-1 5o 1
a:w((sgp) qg'g)7a:0< np>’00:0<50')7’[7:0<)\0’80'g). (A])

P
The following Lemma describes the initialization.

Lemma A.3. At the initialization, forVj € {£1},r € [m],i € [n], we have

(W3 V) = O(00). [(wyi), &) = B(s" 00 + aon) = B(s' ay00). il [K] = O(ov).

Proof. By Definition we have
Wi ~ N(0,021).
For data (x;, y;) ~ D, by Definition[3.1] let B; = supp(&;)\{1}, we have
v=(1,0,...,0)7,
&ill] = —ay;,
&ilk] ~ N(0, 0127). (for k € B;)
Therefore, condition on the training dataset S, we have
(wg?,?, v) ~ N(0,07).
By standard Gaussian tails, we get

For(Wi, ,&) we have

(Wi &) = —aw' D[]y + Y WK - &ilk],

where — awg?r)[l] y; ~ N(0,0%07),
ST wiOk] - &ilk] ~ N (0,03 : <Z gi[k]2>>
keB; keB;

~ N(0, 5012708),
since &;[k] ~ N (0, 02). Therefore, we have

|<W(O) &) = é(31/20p00 + aog) = é(sl/QUpUO)-

Jsr?

A.2 Preliminary Lemmas

The following lemma studies non-overlap support property of noise patch in data model D in
Definition[3.1]

Lemma A.4 (Non-overlap support, Lemma C.1 in [Zou et al.[(2023b)). Let {(x;,y:)}i=1,...n be
the training dataset sampled according to Definition[3.1] Moreover, let B; = supp(&;)\{1} be the
support of X; except the first coordinate. Then with probability at least 1 — n~2, B; N B; = 0 for all
1,7 € [n].

A.3 Gradients and Updates

()

gyr

Lemma A.5. Consider the CNN model defined in Eq. Let (x;,y;) be a data generated from data

model D in Deﬁnition The gradient of L;(W) = —log > efvs <VZ=:;(>W7X” with respect to W ; ;.
is:

We first calculate the gradient of the individual loss function L; with respect to w

je{-1,1}

Vw,;, Li(W) = =V, F;(W,x;) - £j;
= — (Wilji0' (Wi, yiv)) -V + L 0" (W0, i) - &),

where (;== 1,,—; —logitj(F, x;) and logitj(F7 X;) = = 6Fj(\2:,;)(w)xi).
ke{-1,1}
Proof of LemmalA.5] For j = y;,
Vw,;, Li(W)
L eF W) | P (W) s (Wx)+F-j (W) .y FH(W,x;)
eFi(Wox;) (eFs(Wxi) 4 eF*j(vai))z

6F7j (W,xi)

_VW]',TF]' (W, Xi) .

eFj (W x;) =+ eFfj(vai)

eFj(w’xi)
N eFj (Wx;) + eF—j(W7x1,)>

T B(Wox) (1
= *ijyer(W,Xi) . £j1

= — (ilji0 (Wi, yiV)) -V + L 0" (Wi, &) - &) -

For j # vy,
Vw, . Li(W)
eFi(Woxi) L oFj(Wxi) oFj(Wxi)+F_j(W.xi) . Vw,, Fj(W,x;)
ef—i(W.xi) (eFj (W.xi) 4 eF—j(Wﬁxi))Q
CFI (W)

) gF (W oxi) + ef-i(W,xi)
eFj(W,xi))

= _va,rF](W7X'L) : (0 - eFJ(W’Xi) + eF—J(W;Xi)

22

—VWLT,Fj(W?Xi) . fjﬂ‘
= — (ilji0 (W, V) -V + Lji0" (W, &) - &) -

Based on the definition of ¢; ;, we have a useful lemma as follow:
Lemma A.6. Given data (x;,y;) generated from data model 3.1} define ; ; = 1,,—; —logit;(F,x;)

d logit (F) = i W) hav
ana logit X; <3, we have
& AN Zke{—l,l} Pk (Wi

sgn(yily,q) = sgn(j).

Proof of LemmalA-6 For j = y;,
sgn(yil,i) - sgn(j) = sgn(;.,i)

= sgn(1 — logit; (F, x;)) (logit; (F,x;) € (0,1))
=1.

For j # v,

sgn(yil,i) - sgn(j) = —sgn(l;,;)

—sgn(—logitj (F,x;))

sgn(logit; (F,x;)) (logit,; (F,x;) € (0,1))

=1.

O

Now we calculate the gradient of loss (3:1) and loss (3.2)), responding to stochastic Adam and

stochastic AdamW respectively. Here we slightly abuse the notation. We use gt() to represent the

() ()

stochastic gradient with respect to w; ©. at the ¢- th 1terat10n The subscript ¢ of g, ; . represents the

batch at the ¢-th iteration and the superscnpt t of gt _j. represents the weight matrix W(t) at the ¢-th
iteration.

Lemma A.7 (Gradient of Stochastic Adam). Consider the CNN model in Definition [3.2] Let
{(xi, i)}, be the training dataset generated from data model in Deﬁnmonn 3.1} Using stochastic

Adam to train the neural network, at the t-th iteration with batch data index set T, of size B, the

()

stochastic gradient of the loss (3.1)) with respect to w . s as follows:

[Z yily)o' ((wil) yiv)) v D 000" ((wil) €0) - & | + dw).

i€Ly 1€Ly

More specific, for the k-th coordinate, we have

s k=1:

gzgf]), = [Z yl (t) l 525 Yiv)) — « Z yz (t) , §t7)«7 €z>) +)\Wg?_[l]

i€y 1€1y

s keBici:
gt [k = Begﬁ o' ((wi') &) - &lk] + Aw ! [K].

s k#landk ¢ Uiez,B;

g K] = Aw k).

23

Proof of Lemma([A77] The loss of stochastic Adam at the ¢-th iteration with batch data index set Z; is

ZL (W) IIW 7
zEIt

By Lemmal[A5] we have
gt(,fj)T = ng_t;L(W(t))

1
= 5 2 Vun LW) + awiy

€Ly
g | D) v)6
i€Lt 1€Lt
For the k-th coordinate, if k = 1, we know v = [1,0,...,0] " and &[1] = —ay;. So we have
giE, [Z yil]z §t7)~ayz _azyzg(f) "((w j &) J’_)‘W(f)[1].
1€Ly €Ly
Ifk e B;,i € 1, by Lemma we know B; N B; = () for i # j. So we have
¢ ¢ ¢ ¢
o), 1K) = — 50800 (w1, €0) - lK] + Awil]
If k # 1 and k ¢ Uz, B;, it is obvious that
915 K] = AW} K.
O
Lemma A.8 (Gradlent of Stochastic AdamW). Consider the CNN model defined in Eq.[3.2} Let
{(xi,y:) : i € [n]} be the training dataset generated from data model[3.1} Use stochastic AdamW

training the neural network, at the t-th iteration with batch data index set L; of size B, the stochastic
gradient of the Loss defined in Eq. (3.2)) with respect to wgtz is as follows:

Z yzg(t (tz«ayz -V + Z K rv z>) 511 .

i€y 1€Ls

(t)

9t =

More specific, for the k-th coordinate, we have

s k=1

g, = [ZM“ Wi yiv) aZyzﬂ(t’ WE»)]-

i€Ty 1€Ly
s keBici:
o), 1K = 500 (1), €0) - 18]
s k#landk ¢ Uiez,B;
gt [k = 0.
Proof of Lemma[A.8] The loss of stochastic AdamW at the ¢-th iteration with batch data index set Z;

1S
L(W®) Z Li(

zEIt

24

By Lemma[A.5] we have
g, =V wl® L(W®)

va wLs (W)

€Ly
B [20wt () v+ 3 0 (g >>4'
1€T, i€Ly
For the k-th coordinate, if & = 1, we know v = [1,0,...,0]" and &;[1] = —ay;. So we have
gi') 1] Zyz“ Wi i) —a Y yalo’ (Wi,))]-
1€Ls i€Zy
Ifk € B;,i € Iy, by Lemma we know B; N B; = () for i # 7. So we have
o), 1] = 5000 (w1}, €0) - &l
If k # 1 and k ¢ U;ez, B;, it is obvious that
9i1).. Ik = 0.

B Proof Sketch

In this section, we mainly outline the proof sketch for the main results in Section[d] Following the
two-stage analysis framework of |Cao et al.|(2022)); Zou et al.| (2023b)), we decompose the proof into
two distinct stages:

Stage I: Pattern Learning. During the initial phase of training, the effect of regularization is
negligible. The model operates in an underfitting regime, where it rapidly learns dominant patterns in
the training data, leading to improved empirical performance on test error.

Stage II: Regularization. As training progresses, the model’s classification accuracy on the training
set approaches convergence, resulting in diminished gradient magnitudes. At this stage, regularization
dominates the optimization dynamics, steering the model converge to a local minima. Due to the
nonconvex nature of the loss landscape, the model retains the patterns acquired during the pattern
learning stage.

Furthermore, motivated by the behavioral similarity between Adam and SignGD when the learning
rate is sufficiently small or 31, 82 approach zero (Balles and Hennig), | 2018; Bernstein et al., [2018)),
we present results for SignSGD and SignSGDW (SignSGD with decoupled weight decay). We
subsequently extend these results to stochastic Adam and AdamW, which provided in Appendix [C]
The update rules for SignSGD are given as follows:

. 1
(SignSGD) W](tj) = (t) -n- sgn(git;) B.1)
where gf]) . in (B.I)) is stochastic gradient of (3.I). The updata rules for SignSGDW are given as
follows:
(SignSGDW) w!") = < —xnw!’) — - sgn(g)")), (B.2)
where 915 j) , in (B.2) is stochastic gradient of (3.2), and \ is the weight decay parameter.

Next, following the framework of feature learning (Allen-Zhu and Li, [2020; |Cao et al.| |[2022; Zou
et al., 2023b; [Han et al. [2025a), we primarily focus on two key quantities: 1) Feature Learning
(wj,r, jv): This term captures the alignment between the learned weight vector w ,. and the true
feature direction jv, reflecting the model’s ability to extract meaningful latent structures from the data.
2) Noise Memorization (w,, ., &;): This term measures the correlation between w,, ,. and the noise
patch &; of individual samples, characterizing the extent to which the model overfits to stochastic
perturbations or idiosyncrasies in the training dataset. This decomposition allows us to separately
analyze the model’s generalization behavior (driven by feature learning) and its memorization capacity
(influenced by noise fitting).

25

B.1 Proof Sketch for Stochastic Adam

We present the dynamics of feature learning (w (s), jv) and noise memorization (wyl r &) for
SignSGD as follows. The details of calculation are prov1ded in Appendix [A]

(v,
= mv> (oo (52,))

= < gz +]77 sgn < n g(t) "((w §t37ylv>) —ao'({ Etz’gﬁ)} — B)\wﬁ[l]) , (B.3)

€T,
(wiih.&)

< Uz,r’€l> <g (9&3) €i>

— (Wi &)+ (sen (60,0 (WD, €)ElK] — naw?), [K]) &lK])

keB;
— ay;n - sgn Z yjééi)’j [((w?(j),,,yj) — aa’((wéti)’r,éj))} - B)‘Wz(yi),r[l] , (B4
JEL:
t . . eFi (Wixq)
where EEZ) = 1,—; —logit; (F,x;) and logit ; (F, x;) = Zke{_:l} W
B.1.1 Proof Sketch for Theorem 4.1]
In this section, we present the proof sketch for Theorem @41} . We consider 3 = O(1), which is the

large-batch setting.
Lemma B.1. Given the training datasetS if 5 =0(),n=1/poly(d)and0 < X = ool %a,/n),
then for any t < Ty with Ty = O(

) and any i € [n],

nsop
(Wi vy < (wl jv) +0m), (witD, &) = (w),. &) + B(nsay).

We note that the above lemma is equivalent to Lemma 5.2 in (Zou et al.| 2023b)), which enables us to
directly extend their results for full-batch Adam to the large-batch regime. The remainder of the proof
proceeds in the same way, as the core theoretical framework remains invariant under the batch size
scaling & = ©(1). Recall that the condition so;, = w(1) implies that noise memorization outpaces
feature learning and we have ¢; , = ©(1) throughout Stage I since the outputs are small. As a result,
after a certain number of iterations, the direction of feature learning is reversed as indicated by the

update rule in Equation Specifically, the noise-driven term o’ (< Wi £1>) becomes dominant,

satisfying ao’({(w;’ T,&)) > o' ((w Stz, yivy) + n)\|w(t)[1]|- By the end of Stage I, the model’s
feature learning direction has been inverted, while noise memorization reaches a quasi-stationary
state. In the subsequent regularization phase, weight decay drives the model toward convergence.
However, it lacks the capacity to eliminate the memorized noise. Consequently, the model fits the
feature noise —ayv and converges to a local minimum that preserves the patterns acquired in Stage
I, ultimately leading to poor generalization performance.

We observe that under large-batch setting, the optimization dynamics of Adam closely resemble those
of the full-batch setting. This similarity arises because the algorithm traverses the entire dataset within
few iterations, resulting in nearly identical momentum estimates and, consequently, comparable
training dynamics between large-batch and full-batch regimes.

We next consider the mini-batch setting, which yields conclusions that differ fundamentally from
those in the large-batch setting.

B.1.2 Proof Sketch for Theorem [4.2]

In this section, we present the proof sketch for Theorem We consider % > O(log e_l), which is
the mini-batch setting.

26

Lemma B.2 (Stage D). Given the training dataset S, if % > O(loge™'), n = 1/poly(d) and
0 < X=o(cl ?0,/n), then for any t < Ty with Ty = O(n) and any i € [n],

(t+1)-2)) n
e

7T

(w'l) &) < B(nsay).

