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Abstract

Adam is a popular and widely used adaptive gradient method in deep learning,
which has also received tremendous focus in theoretical research. However, most
existing theoretical work primarily analyzes its full-batch version, which differs
fundamentally from the stochastic variant used in practice. Unlike SGD, stochastic
Adam does not converge to its full-batch counterpart even with infinitesimal learn-
ing rates. We present the first theoretical characterization of how batch size affects
Adam’s generalization, analyzing two-layer over-parameterized CNNs on image
data. Our results reveal that while both Adam and AdamW with proper weight
decay λ converge to poor test error solutions, their mini-batch variants can achieve
near-zero test error. We further prove Adam has a strictly smaller effective weight
decay bound than AdamW, theoretically explaining why Adam requires more
sensitive λ tuning. Extensive experiments validate our findings, demonstrating the
critical role of batch size and weight decay in Adam’s generalization performance.

1 Introduction

Adaptive gradient methods, such as Adam (Kingma and Ba, 2015) and its variant AdamW (Loshchilov
and Hutter, 2019), have emerged as widely adopted optimizers for training deep learning models
across diverse tasks (He et al., 2016; Ma and Hovy, 2016). More recently, Adam and its variants
have also been used to train large language models (LLMs) like GPT (Brown et al., 2020), LLaMA
(Touvron et al., 2023), and Deepseek (Bi et al., 2024). In practice, Adam is known for its fast
convergence during training, yet its generalization performance varies significantly depending on
the task. Despite its empirical success, the theoretical understanding of Adam remains incomplete,
especially regarding its generalization performance.

Recent theoretical work has sought to analyze the task-dependent behavior of Adam and compare it
with other optimizers like gradient descent (GD). For instance, Wilson et al. (2017) demonstrated
that adaptive methods like Adam exhibit poor generalization on linear models, while GD and
stochastic gradient descent (SGD) can achieve zero test error. Further, Zhou et al. (2020) theoretically
characterized the generalization gap between SGD and Adam through local convergence analysis,
though their work did not account for neural network architectures or test error behavior. Other studies
have focused on the implicit bias of adaptive methods: Wang et al. (2022) analyzed momentum’s
role in generalization, proving that GD with momentum and its adaptive variants converge to the
ℓ2 max-margin solution; Xie and Li (2024) showed that full-batch AdamW converges only to a
KKT point under an ℓ∞ norm constraint; and Zhang et al. (2024) established Adam’s convergence
to a maximum ℓ∞-margin classifier in linear logistic regression with separable data. In nonconvex
settings, Zou et al. (2023b) revealed that full-batch Adam and GD converge to distinct solutions
with differing generalization performance, which shows that even with weight decay, Adam fails to
achieve low test error in overparameterized CNNs. Following the nonconvex analysis of Adam vs.
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GD by Zou et al. (2023b), Li et al. (2025) show that Sign Gradient Descent—a sign-only surrogate
for Adam (Balles and Hennig, 2018; Bernstein et al., 2018)—achieves fast convergence but poor
generalization when training two-layer Transformers.

While existing theoretical analyses have provided valuable insights into the behavior of full-batch
Adam, these results may not fully capture the characteristics of stochastic gradient Adam commonly
used in practice. Notably, although stochastic gradient descent (SGD) and full-batch GD exhibit
similar training dynamics in expectation (Bottou, 2012), stochastic gradient Adam demonstrates
fundamentally different behavior from its full-batch counterpart—a distinction that persists even with
vanishingly small learning rates. This gap raises important questions about how stochastic gradient
Adam, particularly with small batch sizes, affects model generalization, an aspect that remains largely
unexplored in current literature.

Motivated by this, in this paper, we investigate how the generalization of mini-batch Adam and
AdamW differs from that of large-batch Adam. We analyze the convergence and generalization of
Adam (and AdamW) with different batch sizes on two-layer over-parameterized convolutional neural
networks (CNNs) for an image data model. This analysis follows the settings outlined in the recent
study of full-batch Adam in Zou et al. (2023b). We also compare the sensitivity of the weight decay
parameters λ for effective weight decay in Adam and AdamW.

The main contributions of this paper are summarized as follows.

• Theorem 4.1 and 4.4 rigorously prove that in the large-batch regime, both Adam and AdamW
converge to solutions with poor test error in nonconvex settings, even with proper weight decay.
This extends prior results for full-batch Adam to AdamW, showing that adaptive methods inherently
overfit noise in low-stochasticity training. Real-world data experiments in Figure 1 demonstrate
that large-batch Adam and AdamW suffer drastic test error increases, while synthetic experiments
in Appendix D confirm this failure stems from noise-dominated solutions.

• For mini-batch training, theorem 4.2 and 4.5 prove that stochastic Adam and AdamW achieve near-
zero test error in nonconvex settings with appropriate weight decay. The key mechanism is twofold:
(i) stochastic gradients implicitly regularize the optimization trajectory by slowing noise fitting
while preserving feature learning dynamics, preventing Adam from overfitting noise patches; (ii)
weight decay explicitly suppresses residual noise components. This synergy ensures convergence
to solutions dominated by true features. Real-world data experiments in Figure 1 demonstrate
that mini-batch Adam and AdamW significantly improve test performance, with synthetic-data
experiments in Appendix D further validating our theoretical insights. Moreover, under constant
β1, β2 hyperparameters, we prove stochastic Adam and AdamW can be rigorously approximated
by SignSGD (Bernstein et al., 2018) and SignSGDW (with decoupled decay) respectively. This
extends the known full-batch Adam→SignGD correspondence to stochastic regimes—a crucial
advancement given mini-batch noise fundamentally modifies approximation dynamics. Our analysis
in Appendix C reveals this approximation holds precisely when gradient magnitudes dominate
optimization noise (e.g., |g(t)t,j,r[k]| ≥ Θ̃(η) where η is the learning rate).

• Corollary 4.3 and 4.6 derive distinct theoretical upper bounds for weight decay parameters in
nonconvex settings: Adam permits a strictly smaller maximum effective λ than AdamW. This arises
because Adam’s adaptive gradient normalization amplifies the effective impact of weight decay,
causing excessive regularization to destabilize updates. In contrast, AdamW’s decoupled weight
decay mechanism avoids this issue. Experiments in Figure 2 validate that exceeding Adam’s upper
bound (e.g., λ > 0.05) leads to catastrophic test error increases, while AdamW tolerates much
larger λ values (e.g., λ = 0.5) without significant performance degradation. This demonstrates that
the interplay between batch size and weight decay is critical: mini-batch training enables effective
regularization, but Adam’s narrow tolerance demands precise λ calibration.

The rest of paper is organized as follows. Section 2 discusses the works that are most closely related
to this paper. Section 3 describes the problem settings. Section 4 presents the main results of this
paper. Section 5 provides the proof outline of stochastic gradient Adam. Section 6 concludes this
paper and discusses future research directions. Additional experiments and all experimental details
can be found in Appendix D. All proofs are provided in the remaining appendices (Appendix A– C).

Notation. Scalars are denoted by lowercase letters x, y, . . . , vectors by bold lowercase letters x, . . . ,
and matrices by bold uppercase letters A, . . . . For any integer d ≥ 1, denote the set [d] = {1, . . . , d}.
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For x ∈ R, define [x]+ = max{x, 0} and sgn(x) = x/|x| for x ̸= 0, sgn(0) = 0. For x =

(x1, . . . , xd)
⊤ ∈ Rd, define ∥x∥p = (

∑d
i=1 |xi|p)1/p (p ≥ 1) and supp(x) = {i ∈ [d] : xi ̸= 0}. For

real sequences {an}, {bn}, denote an = O(bn) if there exist C,N > 0, s.t. |an| ≤ C|bn|,∀n ≥ N ;
denote an = Ω(bn) if bn = O(an); an = Θ(bn) if both O(bn) and Ω(bn) hold; denote an = o(bn) if
for any C > 0, there exist N > 0, s.t. |an| < C|bn|,∀n ≥ N ; and denote an = ω(bn) if bn = o(an).
We write Õ(·), Ω̃(·), Θ̃(·) to suppress logarithmic factors, an = poly(bn) if an = Θ(bDn ) for some
D > 0, and an = polylog(bn) if an = poly(log bn).

2 Related Work

Adaptive Optimization Methods. There are a series of papers on adaptive gradient methods,
including AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba, 2015), AdamW (Loshchilov and
Hutter, 2019), and second-order information methods (Yao et al., 2021; Liu et al., 2024). The
convergence of Adam and related methods has been analyzed in a line of papers under various
conditions (Chen et al., 2019; Guo et al., 2021; Défossez et al., 2022). However, some work presented
the possible case where Adam fails to converge to an optimal solution even in simple one-dimensional
convex settings (Reddi et al., 2018). The generalization performance of Adam has been investigated
and compared with that of gradient descent in Wilson et al. (2017); Zhou et al. (2020); Zou et al.
(2023b). To better understand the performance of Adam, Bernstein et al. (2018, 2019); Kunstner
et al. (2023) analyzed its similarity with signGD. Similar works have also been done for AdamW
(Xie and Li, 2024). Loshchilov and Hutter (2019) demonstrated that improper use of weight decay
in Adam could lead to poor generalization performance, and proposed the AdamW that improves
generalization in comparison to Adam. Recent work has also highlighted the role of weight decay
in modern deep learning setups, showing its impact on optimization dynamics and generalization
(D’Angelo et al., 2024). While L2 regularization and weight decay are equivalent for standard SGD
and GD (with rescaled by learning rate), that is not the case for adaptive methods like stochastic
gradient Adam and full-batch Adam (Loshchilov and Hutter, 2019; Zhang et al., 2019; Zhuang et al.,
2022). However, the true reason why Adam with weight decay fails to improve the generalization
remains unclear. Therefore, the current understanding of how batch size and weight decay influence
the generalization performance of Adam is still relatively limited.

Implicit bias. Implicit bias refers to the tendency of machine learning algorithms to favor certain
solutions. This phenomenon has also been studied in neural networks theoretically to understand how
they generalize and converge to solutions. Lyu and Li (2019) and Ji and Telgarsky (2020) studied the
implicit bias of gradient descent on the homogeneous neural networks. Kunin et al. (2023) extended
the results to a wider class of networks with varying degree of homogeneity. Cai et al. (2024) focused
on the large stepsize gradient descent on two-layer non-homogeneous networks. Frei et al. (2022)
analyzed the implicit bias of gradient flow in two-layer fully-connected neural networks with leaky
ReLU activations for nearly-orthogonal data. Kou et al. (2024) extended this results and analyzed
the implicit bias of gradient descent on similar settings. For Adam and AdamW, the implicit bias
of Adam have been analyzed in Wang et al. (2021, 2022); Zhang et al. (2024), and the implicit bias
of AdamW has been analyzed in (Xie and Li, 2024). Recently, Cattaneo et al. (2024) showed that
Adam penalizes the ℓ1-norm of perturbed gradients, favoring flat minima. Our work complements
this view by analyzing, in a discrete-time feature learning setting, how batch size and weight decay
jointly regulate noise suppression and generalization.