2,77 1

Compared to Lemma[B.I] Lemma [B.2]reveals fundamentally different optimization dynamics in the
mini-batch regime. In Stage I, feature learning advances steadily—since ¢; ., = ©(1)—while noise
memorization remains at its initialization scale. This divergence arises because mini-batch sampling
requires many more iterations to traverse the dataset: dense, shared features receive consistent gradient
updates and resist weight decay, whereas sparse, uncorrelated noise is continuously attenuated. As
features strengthen, network outputs grow, the loss gradients diminish, and weight decay takes over,
marking the transition into Stage II. We now show that the structures acquired in Stage I persist
throughout this regularization phase.

Lemma B.3 (Stage II). Suppose the same conditions hold as in Lemma[B.2] Fort > Ty, j €
{£1},r € [m], i € [n], let 7" = argmax, ¢y (wﬁ,jv), then (w](2 ,jv) = ©O(1) and

<W1(Jt1),ra &) < é(TISUp)-

This lemma follows because, once feature learning has increased accuracy and reduced gradients,
weight decay takes effect but cannot reverse the established feature alignment; finally the model
converges to a local minimum that preserves the patterns learned in Stage 1.

Lemma B.4 (Convergence). Suppose the same conditions hold as in Lemma[B.2land[B.3] if the step
sizen = O(d_%), then for any t,

E[L(WOD) — LW®)| < =9 VLW O)|l1 + B(s%d).

Combining Lemma and we observe that the model successfully learns the true features
and eventually converges to a local minimum with infinitesimal learning rate and T' = poly(n)/n,
retaining strong generalization performance.

B.1.3 Proof Sketch for Corollary 4.3

We next show that if the weight decay parameter satisfies A = w(o(_2), then the learning dynamics
of Adam are effectively suppressed. This implies that the effective weight decay for Adam is of the

order o ~2, which is significantly smaller than that required for AdamW, as will be discussed later.

Corollary [4.3] formalizes this observation by showing that if the Adam weight decay parameter

satisfies A = w(o{ 72), the training process becomes stagnant and remains near the initialization.
This corollary follows directly from the proof sketches of both large-batch and mini-batch Adam. By
Lemma@], we know that at initialization:

(W V) = O(a0), (W, &)| = O(5 20,00 + aco) = (s 20,00), W'\ [k] = O(00).

Then, from the update rules given in Equations (B.3) and (B.4), we observe that the updates are
dominated by the weight decay term, i.e.,

AW 2] > o' (W, yiv)) + ao’ (W), €3)),
and
AwO k]| > o (w0, €)) - &lK],

due to the condition A = w(0872). As a result, the learning dynamics are overwhelmed by the
regularization term, preventing meaningful updates. Consequently, the model parameters remain
close to their initialization throughout training. We formalize this in LemmaB.5]

Lemma B.5. Suppose the same conditions hold as in Lemmaand ifA= w(agfz), then
t
w5 v)| < B(o0),

|(wi), €] < B(s2ay00).

27

B.2 Proof Sketch for Stochastic AdamW

Motivated by the similarity between Adam and SignSGD and to better illustrate the core idea,
we present the dynamics of feature learning (w ., jv) and noise memorization (wy ', &) under
SignSGDW. The detailed derivation of update fjormula is deferred to Appendix [A] However, we
emphasize that there are key differences between AdamW and SignSGDW.

(t)

In SignSGDW, due to the presence of the sign operator, the weight decay affects <Wj,r> jv) only

after it grows beyond a certain threshold and similarly for (wyt r,&i). In contrast, for AdamW,

weight decay becomes effective once (T, jv) or <w?(,,)7r7 &) reaches a level where the gradient

magnitudes become sufficiently small. At tfus point, the update is normalized by the stablhty constant

¢ and dominated by the weight decay term, which causes both (w ¢ ,),, jv) and <wy1 &) to cease

increasing. Besides, as the lemmas in this section are simplified 1nstances of those presented in
Section[C.2] we omit them for brevity. For more details, refer to Section

=(1-) w§f,2,jv> —-n- <sgn (9?}) »J'V>

= (1=) (Wi, jv) + jn - sen (Zym(“[((wil)ev)) = ao’({ §'*3,sz>>}>, (B.5)

<n

=(1-n) W;S?,m&> -n- <Sgn (9152) ,€i>

keB;
n
t
— ay;n - sgn <Z ylé()z [/(< l(,i)r,yz) — aa’((wé’i%,{ﬁ)})) (B.6)
i=1
(t) L (Wix;)
where £} == 1,,_; —logit;(F) x;) and logit,; (F,x;) = S, R

Moreover, we should note that the duration of Stage I under SignSGDW differs markedly from that
under SignSGD, owing to the decoupled weight decay mechanism. During Stage I, model parameters
grow unchecked by gradient-based regularization, allowing features to accumulate strength until the
decoupled weight decay term begins to exert significant influence. Once this threshold is reached,
training transitions into Stage II, in which weight decay counteracts further parameter growth and
stabilizes the weight norms.

B.2.1 Proof Sketch for Theorem [4.4]

In this section, we present the proof sketch for Theorem- 4.4, We consider 5 = O(1) or & = o(s0,),
which is the large-batch setting.

The following Lemma B.6|characterizes the duration of Stage I in the large-batch SignSGDW setting
and provides upper bounds on feature learning and noise memorization.
Lemma B.6 (Stage I, pattern learning). Given the training dataset S, if & = ©(1) or % = o(s0y,),

n=1/poly(d), A = ﬁ(%z A1) and X = O(1), then for any t < Ty with Ty = 6()\%),

(t+1)-2)) n n
W)) < Wl v e)

wiTVE) gy = Wl E) &) + B(nsor).

Since in the large-batch regime % = o(soy,), Lemma implies that noise memorization accumu-
lates faster than feature learning. At the beginning of Stage I, feature gradients dominate because

28

a’((wg(,?,r, Yivy) > aa’((wg(,ar, &), given a = o(1) and negligible weight decay influence. After a
certain number of epochs, the noise term grows until ao” ((Wg(fi),r7 &) > o ((wg(fi),r, y;v)), at which
point feature learning reverses and eventually flips direction. Lemma [B.7below provides a precise
description of this transition.

Lemma B.7 (Stage L, fitting feature noise). Suppose the same conditions hold as in Lemma|B.6} if

(0% > @ ((p)) l‘/’lenforanyt S [TT-,TO] Wlth T = O(m) S TO,

(wlB) vy = v e).
and at epoch Ty, we have (a) W(> B)[l] = —sgn(j) - Q1L/N); (b) w T° B)[k] = sgn(&;[k]) -

Q(WA) or +O(n) for k € B; with y; = j; (c) W(TO B)[k} = +0(n) otherwzse.

Lemma implies that, by the end of Stage I, the model has fitted the training noise. The
following Lemma [B.8|shows that these pattern persist throughout Stage II, ultimately leading to poor
generalization.

Lemma B.8 (Stage II, preserve the noise). Suppose the same conditions hold as in Lemma|B.6|and|B.7

fort > Ty, j € {£1},r € [], i € [n], let r* = argmax, ¢, (w?(ﬁ)m,&), then <W](3,] v) =
Py t Bso,
~6(1/\) and (w),... &) = 6(752)

The following Lemma [B.9] prove the convergence under certain conditions.
Lemma B.9 (Convergence). Suppose the same conditions hold as in Lemma|B.6| [B.7)and if the
step size satisfies 1 = O(d~'/?), then for any t,

E[LWD) — LW)] < | VLWO)||y + B(5/24).

Combining Lemmas and we observe that, with an infinitesimal learning rate n and T =
poly(n)/n, the model ultimately fits the feature noise and converges to a local minimum, resulting in
poor generalization performance.

B.2.2 Proof Sketch for Theorem 4.3

In this section, we present the proof sketch for Theorem. We consider 5 > O(n'/2 vloge™t)
and % = w(s0,), which is the mini-batch setting.

The followmg Lemma|[B.T0characterizes the duration of Stage I in the mini-batch SignSGDW setting
and provides upper bounds on feature learning and noise memorization.
Lemma B.10 (Stage I). Given the training dataset S, if %= > ©(n'/? Vloge™) and % = w(soy),
n = 1/poly(d), A = ﬁ(%Q A1) and X = O(1), then for any t < Ty with Ty = O(Ann)

Wl vy = (P

7,7

)+ wiB) ey < (witB) &) + B(nsoy).

o

In the mini-batch regime, % = w(s0,), so feature learning outpaces noise memorization—unlike in
the large-batch case. Consequently, noise cannot reverse the feature learning; instead, features are
learned continuously until decoupled weight decay intervenes. Noise memorization also grows until
this point, but because noise is both sparse and independent, it accrues only during a few iterations
per epoch and is concurrently suppressed by weight decay. Hence, both feature learning and noise
memorization reach their peak at the end of Stage I, after which weight decay governs Stage I1. The
next Lemma[B 1Tl formalizes this behavior.

Lemma B.11 (Stage II). Suppose the same conditions hold as in Lemma[B.I0] for t > Ty, j €
{£1},r € [m],i € [n], let r* = argmaxre[m]<wj(4?7jv>, then (w ()*,jV> = O(1/A) and
<W7(/i)ra€z> < é(%)

The following lemma establishes convergence under the specified conditions.

Lemma B.12 (Convergence). Suppose the same conditions hold as in Lemma[B.10\and|[B.11] if the
step size satisfies 1 = O(d~'/?), then for any t,

B [LWED) — LW)| <~ VLW D) [y + 6 (%),

29

B.2.3 Proof Sketch for Corollary 4.6
By Conditions[A.1]|and along with Definition[3.2] we know that d = poly(n), and hence
1
q—2 _ ;
oy =0 <d(q—2)/4> , withqg > 3.
This directly implies that the effective weight decay parameter for Adam satisfies
— . [B?
Adam ~ 08" % < min {n, 1} ~ A AdamW .

This completes the proof.

C Proofs

First we give a general upper bound of the moving average in stochastic Adam and stochastic AdamW.

Lemma C.1. Let m be the first momentum estimate, v() be the second momentum estimate at

the t-th iterate in the update rule of stochastic Adam or stochasttc AdamW. Then for all j € {£1},
r € [m]and k € [d), if B2 > B3, B1, B2 € [0, 1), we have

(t) [k]
(t)
VVir
Proof of Lemma|[C.1} Let us expand the moment estimates

m{)[k] = il VK] + (1 B1) - o), (K]
= 2/31 L9y),
vilk 1:5# DI + (1 - B2) - gi") [K]?
_2521—& o) k2.

T7=0

t1-p1)]? o
Let {22 : 22 = %} be a convergent series since 32 > 37. Then we have
2

t

)
2
(Zﬂfl_ﬂl gt T_]r[])
2
Zﬂl e =h [k«zT)

t—1
< Z [B1(1;2 EN)i .gt(t_i,?,r[kP) : (sz)
=0 o 7=0
t—1
=851 B2)- g7 K- (1)
7=0

= Vi [kl - ©(1),
where the first inequality we use Cauchy-Schwartz inequality and the third equality we use the fact

o [Bta-8D]" . .
that z; = “BI(i=p,) s aconvergent series. So we have
2

mf | _ i) _
VYO €] VK

30

C.1 Proof of Stochastic Adam

First, we try to approximate the update of stochastic Adam to sign update since the similar perfor-
mance between Adam and SignGD (Bernstein et al., 2018}; Balles and Hennig, [2018}; |Zou et al.,
2023bj; [Xie and Li, [2024; |Li et al. 2025)).

Lemma C.2. Consider the update of stochastic Adam in (3.3). Let W) be the weight at the t-th
iteration. Suppose that (ngl, YiV), <W§2, &) = O() forall j € {£1}, r € [m], i € [n] and
B2 < Bo. We have the approximate update rule for each coordinate weight as follows:

o For k = 1, we have either |g,§tj)r[1]\ < (:)(77) or

t
m{)[K]
v k] + €
Jr
s Foreveryk € Bi,i €Ly, T €Ty :={m0+i -5 :i¢€ {O}U[MLB — 1], 70 < &}, where 1o
represents the number of iterations away from the current iteration t, coordinate k is affected by &;
sampled at the iteration t — T since the moving average, and we define T = ©(log(An) 1)

- If 5 = ©(1), for any 1o < %, we have either

98,5)| < 8 (B sy €]+ w2 1k])

t—T70,5,7T N
or
(t)
(t’)’ = sgn (gt(t_)TO,J,T[]) o(1)
vj’r[k;] + €

- If & > O(log(An)~t) = O(1), for 7o = O(1) such that B7° = ©(1), we have either

9175 1| < © (B~ nsa)] 4+ w1k
or
®
(t])' = sgn (git_)707j,r[k]) -O(1).
v [k] +e

For 79 > ©(log(An) 1) such that 52%0 < O(An), we have either

VAL

[witlikl| < ()

or

t
- = sgn (w§73[1@}) L0(1).
vkl +e€
* For the remaining coordinates k # 1 and k ¢ B;, i € Ty_.,, 79 € {0} U [T], where Ty represents
the number of iterations away from the current iteration t, coordinate k is affected by &; sampled at
the iteration t — Ty since the moving average, and we define T = log(\n)~'. Then we have either

19 k]| < ©(\) or

31

Proof of Lemma|[C.2] Let first focus on the first momentum estimate,

m'!) [k = 5m“ DIk + (1= 81) - g (k]

_Zﬁl 1_51 gt T,J'r‘[]

Zﬁl 1/81 gt T,J’l‘ Z 61 1_61 gzgt‘r,T])r[]

T=T+1
_Zﬂll_ﬁl gt T]r[]iO(An)

where the last equality we select 7 = O(log(An) 1) such that Zi:fﬂ BI(1—=p1) = ()\77) and

|€t(t_—7—7'j)7.[]| = O(1) for all k € [d] by Lemma since the facts that <W§t3,ylv) (w;. r,&} =
O(1).
Similarly, for the second momentum estimate,

t t—1

vk Zﬂg SRRk

t—1 t—7
= Zﬂz 2) - i) (k) + Z B3 (1= Ba) - g7 [K]?
T=7+1

_Zﬁ2l_ﬁ2 gt ’Tj’l‘[] :l:O(An)

Here we use the same 7T because we can always reselect 7 of smaller one to larger one, and the
absolute value of the tail will not increase. Then we have

ml)[k] ST 11— B) g) k] £ O(\)

WO e /T 0BE(- Ba) - g5 k2 £ 00w

since € = ©(An). Now we want to use sign update to approximate (C.I). First, we should note that

once the signs of g,g’:’Tj)’T[k] for 7 € [0, 7] aligned, (C-I)) can be approximated as sgn(gt(’t])-’r [k])-©(1),
since

; (C.1)

252 1= Bo) gl R < 30 B (1= o)t (gl

7=0

)

1
Zﬁzl—ﬂz gl Ik F(1— Bt

el D

7=0

Recall the gradient of stochastic Adam given in Lemma we want to approximate g(t__? [k] to

t—T1,9,1
gt(t_)ﬂ o [k], such that we can use the current weight to approximate sign update. By Lemma the

upper bound of each coordinate in one step is © (7). Then for 7 € [t — 7, t], we have

‘(§t7)«7yl > < §T2ayiv>‘

k k
<Z’ (+1)7y2 < §‘7r)7yiv>‘

< @(UT)- (C2)

Similarly, we have

[w,€) — (w7, &) < O(r7say), (€3)

32

‘w@] — w7 [k]’ < o). (C.4)

We have
‘I’}(VV(t)7 Xi) — FJ(W(T), Xi)

<[(i) o (tw2) o+ 3 (1wt) o (52, 0)

si@nwﬁmM)] + 3800wl €0 — (w2 6

(m
= 9(777"50},), (C.5)

where the second inequality we use the convexity of o(-) and the facts that \(w; T, y;v)| = ©(1) and

K¢ §t2,£1>| = O(1). The last inequality we use . = O(1) and sop = w(l).
Then we can approximate é) to € , in the gradlent

F_; (W) x)

g(T) ¢
Doke{-1,1} eFk (WD i)
o (W %)+ (n7s0,)
T B (WO)8 (n7s0y) 1 oFy (WO x,)£6 (n7s0,)
= sen(£1)) - 0(|\))), (yi =)
qn e

Ji F, (W) x;
D oke{-11}€ i)

F;(W® x)£0(n7sop)

—e
eFi (WO x))£0(7s0,) 4 oF— (WO x;)+0 (n7s07,)
= sgn(()) - 0(141))), Wi # J)

where we use the fact that ©(n7s0,,) = o(1) and (C3). So we have
67 = sen(3) - (L)),

forall 7 € [t—7, t]. Further, by (C.2), @)andthefactsthatK ,,,y, v)| = O(1) and |(w jT,EzH =
O(1), recall o(z) = max(0, x)?, we have

(00 (w7, yiv))

<N“«2M»+w|<m

=sgn(t}") - 0(16)]) - o' (W), yiv)) + ©(1£1)]) - 6(n7),

(00 ((w'7) yiv)

> (7)o ((wi'), yiv)) — 657 - ()

=sgn(£7)) - 0)]) - o' (wil), yiv)) — ©(17))) - O (7).

33

So we conclude that

(5700 (wy') wev)) = sean(653) - ©(1451) - o' (Wi yiv) £ O - O(r7). (€O
Similarly, we have

(570" ((wiT), &) = sen(£5) - ©(16531) - o' ((wi), &) £ OGN - O(rso). (C7)
Now, we have all the tools we need to approximate gt(t:TTJ)T [k] to gt(i)ﬂ ;.+1k]. Recall Lemma
substitute (C-4), (C.6) and (C.7) into gt(t__:])r[k], we have
e Fork =1,

g, =e(gl, 1) + (> w(“) O(nr) £ O(\y7). (C8)

1€ELy_ 1

e Forallk € B;,i € Z;_,,

o0
g K =0 (g, k) + 0 <| 1 |> O(n7say) + (7). (C.9)

e Fork#1landk ¢ B;,1 € Z;_,

KEVELS

9l 1k = 0912 [K]) = ©0w7). (C.10)
Plugging (C.3), (]@[) and (C-10) into (C-T)), with facts that 7 = ©(1), A = o(1), |<W§t27 N =06(1),
I{ Stz, yv)| = O(1), |€(t)| =0(1),e =0O(\n) and Lemma we have

e Fork =1,

_ AN (11 £ 00w)
VT 85— B2) - g 12 £ O(w)

570870~ 50)- (807, 11) £ 0§ Sicn, 1471) 000 £ 0T)) £ 5a)

\/ 50850 - (0(o,, 1) 204 Tier,_1491) -Om) = 0007+ Gm)
ST o811 = 8- (0o, 11]) £6(r)) £ 00w)
S0) (O 1) £80m) £ 50
6 (91, [11) + B(n7) = O ()
V(6 (s, 1) +66m)" + 60
(gt 1) £6m)
o(lgf), [1]1) + &)

34

* Fork € B;,i € I;_r,, 7o € {0} U [7T], where 7 represents the number of iterations away from the
current iteration ¢, coordinate k is affected by &; sampled at the iteration ¢ — 7 since the moving
average. We note that if the number of iteration in one epoch is less than 7, the moving average

will use some sample x multiply times. We denote 7y, := {ro+i- 5 : i € {0}U [% —1],70 < 3}
as the timestamp set involved using noise &; (i.e., i € Z; - forany 7 € Tx),and k € B;, 70 < 3.

If & > 7, in this case we have 73 := {70} for any k € B;, and &; was used in iteration ¢ — 7.
Then we have

m{) [k
vi[k] + e
Y810 B) g K £ O
V0 B3 (1= B) - o))2 £ O ()
_ Yren AT 8) 6L K+ oy AT - B i) (K] £ OQw)
V0851 - Bo) - gf) 1K £+ O ()
_ Yren B0) + (O(1) — 3. B) - O(9) £ O(\)
V0 B3 (1— B) - g [k = O ()

P (0(6i,) 2 0(“51) - Olrrsor) = O0N7) — OOWLIED) + 0@
VT 851 = B2) - gf) K2 O ()

where the third equality we denote gg) k] = @(gFT’ ik £ O(nT) = 0(Aw

TjT

© (A7) as g for 7 € {0} U [T]\ 7. For the denominator, we have

JZ@ (1 B2) - o) (K

<3 BF -)t ol

7=0

=5, (e(912, 1K) £ © (";)') - Olrosa,) + O(Nr7) @(Mw;fz[km) +6/(g)

JZ@) -9l K2

l t—1
Wzﬁ’z LBt ol TR

1 o f(tz) ~ _
Rk ((Jot0 8]) = @< B ') - O(nmosay) = O(y7) — O(AwS) [k m) +O([3).
So we have

m{) k]
vk + e

)

6 (e ((1982, 5o k11) = @(ns%ﬁ;t;) +6(\n) — O(Aw [k 1|>) + 6w k]]) £ 6 ()

1 (62, 11) = 6 (=5) £ 60w) - B0) +BOWLIK) = E0w)

)

35

where we use the fact that e = ©(An). Now we handle 57° and 62%0 with more care. First we have
B < 857 10", ;M = O(1) and m < 3.
Then if 2 = ©(1), we have]° = 3,7 = (1), then
) 1]
Vi) + e

]T

(o0) 6

O (198" 5 1K) (')ieun)+ O(AwlH])
)
L)

(:)(1£(t) /(< (t)

L6) £ 6(w) + 6w)

J”’

0 (|- 5o ((wit) €) i@(”“’”“) 80w = w1k

If 2 > O(log(My) 1) = O(1) such that 52"‘% < O(An), then for 7y = O(1)
m|")[K]
v®

]7"

& (~547'((§t2,£7>>~si[k1)ié<W> £ B0 £ BOw)

[k] + €

~ 50, Z(vtz
© (‘ Fo (Wil &) -Si[k]D i@("g“) +6(\n) £ O(Aw\ [k]|)
For 7o < %, 70 > O(log(An) ") such that 52%0 < ©(\n), we have
mi)[k _ S(wlK]) + O0w)
|

VO +e OUAWEID £ 6(hn)

since \gt(t_)mj,r[k] = 5(1), An = o(1) and nso, = o(1). We claim that the intersection (gap) of
O(log(An)~1) and ©(1) is very small for ©(log(An) 1), that is, considering the intersection part
clog(An)~1 for a sufficiently small constant ¢ > 0, the impact of the intersection (gap) is very
small, since clog(An)~! = o(log(An)~1). Therefore, for most of 79

mik _ O0w[k) £ 6(w)

VO +e OUAW K] + 6(n)

e Fork#landk ¢ B;,i € Z,_,,7 € [0, 7], recall gftjmm[k] =)\W;TZ[k;], we have
m}) K]
vk + e
ST BIA =B g I £ O0w)
ST B30 - o) o) K £ O)

ST BIa-5)- (0 (gt‘”m[]) £ 00wm)) + O0w)
\/ET 0550~ 8- (6612, ;, 4]) + ©0wm) "+ O(w)

36

(gt”[k]) +0(\n)

O(1g:5. [H1]) + O ()

_ OWIIR) £60)
|

This completes the proof. O

C.1.1 Proof of Theorem [4.1]

Lemma C.3 (Stage I). Given the training dataset S, if % = ©(1), n = 1/poly(d) and 0 < A =

o(ad” Up/n) then for any t < Ty with Ty = O() and any i € [n],

1
ns80p
e I A O P
(w;, 7 0v) < (wj ., 5v) +O(n),

]ﬂ”’

(w ytl-&;l’ i) = (w Q(Ji),rvsi>+é("750p)'

Proof of Lemma|C.3] By Lemmal|C.I] we have

(t)
(wi vy < (wil) vy = <(j)r,jv>
Vj,r + €
< (Wi vy + o).

JT’

Then, we prove <wz(,fr1), i) = <Wz(;?,r, &)+ 6(nsap) by induction. By Lemma we have
3 0
(w3l v)| = O(00). [(w)i).&0)| = O(s *opo0). wiil[k] = B (o),

75T

which imply that |€§?i)| = O(1). Additionally, we have s = oo™) and 0 < A = o(o 0, /n).
For a sufficiently large fraction of k € B; (e.g., 0.99), we have |[B~ 1o~ '&;[k]| > O(nB~ lsap\é(o) |+
)\|w(0)[k]|) for i € Z,. Therefore, by Lemmaand we have

sen (00 (w00 611

= —sen (K0 (w2 €610
= —sgn(&l[k])- (C.11)

Recall 2 = ©(1). By Lemma[C.2| we have the following update according to (B4), (C.11) and
Lemma i:: [l

<Wy1,)rv €z>

m
< 3(;(3,7"?€Z> T];ajv
Vinr +e€

> (wid &) +0(n) - Y (sgn(&ilk]), &) — O(na) — O(nsoy)

keB;
— (w0, &)+ B(ysar).
For general t < Ty, assuming (wg(fi),,-, &) > (Wg(,i -, :) 4+ ©(ns0,). Then we have

(Wi, &) = (Wi &) + O(insoy) = B(s'2a,00 + tysa,) < O(1).
By Lemma|[C.I] we have

(Wl Tk < WV 1K)+ ©() < (o0 + tn) < B(1).

37

Sowehave\é(t)| =0(1). Besides, we still establish the condition | B~ (w (O)[k’}—f—tnsap)q Le (k)| >

O(nB- Lsopll (O)|+)\|W D [k]+tn|) since 0 < A = o(c8™20,/n). Then we have (C.11) for . Follow
the same proofz above, we have

< (t+1) >

y‘ur) St

m®
=(w y1,7’£1> <:Ta.7v>
()_~_6

> (wil) &) +0(n)- > (sen(&ilk]), &) — O(na) — O(nsay)
keB;
= (w(l),, &) + O (nso).
The term O(nsop,) in the above inequality arises because, for coordinates that |§;[k]| < O(op),

we cannot exploit sign information. Instead, we directly apply Lemma This completes the
proof.

Lemma [C.3|coincides with Lemma A.3 of (Zou et al.,2023b), allowing us to transfer their full-batch
Adam analysis to the large-batch case under & = ©(1). Therefore, the remaining proofs are omitted
for brevity, as they coincide with those in|Zou et al.| (2023b).

C.1.2 Proof of Theorem [4.2]

Lemma C.4 (Stagel, nearly zero noise memorization) Given the training dataset S, if % B >
O(loge™), n = 1/poly(d) and 0 < X\ = o(al >0, /n), then for any t < Ty with Ty = O(%)
and any i € [n], suppose (wg(,?,r, yi - v) > —O(00), then

(Wil &) < O(V30p00 + a).

Proof of Lemma By Lemma [A3] at initialization

< MRS £z> < 6(V50,00 + a0g) < O(vs0,00),
since @ = o(1). Lemmamensures that stochastic updates slow down noise memorization—allowing
<W§,t27 €1> to grow for only

o(log(/\n)_l)

iterations after &; is sampled—while in the remaining

= —o(log(A) ") > oftog(\))

iterations, weight decay dominates. In particular, whenever |w []| > (1) we have
1
WS =] = sen (k) - O

Concretely, if &; is sampled at iteration 71 of the first epoch, then

(Wit &) < (Wi, &) + B(nsay) < B(vs0p00 + 150,) < O(v/5 0,00),
where we directly bound the update by ©(1) according to Lemma Over the next o(log(An)~1)
iterations the noise memorization (vvj(tg7 &;) increases by at most

o (log()\n) - 1) -O(nsop),

and thereafter weight decay decreases it in each of the remaining % — o(log(An)~1) steps. Hence,
we can calculate the maximum value of the noise memorization

< n/B) €z> < max{é(\/gapao), é(\/gapgo +a) + @(nsap) [o(log()\n)_l) - %]}

< é(\/gopao +a),

since n/B > O (log(An) ') and &,[1] = —ay;. This is true in every epoch. So we complete the
proof. O

38

Lemma C.5 (Stage I, feature learnmg) Given the training dataset S, if % > O(loge™!), n =
1/poly(d) and 0 < X\ = o(ol >0, /n), then for any t < Ty with Ty = O(n) and j € {£1}, we have

(Wit vy = (wlf) vy + e(m).