Feature learning. There are a series of papers that studied the feature learning theory in neural
networks. Allen-Zhu and Li (2020) investigated the feature learning of ensemble methods and
knowledge distillation in deep learning when applied to data with multi-view features. Cao et al.
(2022) examined the benign overfitting in the supervised learning of two-layer convolutional neural
networks, and proved that under certain conditions on signal-to-noise ratio (SNR), arbitrary small
training and test loss can be achieved. Zou et al. (2023b) compared the feature learning of full-batch
Adam and GD on two-layer convolutional neural networks. It demonstrated that GD learns the
features, but full-batch Adam, even with proper regularization, may still fail. Some works have
studied the feature learning of contrastive learning method (Zhang and Cao, 2024), federated learning
(Huang et al., 2024b) on two-layer convolutional neural networks, and multi-modal contrastive
learning on single-layer ReLU networks (Huang et al., 2024a). Additionally, some papers have
analyzed feature learning on other architectures, such as transformers (Jelassi et al., 2022; Li et al.,
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2025), and diffusion models (Han et al., 2025a,b); and other training configurations (Zou et al., 2023a;
Lu et al., 2024). Unlike the aforementioned works, this paper focuses on the feature learning of Adam
and AdamW algorithms with different batch sizes on the two-layer convolutional neural networks.

3 Problem Setup

In this paper, we train the two-layer convolutional neural network (CNN) with Adam and AdamW on
the training dataset S := {(xi, yi)}ni=1 of size n, which is generated from a data model D. In this
section, we introduce the data model D , the two-layer CNN model, and the training details of two
algorithms (Adam and AdamW) analyzed in this paper.

Data Model. We adopt the feature-noise patch concatenation framework from Definition 3.1,
aligning with previous studies (Allen-Zhu and Li, 2020; Cao et al., 2022; Jelassi et al., 2022; Zou
et al., 2023b; Huang et al., 2024b,a; Zhang and Cao, 2024; Li et al., 2025; Han et al., 2025a).

Definition 3.1. Let each data point (x, y) consist of a feature vector x ∈ R2d and a label y ∈ {−1, 1}.
The data is generated as follows:

x = [x⊤
1 ,x

⊤
2 ]

⊤,

where x1 and x2 represent two distinct feature patches. One of these patches corresponds to the
signal patch and consists of a feature vector y · v, where v ∈ Rd is assumed to be a sparse vector,
specifically 1-sparse. The other patch represents the noise patch and is a noise vector denoted by ξ.
Without loss of generality, we assume v = [1, 0, . . . , 0]⊤. The data is generated from the following
distribution D:

1. The label y is generated as a Rademacher random variable with y ∈ {−1,+1}.

2. Randomly select s coordinates from the set [d]\{1} with equal probability. This selection is
represented by a binary vector s ∈ {0, 1}d. Then generate ξ from the Gaussian distribution
N (0, σ2

pId) and apply the masking operation such that ξ = ξ ⊙ s, where ⊙ denotes element-wise
multiplication. Finally, add feature noise to the vector ξ by updating it as ξ = ξ − αyv, where
α ∈ (0, 1) controls the strength of the feature noise.

3. One of the two patches x1,x2 is randomly selected and is assigned as y · v, representing the
signal patch, while the other patch is assigned as ξ, representing the noise patch.

We set s = Θ
(
d1/2/n2

)
, σ2

p = Θ(1/(s · polylog(n))) , α = Θ(σp · polylog(n)) in this paper.

The data model formalizes image classification dynamics where localized label-relevant features
coexist with global noise—aligning with CNN behaviors: sparse mid-layer activations (Papyan et al.,
2017) vs. non-informative regions as independent noise (Yang, 2019). By isolating 1-sparse feature
and s-sparse noise patches, we distill the feature learning vs. noise memorization interplay. Though
our analysis uses a simplified single feature/noise patch model for clarity, the results can be extended
to broader settings (e.g., multi-patch or denser features/noises) by assuming sub-Gaussian noise
and using concentration inequalities (e.g., Bernstein bounds) to control overlapping or structured
perturbations, with similar qualitative behavior expected as long as the total noise remains controlled.

Two-layer CNN model. We define the two-layer CNN considered in this paper as follows.

Definition 3.2. Given the data (x, y) ∼ D and the activation function σ(x) = [x]q+ with q ≥ 3, the
j-th output of the neural network F with width m is

Fj(W,x) =

m∑
r=1

[σ(⟨wj,r,x1⟩) + σ(⟨wj,r,x2⟩)] =
m∑
r=1

[σ(⟨wj,r, yv⟩) + σ(⟨wj,r, ξ⟩)] ,

where wj,r is the weight at the r-th neuron and initialized from Gaussian distribution N (0, σ2
0Id).

In this paper, we assume j ∈ {±1} for clarity, ensuring the logit index matches the data label.
Additionally, we also assume m = polylog(n) and σ0 = Θ(d−1/4).
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Training algorithm. We investigate the behavior of stochastic Adam and AdamW, starting from
same initializations and training on the same dataset S = {(xi, yi)}ni=1. The loss function for each
data point (xi, yi) is denoted as Li(W) = − log eFyi

(W,xi)∑
j∈{−1,1} eFj(W,xi)

.

For stochastic Adam and AdamW, the CNN model is trained by minimizing the empirical loss
function

(Adam) L(W) =
1

n

n∑
i=1

Li(W) +
λ

2
∥W∥2F , (3.1)

(AdamW) L(W) =
1

n

n∑
i=1

Li(W), (3.2)

where ∥ · ∥F denotes the Frobenius norm, λ is the weight decay regularization of Adam. Therefore,
the stochastic gradient g(t)t,j,r can be calculated as

(Adam) g
(t)
t,j,r =

1

B

∑
i∈It

∇
w

(t)
j,r
Li(W

(t)) + λw
(t)
j,r,

(AdamW) g
(t)
t,j,r =

1

B

∑
i∈It

∇
w

(t)
j,r
Li(W

(t)),

where the subscript t of g
(t)
t,j,r represents the batch It at the t-th iteration and the superscript t

of g
(t)
t,j,r represents the model W(t) at the t-th iteration. Herein, we emphasize a fundamental

distinction: Adam’s stochastic gradients inherently incorporate weight decay regularization, whereas
AdamW’s gradients remain regularization-free—a deliberate design choice to prevent momentum-
based normalization from destabilizing regularization effects (Loshchilov and Hutter, 2019). This
architectural distinction, also analytically demonstrated in our proof, crucially impacts the training
process. The momentum estimates m(t)

j,r, v
(t)
j,r of Adam/AdamW are updated as follows

m
(t+1)
j,r = β1m

(t)
j,r + (1− β1) · g(t)t,j,r, (3.3)

v
(t+1)
j,r = β2v

(t)
j,r + (1− β2) · [g(t)t,j,r]

2, (3.4)

where β1, β2 are the hyperparameters of Adam/AdamW and we initialize m
(0)
j,r = v

(0)
j,r = 0. Finally,

the update rule of stochastic Adam/AdamW for model W can be formulated as

(Adam) w
(t+1)
j,r = w

(t)
j,r − η ·

m
(t)
j,r√

v
(t)
j,r + ϵ

, (3.5)

(AdamW) w
(t+1)
j,r = (1− ηλ)w

(t)
j,r − η ·

m
(t)
j,r√

v
(t)
j,r + ϵ

, (3.6)

where η is the learning rate, ϵ = Θ(λη) is stability constant and λ is the decoupled weight decay
parameter of AdamW. In particular, in (3.4), (3.5) and (3.6), the square (·)2, square root

√
·, and

division ·/· all denote entry-wise calculations. The details of gradient calculation and its expansion
can be found in Appendix A.

4 Main Results

In this section, we present the main results of our study. We begin by introducing the primary metric
used to evaluate generalization performance: the classification error rate.

Given training dataset S = {(xi, yi)}ni=1 generated from data model D in Definition 3.1. We define
the training error errS(W) and test error errD(W) of model W as follows,

errS(W) = E(x,y)∼S 1 [Fy(W,x) ≤ F−y(W,x)] ,
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Figure 1: Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

errD(W) = E(x,y)∼D 1 [Fy(W,x) ≤ F−y(W,x)] .

While theoretical analyses often prioritize mathematically tractable surrogate losses (e.g., cross-
entropy, hinge loss), classification error rate remains the most direct and practical performance
metric. Unlike continuously approximated surrogate losses, error rate directly quantifies discrete
misclassification events, better reflecting models’ true decision-making ability in classification tasks.

4.1 Theoretical Results for Adam

The following Theorem 4.1 characterizes the behavior of Adam in the large-batch regime.

Theorem 4.1 (Large-batch Adam). Suppose η = 1
poly(n) and λ satisfies 0 < λ = o(

σq−2
0 σp

n ), we

train our CNN model in Definition 3.2 on loss function (3.1) for T = poly(n)
η epochs using Adam (3.5)

with batch size B satisfies n
B = Θ(1). Then with probability at least 1− n−1, we have

• The training error is zero: errS(W(T )) = 0.

• The test error is high: errD(W(T )) ≥ 1
2 − o(1).

Theorem 4.1 extends Zou et al. (2023b)’s full-batch analysis to large-batch regimes (B = Θ(n)).
Basically, it states that under the nearly same data model in Zou et al. (2023b), large-batch Adam
cannot effectively learn the feature vector from the training dataset, and finally attains a nearly 0.5
test accuracy, despite its perfect fitting on the training data points.

In stark contrast, we further provide Theorem 4.2, which proves that stochastic gradient Adam with a
smaller batch size can achieve good generalization performance.

Theorem 4.2 (Mini-batch Adam). Suppose η = 1
poly(n) and 0 < λ = o(

σq−2
0 σp

n ), we train our CNN

model in Definition 3.2 on loss (3.1) for T = poly(n)
η epochs using stochastic Adam (3.5) with batch

size B satisfies n
B ≥ Θ(log ϵ−1), where ϵ is the hyperparameter of Adam. Then with high probability

at least 1− n−1, we have

• The training error is zero: errS(W(T )) = 0.

• The test error is near-zero: errD(W(T )) = o(1).

Our theoretical results demonstrate that mini-batch Adam achieves near-perfect test accuracy when
the ratio n/B is large, significantly outperforming its large-batch counterpart which exhibits only
random-guessing performance. This advantage can be attributed to three fundamental properties
of stochastic Adam optimization: First, since the feature vector is shared across all data points,
its learning remains robust regardless of batch size. In contrast, noise vectors are data-specific
and vary across different samples. When using mini-batches, only a subset of noise vectors is
exposed during each update, creating an inherent asymmetry in learning dynamics. More importantly,
Adam’s coordinate-wise normalization amplifies this effect: it maintains consistent learning rates for
shared features while substantially slowing down noise memorization. This selective suppression of
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noise learning explains the superior generalization performance of mini-batch Adam compared to
large-batch implementations.

Besides the results on the generalization performance, we further deliver the following corollary,
which states the feasible range of the weight decay in Adam. Theorems 4.1 and 4.2 directly yield:
Corollary 4.3 (Effective weight decay in Adam). Suppose the same conditions as in Theorem 4.1
and 4.2. If λ = ω(σq−2

0 ), then with probability at least 1− n−1, training stuck at the initialization.

This corollary provides a theoretical upper bound on the effective weight decay that allows Adam to
successfully train models, aligning well with previous empirical observations that Adam typically
performs better with small weight decay values compared to AdamW (Loshchilov and Hutter,
2019). This sensitivity arises because weight decay regularization is implicitly entangled with the
normalization step in Adam, i.e., when the gradient of weight decay is greater than that of the
cross-entropy loss, it will fully dominate the Adam update. In the next subsection, we will show that
weight decay will exhibit a different behavior in AdamW, leading to a different feasible range for λ.

4.2 Theoretical Results for AdamW

We first establish the theoretical results of Adamw in Theorem 4.4 under large-batch training.

Theorem 4.4 (Large-batch AdamW). Suppose η = 1
poly(n) , λ = Ω̃(B

2

n ∧ 1) and λ = Õ(1), we train

our CNN model in Definition 3.2 on loss function (3.2) for T = poly(n)
η epochs using AdamW (3.6)

with batch size B satisfies n
B = Θ(1) or n

B = o(sσp). Then with probability at least 1 − n−1, we
have

• The training error is zero: errS(W(T )) = 0.

• The test error is high: errD(W(T )) ≥ 1
2 − o(1).

The results for large-batch AdamW closely resemble those of large-batch Adam in Theorem 4.1:
the learned model consistently exhibit test errors of at least 1/2− o(1), performing no better than
random guessing. This phenomenon arises from the training dynamics in the early stages, where the
influence of weight decay is minimal. As a result, both Adam and AdamW exhibit similar behavior,
tending to fit noise. By the time the decoupled weight decay in AdamW begins to take effect, the
model has already overfit to the feature noise −αyv. The weight decay then guides the model toward
nearby local minima, effectively preserving the previously memorized noise. Then at test time, this
overfitting to feature noise causes the model to predict labels that are systematically misaligned with
the true labels, leading to test performance that is no better than random guessing.

In contrast to the results for large-batch in Theorem 4.4, the following Theorem 4.5 characterizes the
generalization ability of mini-batch AdamW.

Theorem 4.5 (Mini-batch AdamW). Suppose η = 1
poly(n) , λ = Ω̃(B

2

n ∧ 1) and λ = Õ(1), we train

our CNN model in Definition 3.2 on loss function (3.2) for T = poly(n)
η epochs using stochastic

AdamW (3.6) with batch size B satisfies n
B ≥ Θ(log ϵ−1) and n

B = ω(sσp ∨ n1/2). Then with
probability at least 1− n−1, we have

• The training error is zero: errS(W(T )) = 0.

• The test error is near-zero: errD(W(T )) = o(1).

Under mini-batch training, AdamW achieves near-zero test error with partial similarity to Adam. The
extended iterations per epoch slow early-stage noise overfitting (notably for s-sparse noise). However,
AdamW’s decoupled weight decay penalizes weights independently of gradients, exerting significant
regularization only in later phases to converge toward generalizable minima. Thus, AdamW can
leverage a much larger λ than Adam, which is shown as follows:
Corollary 4.6. Regarding the effective weight decay coefficients of Adam and AdamW for achieving
good generalization performance, we have λAdam ∼ σq−2

0 ≪ B2

n ∧ 1 ∼ λAdamW.

Corollary 4.6 reveals a fundamental gap between the effective weight decay regimes of Adam and
AdamW, consistent with empirical observations. For Adam, the admissible weight decay λAdam
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Figure 2: Test error vs. weight decay (batch size = 16), comparing Adam and AdamW on each model.

is extremely small, bounded above by an initialization-dependent term σq−2
0 . Consequently, even

moderate weight decay values can destabilize training due to the entanglement between gradient
updates and weight decay, leading to suboptimal generalization. In contrast, AdamW decouples
weight decay from the gradient update, applying regularization directly on the weights. As a result, it
requires a larger weight decay to effectively suppress noise overfitting and exhibits greater robustness.
The lower bound Ω̃(B

2

n ∧ 1) serves as a sufficient condition ensuring that weight decay is strong
enough to prevent noise amplification. This robustness is reflected in its much broader effective
range—from Ω̃(B

2

n ∧ 1) up to Õ(1)—representing a large, constant-order window independent of
initialization. This theoretical separation explains the empirical fact that Adam requires delicate
tuning and is highly sensitive to weight decay, whereas AdamW is considerably more robust and
easier to tune Loshchilov and Hutter (2019). Our experiments (Figure 2) further corroborate this
prediction.

Experiments. We train VGG16 and ResNet18 on CIFAR-10 with Adam (λ = 5 × 10−4) and
AdamW (λ = 1×10−2), selecting the optimal learning rate from {5×10−4, 1×10−4, 1×10−5} and
varying the batch size to measure test error (Figure 1). Both optimizers exhibit a sharp performance
degradation once the batch size exceeds a critical threshold, in line with theoretical predictions of
large-batch generalization collapse (Theorem 4.1 and 4.4). Separately, at a fixed batch size of 16
(Figure 2), we find that Adam’s error spikes for λ > 0.05, whereas AdamW remains robust even up to
λ = 0.5, highlighting the benefit of decoupled weight decay in adaptive optimizers. This observation
is consistent with our theoretical analysis (Corollary 4.3 and 4.6). Additional experiments, including
the dynamics of feature learning and noise memorization (Figures 3, 4), sensitivity to weight decay
(Figures 5, 6), error bars across random seeds and momentum parameters (Figures 7, 8, 9, 10), and
large-scale vision experiments with ResNet-50 on ImageNet-1K (Figures 11, 12), all corroborate our
theoretical findings. Complete experimental details and results are provided in Appendix D.

5 Proof Outline of the Main Results

In this section, we mainly outline the proof sketch for the theorem 4.2 in Section 4. Proof sketches
for remaining theorems are deferred to Appendix B. Following the two-stage analysis framework of
Cao et al. (2022); Zou et al. (2023b), we decompose the proof into two distinct stages:

Stage I: Pattern Learning. During the initial phase of training, the effect of regularization is
negligible. The model operates in an underfitting regime, where it rapidly learns dominant patterns in
the training data, leading to improved empirical performance on test error.

Stage II: Regularization. As training progresses, the model’s classification accuracy on the training
set approaches convergence, resulting in diminished gradient magnitudes. At this stage, regularization
dominates the optimization dynamics, steering the model converge to a local minima. Due to the
nonconvex nature of the loss landscape, the model retains the patterns acquired during the pattern
learning stage.

Furthermore, motivated by the behavioral similarity between Adam and SignGD when the learning
rate is sufficiently small or β1, β2 approach zero (Balles and Hennig, 2018; Bernstein et al., 2018),
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we present results for SignSGD. We subsequently extend these results to stochastic Adam, which
provided in Appendix C. The update rules for SignSGD are given as follows:

(SignSGD) w
(t+1)
j,r = w

(t)
j,r − η · sgn(g(t)t,j,r), (5.1)

where g
(t)
t,j,r in (5.1) denotes the stochastic gradient of (3.1). The detailed update rules of Adam with

the SignSGD approximation are provided in Eqs. (B.3) and (B.4), while those of AdamW are given
in Eqs. (B.5) and (B.6).

Next, following the framework of feature learning (Allen-Zhu and Li, 2020; Cao et al., 2022; Zou
et al., 2023b; Han et al., 2025a), we primarily focus on two key quantities: 1) Feature Learning
⟨wj,r, jv⟩: This term captures the alignment between the learned weight vector wj,r and the true
feature direction jv, reflecting the model’s ability to extract meaningful latent structures from the data.
2) Noise Memorization ⟨wyi,r, ξi⟩: This term measures the correlation between wyi,r and the noise
patch ξi of individual samples, characterizing the extent to which the model overfits to stochastic
perturbations or idiosyncrasies in the training set. This decomposition allows us to separately analyze
the model’s generalization behavior (driven by feature learning) and its memorization capacity
(influenced by noise fitting).

We first clarify that, although the sketch appears straightforward, the underlying process is non-trivial.
Numerous intricate and interesting details arise, which we elaborate on in the proof presented in
Appendix C.

We begin by characterizing the dynamics of feature learning and noise memorization under large-batch
training, to facilitate a comparative analysis with mini-batch regimes, as formalized in Lemma 5.1.

Large-batch Adam. We consider n
B = Θ(1), which is the large-batch setting.

Lemma 5.1. Given the training dataset S , if n
B = Θ(1), η = 1/poly(d) and 0 < λ = o(σq−2

0 σp/n),
then for any t ≤ T0 with T0 = Õ( 1

ηsσp
) and any i ∈ [n],

⟨w(t+1)
j,r , jv⟩ ≤ ⟨w(t)

j,r, jv⟩+Θ(η), ⟨w(t+1)
yi,r , ξi⟩ = ⟨w(t)

yi,r, ξi⟩+ Θ̃(ηsσp).

We observe that Lemma 5.1 is identical to Lemma 5.2 in (Zou et al., 2023b), allowing us to directly
extend their full-batch Adam results to the large-batch setting. The remainder of the proof follows
identically, as the underlying theoretical machinery remains unchanged under this batch size scaling
n
B = Θ(1). We observe that under large-batch setting, the optimization dynamics of Adam closely
resemble those of the full-batch setting. This similarity arises because the algorithm traverses
the entire dataset within few iterations, resulting in nearly identical momentum estimates and,
consequently, comparable training dynamics between large-batch and full-batch regimes.

We next consider the mini-batch setting, which yields conclusions that differ fundamentally from
those in the large-batch setting.

Mini-batch Adam. We consider n
B ≥ Θ(log ϵ−1), which is the mini-batch setting.

Lemma 5.2 (Stage I). Given the training dataset S, if n
B ≥ Θ(log ϵ−1), η = 1/poly(d) and

0 < λ = o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( 1

ηsσp
) and any i ∈ [n],

⟨w((t+1)· n
B ))

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
), ⟨w(t)

j,r, ξi⟩ ≤ Θ̃(ηsσp).

Compared to Lemma 5.1, Lemma 5.2 reveals fundamentally different optimization dynamics. Specif-
ically, feature learning progressively increases throughout Stage I, whereas noise memorization
remains suppressed near the initialization. The key distinction from the large-batch setting lies in
the fact that, under the mini-batch regime, traversing the entire dataset requires many iterations.
Since noise is sparse and uncorrelated across samples while features are dense and shared, feature
learning can proceed effectively during the early training phase without being hindered by weight
decay regularization. In contrast, noise memorization is strongly suppressed by weight decay due to
its sparsity. As training progresses, the momentum estimates in Adam gradually forget the gradient
contributions from noise, allowing weight decay to dominate. As a result, recently acquired noise
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memorization is continually erased, keeping noise-related parameters close to their initialization
throughout Stage I.

In the following lemma 5.3, we show that the patterns learned by the model during Stage I are
preserved in Stage II, due to the nature of our non-convex optimization landscape.
Lemma 5.3 (Stage II). Suppose the same conditions hold as in Lemma 5.2. For t > T0, j ∈
{±1}, r ∈ [m], i ∈ [n], let r∗ = argmaxr∈[m]⟨w

(t)
j,r, jv⟩, then ⟨w(t)

j,r∗ , jv⟩ = Θ̃(1) and

⟨w(t)
yi,r, ξi⟩ ≤ Θ̃(ηsσp).

Given Lemma 5.2 and Lemma 5.3, we can characterize the convergence rate of Adam as follows.
Lemma 5.4 (Convergence). Suppose the same conditions hold as in Lemma 5.2 and 5.3, if the step
size η = O(d−

1
2 ), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

Combine Lemma 5.3 and Lemma 5.4, we observe that the model successfully learns the true features
and eventually converges to a local minimum, retaining strong generalization performance.

6 Conclusion and Limitation

In this work, we theoretically and empirically analyze the impact of varying batch sizes and weight
decay parameters on the generalization of Adam and AdamW when learning two-layer CNNs. Our
results demonstrate that large-batch Adam and AdamW inherently overfit noise-dominated solutions
even with weight decay, while their mini-batch counterparts achieve strong generalization through
the synergy of implicit stochastic gradient regularization and explicit weight decay. Furthermore, we
establish that Adam’s adaptive gradient normalization imposes stricter constraints on weight decay
parameters compared to AdamW, necessitating precise calibration for stable optimization.