Proof of Lemma[C.3] by Lemma[A.7} we have

sen(gs), —sgn(zyl Do (W yiv)) —a Syt ({ M,s»)—BAw;?:[l]).

i€y i€y

Then with Lemma and facts that E(»O») =0(1), by Lemma we have

yil o' ((w ”,yl v)) = sgn(j) - O(ag),
ayil') o' (W), €)) = sgu(j) - O(a(s"%0,00)17Y),
)\W(O)[l] =4o(cd " 0p).

(0)

Substituting them into g 5 .,

with a = o(1), 520, = O(1), A = o(ad 2a,,/n), we get
§71)) = —sen(j).

0 . X
sen(gs),) = —sgn(j - O(o

By Lemma and n = o(od™"), we have
) m®
2o = e)

= (W, jv) +j - sgn(j) - ©(n)
= (w'%, jv) +6(n).

Now suppose that the equality holds for iterations 0, . . . , ¢. Then (w 5 27 jevy= 6(1), (wy,r, &) =

é(nsop) = O(1). Therefore, Egz = 0(1). By Lemma | we have
w10 (w “3,%)) = sen(i) - S((o0 + 1)),
a0’ (w}1). &) < sen(j) - Oa(s 2oy + tn)7),

Aw§f2[| = *o(o§ *op(o0 + tn).
Substituting them into g() ,with a = o(1), s/20, = O(1), XA = o(cd 20, /n), we get

sgn(gﬁf},» = —sgn(j - O(of ")) = —sgu(j).
By Lemma|C.2|and 77 = o(cd™"), we have
. (t)
t . t . N .
(Wi vy = (wil) jv) = <j 2 -V>
0 .
= (W', 3v) + - sen(j) - ©(n)
= (wl") jv) +0(n).
This completes the proof. O

Lemma C.6 (Stage I, general dynamlcs) Given the training dataset S, if % > ©(loge '), n =
1/poly(d) and 0 < X\ = o(cd >, /n), then for any t < Ty with Ty = O(n) and any i € [n],

(Wit g vy = (wll) jov) 1 e

(ijl),&) < O(V/50,00 + a).

n
§)7

39

Proof of Lemma|[C.6] We prove the claim by induction on ¢, using Lemma[C.4]and[C3] Att = 0, by
Lemmal[AZ3] at initialization we have

(w2 jv)| < O(av),

and hence © _
(w;., jv) = —©(00).
Therefore Lemma[C.4]holds at ¢ = 0. Suppose Lemma[C.4]and [C.5|for some ¢ > 0, then

(wiFV jv) > —6(00)

by exactly the same proof used in the proof of Lemma|[C.5] This lower bound remains valid at step
t + 1. Consequently, Lemma@continues to hold, and the induction carries through all iterations.
This completes the proof. O

Lemma C.7 (Stage II). Given the training dataset S, if % > ©(log e 1), n = 1/poly(d)
and 0 < XA = 0(0072Jp/n) then for any t > Ty, j € {xl},r € [m]|,i € [n], let
P = argma, e (Wi, V), then (wil).. jv) = (1) and (i), &) < O(ysa, + a).

Proof of Lemma[C.7} We begin by establishing the bound (Wi o §) < @(nsap + a). According to
Lemma[C.4} during the first Tj epochs, the number of iterations in which weight decay dominates the
update dynamics is at least

To - (% -0 (log()\n)_l)) .

In each such iteration, the contribution from weight decay is lower bounded by é(nsap), leading to a
cumulative effect of

5) (To . (% -0 (log()\n)fl)) ~1750p) =0 (%) .

This term is asymptotically larger than é(\/gopao), ie., nso,/B = w(y/so,00). Therefore, we
conclude that over the first T epochs, the weight decay effectively suppresses noise memorization,

ensuring that < Wi éz) <(w]tz, —ay;v) + é(nsap) < @)(nsap + «) holds.

Next, we focus on <w()*,]v> = O(1) for r* = Argmax, ¢, (wﬁfﬁ,jv). By Lemma we
know <w(7?*)7] v) = ©(1) and éﬁ") = O(1). Fort > Tj, We show if (w (2*73 V> <
(L log ((A)~* — 1)), then for (x;,y;) with y; = 7,

F,j(W(t),xi)

F~(W(t),x7;)
2jef-113€"

/D —

1
e exp [Ty (w2, 5) + o (i)) — o (W v)) = ol &)
1
b exp [o). v)]
1
1 +exp|m (s log (M)t =1))
— o).

Y

Q=

.q:|
where the inequality we use < W T, 52) < (nsap +) and so;, = o(1), o = o(1). Then we have

Sgn(Z y’be(t I §t2‘7 y’L —« Z yl t) /] T €’L>) - B)\W_ETZ‘ [1]>
1€Ls 1€ZLy
qg—1 1

_ sgn(sgn(j) A (7711 log (\)~! — 1)) T (771110g (N = 1)))

40

= sgn(j),
where we use Lemma <w§t2, &) < é(nsap +) and @ = o(1). So we have

(Wi vy > (Wl vy o).

r*

If <W(-t) j-v) >log(A\~2), then Egtl = o(\), then for (x;, y;) with y; = 7,

J,rr
- eI
)t] (1) x.
! Zje{—1,1}€FJ(W)
_ 1
L exp [78, o((wi jv) + o (Wil €0) = o ((w) . jv)) = o((w'') . €)]
< 1
Cl+exp [m(l —a)- <log()_%))q}
1
< —q
exp [(log()ﬁﬁ)) }
1
< q
<1
A
=0

Then we have

Sgn<2yz o (W yv)) —a Dyt (JT,€Z>)—B>\W§-2[11>

i€y 1€ZLy

B S (e R

= sgn(sgn(i) Ao (log(A)) =+ Alog()\é)>

Jr
= —sgn(w})[1])
So we have
1)
(wii g v) = (Wil g v) =).
Therefore, (wj(fz*, j-v)=0(1)fort>Ty = % This completes the proof. O

Lemma C.8 (Convergence). Suppose the same conditions hold as in Lemma|[C.6land[C.7] if the step
sizen = O(d’%), then for any t,

E[L(WOD) — LW®)| < =9 VLW O)|l1 + B(n%d).

Proof of Lemma|[C.8] We aim to prove the convergence of the objective function under the Adam
optimization algorithm in a non-convex setting. Recall the loss function for each data point ¢ is

1)
€xp (Fyz (W’ Xi) - F—Z/i (W7Xi)) ’

Li(W) = log (1 +

41

where W represents the parameter matrix, x; is the input data, y; is the true label, and F); (W, x;)
are the logits for class 7. The total objective is:

1 n
=~ D Li(W) + AW,
i=1

with A = o(1) as a small regularization parameter.

Since L;(W) is non-convex, we exploit its smoothness with respect to the logits [F; (W, x;)];.
Specifically, L;(W) is 1-smooth in [F;(W,x;)]; due to the properties of the cross-entropy loss.
Define:

AFjJ = Fj(W(t+1)7Xi) — Fj(W(t),xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W):

OL;(W®)
Li(WOH) — L(WW) <3 —— -~ AF;; + Y _(AF;,)% (C.12)

) y X

This upper bound arises because the second derivative of L; with respect to the logits is bounded

by 1, a standard result for cross-entropy loss. The logits are defined as: Fj(W(t),xi) =
S loe((w](7), yiv)) + o ((gtz, &:))], where Wﬁ the r-th neuron in j-th output of W), 5(2) =

[2]% is a smooth activation function (e.g., with ¢ > 3). By Lemma and [C.1} we have

<W](-7t2,v> < O(1) and (w 52,&) < 6(1), ensuring the local smoothness of o remains O(1) be-
(+)

,y;v) and (w g 2, y; V) (similar for (Wi £1>) Then with Taylor expansion, we have

o((wit,yiv)) = o (Wil yiv)) = (Vaw, .o ((wil) av)), wit) = wih)|

)

tween (W

~ 2
<O(1). H (t+1) _ (0

—= () W],r Wjﬂ“ 2

N m® |
=01)|n- e
O

2

< O(n*d), (C.13)

where the last inequality we use Lemma[C.1] Similarly, we have

(w1, 60) = (Wil €)= (T, (w2, €)W = wi)

<61 - [witr - wi|”
2,7 2
~ wm® |
= @(1) Al - *
(t3+€
2
< O(nd). (C.14)

Summing over r (with m = (:)(1)), we get
AF;i| < [(TwF (WO, x), WO = W) | 4 8(2a). (C.15)

Additionally, | VwEj(W®,x,)|[r < O(1) since m = O(1), (w!'),y;v) < 6(1), (W', &) <
O(1). So we have

|AF; ;] < (:)(nsap +na+n+n?d) < (:)(nsap +nd). (C.16)
Substitute (C.13) and (C.16)) into (C.12):
Li(WEHD) - L(W®) < (VwL; (W), WD W) 1 6(nd). (C.17)

42

For the full objective:

LOWH) = LW®) = = ST[L(WE) = W) AW 2~ [WO))
- (C.18)
Since \||W||% is 2A-smooth and A = o(1), the regularization term contributes:
MWED[E — [WOIE) < 2A(WEO, WD W) 26 (n*d), (C.19)

where the quadratic term is absorbed into é(n2 d). Substitute (C.17) and (C.19) into (C.18), we have
LW — L(W®) < (VLW®), WD — W) L §(2d). (C.20)
Take expectation for the stochastic gradient of both side in (C.20),

E [L(W(t“)) - L(W(t))}

< E[(TLW), WD — W) + E(r%)

<-n-E Z Z ‘gtﬂ . +é(d.n2)+é(ns.n2sap)+é(n2d)
je{£1} re[m]
D> Z |E[a2.] [, + 802
je{£1} re(m

= —n||VL(W“>)||1 +O(n%d),

where we use Lemma|[C.2]that the update aligns with the gradient’s sign for large gradient and the
fact that ns?s, = O(d) and Jensen’s inequality. This completes the proof. O

Lemma C.9 (Generalization Performance of Stochastic Adam). Suppose the same conditions hold
asin Lemma We have the following results for T' = %("), with training dataset S

* The training error is zero: errs (W(T)) =0.

* The test error is near-zero: errp(W(T)) = o(1).

Proof of Lemma[C.9) By Lemma|C.7} we have
Wik gv) =O(1), (w),) &) = Olnsor, + a).
Recall F;(W,x) in Deﬁnltlon with nso, = o(1), a = o(1), we directly have
errs (WD) = B s 1 [F (WD, %) < P, (WD, x)| =0,
since F,(WT) x;) = Q(1), while F_,, (W) x) < O(nso, +). Besides, for test data
(x,y) ~ D withx = [yv7,€7]7, it is clear that with high probability (w'").,yv) = ©(1)

and [(wg(, 2, Nt < é(nsap + a), then similar as training error, we have

Fy(WT %) > o((wih yv)) = Q(1),
while

=" [o((w" o yv)) +o((wh, . €))] < B(ysa, + a).

r=1

Therefore, we have
errp(WT) = B yyop 1 [Fy(wm, x) < F_,(WT, x)} = o(1).

This implies that mini-batch Adam can achieve nearly zero test error. This completes the proof. [

43

C.1.3 Proof of Corollary[d.3]

Corollary .3 follows directly from Lemma [C.10}
Lemma C.10. Suppose the same conditions hold as in Lemmaand if\= w(08_2), then

(§t27jv> < 6(00)7
<Wj,r7€i> < 0(s"%5,00).

Proof of Lemma This corollary is an immediate consequence of Lemmas [C.3] and [C.6] In
particular, Lemma guarantees that at ¢ = 0
0 (0 0
(Wi V)l = 8(00), |(wii), &) = B(s2 3, 00), Wi [k] = O(00).

Since A = w(of ™) Lemma implies that, at initialization, the weight decay regularization term
overwhelmingly dominates the gradient:

MW > o (W yiv)) +ao (W), &),
)\|W?S??T’ | >0 (<W(Or7£1>) 61[]

Hence, by Lemma|C.2} the updates remain in the regularization-dominated regime, and no coordinate
ever grows beyond its ©(cog) scale throughout training. This completes the proof. O

C.2 Proof of Stochastic AdamW

Lemma C.11. Consider the update of stochastic AdamW in (3:6). Let W) be the weight at the
t-th iteration. Suppose that (w j(l,yv), (W (*) &) =0(1) forall j € {£1}, r € [m], i € [n] and

Wi
B2 < Ba. We have the approximate update rule for each coordinate weight as follows:

e For k = 1, we have either |g,§fj) 1] < (:)(77) or
m') [K]

]7

t
vk + €

= sen(g\!) . [K]) - ©(1).

s Foreveryk € Bi,i € Iy, 7€ T :={ro+i-5 i€ {0}U [n/B] T0 < &}, where Tg
represents the number of iterations away from the current iteration t, coordinate k is affected by &;
sampled at the iteration t — T since the moving average, and we define T = ©(log(An) 1)

- If £ <O(1), for any 7o < %, we have either

é%umﬂsé@*m%wm
or
®
m; |k
(;’TH = sgn (git)md, [k]) -O(1).
vj’r[k] + €

- If & > O(log(An)~t) = O(1), for 1o < ©(log(A~'s0,)) such that f]° > o2) we have

either

02, 5. 41] < & (B~ nsor 1))
or

(®
L = s (9,2, 5, 10) -0(1).

v, k] +e

For 79 > ©(log(An) ™) such that 52%0 < O(A?n?), we have
m ') [k] _
=10(An) = o(1).
Vil + e

* For the remaining coordinates k # 1 and k ¢ B;, i € Ty_.,, 7o € {0} U [T], where 7 represents
the number of iterations away from the current iteration t, coordinate k is affected by &; sampled
at the iteration t — 1y since the moving average, and we define T = log(\n) L. Then we have

MO o) =
— =20 — 20(M) = o(1).
VO k] + e

]7"

Proof of Lemma[C.11} The proof is similar to Lemma[C.2] We select 7 = ©(log(\n)~!) such that
Sreri 11— 1) = OO) and S0y BT(1 = B1) - g1, K] = On?).
my')] S0 BT B1) - gl (k] £ O(Np?)