While our theoretical framework provides insights into the interplay between batch size, weight
decay, and generalization, several limitations highlight critical directions for future research. First,
the current analysis is restricted to two-layer networks. Extending the results to deeper architectures
and investigating how batch size influences the dynamics of hierarchical feature learning presents
a promising direction. Second, our work focuses on image data, and an important direction is to
extend the analysis to domains with fundamentally different data structures, such as NLP, where
batch size and weight decay may impact model performance through different mechanisms. Finally,
other critical hyperparameters, such as momentum, learning rate schedules, and gradient clipping, are
not considered in our analysis, and some modern vision architectures succeed with large batches (Liu
et al., 2022, 2023; Chen et al., 2024) despite our theoretical predictions, suggesting that additional
factors like architectural design and normalization may play a significant role.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in the conclusion section,
which are also our future research directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the main results in the main paper, and state all the assumptions
and the complete proof in Appendix. We also provide a proof outline in Section 5 in the
main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the configuration of the experiments in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use VGG16, ResNet18, ResNet50 models and the CIFAR-10, ImageNet-
1K datasets, which are easily available on the Internet. All the experimental details are
provided in Appendix D.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the experimental details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error bars in Figures 7, 8, 9, 10 in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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Justification: We provide all the experimental details in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
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Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics.
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A Preliminaries

In this section, we give the asymptotic equations for all the parameters we use, some useful lemmas,
and the gradient and weight update equations.

A.1 Asymptotic Equations

First, we give the asymptotic equations for all the parameters we use in the proof.
Condition A.1. Suppose that the following conditions on data model 3.1 hold,

1. The dimension d satisfies d = poly(n).

2. The number of noise coordinates s satisfies s = Θ
(

d1/2

n2

)
.

3. The variance parameter σ2
p of the noise vector satisfies σ2

p = Θ
(

1
s·polylog(n)

)
.

4. The feature noise strength α satisfies α = Θ(σp · polylog(n)).
Condition A.2. Suppose that the following conditions on hyper-parameters hold,

1. The initialization variance of the model weights σ2
0 satisfies σ2

0 = Θ
(

1
d1/2

)
.

2. The width of the network m satisfies m = polylog(n).

3. The learning rate η satisfies η = 1
poly(n) .

4. The parameter ϵ in Stochastic Adam and Stochastic AdamW satisfies ϵ = Θ(λη).

Based on the parameter configuration, we claim that the following equations hold, which will be
frequently used in the subsequent proof.

α = ω
(
(sσp)

1−qσq−1
0

)
, α = o

(
sσ2

p

n

)
, σ0 = o

(
1

sσp

)
, η = o

(
λσq

0σ
q
p

)
. (A.1)

The following Lemma A.3 describes the initialization.
Lemma A.3. At the initialization, for ∀j ∈ {±1}, r ∈ [m], i ∈ [n], we have

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0), |⟨w(0)

j,r , ξi⟩| = Θ̃(s1/2σpσ0 + ασ0) = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0),

Proof. By Definition 3.2, we have

w
(0)
j,r ∼ N (0, σ2

0Id).

For data (xi, yi) ∼ D, by Definition 3.1, let Bi = supp(ξi)\{1}, we have

v = (1, 0, . . . , 0)⊤,

ξi[1] = −αyi,

ξi[k] ∼ N (0, σ2
p). (for k ∈ Bi)

Therefore, condition on the training dataset S, we have

⟨w(0)
j,r ,v⟩ ∼ N (0, σ2

0).

By standard Gaussian tails, we get

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0),

w
(0)
j,r [k] = Θ̃(σ0).

For ⟨w(0)
j,r , ξi⟩, we have

⟨w(0)
j,r , ξi⟩ = −αw

(0)
j,r [1] · yi +

∑
k∈Bi

w
(0)
j,r [k] · ξi[k],
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where − αw
(0)
j,r [1] · yi ∼ N (0, α2σ2

0),∑
k∈Bi

w
(0)
j,r [k] · ξi[k] ∼ N

(
0, σ2

0 ·

(∑
k∈Bi

ξi[k]
2

))
∼ N (0, sσ2

pσ
2
0),

since ξi[k] ∼ N (0, σ2
p). Therefore, we have

|⟨w(0)
j,r , ξi⟩| = Θ̃(s1/2σpσ0 + ασ0) = Θ̃(s1/2σpσ0).

A.2 Preliminary Lemmas

The following lemma studies non-overlap support property of noise patch in data model D in
Definition 3.1.
Lemma A.4 (Non-overlap support, Lemma C.1 in Zou et al. (2023b)). Let {(xi, yi)}i=1,...,n be
the training dataset sampled according to Definition 3.1. Moreover, let Bi = supp(ξi)\{1} be the
support of xi except the first coordinate. Then with probability at least 1− n−2, Bi ∩ Bj = ∅ for all
i, j ∈ [n].

A.3 Gradients and Updates

We first calculate the gradient of the individual loss function Li with respect to w
(t)
j,r.

Lemma A.5. Consider the CNN model defined in Eq. 3.2. Let (xi, yi) be a data generated from data
model D in Definition 3.1. The gradient of Li(W) = − log eFyi

(W,xi)∑
j∈{−1,1} eFj(W,xi)

with respect to wj,r

is:

∇wj,r
Li(W) = −∇wj,r

Fj(W,xi) · ℓj,i
= − (yiℓj,iσ

′(⟨wj,r, yiv⟩) · v + ℓj,iσ
′(⟨wj,r, ξi⟩) · ξi) ,

where ℓj,i := 1yi=j −logitj(F,xi) and logitj(F,xi) =
eFj(W,xi)∑

k∈{−1,1} eFk(W,xi)
.

Proof of Lemma A.5. For j = yi,

∇wj,r
Li(W)

= −eFj(W,xi) + eF−j(W,xi)

eFj(W,xi)
·
eFj(W,xi)+F−j(W,xi) · ∇wj,r

Fj(W,xi)(
eFj(W,xi) + eF−j(W,xi)

)2
= −∇wj,r

Fj(W,xi) ·
eF−j(W,xi)

eFj(W,xi) + eF−j(W,xi)

= −∇wj,rFj(W,xi) ·
(
1− eFj(W,xi)

eFj(W,xi) + eF−j(W,xi)

)
= −∇wj,rFj(W,xi) · ℓj,i
= − (yiℓj,iσ

′(⟨wj,r, yiv⟩) · v + ℓj,iσ
′(⟨wj,r, ξi⟩) · ξi) .

For j ̸= yi,

∇wj,r
Li(W)

=
eFj(W,xi) + eF−j(W,xi)

eF−j(W,xi)
·
eFj(W,xi)+F−j(W,xi) · ∇wj,r

Fj(W,xi)(
eFj(W,xi) + eF−j(W,xi)

)2
= ∇wj,r

Fj(W,xi) ·
eFj(W,xi)

eFj(W,xi) + eF−j(W,xi)

= −∇wj,rFj(W,xi) ·
(
0− eFj(W,xi)

eFj(W,xi) + eF−j(W,xi)

)
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= −∇wj,rFj(W,xi) · ℓj,i
= − (yiℓj,iσ

′(⟨wj,r, yiv⟩) · v + ℓj,iσ
′(⟨wj,r, ξi⟩) · ξi) .

Based on the definition of ℓj,i, we have a useful lemma as follow:

Lemma A.6. Given data (xi, yi) generated from data model 3.1, define ℓj,i = 1yi=j −logitj(F,xi)

and logitj(F,xi) =
eFj(W,xi)∑

k∈{−1,1} eFk(W,xi)
, we have

sgn(yiℓj,i) = sgn(j).

Proof of Lemma A.6. For j = yi,

sgn(yiℓj,i) · sgn(j) = sgn(ℓj,i)

= sgn(1− logitj(F,xi)) (logitj(F,xi) ∈ (0, 1))

= 1.

For j ̸= yi,

sgn(yiℓj,i) · sgn(j) = −sgn(ℓj,i)

= −sgn(−logitj(F,xi))

= sgn(logitj(F,xi)) (logitj(F,xi) ∈ (0, 1))

= 1.

Now we calculate the gradient of loss (3.1) and loss (3.2), responding to stochastic Adam and
stochastic AdamW respectively. Here we slightly abuse the notation. We use g

(t)
t,j,r to represent the

stochastic gradient with respect to w
(t)
j,r at the t-th iteration. The subscript t of g(t)t,j,r represents the

batch at the t-th iteration and the superscript t of g(t)t,j,r represents the weight matrix W(t) at the t-th
iteration.

Lemma A.7 (Gradient of Stochastic Adam). Consider the CNN model in Definition 3.2. Let
{(xi, yi)}ni=1 be the training dataset generated from data model in Definition 3.1. Using stochastic
Adam to train the neural network, at the t-th iteration with batch data index set It of size B, the
stochastic gradient of the loss (3.1) with respect to w

(t)
j,r is as follows:

g
(t)
t,j,r = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) · v +

∑
i∈It

ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi

]
+ λw

(t)
j,r.

More specific, for the k-th coordinate, we have

• k = 1:

g
(t)
t,j,r[1] = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

]
+ λw

(t)
j,r[1].

• k ∈ Bi, i ∈ It:

g
(t)
t,j,r[k] = − 1

B
ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k] + λw

(t)
j,r[k].

• k ̸= 1 and k /∈ ∪i∈ItBi:

g
(t)
t,j,r[k] = λw

(t)
j,r[k].
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Proof of Lemma A.7. The loss of stochastic Adam at the t-th iteration with batch data index set It is

L(W(t)) =
1

B

∑
i∈It

Li(W
(t)) +

λ

2
∥W(t)∥2F .

By Lemma A.5, we have

g
(t)
t,j,r = ∇

w
(t)
j,r
L(W(t))

=
1

B

∑
i∈It

∇
w

(t)
j,r
Li(W

(t)) + λw
(t)
j,r

= − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) · v +

∑
i∈It

ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi

]
+ λw

(t)
j,r.

For the k-th coordinate, if k = 1, we know v = [1, 0, . . . , 0]⊤ and ξi[1] = −αyi. So we have

g
(t)
t,j,r[1] = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

]
+ λw

(t)
j,r[1].

If k ∈ Bi, i ∈ It, by Lemma A.4, we know Bi ∩ Bj = ∅ for i ̸= j. So we have

g
(t)
t,j,r[k] = − 1

B
ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k] + λw

(t)
j,r[k].

If k ̸= 1 and k /∈ ∪i∈It
Bi, it is obvious that

g
(t)
t,j,r[k] = λw

(t)
j,r[k].

Lemma A.8 (Gradient of Stochastic AdamW). Consider the CNN model defined in Eq. 3.2. Let
{(xi, yi) : i ∈ [n]} be the training dataset generated from data model 3.1. Use stochastic AdamW
training the neural network, at the t-th iteration with batch data index set It of size B, the stochastic
gradient of the Loss defined in Eq. (3.2) with respect to w

(t)
j,r is as follows:

g
(t)
t,j,r = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) · v +

∑
i∈It

ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi

]
.

More specific, for the k-th coordinate, we have

• k = 1:

g
(t)
t,j,r[1] = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

]
.

• k ∈ Bi, i ∈ It:

g
(t)
t,j,r[k] = − 1

B
ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k].

• k ̸= 1 and k /∈ ∪i∈ItBi:

g
(t)
t,j,r[k] = 0.

Proof of Lemma A.8. The loss of stochastic AdamW at the t-th iteration with batch data index set It
is

L(W(t)) =
1

B

∑
i∈It

Li(W
(t)).

24



By Lemma A.5, we have

g
(t)
t,j,r = ∇

w
(t)
j,r
L(W(t))

=
1

B

∑
i∈It

∇
w

(t)
j,r
Li(W

(t))

= − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) · v +

∑
i∈It

ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi

]
.