NED O+« S 550 o) IR 4 e+ 002

Recall the gradient of stochastic AdamW given in Lemma we want to approximate gt(t::])r [k]
to gt(tjﬂ i [k], such that we can use the current weight to approximate sign update. By Lemma ,
the upper bound of the normalized moving average of each coordinate in one step is ©(7) since

A = O(1). Then for 7 € [t — 7, t], we have

‘ <Wj('t7)=7 yi") - <W§'Tr)7 y’bv>‘

k k
<Z‘ (+1)7y1 < 3('77«)7yiv>‘

m'F
<Z77)\‘]wyz ‘ 277 <k’,yiv>

Jr
< O(n7). (C.21)

The last inequality we use the fact that (w (kT) ,yiv) = O(1), A = O(1) and Lemma Similarly,
we have

w), &) — (wiD). &)

Then recall the predict function

< O(nTsoy). (C.22)

3 [o () + o (1w 80)]

r=1

‘We have
F(WY x;) — F;(W,x;)

o (o)) = (0| + 30| (w0 €0) — o (w87 0)

1 r=1

O(1) - [(wll), yav) — (wiT) yiv)| + Z@ Jowl &) — wl) &)

NE

%
3

IN

1

ﬂ
I

O(mnTsop) + é(mn?)
— O(n7s0,), (C.23)

IA

where the second inequality we use the convexity of o(-) and the facts that \(W r, y:v)| = ©(1) and

|(w (*) &) = ©(1), the last inequality we use m = O(1) and sop = w(l).

]T’

Then we can approximate é) to é m the gradlent

eF*j (W()xxi)

Y hef1y W)

o) =

45

eF-i (W® ,xi)ié(m"sop)

eFj (W® 7xi)ié(7ﬁ's‘7p) + eFfj (W® ,xz')ié(?ﬁsﬂp)
= sgn(£)) - 0(|\))), (Wi =)

LB (W i)

gi = F (W) x;
D oke{-11}€ i)

_ o Fi(W®)6 (n7so,)

eFj (W® 7xi)ié(7777'30'p) + eFfj (W® ,xi)ié(n‘?sop)

sgn(4)) -0 (|¢))), Wi # J)

where we use the fact that é(n%sap) = 0(1) and (C23). So we have
057) = sen(¢)) - 0(e1))),

for all 7 € [t — 7,¢|. Further, by (C21), (C:22) and the facts that |(w “,,yl v)| = O(1) and
K¢ §t2,£l>| = O(1), recall o(z) = max(0, z)?, we have

()0 (w7 yiv))

< 67 (Wi, yev)) + 16577 - 6(y7)

=sgn(£)) - (1)) - o' (Wi, yiv)) + ©(18))) - ©(n7),

(7)o (W) yiv))

> (7)o ((wi'), yev)) — 657 - (y7)

=sgn(£)) - (1)) - o' (wit), yiv)) — ©(167)) - ©(n7).

So we conclude that

(0" (W) yv)) = sgn(@h)) -0 (1)) - o' (Wl yiv)) £ 0(E)) - O(F). (C.24)
Similarly, we have

(0" (W), &) = sen(el)) - (1)) - o' (Wi, &) £ O(IE))) - O(nsa,). (C.25)

Now, we have all the tools we need to approximate gt(75 TTJ) +[k] to thT’ ;1K Recall Lemma
substitute (C24) and (C23) into g~ TTJ) ,[k], we have

e Fork =1,
(t—7) (t) 1
g =0 1) =6 (5 X 1601 - Owr). (C.26)
€L
e Forallk € B;,i € 7,
(t-7) (* 521 5
gt—‘r?j,r[k] = @<gt—77j,r[‘l€]) +0O (g) : O(W%SUP)- (C27)
e Fork#1landk ¢ B;,1 € T;_,
o) k) =gt Tk =0 (C.28)

Plugging (C26). (C:27) and (C28) into (C-I), with facts that 7 = O(1), A = o(1), [(w''),&)| =
o(1), |(w (tz,yz) =O(1), \E(t)| =0(1), e = O(An) and Lemma we have

46

e Fork =1,

®)

m; (1]

(t) [1] + €

_]T

ZT 061(1_61) gt 7']7‘[]iO(AQ 2)

t—T)
glg 7,7

S s)
S0 BT(L=) ((

[1)2 + e £ O(A2n?)

1) £6(h Sier, . 1471) - 00) £ O0%2)

r

(®)

G- T,3,T

g

\/ZT o301~) (o

I A

G- T,7,T

(t)

t—r1,3,7

1) =04 Ser, 121) -0} + 00

. 10) £ 8m)) = 0(en?)

¢ZT 0851 = 52) - (©(g!

0(g!"),11]) +©

G- T,7,7

) [Diémﬂf+eiéu%a

O(n7) £ O(*n?)

V(6 (s 1) +66m)°
(st 1) £6m)
o(lgi",.011) =6(n)

+ e+ O(A\22)

* Fork € B;,i € Ty_+,, o € {0} U [7], where 7 represents the number of iterations away from the
current iteration ¢, coordinate k is affected by &; sampled at the iteration ¢ — 7y since the moving
average. We note that if the number of iteration in one epoch % is less than 7, the moving average

will use some sample x multiply times. We denote T, :=

{ro+i- % 1]} as the

:ze[n/B—

timestamp set involved using noise §; (i.e.,i € Z;_, forany 7 € Ty), and k € B;, 70 < 5.

If %
Then we have

PUPY:H

> 7, in this case we have T, := {79} for any k € B;, and &; was used in iteration ¢ — 7.

(1= B) - g7) [k] £ O(N2?)

NS

e BT =51)-

U77) TK]2 + e+ O(A21p2

1_52) 9 T,4,T
[K] £ O(A*?)

)

Ge— T,J,7

) \/Zfen A3 (
0. o

1

gt T0,J,T

(t—7)
9t TTL

[k]) £ O(*?)

(t—7)
(1—-7)- [k]2 + €=+ 5()\2772

(t—70)

)

o e

To
1

(94—

(e

(t— TO)

9i— T0,J,T

[£]2) + e £ O(A2n?)
m)i@CW”>)i6u%%

Toj’l‘

(t)

57 (@ ((Igt

Now we handle 5]° and 5270

70
with more care. First we have 8]° < /3,

ok H) i@(W» +ei5(>\2n2)'

(t)

and | [k = O(1).

47

Then if & < O(1), then 5{° = ©(1) and [3270 = O(1) since 79 < . In this case, we have

(t) & msowltl
o O) £ 8

t ~ s0p Z,(vtz ’
visld+e - o(lgl,, H)i@("ﬁw)

If 2 > O(loge™) = O(og(An)~t) = O(1) such that ﬂzB < ©(A?n?), then for 7y =
O(log(A~'so,)) such that 57° > G(nwp) = @(s:}), we have
®) & [nsonl4il
mgi)“ (K] S (gtf‘ro,j,r[k}) +0 (B)

0) B ~ (nsotO1\
vielll e e (1o, ;K1) £ © (B)
For 19 < %, 79 > O(log(An)~!) such that ﬁQ%O = O(A\?n?), we have

®) 5
w0 L G — o1
VO 46 €£00?) () = oll),

since € = O(\n).
e Fork#1landk ¢ B;,i € T,_,, 7 € [0, 7], recall gt(i)m}r[k] = 0, we have
my) [k
v
vkl +e
S BI =B g K £ O)
V085 (1= B) - g T) K2 + e O(Np2)
+O(N*1?)
e+ 0\22)
= +0(\)
=o(1).

This completes the proof. O

C.2.1 Proof of Theorem 4.4

Lemma C.12 (Stage L, pattern learning). Given the training dataset S, if % = ©(1) or % = o(s0,),
n = 1/poly(d), A = Q(i A1) and X = O(1), then for any t < Ty with Ty = O(—L

(t+1)-%) .
<wj(,,. B),J

vy < (wh B vy em- =

i3
wiB) g = (wilB) gy + B(ysa).

Proof of Lemma|[C_12] We prove this Lemma by induction. By Lemma[C.1]

0 (3-1) myf
(wWirhg-v)=QQ =) {w; > 7.j-v)—n <(:T_1)JV>

< (1= EY j v +em)

)

48

s
L

< (-)Ew? vy rem - Y (1t
k=0

0 n 0) . n
= (Wil j V) =00) (Wil j V) + 6)
B B
0 n
= (wii.i V) + 00 3).
where the second~equality we use Taylor expansion and A7) - 5 = o(1), and the last equality we have
<W§?2 ,J-v) = 0O(og) by Lemma Now suppose the inequality holds for ¢ = 0, ..., %y with
to < Tp. We have

) ~ ~

<W(t0'%)] . V> < <Wg(?r7j . v> + @(7’] —

7T ’

since 5 = o(s0,). Fort = tg + 1,

(to+1)- %) ((to+1)- 1) m((tOH)*_l)
R I R)

Jsr 7,7
;('(0+1)-%—1) .

< (1wl @ED 5o e

”r %_1
< (1= wmEE) v e S (-
k=0
- <wj(.tf%)7j v) =0\ - %) . <Wj(f:'%)7j V) L0 %)
<wl) v 1o).

Hence, we have (w; (t),j v) = O(1). Then, we prove <w§7(t %),£1> = (wg(,fm%),é'l) + O(nsoy,)
by induction. By Lemma@ we have

(W, &) = O(s"%0,00), Wi [k] = O(00),

which imply that |€(0)| = O(1). Assume that sample (x;, y;) is in batch Z in the first epoch. Then
we have

(w éT)r,£z>2(1—An)< (0, &) — O(na)
> (wi?) &) — ©(Anao + na)
:@(0'0),

since A = o(1), 1 = o(0g), a = o(1) and s'/20,, = O(1) Additionally, we have s = o(cd™h)

and |&;[k]| > ©(o,) with high probability. Then |B~ 10~ '¢&;[k]| > ©(nB~ ISJP\E(O)D fori € Z..
Therefore, by Lemma[C.IT]and [A:6] we have

sen (~ 40k (w2 €614

— —sen (140, (w2)61

— (€29)
Then, by Lemma|[C.11| we have the following update according to (B.6)), (C:29) and Lemma|[C.1]

< T+1) £z>
(1)

m
=1 =)W &) —n- <y£>
Vi e

49

> (wi®), &)+ 0 > (sgn(&k]), &) — O(Anoo) — O(na) — O(nsay,)

keB;
= (W), &) + O(nsay).
At the end of the first epoch, we have
(wib), &)
> (1= 2wl &) — O(na)
> (wirth, &) — O\’ sop) — O(na)
> <Wyi,ra€i> + 9(’73%)-

This completes the base case for t = 1. For general ¢t < ¢y with g < Tp, assuming <W75f,~§), &) =

<Wz(;f v),Eﬁ + ©(ns0,). Then we have

(wid) &) = (i) € 4+ B (sor)
= (W) &) + O(tnsoy)
= O(s'20,00 + tnso,)
< O(1).
By Lemma|[C.T] we have

w“ B < 1wl 3Dk + o)

VLS JT
n
< Wik + 6t 3)
n
<
- 9(00 * Bsap)
< O(1).

So we have |€(B)| = O(1). Follow the same proof above with ¢ = ¢y + 1, assuming that sample
(xi, ;) isin batch Ti,.n/ B+~ in the t-th epoch. Then we have

(to-Z+7-1)

wiOE) gy > (1wl g — o)
> w) &)~ &\ + 1a)
= wi%) g,

since 77 = o(0p) and @ = o(1). Additionally, we have ns = o(cd ") and |&;[k]| > (:)(ap) with

high probability. Then |[B~!(w () k] + tnsop) T rE K] > (:)(UB_lsapM;f?D fori € Ty .n/Bsr-
Therefore, by Lemma[C.1T|and we have

sen (- 0o (@l)60

to- & +T to- & +T7
= —sen (éz(;oz i)U/(<Wl(li?TB)a£i>)£i [k])
= —sgn(&[k]). (C.30)
Then, by Lemma[C.T1] we have the following update according to (B-6), (C:30) and Lemma|[C.T]

(to-Z+7+1)

<Wyi,r 7€1>
. (to:B+7)
=(1-)‘77)<Wl(/f?7;§+7—)a€i> —n- <myr§>
(to- B +7)
V.- +e€

50

> (whSF))+ 0m) - 3 (sen(&ilk]), &) — O(\n) — O(na) — Oysa,)

keB;

= (wy 2) &) + O (ysar).
At the end of this epoch, we have

witH) €
> (1= w7 g — o)
> (wiSET)~ 5(a) - O(na)
> (wi%) &)+ B(ns,).
This completes the proof. O

Because in the large-batch regime we have n/B o(sop), Lemma |C.12| tells us that noise
memorization outpaces feature learning. Early in Stage I, feature gradients predominate since

(<Wg(h)m, Yiv)) > aa'((wyur, &), given that « = o(1) and weight decay effect is negligible.
After a certain number of epochs, however, the noise component grows until ao’ (<W?(/t1),r, &)

(<Wl(,l)$r, y;V)), at which point feature learning slows, then reverses direction entirely. Lemma
below characterizes this transition in detail.

Lemma C.13 (Stage I, fitting feature noise). Given the training dataset S, if 5 = O(1) or & =
o(sop), n = 1/poly(d), A = Q(BTZ A1) and X = O(1), then if o« > © ((Bso,)19), for any

te [T, To] withT, = O(W) < Ty,
t+1)-5) .) n
<Wj(.’r B)J'V>:<W§'fr),]'V>_®(n'§)-
At epoch Ty, we have (a) W(> B)[l] = —sgn(j) - ﬁ() (b) w TO B)[k;] = sgn(&;[k]) -

Q(E) or +0(n) for k € B; with y; = j; (c) W(. B)[k} :I:O() otherwzse.

Proof of Lemma[C.13] By Lemmal|C.12] we have
~ ~ q—1
ao’ (< 5} B ,€Z>> (@(sl/2apao) + 7, - G(nsop))
S/ 1/2 50 90 a1
(o™,
n \9-1
6(00) + T, - O(n- 7))

(8600 + o)

Bsopalt/(a—1
<O(af).

[e%

vV
®

-~
o (Wi B yiv))

IN
/—\

(OX

Hence, there exists some constant C' > 0, for ¢ € [T, - %, Tp -
0o’ (Wil &) = o/ (il yiv)).
Then by Lemma[A-8] [C.1Tand [A.6] we have

() = 0 (i) = (2)

Vir 1€

51

< (i) - 000 s (S et (w6))

1€T,
< §t3,JV> O(n) - j - sgn(j)
=< §t2a3V> o(n).

So we conclude that

t4+1)-2) . Sy
W) vy = B v el

J,r ’

=

Moreover, at the end of epoch T,

<(TOB),jV> @(o)+ T, -O(n- B) (TOfTr).@(W%)
:7é(B:0p)'

Multiply 7 on both side, we get

(To-2) _ o~ n
w;, P[] = —sgn(j) - ®(B$0p)~
For w(VB)[k], where k € B; and i € [n], Lemma shows that it increases by O(n) in the
dlrectlon of sgn(&;[k]) if (wé??,«, &) > 0, that is,

wi B) = WO k] + sgn(&[K]) - To - © ()

o senléili) -6 ().

Otherwise, weight decay drives wﬂ [k] toward zero if it is initially negative, in this case w(o5 [k] €
[—O(1), ©(n)]. For the remaining coordinates, Lemma implies the gradients are zero, so the
updates are dominated by weight decay. Given the fact that Tyn = w(og), we have w(0 %) [k] €

[—O(n), ©(n)]. This completes the proof. O

Lemma[C.13|implies that, by the end of Stage I, the model has fitted the feature noise —ayv. The

following Lemma[C.14] shows that these pattern persist throughout Stage II, ultimately leading to

poor generalization.

Lemma C.14 (Stage II, preserve the noise). Suppose the same conditions hold as in Lemma[C.12]

and fort > Ty - 5,5 € {£1}, 7 € [m], i € [n], let r* = argmax, [, (w‘,(,?r, &), then
O t =

(Wi i V) = =B gh) and (wy), . &) = ©(1).

yr’

Proof of Lemma[C.14] By Lemma , and (B:6), we have (w(f;i’r,&) €

e nso ,(:) 00)]. Because if w(_t)v ,Ei) > 5) 00), then we have
p Yi,T

t+ ~
Wi B) < (W), &) - Bnsay),
while if <W(t). ;) < 0, we have

—Yi,T?
(W gy > (1= aw) &)+ Ona).

Q=

Now, suppose <Wz(/i)r &) < (jL log (()\7]) - 1)) , then for (x;, y;) with y; = 7,

BF—J' (W(t) axi)

z(,t? =
K (W) x.
! Zje{—l,l} efil)

52

1

[—m t) t t . t
L exp [S7L, o((wll), jv)) + o((wil), &) = o ((w') . jv) = o((w) &)
1

= [~m ()

L exp |7 o(wi). €0

1

= - T

1+exp |m- (Llog((Ag)~t—1))¢ q}
= 0(A\n),

where the inequality we use (5 2, jv) < 0. Then, in epoch T,, which contains iteration ¢, it follows

from Lemmas|[C.11}[C.12)and (B-6) that for all ¢, € [t, T, + %], we have

(wile) gy > (1= ap)(wi . &) + O(nsay)
> <Wy,i,,ﬂ*,£i> + @(nso'p).

Q\»—\

If (w .. &) > (log ((An) 2 — 1)) 7,

F_;(W® x;)

F (W x;)
ety e

then for (x;,y;) with y; = 7,

) _
o) =

1
L exp [78, o (Wi jv) + o ((wil, €0) = o ((w!) v)) = o((w'') &)
1
(Wit €0)]
1
1+ exp |(log (\n) = — 1))
= O(*1?),

IN

1+ exp [0(

<

Q=

’

where the inequality we use (w © jv) < @(Bwp) % = o(s0y), (W (,tgr,&)) < ©(0y). Then

=g

by Lemma[C.T1] [C.12]and (B-6), we have
(Wi &) < (1= M)(w,0) &) + O - 150)

S
o)

since nso, = 0(1) For (w §t3,jV> = —9(

, the same proof applies, since so, = o(1) and
L =o(sop). 1 f (w! Wy, Dog) > (log ((An))%, then for (x;,y;) with y; = 7,
z“ < O(\X?).
Then by Lemma|[C.1T] [C:T2]and (B.3), we have
(Wit gv) = (L= dm)(wi'). jv) = O)
> (w') jv) + 6 (- B:U) —O(\n-n)

p
t
> (wll), jv),

since n = 0() This completes the proof. O

Lemma C.15 (Convergence). Suppose the same conditions hold as in Lemma([C.12} [C.13|and[C. 14}
if the step size satisfies n = O(d~1/?), then for any t,

B [LWED) — LW)] <~ VLW D) s + 6(5%d).

53

Proof of Lemma|C.I5] The proof is similar to Lemma[C.8] We aim to prove the convergence of the
objective function under the AdamW optimization algorithm in a non-convex setting. Recall the loss
function for each data point is

1)
Xp (F% (W7 Xi) - F_yi (W7Xl)) ’

where W represents the parameter matrix, x; is the input data, y; is the true label, and F) (W, x;)
are the logits for class 7. The total objective is:

L;(W) =log <1 +
e

Since L;(W) is non-convex, we exploit its smoothness with respect to the logits [F; (W, x;)];.
Specifically, L;(W) is 1-smooth in [F;(W,x;)]; due to the properties of the cross-entropy loss.
Define:

AFJ‘,Z‘ = Fj(W(t“),xi) — Fj(W(t),Xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W (®):

OL;(W®)
L:(WEDY _ 1 (WH) < oA\) AF E AF: 2. 31
Z(W) Z(W) - L aFJ(W(t),XZ) 75 + : (]71) (C 3)

This upper bound arises because the second derivative of L; with respect to the logits is bounded
by 1, a standard result for cross-entropy loss. The logits are defined as: F) (W® x;) =

ZT:JU«W.E?, yiv)) + o((w (*) &:))], where w() the 7-th neuron in j-th output of W, o(z) =

JT’

[2]% is a smooth activation function (e.g., w1th g > 3). By Lemma and |C.1| we have

<w(.t) v) < O(1) and (w) &) < O(1), ensuring the local smoothness of ¢ remains O(1) be-

3 Wi
(t+1) ()

tween (w, "7, y;v) and (w; 7, y;v) (similar for (Wi £Z>) Then with Taylor expansion, we have

o((w) yev)) — o ((w <2,yz) = (Vi o((wil) ov)) Wit —wil))

S(:) Hw(fﬂ) qu)»
’ 2
o |
3 (t) my ;.
=0(1) - |[An- wi) 4. =L
V(-t)—i—e
j,’r’
2
< O(n*d), (C.32)

where the last inequality we use Lemma and ||w ||2 < O(d) by Lemma and

Similarly, we have
(Wit €)= o (wll), €)= (Y, o((wil), €0), Wi = wil))

&) it - wi |

7T 2,7

IA

2
< O(nd). (C.33)

Summing over (with m = ©(1)), we get

|AF; ;| < ’<VWFj(W(t)7Xi)aW(t+1) ~ WO+ O(n2d). (C.34)

Additionally, ||[Vw E;(W®, x;)|[< ©(1) since m = 6(1), ('), yiv) < O(1), (w'') &) <
O(1). So we have

|AF,;| < ©(nso, +na+n+n°d) < O(nsa, + n?d). (C.35)

54

Substitute (C.34)) and (C.33)) into (C.37):

Li(WED) - L (W®) < (VwL;(WD), WD W) 1 6(nd). (C.36)

For the full objective:

L(WHDY - L(w®) = 1 Z[Li(W(t“)) — L;(W®)]. (C.37)

Substitute (C:36) into (, we have
L(W(t“)) — L(W®) < (VL(W®) WD) — WOy 4 §(n2d). (C.38)

Take expectation for the stochastic gradient of both side in (C.38),

E {L(W(H‘l)) —

L(W®)}

< E[(VL(W), WD — W) + 8(n%d)

IA

—n-E Z Z Hgmr

— A (VLW®) WD) 1 6(d-n?) + O(ns - n*s0,) + O(n?d)

je{x1} re[m

I /\

3

> HE %]

O (or2
| 82T T LW O) |+ Br2d)

Op

je{£1} re(m]

IN

—[VW), + 6(d),

where we use Lemma[C.T1|that the update aligns with the gradient’s sign for large gradient and the

fact that ns?o;, = O(d), and Jensen’s inequality, Holder’s inequality and % = o(so,), [|[W® o <
6(Beoy) by Lemma C 13|and C.14l This completes the proof. O

Lemma C.16 (Generalization of Stochastic AdamW, large-batch). Suppose the same conditions hold
as in Lemma We have the following results for T' = %(”), with training dataset S

« The training error is zero: errs(W (T

=
Il
o

* The test error is high: errp(WT)) > 1 —o(1).

Proof of Lemma|[C.16] By Lemma|[C.14] we have

(w

D vy = —8(—), (W &) =0(1), (W &) <B(o).

s0p

Recall F;(W,x) in Deﬁnition with nso, = o(1), a = o(1), we directly have

errS(W(T)) =Exy~s 1 {Fy(W(T),X) < F,y(W(T),x)} =0,

since F,,(W(™) x;) = Q(1), while F_,, (W x) < é(% + 0¢) and so, = w(1). Besides,

for test data (x,

y) ~Dwithx = [yv',&7]T, itis clear that with high probability (wé). yv) =

76)() then similar as training error, we have

F, (WD, x) i { yr,yv)+0(<W§TT),€>)} = i {a +Cy,r:|q ;

while

,_.

=
Il
—_

<

55

Here, ¢y, and (_, , are independent and symmetric random variables. Therefore, if the term
5] (SU) dominates ¢, and ¢_, ., then it is immediate that F},(W?) x) < F_, (W) x), since

a = o(1). This implies that large-batch AdamW yields high test error. On the other hand, if

5) (i) is dominated by both (, , and (_, ., then with probability at least 1/2 — o(1), we have

SO

F,(WTD x) < F_,(WT) x), as (,, and (_,, are independent of v. In this case, large-batch
AdamW incurs at least 1/2 — o(1) test error. Therefore, we conclude:
errp(WT) = By op 1 [Fy(W(T),x) < F_ (WD x)| > = —o(1).

This completes the proof. O

w\»—‘

C.2.2 Proof of Theorem

Lemma C.17 (Stage I). Given the training dataset S, if 5 > O(n'/? vloge ') and 5 = w(sop),
n=1/poly(d), A = ﬁ(%Q A1) and X = O(1), then for any t < Ty with Ty = O(£),

nn
(t+1)3)) Lz n
W)) = Wl) 1),
(t+1)- 3
wil V) e = i) €+ Bnsey).
Proof of Lemma[C.17} We prove this Lemma by induction. First, we prove <W7§E,+1) B),) =

(wy (),§1> + O(nsoy). It is same as Lemma|C.12, By Lemma we have
[(wji), &) = ©(s"/*0y00), Wil [k] = O(0o),

which imply that |€§?i)| = O(1). Assume that sample (x;, y;) is in batch Z in the first epoch. Then
we have

(w y77,€z>2(1—/\n)< wir &) - (na)
> (Wi, &) — ©(Anog + 1)
= 6(00),
since A\ = o(1), 1 = o(00), @ = o(1) and s*/25, = O(1). Additionally, we have ns = oo ")

and |&;[k]| > ©(c,,) with high probability. Then [B~'0d™"€;[k]| > ©(nB~'s0,|¢\")) for i € Z..
Therefore, by Lemma [C.11]and[A.6] we have

sen (00 (w00)61

— s (6,0 ({0)60

= —sgn(&[k]). (C.39)
Then, by Lemma|[C.11] we have the following update according to (B.6)), (C:29) and Lemma|C.1]

< (T+1) £z>

mgf.)r
= (L= AWl &) —n- { ——="—.&

Vit + e
> (Wi, &) +O(n) - Y (sgn(&ilk]), &) — O(Agoo) — O(na) — O(nsay)

keB;

= (Wi, &) + O(nsay).
At the end of the first epoch, we have

(wiB) &)

56

(1= M) (wif V. &) — O(na)
(w(rtD &) — O(Mp*say,) — O(nav)
> <Wyi,'r‘3€i> + 9(778%)-

(AVALY,

This completes the base case for ¢ = 1. For general ¢ < ¢y with tg < Tj, assuming (wg(h), &) =

<W:L(/f»,r1) 5) ,&i) + @(nsap). Then we have

wiid) &) = (w 57, #).€) + 6ns,)
= (W), &) + O(tnso,)
(1/20 p00 + tNsoy)
o(1).
By Lemma|[C.T] we have

w“ B < 1wl 2Dk + o(n)

Jir = Wi
0 n
< [wy M+ Ot 5)
<O(1).
It’s also obvious that (wgi%),jv) = O(1). So we have |€(B)| = O(1). Follow the same proof

above with t =t + 1, assuming that sample (x;,y;) is in batch Tty.n/B+ in the t-th epoch. Then
we have

(to-&+7— 1)

wiOE) ey > 1wl g — o)
> Wi) &)~ 80w +10)
wioB) g,

since 7 = o(0p) and @ = o(1). Additionally, we have s = o(cd™") and |&;[k]| > (:)(Up) with

high probability. Then |B~"(w'"” k] + tnsa,,)?~ &[k]| > OB~ so,|0)]) for i € Tyyjpyr-
Therefore, by Lemma [C.1T]and we have

sgn <_B£§ft’ B+T)o’(<w(f? B+T),€z>)€z[])

H— (45?‘;—‘ g”)a’«w&?ﬁ”),a>>a[k1)

= —sgn(&i[k]). (C.40)
Then, by Lemma[C.T1] we have the following update according to (B.6), (C:30) and Lemma|[C.T]

(wio BT g
t T m(FO.%—H—)
= (1= An)(w (DB+),gi>—n-<f“’;,si>
RS
> (w5 &)+ 00 - S (sen(€lk]), &) — O) — O(na) — O(nsar,)

keB;
(v) ¢4 6
= <Wyi-,r a£i> + @(773011)-
At the end of this epoch, we have

wit) e

57

> (1 - wi B gy - o(a)
(to-Z+7+1)

(Wy,r L&) — O(\p) — O(na)
> w%B) &) + 8(nsoy).