For the k-th coordinate, if k = 1, we know v = [1, 0, . . . , 0]⊤ and ξi[1] = −αyi. So we have

g
(t)
t,j,r[1] = − 1

B

[∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

]
.

If k ∈ Bi, i ∈ It, by Lemma A.4, we know Bi ∩ Bj = ∅ for i ̸= j. So we have

g
(t)
t,j,r[k] = − 1

B
ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k].

If k ̸= 1 and k /∈ ∪i∈It
Bi, it is obvious that

g
(t)
t,j,r[k] = 0.

B Proof Sketch

In this section, we mainly outline the proof sketch for the main results in Section 4. Following the
two-stage analysis framework of Cao et al. (2022); Zou et al. (2023b), we decompose the proof into
two distinct stages:

Stage I: Pattern Learning. During the initial phase of training, the effect of regularization is
negligible. The model operates in an underfitting regime, where it rapidly learns dominant patterns in
the training data, leading to improved empirical performance on test error.

Stage II: Regularization. As training progresses, the model’s classification accuracy on the training
set approaches convergence, resulting in diminished gradient magnitudes. At this stage, regularization
dominates the optimization dynamics, steering the model converge to a local minima. Due to the
nonconvex nature of the loss landscape, the model retains the patterns acquired during the pattern
learning stage.

Furthermore, motivated by the behavioral similarity between Adam and SignGD when the learning
rate is sufficiently small or β1, β2 approach zero (Balles and Hennig, 2018; Bernstein et al., 2018),
we present results for SignSGD and SignSGDW (SignSGD with decoupled weight decay). We
subsequently extend these results to stochastic Adam and AdamW, which provided in Appendix C.
The update rules for SignSGD are given as follows:

(SignSGD) w
(t+1)
j,r = w

(t)
j,r − η · sgn(g(t)t,j,r), (B.1)

where g
(t)
t,j,r in (B.1) is stochastic gradient of (3.1). The updata rules for SignSGDW are given as

follows:
(SignSGDW) w

(t+1)
j,r = (1− λη)w

(t)
j,r − η · sgn(g(t)t,j,r), (B.2)

where g
(t)
t,j,r in (B.2) is stochastic gradient of (3.2), and λ is the weight decay parameter.

Next, following the framework of feature learning (Allen-Zhu and Li, 2020; Cao et al., 2022; Zou
et al., 2023b; Han et al., 2025a), we primarily focus on two key quantities: 1) Feature Learning
⟨wj,r, jv⟩: This term captures the alignment between the learned weight vector wj,r and the true
feature direction jv, reflecting the model’s ability to extract meaningful latent structures from the data.
2) Noise Memorization ⟨wyi,r, ξi⟩: This term measures the correlation between wyi,r and the noise
patch ξi of individual samples, characterizing the extent to which the model overfits to stochastic
perturbations or idiosyncrasies in the training dataset. This decomposition allows us to separately
analyze the model’s generalization behavior (driven by feature learning) and its memorization capacity
(influenced by noise fitting).
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B.1 Proof Sketch for Stochastic Adam

We present the dynamics of feature learning ⟨w(t)
j,r, jv⟩ and noise memorization ⟨w(t)

yi,r, ξi⟩ for
SignSGD as follows. The details of calculation are provided in Appendix A.〈

w
(t+1)
j,r , jv

〉
=
〈
w

(t)
j,r, jv

〉
− η ·

〈
sgn

(
g
(t)
t,j,r

)
, jv
〉

=
〈
w

(t)
j,r, jv

〉
+ jη · sgn

(∑
i∈It

yiℓ
(t)
j,i

[
σ′(⟨w(t)

j,r, yiv⟩)− ασ′(⟨w(t)
j,r, ξi⟩)

]
−Bλw

(t)
j,r[1]

)
, (B.3)〈

w(t+1)
yi,r , ξi

〉
=
〈
w(t)

yi,r, ξi

〉
− η ·

〈
sgn

(
g
(t)
t,yi,r

)
, ξi

〉
=
〈
w(t)

yi,r, ξi

〉
+ η ·

∑
k∈Bi

〈
sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r, ξi⟩)ξi[k]− nλw(t)

yi,r[k]
)
, ξi[k]

〉

− αyiη · sgn

∑
j∈It

yjℓ
(t)
yi,j

[
σ′(⟨w(t)

yi,r, yjv⟩)− ασ′(⟨w(t)
yi,r, ξj⟩)

]
−Bλw(t)

yi,r[1]

 , (B.4)

where ℓ
(t)
j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) =

eFj(W,xi)∑
k∈{−1,1} eFk(W,xi)

.

B.1.1 Proof Sketch for Theorem 4.1

In this section, we present the proof sketch for Theorem 4.1. We consider n
B = Θ(1), which is the

large-batch setting.

Lemma B.1. Given the training dataset S , if n
B = Θ(1), η = 1/poly(d) and 0 < λ = o(σq−2

0 σp/n),
then for any t ≤ T0 with T0 = Õ( 1

ηsσp
) and any i ∈ [n],

⟨w(t+1)
j,r , jv⟩ ≤ ⟨w(t)

j,r, jv⟩+Θ(η), ⟨w(t+1)
yi,r , ξi⟩ = ⟨w(t)

yi,r, ξi⟩+ Θ̃(ηsσp).

We note that the above lemma is equivalent to Lemma 5.2 in (Zou et al., 2023b), which enables us to
directly extend their results for full-batch Adam to the large-batch regime. The remainder of the proof
proceeds in the same way, as the core theoretical framework remains invariant under the batch size
scaling n

B = Θ(1). Recall that the condition sσp = ω(1) implies that noise memorization outpaces
feature learning and we have ℓj,r = Θ(1) throughout Stage I since the outputs are small. As a result,
after a certain number of iterations, the direction of feature learning is reversed, as indicated by the
update rule in Equation B.3. Specifically, the noise-driven term ασ′(⟨w(t)

j,r, ξi⟩) becomes dominant,

satisfying ασ′(⟨w(t)
j,r, ξi⟩) ≫ σ′(⟨w(t)

j,r, yiv⟩) + nλ|w(t)
j,r[1]|. By the end of Stage I, the model’s

feature learning direction has been inverted, while noise memorization reaches a quasi-stationary
state. In the subsequent regularization phase, weight decay drives the model toward convergence.
However, it lacks the capacity to eliminate the memorized noise. Consequently, the model fits the
feature noise −αyv and converges to a local minimum that preserves the patterns acquired in Stage
I, ultimately leading to poor generalization performance.

We observe that under large-batch setting, the optimization dynamics of Adam closely resemble those
of the full-batch setting. This similarity arises because the algorithm traverses the entire dataset within
few iterations, resulting in nearly identical momentum estimates and, consequently, comparable
training dynamics between large-batch and full-batch regimes.

We next consider the mini-batch setting, which yields conclusions that differ fundamentally from
those in the large-batch setting.

B.1.2 Proof Sketch for Theorem 4.2

In this section, we present the proof sketch for Theorem 4.2. We consider n
B ≥ Θ(log ϵ−1), which is

the mini-batch setting.
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Lemma B.2 (Stage I). Given the training dataset S, if n
B ≥ Θ(log ϵ−1), η = 1/poly(d) and

0 < λ = o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( B

ηn ) and any i ∈ [n],

⟨w((t+1)· n
B ))

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
), ⟨w(t)

j,r, ξi⟩ ≤ Θ̃(ηsσp).

Compared to Lemma B.1, Lemma B.2 reveals fundamentally different optimization dynamics in the
mini-batch regime. In Stage I, feature learning advances steadily—since ℓj,r = Θ(1)—while noise
memorization remains at its initialization scale. This divergence arises because mini-batch sampling
requires many more iterations to traverse the dataset: dense, shared features receive consistent gradient
updates and resist weight decay, whereas sparse, uncorrelated noise is continuously attenuated. As
features strengthen, network outputs grow, the loss gradients diminish, and weight decay takes over,
marking the transition into Stage II. We now show that the structures acquired in Stage I persist
throughout this regularization phase.
Lemma B.3 (Stage II). Suppose the same conditions hold as in Lemma B.2. For t > T0, j ∈
{±1}, r ∈ [m], i ∈ [n], let r∗ = argmaxr∈[m]⟨w

(t)
j,r, jv⟩, then ⟨w(t)

j,r∗ , jv⟩ = Θ̃(1) and

⟨w(t)
yi,r, ξi⟩ ≤ Θ̃(ηsσp).

This lemma follows because, once feature learning has increased accuracy and reduced gradients,
weight decay takes effect but cannot reverse the established feature alignment; finally the model
converges to a local minimum that preserves the patterns learned in Stage I.
Lemma B.4 (Convergence). Suppose the same conditions hold as in Lemma B.2 and B.3, if the step
size η = O(d−

1
2 ), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

Combining Lemma B.3 and B.4, we observe that the model successfully learns the true features
and eventually converges to a local minimum with infinitesimal learning rate η and T = poly(n)/η,
retaining strong generalization performance.

B.1.3 Proof Sketch for Corollary 4.3

We next show that if the weight decay parameter satisfies λ = ω(σq−2
0 ), then the learning dynamics

of Adam are effectively suppressed. This implies that the effective weight decay for Adam is of the
order σq−2

0 , which is significantly smaller than that required for AdamW, as will be discussed later.

Corollary 4.3 formalizes this observation by showing that if the Adam weight decay parameter
satisfies λ = ω(σq−2

0 ), the training process becomes stagnant and remains near the initialization.
This corollary follows directly from the proof sketches of both large-batch and mini-batch Adam. By
Lemma A.3, we know that at initialization:

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0), |⟨w(0)

j,r , ξi⟩| = Θ̃(s1/2σpσ0 + ασ0) = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0).

Then, from the update rules given in Equations (B.3) and (B.4), we observe that the updates are
dominated by the weight decay term, i.e.,

λ|w(0)
j,r [1]| ≫ σ′(⟨w(0)

j,r , yiv⟩) + ασ′(⟨w(0)
j,r , ξi⟩),

and
λ|w(0)

yi,r[k]| ≫ σ′(⟨w(0)
yi,r, ξi⟩) · ξi[k],

due to the condition λ = ω(σq−2
0 ). As a result, the learning dynamics are overwhelmed by the

regularization term, preventing meaningful updates. Consequently, the model parameters remain
close to their initialization throughout training. We formalize this in Lemma B.5.

Lemma B.5. Suppose the same conditions hold as in Lemma B.1 and B.4, if λ = ω(σq−2
0 ), then∣∣∣⟨w(t)

j,r, j · v⟩
∣∣∣ ≤ Θ̃(σ0),∣∣∣⟨w(t)

j,r, ξi⟩
∣∣∣ ≤ Θ̃(s1/2σpσ0).
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B.2 Proof Sketch for Stochastic AdamW

Motivated by the similarity between Adam and SignSGD, and to better illustrate the core idea,
we present the dynamics of feature learning ⟨w(t)

j,r, jv⟩ and noise memorization ⟨w(t)
yi,r, ξi⟩ under

SignSGDW. The detailed derivation of update formula is deferred to Appendix A. However, we
emphasize that there are key differences between AdamW and SignSGDW.