Y

Next, we prove <Wj(-’(;+1).%)),jv> = <w§.;%),jv> +0O(n- 5). By Lemmaand C.11

have
0 . 0
o' (Wi jv)) = a0’ ((w 52,5» > 6(5™),
since @ = o(1), and we have = o(0d " "). By Lemma we have
(0)

sgn(gy ;) = sgn(—sgn(j)) = —sgn(j).
Apply Lemma[C.T1] we get
(wil j.v) = (1 *M)(05 -v) = 0n) - (sgn(g),). jv)
= w'% j-v)+em),

since <w§?2,j -v) = O(0p) and A = O(1). We have

§08) ey > witB) gy + 8(nsoy).

(w
So we have (w("),.. &) < ©(s'/20,00 + nso,) for t € [0, #]. Thus, for t € [0, %], we have
o' (W0 3v) > a0’ ((w)l). &),

since o = o(1). By Lemma[A.8|and[A.6] we have
sgn(gy')) = sgn(—sgn(j)) = —sgn(j).
Apply Lemma for ¢ € [0, 5], we get
(w 52,; v) = (1= (w5 v) — e - (senlg)),).dv)
> (wi).jv)+ 0 1),

since (w gr),] v) = O(0g) and A = O(1). So we have for t = 0,

w8 5oy = w8 vy e

.E)'
Now suppose the equality holds for ¢t = 0, ..., ¢y with £y < Ty. We have
tog) . 0 n ~
<WJ(,: B)vj'v> < 527.7 V>+@(7]§t0)§0(1)

Since % = w(so,). We have

Therefore, for t € [(to + 1) - %, (to + 2) R
t
o' ((wii). 3v) > a0’ (W) &).
Apply Lemma[C.11] for t = ¢, + 1, we have

t+1)-5) . (t+1)-%—-1) . t41)-2 1) .
) vy = = xlEY v —) - sen(e D))

(t%)

> (w) el

— < 7,7 7] V> + @(B)7

since (w (2,] v) = O(1) and A = O(1). This completes the proof.

58

we

Lemma C.18 (Stage I). Given the training dataset S, if % > ©(n'/2 Vloge™!) and & = w(soy),
n = 1/poly(d), A = (B A1) and A = O(1), then for any t > Ty, j € {%1}, re[], i€ [n],
let v = argmax, ¢ [, (W ;’2,]v>, then (w 52*,]V> = O(1) and (w?gi)r,&> < @(Bsg”)

Proof of Lemma[C.18} By Lemma , we know that (w (t), jv) increases at a faster rate than

(Wg(,?,r,ﬁi> since & = w(sop). We also have <W7y &) € [=O(nsay,),0(ay)] following
Lemmal|C. 14

Q=

Now suppose that (w (t)*,jV> > (log ((An)~2 — 1)) *, then for (x;, y;) with y; = j,
F_j (W(t)vxi)

F; W(t),xi
Zje{—l,l} el)

t
) =

1

L exp [0 o(wil), v) + o (Wil €)) — o ((w') . jv) = o ((w'h) . €))]
1

IN

L+ exp [o(w)-v))]

1
1+ exp [(log () =2 = 1)) 7]
= @()‘2772)7
where the inequality we use <W(f;’r,jv> <0, (w(f;,r, &;)) < ©(oy). Then by Lemmauu

and (B-3), we have

<

(Wit vy < (1=) (wl, iv) + O - 1)
<(w (t)mJV>

since = o(1). Similarly, if <wyz &) > @(Jo)

(witth &) < (1- An><w§,izr,£i> +O (- nsay)
Otherwise, (wi/;, &) € [~(00), O(c0)] and satisfies (wii)y, &) < O(22),

n

If <W(t) 3v) < (55 log (An) ' — 1))%, then for (x;,y;) with y; = 7,

Jr

eF-i (W x;)

/)
M ey WO
_ 1
L exp [78, o (Wi jv) + o (Wil €0) — o (w) L jv)) = o((w'') . €)]
1
> -
1+exp|2m- a((wj(fl*,jv)}
1
> -
1+ exp _2m~ (5 log ((An)~1 — 1))« q}

= @(AU),

where the inequality we use (W(f;-m,jv> <0, (w(f}’r, &) < ©(0yp). Then by Lemmau-

and (B-3), we have

(Wi vy > (1=) (wll) jv) + 8(n)

7,7 JT’

59

> (wi' jv),

since A = O(1). This completes the proof. O

Lemma C.19 (Convergence). Suppose the same conditions hold as in Lemma|C.17|and if the
step size satisfies 1 = O(d~'/?), then for any t,

E[L(WOD) = LWO)] < =] VLW)|y + B(%d).
Proof of Lemma The proof is same as Lemma[C.T5] We aim to prove the convergence of the

objective function under the AdamW optimization algorithm in a non-convex setting. Recall the loss
function for each data point ¢ is

1
Li(W) = log <1 " exp (B, (Wox,) — P, (W’Xi))> 7

where W represents the parameter matrix, x; is the input data, y; is the true label, and F); (W, x;)
are the logits for class 7. The total objective is:

Since L;(W) is non-convex, we exploit its smoothness with respect to the logits [F; (W, x;)];.
Specifically, L;(W) is 1-smooth in [F;(W,x;)]; due to the properties of the cross-entropy loss.
Define:

AFj,i = Fj(W(t—’_l),Xi) — Fj(W(t),Xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W®):

DL, (W)
WO AL AFj:)°. 41
j OF;(W® x;) “+zj:(Gii) (C4l)

LWy — L (W) <
This upper bound arises because the second derivative of L; with respect to the logits is bounded
by 1, a standard result for cross-entropy loss. The logits are defined as: F) (WO x;) =
S [0’(<W§2, yiv)) + a((wﬁ, &:))], where wﬁ, the r-th neuron in j-th output of W), 5(2) =
[2]% is a smooth activation function (e.g., with ¢ > 3). By Lemma and |C.1| we have
<w(t) v) < O(1) and <w(t) &) < O(1), ensuring the local smoothness of ¢ remains O(1) be-

J,r? 7,r

tween (wgt:r 2 y;v) and <W§t2, y; V) (similar for <W§t2, &;)). Then with Taylor expansion, we have

(w1 i) = (W) piv) = (T, o (w0, piv)), witi) = wil)|

J > g J»
~ 2
<0(1). H (t+1) _ (8
— () WJ,T W.]’T 2
o |?
_ 8 (t) my
= 6(1) - ||xn - wi) - =L
’ v(t) +e
Jsr 2
< O(nd), (C42)

where the last inequality we use Lemma and Hwyz 13 < ©(d) by Similarly, we have

(w0, &) = o (Wi, €)= (Vo (wl), €)), wit) = wil)
= (t+1) ® |2
< 1) - : — W
<61 [wit? - wit)|
< O(nd). (C.43)

60

Summing over r (with m = ©(1)), we get
AF; | < [(VwE (WY, x,), WD —WO) |+ 6(n*d). (C44)

Additionally, || Vw F;(W® x;)||» < ©(1) since m = ©(1), { §t3,yz) < O(1), (w N,g) <
O(1). So we have

|AF; ;| < ©(nso, +na+n+n?d) < O(nso, + nd). (C.45)
Substitute (C.44) and (C.43)) into (C.47)):
Li(WEHD) - L(W®) < (VwL; (WD), WD — W) 1 (nd). (C.46)
For the full objective:
1 n
LWy — L(W®) = — Z[Li(W““)) — L;(W®)]. (C.47)
n
1=1

Substitute (C.46) into (C:A7), we have
LW — L(W®) < (VL(W®) WD — wW®) 1 §(n2d). (C.48)
Take expectation for the stochastic gradient of both side in (C.48),

E [L(W“H)) - L(W(t))]

E [<VL(W“>),W“+1> . W(t))} + O(2d)

<-—nE| > Z o0 | =20 (TLOW®O), W)+ 8(d-0?) + B - 1s0,) + O
je{£1} re[m
D HE [0, [, +00m) - IV EWD) s + Er2a)
je{£1} re(m]
< =l VLWD)||x + 6(d),

where we use Lemma|[C.TT|that the update aligns with the gradient’s sign for large gradient and the fact
that ns?0, = O(d), and Jensen’s inequality, Holder’s inequality and A = O(1), |[W®)||, < ©(1)
by Lemma [C.T8] This completes the proof. O

Lemma C.20 (Generalization of Stochastic AdamW, mini-batch). Suppose the same conditions hold
as in Lemma We have the following results for T' = %(n), with training dataset S

* The training error is zero: errs (W(T)) =0.

* The test error is near-zero: errp(W(T)) = o(1).

Proof of Lemma[C.20} By Lemma[C.I18] we have
Wik gv) = O(1), (Wil &) <O(=), (Wl . &) < 6(o).
Recall F;(W,x) in Deﬁnition with a = o(1), we directly have

Bsoy,

errs (W) = B s 1 [F (WD, %) < P, (W), x)| =0,
since F,, (W) x;) = Q(1), while F_,, (W x;) < O(00 +).

For test data (x,y) ~ D withx = [yv',£7]T, itis clear that with high probability (w z(/ Dyv) =

O(1). Let B = supp(&). [Wl13 = Xpep Wy [k]% Cir = S en Wy [K]-€[k] ~ N0, [[ws|3-02).
then we have

(wil) &) < Gy

61

2d)

Now we calculate the upper bound of ||wz||3. By Lemma we know (§;,&;) = 0fori # j, 4,5 €
[n]. Then let

D= &&, S=span{&,....)
=1

‘We have
w§? = PSW;TT,) +r+ecev, rlSU{v}
where ¢ = ©(1). By Lemma|C.18| we have
- ~ BZ%s
T T T T
(D) - [Pswit) |3 < (Pewii) TS (Pow()) = > (wii) &) = O(——

J,r jr oSt
i=1

)\+

min n)
Since [|&;]|3 ~ o2x? and s = w(logn), we have [[&]|3 = é(sag) with high probability. Hence,

AL () = min; [|&]3 = @)(sai). With a little abuse of notation, we have
B2

2
TLO'p

By Lemma A= SNI(BTQ A1) and AT = w(1), we have

S
1Psw |13 < O

).

Iv[13 < ©(y°d).
So the upper bound of ||w||3 is
. B2
T
Iwsl3 < [1Pswi’ I3+ |Ir]3 < O(-—5).
no?
Finally, with high probability
~ B2
Cyr SO [=5 - ap) = 0(1),
P
since 2 = w(n!/?). The same result holds for (_, .. Then, we have
- -
E (W) > o((wyih.yv)) = 1),
while
T T
Foy (WD, %) = 3 [o(w) yv) + o((w) L €0)] = m- o+ Cyulf = of1).

r=1

Therefore, we have
errp(WT) = By yyp 1 [Fy(wm, x) < F_,(WT, x)} = o(1).
This implies that mini-batch AdamW can achieve nearly zero test error. This completes the proof. [

C.2.3 Proof of Corollary [4.6]
By Conditions and along with Definition we know that d = poly(n), and hence

1
q—2 _ ;
o ®<d((1—2)/4)7 with ¢ > 3.

This directly implies that the effective weight decay parameter for Adam satisfies

_ . B2
Adam ~ 08 % < mm{n,1} ~ A AdamW .

This completes the proof.

62

D Experimental details and results

This section presents the complete details of our experiments.

D.1 Experimental Details for Real-world Data

For the real-world experiments in Figures [I] and 2] we use the CIFAR-10 dataset, VGG16 and
ResNet18 architectures, and the Adam and AdamW optimizers, all implemented in PyTorch. We do
not use data augmentation in order to avoid any additional regularization effects.

In Figure [T we report the test error as a function of batch size. The batch sizes considered are
{16, 32, 64, 256, 1024, 4096, 8192}, with training conducted for 100 epochs. The weight decay
is set to 5 x 10~% for Adam and 1 x 10~2 for AdamW; the momentum parameters are fixed at
(81, f2) = (0.9,0.99) for both optimizers. Each configuration is evaluated with three learning rates:
{5 x107*, 1 x 107%, 1 x 107°}, and we report the best test performance for each batch size. All
experiments can be run within one hour on a single RTX 4090 GPU. The only exception is training
ResNet18 with a batch size of 8192, which requires three GPUs due to memory constraints.

Figure [1(a)| presents the test error versus batch size for Adam with VGG16 and ResNet18, while
Figure |1 (b)| shows the corresponding results for AdamW. Both demonstrate that test performance
degrades as batch size increases, which is consistent with our theoretical findings in Section 4]
showing that small-batch Adam and AdamW outperform their large-batch counterparts.

In Figure 2] we report the test error as a function of weight decay A for Adam and AdamW, using
VGG16 (Figure 2(a)) and ResNet18 (Figure 2(b)). We fix the batch size to 16, the learning rate to
1 x 1074, and set (31, B2) = (0.9,0.99). The weight decay values for Adam are {1 x 1071, 5 x
1072, 1x1072, 5x 1073, 1 x 1073, 5x 1074, 1 x 107*, 5x 107°, 1 x 107°, 5 x 1079, 1 x
107%, 5 x 1077}, and for AdamW are {5 x 107!, 1 x 1071, 5 x 1072, 1 x 1072, 5 x 1073, 1 x
1073, 5 x 107%, 1 x 10~*}. All models are trained for 100 epochs.

Figure [2(a)| shows results for training VGG16, and Figure for ResNetl8, both using Adam
and AdamW. For a fair comparison, we scale the weight decay A of AdamW by a factor of 1/25.
The results show that Adam suffers from poor generalization under large weight decay values
(e.g., A > 0.05), while AdamW maintains stable performance even with larger weight decays (e.g.,
A = 0.5), which aligns with our theoretical results in Section@

D.2 Experimental Details for Synthetic Data

For the data model defined in Definition [3.1] we set the input dimension to d = 1000 and the number
of training samples to n = 200, consisting of 100 positive and 100 negative samples. The sparsity
level is set to s = 0.1d = 100, and the noise strength is o, = 1/4/s = 0.1. The feature noise
strength is set to o = 0.2, and the model weights are initialized with standard deviation oy = 0.01.
The network, defined in Definition[3.2} has width m = 20.

All synthetic experiments are trained for ' = 10* epochs with a learning rate of = 5 x 1072,
and evaluated on a test dataset of size 10*. For Adam and AdamW optimizers, we adopt the default
momentum hyperparameters 51 = 0.9 and 52 = 0.999.

We primarily focus on the following metrics:

* Training error: errs(W).
* Test error: errp(W).
* Feature learning: max;.c () (Wjr, JV).

* Noise memorization: min;e,).y,—; MaXye[m] (Wj,r, &) OF MAX e [n]:y, —j MAXp[m] Wy, i)

Large-batch Adam vs. Mini-batch Adam. We set A = 1 x 10~ for both large-batch Adam
(batch size B = 100) and mini-batch Adam (batch size B = 2). Table presents the training and
test errors of the solutions obtained by the two training methods. Although both large-batch and
mini-batch Adam achieve zero training error, their generalization performance differs significantly.
Specifically, large-batch Adam suffers from high test error (greater than 0.5), while mini-batch Adam
achieves zero test error. This observation verifies Theorems and

63

Table 1: Training and test errors of Adam with large (B = 100) and mini-batch (B = 2) settings.

Batch size B=100 B=2
Training error 0 0
Test error 0.9545 0
Py 2.25
1.25 ___,:,—f" /
1.00 e 1.80
,/— Feature Learning: j=1 /— Feature Learning: j=1
g 0.75 II, Feature Learning: j=-1 g 1.35 y Feature Learning: j=-1
£ o050 II/ ==+ Noise Memorization: j=1 2 000 '. ===+ Noise Memorization: j=1
/ —=- Noise Memorization: j=-1 \ —=- Noise Memorization: j=-1
0.25 1]
0.457 1y
S—— _ 0.00{ '
-0.25 0 2000 4000 6000 8000 10000 —0.25 0 2000 4000 6000 8000 10000
Epoch Epoch

(a) Large-batch Adam (B = 100) (b) Mini-batch Adam (B = 2)

Figure 3: Feature learning and noise memorization of Adam in the training.

Moreover, Figure illustrates the dynamics of feature learning, measured by max,.¢ () (W;,r, jV),
and noise memorization, measured by min;¢).y, —;j MaXy¢m] (W;.r, &), under large-batch Adam.
The results are consistent with Figure 2 in[Zou et al.|(2023b). Figure 3(b)|shows the corresponding
dynamics for mini-batch Adam, where feature learning max,.[](W;,, jv) increases steadily, while
noise Memorization max;e p).y;—j MaXye[m] (w,.r, &) remains suppressed at the end of Pattern
Learning Stage. In the subsequent Regularization Stage, feature learning saturates at a stable
threshold and stops increasing. This behavior is consistent with Lemma|C.7]

Large-batch AdamW vs. Mini-batch AdamW. We set A = 0.01 for both large-batch AdamW
(batch size B = 100) and mini-batch AdamW (batch size B = 2). Table 2]reports the training and
test errors for both training methods. Although both large-batch and mini-batch AdamW achieve
zero training error, their test performance differs significantly: large-batch AdamW suffers from high
test error (exceeding 0.5), while mini-batch AdamW attains zero test error. This observation supports
Theorems f.4] and

Figure illustrates the dynamics of feature learning, measured by max, ¢, (W;,, jv), and noise
memorization, measured by min,¢(y,).y, —j MaxX,c[m] (W;,r, &), under large-batch AdamW. Initially,
feature learning increases, but it is eventually flipped by noise memorization, which grows at a faster
rate. As a result, the model begins fitting to the feature noise, which is negatively aligned with the
true feature direction. Specifically, noise memorization increases rapidly during the Pattern Learning
Stage and saturates at a logarithmic rate in the Regularization Stage. These behaviors are consistent

with Lemmas[C.12] [C.13] and[C.14]

Figure [4(b)| shows the corresponding dynamics for mini-batch AdamW. Feature learning increases
steadily and remains unaffected by noise memorization during the Pattern Learning Stage. In the
Regularization Stage, feature learning saturates at a stable threshold, which causes the gradient
to become small and consequently suppresses further growth of noise memorization (recall that

&:[1] = —aw;). This behavior is consistent with Lemmas and

Large weight decay regularization)\ hinders Adam training. We repeat the experiments from
Large-batch Adam vs. Mini-batch Adam using a larger weight decay parameter A = 0.05, and

Table 2: Training and test errors of AdamW with large (B = 100) and mini-batch (B = 2) settings.

Batch size B=100 B=2
Training error 0 0
Test error 0.5485 0

64

- S
1.25 —’_____—_—_’—— 1.25 oz
1.00 =T 1.00 TS sseai
;~ —— Feature Learning: j=1 SSssos
o 075 ! (—— Feature Learning: j=- g 075
3 I/ 9:j=-1 3
2 o050 /] + ==+ Noise Memorization: j=1 T 0.50 o
/| ==- Noise Memorization: j=-1 Feature Learning: j=1
0.25 /oy 0.25 —— Feature Learning: j=-1
L/’I ——- Noise Memorization: j=1
0.00 ’
000 ——- Noise Memorization: j=-1
~02575""2000 4000 6000 8000 10000 225G 2000 4000 6000 8000 10000
Epoch Epoch
(a) Large-batch AdamW (B = 100) (b) Mini-batch AdamW (B = 2)
Figure 4: Feature learning and noise memorization of AdamW in the training.
10 — train error 1.0
0g| — testerror 0.8
. 0.6 0.6
e e
“o4 Y04
0.2 02y train error
—— test error
0.0 0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch
(a) Large-batch Adam (B = 100) (b) Mini-batch Adam (B = 2)
Figure 5: Training error and test error over epochs of Adam training with A = 0.05.
0.4 —— train error
0.5 F
—— test error
0.4 0.3
50.3 —— train error 5
I ——— test error 502
0.2
0.1
0.1
0.0{ ™ 0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch
(a) Large-batch AdamW (B = 100) (b) Mini-batch AdamW (B = 2)

Figure 6: Training error and test error over epochs of AdamW training with A = 0.5.

those from Large-batch AdamW vs. Mini-batch AdamW with A\ = 0.5. Figure [5| reports the
training accuracy over epochs for Adam, while Figure [6| shows the same for AdamW. It can be
observed that Adam fails to train under large weight decay. In contrast, AdamW remains robust and
achieves results consistent with those in Large-batch AdamW vs. Mini-batch AdamW, even with

alarger A = 0.5. These results support Corollaries [f.3]and [4.6]

D.3 Additional Experimental Results

Error bars across random seeds, Figures[7land[8, We provide additional results to support our
theoretical findings. To assess statistical significance, we repeat the CIFAR-10 experiments from
Figures[T|and [2] with five random seeds (0—4), using the same settings as in Section [D.1] Figures|7]
and [§] report the results, with error bars denoting the standard deviation across runs. The results
confirm that both Adam and AdamW degrade in performance as the batch size increases, and that

Adam is more sensitive to weight decay than AdamW.

65

—4— VGG16 281 —4— VGGl6
ResNet18

w
o
=)

26 ResNet18

N
~
5

5

N
U
=}

NN

N

Y%

Test Error (%)
N
N
(9]
N
o

-
~
n

Test Error (%)
= =
[e)] [e¢]

-

u

=)
-
IS

102 103 104 102
Batch Size Batch Size

(a) Test error vs. batch size under Adam (b) Test error vs. batch size under AdamW

Figure 7: Error bars across seeds: Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

103 104

26 —4— Adam —4— Adam
24 AdamW 22 AdamW
£22 €20
o o
& 0 o 18
g18 kd
16 16 L
14] B—F— Wl : -

10® 10> 104 103 10Z 10! 107® 10> 104 103 1072

Weight Decay for Adam Weight Decay for Adam
Weight Decay x 1/25 for AdamW Weight Decay x 1/25 for AdamW

(a) VGG16 (b) ResNet18

Figure 8: Error bars across seeds: Test error vs. weight decay (batch size = 16), comparing Adam and
AdamW.

1071

45

45] —F VGG16 —4— VGG16

ResNet18 40 ResNet18

40
g 35 g *
S S 30
£ 30 =
w w
725 425
IS IS

20 20

15 15

102 103 104
Batch Size Batch Size
(a) Test error vs. batch size under Adam (b) Test error vs. batch size under AdamW

Figure 9: Error bars across (1, 82): Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

Sensitivity to momentum parameters (1, 52), Figures @] and We further study the sensitivity
of Adam and AdamW to the momentum parameters (31, 32), which are treated as constants in our
theory. We sweep over 81 € {0,0.5,0.9} and 82 € {0.5,0.9,0.95}, yielding 8 valid combinations
under 37 < [, plus the standard setting (51, 32) = (0.9,0.99), for a total of 9 configurations.
Figures[9]and[I0]report the results, with error bars showing the standard deviation across the 9 runs.
The findings again confirm that both Adam and AdamW suffer performance degradation as batch
size increases, and that Adam is more sensitive to weight decay than AdamW.

Large-scale vision experiments with ResNet-50 on ImageNet-1K subset, Figures[ITjand[12} To
further validate our theory, we conduct large-scale experiments on ImageNet-1K. We construct a
subset by randomly sampling 100 training images per class (seed=0), ensuring a controlled large-
batch regime (% = ©(1)) while keeping computation feasible. ResNet-50 is trained for 90 epochs

66

30 —4— Adam —4— Adam
AdamW

! 22 AdamW
225 S
T T 20
e e
&]
020 018
@ d

1 167 | 3 :
15 - i I 1 i
10® 10 107* 103 102 10! 10® 10 10* 103 102 107!
Weight Decay for Adam Weight Decay for Adam
Weight Decay x 1/25 for AdamW Weight Decay x 1/25 for AdamW
(a) VGG16 (b) ResNet18

Figure 10: Error bars across (81, 32): Test error vs. weight decay (batch size = 16), comparing Adam

and AdamW.
—— Adam Top-5 Error .
80 AdamW Top-5 Error

70

\

60 /

Top-5 Validation Error (%)
3

30{ M
0

5000 10000 15000 20000 25000 30000
Batch Size

Figure 11: ImageNet-1K subset: Top-5 validation error vs. batch size for Adam and AdamW with
ResNet-50.

with standard ImageNet preprocessing. We report top-5 validation error against batch size (Figure [T T)
and weight decay (Figure[I2), comparing Adam and AdamW.

For Figure we set learning rate n = 1 x 1074, (B1,82) = (0.9,0.99), and weight
decay A = 1 x 107* for Adam and A\ = 1 x 1072 for AdamW. Batch sizes are
{64,128, 256, 512, 1024, 2048, 3072, 4096, 8192, 16384, 32768}

For Figure we fix B = 64,7 =1 x 1073, and (31, B32) = (0.9,0.99). Weight decay values for
Adam are {5 x 10771 x 1076, 5 x 1076,1 x 107°,5 x 107°,1 x 107*,5 x 1074,1 x 1073,5 x
1073,1 x 1072,5 x 1072, 1 x 1071}, and for AdamW are {1 x 10745 x 107%,1 x 10735 x
1072,1x 10725 x 1072,1 x 1071,5 x 1071},

The results again confirm that both optimizers degrade as batch size increases, and that Adam is more
sensitive to weight decay than AdamW.

67

1001 —m— Adam Top-5 Error
~¥— AdamW Top-5 Error

90

80

70

60

50

Validation Error (%)

40

30

10-6 105 104 103 10-2 10-1
Weight Decay (Adam)
Weight Decay + 25 (AdamW)

Figure 12: ImageNet-1K subset: Top-5 validation error vs. weight decay for Adam and AdamW with
ResNet-50 (batch size = 64).

68

	Introduction
	Related Work
	Problem Setup
	Main Results
	Theoretical Results for Adam
	Theoretical Results for AdamW

	Proof Outline of the Main Results
	Conclusion and Limitation
	Preliminaries
	Asymptotic Equations
	Preliminary Lemmas
	Gradients and Updates

	Proof Sketch
	Proof Sketch for Stochastic Adam
	Proof Sketch for Theorem 4.1
	Proof Sketch for Theorem 4.2
	Proof Sketch for Corollary 4.3

	Proof Sketch for Stochastic AdamW
	Proof Sketch for Theorem 4.4
	Proof Sketch for Theorem 4.5
	Proof Sketch for Corollary 4.6

	Proofs
	Proof of Stochastic Adam
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.3

	Proof of Stochastic AdamW
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Corollary 4.6

	Experimental details and results
	Experimental Details for Real-world Data
	Experimental Details for Synthetic Data
	Additional Experimental Results