In SignSGDW, due to the presence of the sign operator, the weight decay affects ⟨w(t)
j,r, jv⟩ only

after it grows beyond a certain threshold, and similarly for ⟨w(t)
yi,r, ξi⟩. In contrast, for AdamW,

weight decay becomes effective once ⟨w(t)
j,r, jv⟩ or ⟨w(t)

yi,r, ξi⟩ reaches a level where the gradient
magnitudes become sufficiently small. At this point, the update is normalized by the stability constant
ϵ and dominated by the weight decay term, which causes both ⟨w(t)

j,r, jv⟩ and ⟨w(t)
yi,r, ξi⟩ to cease

increasing. Besides, as the lemmas in this section are simplified instances of those presented in
Section C.2, we omit them for brevity. For more details, refer to Section C.2.

〈
w

(t+1)
j,r , jv

〉
= (1− λη)

〈
w

(t)
j,r, jv

〉
− η ·

〈
sgn

(
g
(t)
t,j,r

)
, jv
〉

= (1− λη)
〈
w

(t)
j,r, jv

〉
+ jη · sgn

(∑
i∈It

yiℓ
(t)
j,i

[
σ′(⟨w(t)

j,r, yiv⟩)− ασ′(⟨w(t)
j,r, ξi⟩)

])
, (B.5)〈

w(t+1)
yi,r , ξi

〉
= (1− λη)

〈
w(t)

yi,r, ξi

〉
− η ·

〈
sgn

(
g
(t)
t,yi,r

)
, ξi

〉
= (1− λη)

〈
w(t)

yi,r, ξi

〉
+ η ·

∑
k∈Bi

〈
sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r, ξi⟩)ξi[k]

)
, ξi[k]

〉
− αyiη · sgn

(
n∑

i=1

yiℓ
(t)
yi,i

[
σ′(⟨w(t)

yi,r, yiv⟩)− ασ′(⟨w(t)
yi,r, ξi⟩)

])
, (B.6)

where ℓ
(t)
j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) =

eFj(W,xi)∑
k∈{−1,1} eFk(W,xi)

.

Moreover, we should note that the duration of Stage I under SignSGDW differs markedly from that
under SignSGD, owing to the decoupled weight decay mechanism. During Stage I, model parameters
grow unchecked by gradient-based regularization, allowing features to accumulate strength until the
decoupled weight decay term begins to exert significant influence. Once this threshold is reached,
training transitions into Stage II, in which weight decay counteracts further parameter growth and
stabilizes the weight norms.

B.2.1 Proof Sketch for Theorem 4.4

In this section, we present the proof sketch for Theorem 4.4. We consider n
B = Θ(1) or n

B = o(sσp),
which is the large-batch setting.

The following Lemma B.6 characterizes the duration of Stage I in the large-batch SignSGDW setting
and provides upper bounds on feature learning and noise memorization.
Lemma B.6 (Stage I, pattern learning). Given the training dataset S, if n

B = Θ(1) or n
B = o(sσp),

η = 1/poly(d), λ = Ω̃(B
2

n ∧ 1) and λ = Õ(1), then for any t ≤ T0 with T0 = Õ( B
ληn ),

⟨w((t+1)· n
B ))

j,r , j · v⟩ ≤ ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
)

⟨w((t+1)· n
B )

yi,r , ξi⟩ = ⟨w(t· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

Since in the large-batch regime n
B = o(sσp), Lemma B.6 implies that noise memorization accumu-

lates faster than feature learning. At the beginning of Stage I, feature gradients dominate because
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σ′(⟨w(t)
yi,r, yiv⟩) ≫ ασ′(⟨w(t)

yi,r, ξi⟩), given α = o(1) and negligible weight decay influence. After a
certain number of epochs, the noise term grows until ασ′(⟨w(t)

yi,r, ξi⟩) ≫ σ′(⟨w(t)
yi,r, yiv⟩), at which

point feature learning reverses and eventually flips direction. Lemma B.7 below provides a precise
description of this transition.
Lemma B.7 (Stage I, fitting feature noise). Suppose the same conditions hold as in Lemma B.6, if
α ≥ Θ̃

(
(Bn sσp)

1−q
)
, then for any t ∈ [Tr, T0] with Tr = Õ

(
σ0

ηsσpα1/(q−1)

)
≤ T0,

⟨w((t+1)· n
B )

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩ −Θ(η · n
B
).

and at epoch T0, we have (a) w
(T0· n

B )
j,r [1] = −sgn(j) · Ω̃(1/λ); (b) w

(T0· n
B )

j,r [k] = sgn(ξi[k]) ·
Ω̃( B

nλ ) or ± Õ(η) for k ∈ Bi with yi = j; (c) w(T0· n
B )

j,r [k] = ±Õ(η) otherwise.

Lemma B.7 implies that, by the end of Stage I, the model has fitted the training noise. The
following Lemma B.8 shows that these pattern persist throughout Stage II, ultimately leading to poor
generalization.
Lemma B.8 (Stage II, preserve the noise). Suppose the same conditions hold as in Lemma B.6 and B.7,
for t > T0, j ∈ {±1}, r ∈ [m], i ∈ [n], let r∗ = argmaxr∈[m]⟨w

(t)
yi,r, ξi⟩, then ⟨w(t)

j,r, j · v⟩ =

−Θ̃(1/λ) and ⟨w(t)
yi,r∗ , ξi⟩ = Θ̃(

Bsσp

nλ )

The following Lemma B.9 prove the convergence under certain conditions.
Lemma B.9 (Convergence). Suppose the same conditions hold as in Lemma B.6, B.7 and B.8, if the
step size satisfies η = O(d−1/2), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η3/2d).

Combining Lemmas B.8 and B.9, we observe that, with an infinitesimal learning rate η and T =
poly(n)/η, the model ultimately fits the feature noise and converges to a local minimum, resulting in
poor generalization performance.

B.2.2 Proof Sketch for Theorem 4.5

In this section, we present the proof sketch for Theorem 4.5. We consider n
B ≥ Θ(n1/2 ∨ log ϵ−1)

and n
B = ω(sσp), which is the mini-batch setting.

The following Lemma B.10 characterizes the duration of Stage I in the mini-batch SignSGDW setting
and provides upper bounds on feature learning and noise memorization.
Lemma B.10 (Stage I). Given the training dataset S, if n

B ≥ Θ(n1/2 ∨ log ϵ−1) and n
B = ω(sσp),

η = 1/poly(d), λ = Ω̃(B
2

n ∧ 1) and λ = Õ(1), then for any t ≤ T0 with T0 = Õ( B
ληn ),

⟨w((t+1)· n
B ))

j,r , jv⟩ = ⟨w(t· n
B )

j,r , jv⟩+Θ(η · n
B
), ⟨w((t+1)· n

B )
yi,r , ξi⟩ ≤ ⟨w(t· n

B )
yi,r , ξi⟩+ Θ̃(ηsσp).

In the mini-batch regime, n
B = ω(sσp), so feature learning outpaces noise memorization—unlike in

the large-batch case. Consequently, noise cannot reverse the feature learning; instead, features are
learned continuously until decoupled weight decay intervenes. Noise memorization also grows until
this point, but because noise is both sparse and independent, it accrues only during a few iterations
per epoch and is concurrently suppressed by weight decay. Hence, both feature learning and noise
memorization reach their peak at the end of Stage I, after which weight decay governs Stage II. The
next Lemma B.11 formalizes this behavior.
Lemma B.11 (Stage II). Suppose the same conditions hold as in Lemma B.10, for t > T0, j ∈
{±1}, r ∈ [m], i ∈ [n], let r∗ = argmaxr∈[m]⟨w

(t)
j,r, jv⟩, then ⟨w(t)

j,r∗ , jv⟩ = Θ̃(1/λ) and

⟨w(t)
yi,r, ξi⟩ ≤ Θ̃(

Bsσp

nλ ).

The following lemma establishes convergence under the specified conditions.
Lemma B.12 (Convergence). Suppose the same conditions hold as in Lemma B.10 and B.11, if the
step size satisfies η = O(d−1/2), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).
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B.2.3 Proof Sketch for Corollary 4.6

By Conditions A.1 and A.2, along with Definition 3.2, we know that d = poly(n), and hence

σq−2
0 = Θ

(
1

d(q−2)/4

)
, with q ≥ 3.

This directly implies that the effective weight decay parameter for Adam satisfies

λAdam ∼ σq−2
0 ≪ min

{
B2

n
, 1

}
∼ λAdamW.

This completes the proof.

C Proofs

First we give a general upper bound of the moving average in stochastic Adam and stochastic AdamW.

Lemma C.1. Let m(t)
j,r be the first momentum estimate, v(t)

j,r be the second momentum estimate at
the t-th iterate in the update rule of stochastic Adam or stochastic AdamW. Then for all j ∈ {±1},
r ∈ [m] and k ∈ [d], if β2 > β2

1 , β1, β2 ∈ [0, 1), we have∣∣∣∣∣∣ m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

∣∣∣∣∣∣ ≤ Θ(1).

Proof of Lemma C.1. Let us expand the moment estimates

m
(t)
j,r[k] = β1m

(t−1)
j,r [k] + (1− β1) · g(t)t,j,r[k]

=

t−1∑
τ=0

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k],

v
(t)
j,r[k] = β2v

(t−1)
j,r [k] + (1− β2) · g(t)t,j,r[k]

2

=

t−1∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2.

Let {z2t : z2t =
[βt

1(1−β1)]
2

βt
2(1−β2)

} be a convergent series since β2 > β2
1 . Then we have

m
(t)
j,r[k]

2

=

(
t−1∑
τ=0

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]

)2

=

(
t−1∑
τ=0

βτ
1 (1− β1)

zτ
· g(t−τ)

t−τ,j,r[k] · zτ

)2

≤

(
t−1∑
τ=0

[βτ
1 (1− β1)]

2

z2τ
· g(t−τ)

t−τ,j,r[k]
2

)
·

(
t−1∑
τ=0

z2τ

)

=

t−1∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ·Θ(1)

= v
(t)
j,r[k] ·Θ(1),

where the first inequality we use Cauchy-Schwartz inequality and the third equality we use the fact

that z2t =
[βt

1(1−β1)]
2

βt
2(1−β2)

is a convergent series. So we have∣∣∣∣∣∣ m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

∣∣∣∣∣∣ ≤
∣∣∣m(t)

j,r[k]
∣∣∣√

v
(t)
j,r[k]

≤ Θ(1).
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C.1 Proof of Stochastic Adam

First, we try to approximate the update of stochastic Adam to sign update since the similar perfor-
mance between Adam and SignGD (Bernstein et al., 2018; Balles and Hennig, 2018; Zou et al.,
2023b; Xie and Li, 2024; Li et al., 2025).

Lemma C.2. Consider the update of stochastic Adam in (3.5). Let W(t) be the weight at the t-th
iteration. Suppose that ⟨w(t)

j,r, yiv⟩, ⟨w
(t)
j,r, ξi⟩ = Θ̃(1) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and

β2
1 < β2. We have the approximate update rule for each coordinate weight as follows:

• For k = 1, we have either |g(t)t,j,r[1]| ≤ Θ̃(η) or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t,j,r[k]

)
·Θ(1).

• For every k ∈ Bi, i ∈ It−τ , τ ∈ Tk := {τ0 + i · n
B : i ∈ {0} ∪ [ τ̄

n/B − 1], τ0 < n
B }, where τ0

represents the number of iterations away from the current iteration t, coordinate k is affected by ξi
sampled at the iteration t− τ0 since the moving average, and we define τ̄ = Θ(log(λη)−1)

– If n
B = Θ(1), for any τ0 < n

B , we have either∣∣∣g(t)t−τ0,j,r
[k]
∣∣∣ ≤ Θ̃

(
B−1ηsσp|ℓ(t)j,i |+ |λw(t)

j,r[k]|
)

or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t−τ0,j,r

[k]
)
·Θ(1).

– If n
B ≥ Θ(log(λη)−1) = Θ̃(1), for τ0 = Θ(1) such that βτ0

1 = Θ(1), we have either∣∣∣g(t)t−τ0,j,r
[k]
∣∣∣ ≤ Θ̃

(
B−1ηsσp|ℓ(t)j,i |+ |λw(t)

j,r[k]|
)

or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t−τ0,j,r

[k]
)
·Θ(1).

For τ0 ≥ Θ(log(λη)−1) such that β
τ0
2

2 ≤ Θ(λη), we have either∣∣∣w(t)
j,r[k]

∣∣∣ ≤ Θ̃(η)

or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
w

(t)
j,r[k]

)
·Θ(1).

• For the remaining coordinates k ̸= 1 and k /∈ Bi, i ∈ It−τ0 , τ0 ∈ {0} ∪ [τ̄ ], where τ0 represents
the number of iterations away from the current iteration t, coordinate k is affected by ξi sampled at
the iteration t− τ0 since the moving average, and we define τ̄ = log(λη)−1. Then we have either
|g(t)t,j,r[k]| ≤ Θ̃(λη) or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t,j,r[k]

)
·Θ(1).
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Proof of Lemma C.2. Let first focus on the first momentum estimate,

m
(t)
j,r[k] = β1m

(t−1)
j,r [k] + (1− β1) · g(t)t,j,r[k]

=

t−1∑
τ=0

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]

=

τ̄∑
τ=0

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k] +

t−1∑
τ=τ̄+1

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]

=

τ̄∑
τ=0

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λη),

where the last equality we select τ̄ = Θ(log(λη)−1) such that
∑t

τ=τ̄+1 β
τ
1 (1 − β1) = O(λη) and

|g(t−τ)
t−τ,j,r[k]| = Õ(1) for all k ∈ [d] by Lemma A.7, since the facts that ⟨w(t)

j,r, yiv⟩, ⟨w
(t)
j,r, ξi⟩ =

Õ(1).

Similarly, for the second momentum estimate,

v
(t)
j,r[k] =

t−1∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2

=

τ̄∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 +

t−1∑
τ=τ̄+1

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2

=

τ̄∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη).

Here we use the same τ̄ because we can always reselect τ̄ of smaller one to larger one, and the
absolute value of the tail will not increase. Then we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λη)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

, (C.1)

since ϵ = Θ(λη). Now we want to use sign update to approximate (C.1). First, we should note that
once the signs of g(t−τ)

t−τ,j,r[k] for τ ∈ [0, τ̄ ] aligned, (C.1) can be approximated as sgn(g(t)t,j,r[k]) · Θ̃(1),
since √√√√ τ̄∑

τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ≤

τ̄∑
τ=0

β
τ
2
2 (1− β2)

1
2 ·
∣∣∣g(t−τ)

t−τ,j,r[k]
∣∣∣ ,

√√√√ τ̄∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ≥ 1

τ̄ + 1

τ̄∑
τ=0

β
τ
2
2 (1− β2)

1
2 ·
∣∣∣g(t−τ)

t−τ,j,r[k]
∣∣∣ .

Recall the gradient of stochastic Adam given in Lemma A.7, we want to approximate g
(t−τ)
t−τ,j,r[k] to

g
(t)
t−τ,j,r[k], such that we can use the current weight to approximate sign update. By Lemma C.1, the

upper bound of each coordinate in one step is Θ(η). Then for τ ∈ [t− τ̄ , t], we have∣∣∣⟨w(t)
j,r, yiv⟩ − ⟨w(τ)

j,r , yiv⟩
∣∣∣

≤
t−1∑
k=τ

∣∣∣⟨w(k+1)
j,r , yiv⟩ − ⟨w(k)

j,r , yiv⟩
∣∣∣

≤ Θ(ητ̄). (C.2)

Similarly, we have ∣∣∣⟨w(t)
j,r, ξi⟩ − ⟨w(τ)

j,r , ξi⟩
∣∣∣ ≤ Θ(ητ̄sσp), (C.3)
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∣∣∣w(t)
j,r[k]−w

(τ)
j,r [k]

∣∣∣ ≤ Θ(ητ̄). (C.4)

Then recall the predict function

Fj(W
(t),xi) =

m∑
r=1

[
σ
(
⟨w(t)

j,r, yiv⟩
)
+ σ

(
⟨w(t)

j,r, ξi⟩
)]

.

We have∣∣∣Fj(W
(t),xi)− Fj(W

(τ),xi)
∣∣∣

≤
m∑
r=1

∣∣∣σ (⟨w(t)
j,r, yiv⟩

)
− σ

(
⟨w(τ)

j,r , yiv⟩
)∣∣∣+ m∑

r=1

∣∣∣σ (⟨w(t)
j,r, ξi⟩

)
− σ

(
⟨w(τ)

j,r , ξi⟩
)∣∣∣

≤
m∑
r=1

Θ̃(1) ·
∣∣∣⟨w(t)

j,r, yiv⟩ − ⟨w(τ)
j,r , yiv⟩

∣∣∣+ m∑
r=1

Θ̃(1) ·
∣∣∣⟨w(t)

j,r, ξi⟩ − ⟨w(τ)
j,r , ξi⟩

∣∣∣
≤ Θ̃(mητ̄sσp) + Θ̃(mητ̄)

= Θ̃(ητ̄sσp), (C.5)

where the second inequality we use the convexity of σ(·) and the facts that |⟨w(t)
j,r, yiv⟩| = Θ̃(1) and

|⟨w(t)
j,r, ξi⟩| = Θ̃(1). The last inequality we use m = Θ̃(1) and sσp = ω(1).

Then we can approximate ℓ
(τ)
j,r to ℓ

(t)
j,r in the gradient A.7.

ℓ
(τ)
j,i =

eF−j(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

=
eF−j(W

(t),xi)±Θ̃(ητ̄sσp)

eFj(W(t),xi)±Θ̃(ητ̄sσp) + eF−j(W(t),xi)±Θ̃(ητ̄sσp)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |), (yi = j)

ℓ
(τ)
j,i =

−eFj(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

=
−eFj(W

(t),xi)±Θ̃(ητ̄sσp)

eFj(W(t),xi)±Θ̃(ητ̄sσp) + eF−j(W(t),xi)±Θ̃(ητ̄sσp)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |), (yi ̸= j)

where we use the fact that Θ̃(ητ̄sσp) = o(1) and (C.5). So we have

ℓ
(τ)
j,i = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |),

for all τ ∈ [t−τ̄ , t]. Further, by (C.2), (C.3) and the facts that |⟨w(t)
j,r, yiv⟩| = Õ(1) and |⟨w(t)

j,r, ξi⟩| =
Õ(1), recall σ(x) = max(0, x)q , we have

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩)

≤ ℓ
(τ)
j,i σ

′(⟨w(t)
j,r, yiv⟩) + |ℓ(τ)j,i | · Θ̃(ητ̄)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩) + Θ(|ℓ(t)j,i |) · Θ̃(ητ̄),

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩)

≥ ℓ
(τ)
j,i σ

′(⟨w(t)
j,r, yiv⟩)− |ℓ(τ)j,i | · Θ̃(ητ̄)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩)−Θ(|ℓ(t)j,i |) · Θ̃(ητ̄).
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So we conclude that

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩) = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩)±Θ(|ℓ(t)j,i |) · Θ̃(ητ̄). (C.6)

Similarly, we have

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , ξi⟩) = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, ξi⟩)±Θ(|ℓ(t)j,i |) · Θ̃(ητ̄sσp). (C.7)

Now, we have all the tools we need to approximate g
(t−τ)
t−τ,j,r[k] to g

(t)
t−τ,j,r[k]. Recall Lemma A.7,

substitute (C.4), (C.6) and (C.7) into g
(t−τ)
t−τ,j,r[k], we have

• For k = 1,

g
(t−τ)
t−τ,j,r[1] = Θ

(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1

B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄). (C.8)

• For all k ∈ Bi, i ∈ It−τ ,

g
(t−τ)
t−τ,j,r[k] = Θ

(
g
(t)
t−τ,j,r[k]

)
±Θ

( |ℓ(t)j,i |
B

)
· Õ(ητ̄sσp)±Θ(λητ̄). (C.9)

• For k ̸= 1 and k /∈ Bi, i ∈ It−τ ,

g
(t−τ)
t−τ,j,r[k] = Θ

(
g
(t)
t−τ,j,r[k]

)
±Θ(λητ̄). (C.10)

Plugging (C.8), (C.9) and (C.10) into (C.1), with facts that τ̄ = Θ̃(1), λ = o(1), |⟨w(t)
j,r, ξi⟩| = Θ̃(1),

|⟨w(t)
j,r, yiv⟩| = Θ̃(1), |ℓ(t)j,i | = Θ(1), ϵ = Θ(λη) and Lemma A.6, we have

• For k = 1,

m
(t)
j,r[1]√

v
(t)
j,r[1] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[1]± Õ(λη)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[1]
2 ± Õ(λη)

=

∑τ̄
τ=0 β

τ
1 (1− β1) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1
B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄)

)
± Õ(λη)√∑τ̄

τ=0 β
τ
2 (1− β2) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1
B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄)

)2

± Õ(λη)

=

∑τ̄
τ=0 β

τ
1 (1− β1) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
± Θ̃(ητ̄)

)
± Õ(λη)√∑τ̄

τ=0 β
τ
2 (1− β2) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
± Θ̃(ητ̄)

)2
± Õ(λη)

=
Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(ητ̄)± Õ(λη)√(

Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(ητ̄)

)2
± Õ(λη)

=
Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(η)

Θ
(
|g(t)t,j,r[1]|

)
± Θ̃(η)

.
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• For k ∈ Bi, i ∈ It−τ0 , τ0 ∈ {0} ∪ [τ̄ ], where τ0 represents the number of iterations away from the
current iteration t, coordinate k is affected by ξi sampled at the iteration t− τ0 since the moving
average. We note that if the number of iteration in one epoch n

B is less than τ̄ , the moving average
will use some sample x multiply times. We denote Tk := {τ0+i· nB : i ∈ {0}∪[ τ̄

n/B −1], τ0 ≤ n
B }

as the timestamp set involved using noise ξi (i.e., i ∈ It−τ for any τ ∈ Tk), and k ∈ Bi, τ0 ≤ n
B .

If n
B > τ̄ , in this case we have Tk := {τ0} for any k ∈ Bi, and ξi was used in iteration t − τ0.

Then we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λη)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

=

∑
τ∈Tk

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k] +
∑

τ∈{0}∪[τ̄ ]\Tk
βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λη)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

=

∑
τ∈Tk

βτ
1 ·Θ(g

(t−τ)
t−τ0,j,r

[k]) + (Θ(1)−
∑

τ∈Tk
βτ
1 ) ·Θ(g̃)± Õ(λη)√∑τ̄

τ=0 β
τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

=

βτ0
1

(
Θ
(
g
(t)
t−τ0,j,r

[k]
)
±Θ

(
|ℓ(t)j,i |
B

)
· Õ(ητ̄sσp)±Θ(λητ̄)−Θ(λw

(t)
j,r[k])

)
+Θ(g̃)√∑τ̄

τ=0 β
τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

,

where the third equality we denote g
(t−τ)
t−τ,j,r[k] = Θ(g

(t)
t−τ,j,r[k]) ± Θ(λητ̄) = Θ(λw

(t)
j,r[k]) ±

Θ(λητ̄) as g̃ for τ ∈ {0} ∪ [τ̄ ]\Tk. For the denominator, we have√√√√ τ̄∑
τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2

≤
τ̄∑

τ=0

β
τ
2
2 (1− β2)

1
2 ·
∣∣∣g(t−τ)

t−τ,j,r[k]
∣∣∣

= β
τ0
2

2

(
Θ
( ∣∣∣g(t)t−τ0,j,r

[k]
∣∣∣ )±Θ

( |ℓ(t)j,i |
B

)
· Õ(ητ0sσp)±Θ(λητ̄)−Θ(|λw(t)

j,r[k]|)

)
+Θ(|g̃|)√√√√ τ̄∑

τ=0

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2

≥ 1√
τ̄ + 1

τ̄∑
τ=0

β
τ
2
2 (1− β2)

1
2 ·
∣∣∣g(t−τ)

t−τ,j,r[k]
∣∣∣

=
1√
τ̄ + 1

β
τ0
2

2

(
Θ
( ∣∣∣g(t)t−τ0,j,r

[k]
∣∣∣ )±Θ

( |ℓ(t)j,i |
B

)
· Õ(ητ0sσp)±Θ(λητ̄)−Θ(|λw(t)

j,r[k]|)

)
+Θ(|g̃|).

So we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

βτ0
1

(
Θ̃
(
g
(t)
t−τ0,j,r

[k]
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)− Θ̃(λw

(t)
j,r[k])

)
+ Θ̃(λw

(t)
j,r[k])± Θ̃(λη)

β
τ0
2

2

(
Θ
(
|g(t)t−τ0,j,r

[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)−Θ(|λw(t)

j,r[k]|)
)
+ Θ̃(|λw(t)

j,r[k]|)± Θ̃(λη)

,

35



where we use the fact that ϵ = Θ(λη). Now we handle βτ0
1 and β

τ0
2

2 with more care. First we have

βτ0
1 < β

τ0
2

2 , |g(t)t−τ0,j,r
[k]| = Õ(1) and τ0 < n

B .

Then if n
B = Θ(1), we have βτ0

1 = β
τ0
2

2 = Θ(1), then

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

Θ̃
(
g
(t)
t−τ0,j,r

[k]
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)± Θ̃(λw

(t)
j,r[k])

Θ
(
|g(t)t−τ0,j,r

[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)±Θ(|λw(t)

j,r[k]|)

=

Θ̃
(
− 1

B ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k]

)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)± Θ̃(λw

(t)
j,r[k])

Θ
(∣∣∣− 1

B ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k]

∣∣∣)± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)±Θ(|λw(t)

j,r[k]|)
.

If n
B ≥ Θ(log(λη)−1) = Θ̃(1) such that β

n
2B
2 ≤ Θ(λη), then for τ0 = Θ(1)

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

Θ̃
(
− 1

B ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k]

)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)± Θ̃(λw

(t)
j,r[k])

Θ
(∣∣∣− 1

B ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) · ξi[k]

∣∣∣)± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
± Θ̃(λη)±Θ(|λw(t)

j,r[k]|)
.

For τ0 < n
B , τ0 ≥ Θ(log(λη)−1) such that β

τ0
2

2 ≤ Θ(λη), we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=
Θ̃(λw

(t)
j,r[k])± Θ̃(λη)

Θ̃(|λw(t)
j,r[k]|)± Θ̃(λη)

,

since |g(t)t−τ0,j,r
[k]| = Õ(1), λη = o(1) and ηsσp = o(1). We claim that the intersection (gap) of

Θ(log(λη)−1) and Θ(1) is very small for Θ(log(λη)−1), that is, considering the intersection part
c log(λη)−1 for a sufficiently small constant c > 0, the impact of the intersection (gap) is very
small, since c log(λη)−1 = o(log(λη)−1). Therefore, for most of τ0

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=
Θ̃(λw

(t)
j,r[k])± Θ̃(λη)

Θ̃(|λw(t)
j,r[k]|)± Θ̃(λη)

.

• For k ̸= 1 and k /∈ Bi, i ∈ It−τ , τ ∈ [0, τ̄ ], recall g(t)t−τ,j,r[k] = λw
(t)
j,r[k], we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λη)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 ± Õ(λη)

=

∑τ̄
τ=0 β

τ
1 (1− β1) ·

(
Θ
(
g
(t)
t−τ,j,r[k]

)
±Θ(λητ̄)

)
± Õ(λη)√∑τ̄

τ=0 β
τ
2 (1− β2) ·

(
Θ
(
g
(t)
t−τ,j,r[k]

)
±Θ(λητ̄)

)2
± Õ(λη)
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=
Θ(g

(t)
t,j,r[k])± Θ̃(λη)

Θ(|g(t)t,j,r[k]|)± Θ̃(λη)

=
Θ(w

(t)
j,r[k])± Θ̃(η)

Θ(|w(t)
j,r[k]|)± Θ̃(η)

.

This completes the proof.

C.1.1 Proof of Theorem 4.1

Lemma C.3 (Stage I). Given the training dataset S, if n
B = Θ(1), η = 1/poly(d) and 0 < λ =

o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( 1

ηsσp
) and any i ∈ [n],

⟨w(t+1)
j,r , jv⟩ ≤ ⟨w(t)

j,r, jv⟩+Θ(η),

⟨w(t+1)
yi,r , ξi⟩ = ⟨w(t)

yi,r, ξi⟩+ Θ̃(ηsσp).

Proof of Lemma C.3. By Lemma C.1, we have

⟨w(t+1)
j,r , jv⟩ ≤ ⟨w(t)

j,r, jv⟩ − η

〈
m

(t)
j,r√

v
(t)
j,r + ϵ

, jv

〉

≤ ⟨w(t)
j,r, jv⟩+Θ(η).

Then, we prove ⟨w(t+1)
yi,r , ξi⟩ = ⟨w(t)

yi,r, ξi⟩+ Θ̃(ηsσp) by induction. By Lemma A.3, we have

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0), |⟨w(0)

j,r , ξi⟩| = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0),

which imply that |ℓ(0)j,i | = Θ(1). Additionally, we have ηs = o(σq−1
0 ) and 0 < λ = o(σq−2

0 σp/n).

For a sufficiently large fraction of k ∈ Bi (e.g., 0.99), we have |B−1σq−1
0 ξi[k]| ≥ Θ̃(ηB−1sσp|ℓ(0)j,i |+

λ|w(0)
j,r [k]|) for i ∈ Iτ . Therefore, by Lemma C.2 and A.6, we have

sgn

(
− 1

B
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn

(
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn(ξi[k]). (C.11)

Recall n
B = Θ(1). By Lemma C.2 we have the following update according to (B.4), (C.11) and

Lemma C.1.

⟨w(1)
yi,r, ξi⟩

= ⟨w(0)
yi,r, ξi⟩ − η ·

〈
m

(0)
j,r√

v
(0)
j,r + ϵ

, jv

〉

≥ ⟨w(0)
yi,r, ξi⟩+Θ(η) ·

∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ −O(ηα)−O(ηsσp)

= ⟨w(0)
yi,r, ξi⟩+ Θ̃(ηsσp).

For general t ≤ T0, assuming ⟨w(t)
yi,r, ξi⟩ ≥ ⟨w(t−1)

yi,r , ξi⟩+ Θ̃(ηsσp). Then we have

⟨w(t)
yi,r, ξi⟩ = ⟨w(0)

yi,r, ξi⟩+ Θ̃(tηsσp) = Θ̃(s1/2σpσ0 + tηsσp) ≤ Θ̃(1).

By Lemma C.1, we have

|w(t)
j,r[k]| ≤ |w(t−1)

j,r [k]|+Θ(η) ≤ Θ̃(σ0 + tη) ≤ Θ̃(1).
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So we have |ℓ(t)j,i | = Θ(1). Besides, we still establish the condition |B−1(w
(0)
j,r [k]+tηsσp)

q−1ξi[k]| ≥
Θ̃(ηB−1sσp|ℓ(0)j,i |+λ|w(0)

j,r [k]+tη|) since 0 < λ = o(σq−2
0 σp/n). Then we have (C.11) for t. Follow

the same proof above, we have

⟨w(t+1)
yi,r , ξi⟩

= ⟨w(t)
yi,r, ξi⟩ − η ·

〈
m

(t)
j,r√

v
(t)
j,r + ϵ

, jv

〉

≥ ⟨w(t)
yi,r, ξi⟩+Θ(η) ·

∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ −O(ηα)−O(ηsσp)

= ⟨w(t)
yi,r, ξi⟩+ Θ̃(ηsσp).

The term O(ηsσp) in the above inequality arises because, for coordinates that |ξi[k]| ≤ O(σp),
we cannot exploit sign information. Instead, we directly apply Lemma C.1. This completes the
proof.

Lemma C.3 coincides with Lemma A.3 of (Zou et al., 2023b), allowing us to transfer their full-batch
Adam analysis to the large-batch case under n

B = Θ(1). Therefore, the remaining proofs are omitted
for brevity, as they coincide with those in Zou et al. (2023b).

C.1.2 Proof of Theorem 4.2

Lemma C.4 (StageI, nearly zero noise memorization). Given the training dataset S, if n
B ≥

Θ(log ϵ−1), η = 1/poly(d) and 0 < λ = o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( 1η )

and any i ∈ [n], suppose ⟨w(t)
yi,r, yi · v⟩ > −Θ̃(σ0), then〈

w
(t)
j,r, ξi

〉
≤ Θ̃(

√
sσpσ0 + α).

Proof of Lemma C.4. By Lemma A.3, at initialization〈
w

(0)
j,r , ξi

〉
≤ Θ̃

(√
s σpσ0 + ασ0

)
≤ Θ̃

(√
s σpσ0

)
,

since α = o(1). Lemma C.2 ensures that stochastic updates slow down noise memorization—allowing
⟨w(t)

j,r, ξi⟩ to grow for only
o
(
log(λη)−1

)
iterations after ξi is sampled—while in the remaining

n

B
− o
(
log(λη)−1

)
≫ o

(
log(λη)−1

)
iterations, weight decay dominates. In particular, whenever |w(t)

j,r[k]| ≥ Θ̃(η) we have

w
(t+1)
j,r [k] = w

(t)
j,r[k]− sgn

(
w

(t)
j,r[k]

)
·Θ(η).

Concretely, if ξi is sampled at iteration τ1 of the first epoch, then〈
w

(τ1+1)
j,r , ξi

〉
≤
〈
w

(τ1)
j,r , ξi

〉
+ Θ̃(ηsσp) ≤ Θ̃

(√
s σpσ0 + ηsσp

)
≤ Θ̃

(√
s σpσ0

)
,

where we directly bound the update by Θ(1) according to Lemma C.1. Over the next o(log(λη)−1)

iterations the noise memorization ⟨w(t)
j,r, ξi⟩ increases by at most

o
(
log(λη)−1

)
·Θ(ηsσp),

and thereafter weight decay decreases it in each of the remaining n
B − o(log(λη)−1) steps. Hence,

we can calculate the maximum value of the noise memorization〈
w

(n/B)
j,r , ξi

〉
≤ max

{
Θ̃(

√
s σpσ0), Θ̃(

√
s σpσ0 + α) + Θ(ηsσp)

[
o(log(λη)−1)− n

B

]}
≤ Θ̃

(√
s σpσ0 + α

)
,

since n/B ≥ Θ
(
log(λη)−1

)
and ξi[1] = −αyi. This is true in every epoch. So we complete the

proof.
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Lemma C.5 (Stage I, feature learning). Given the training dataset S, if n
B ≥ Θ(log ϵ−1), η =

1/poly(d) and 0 < λ = o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( 1η ) and j ∈ {±1}, we have

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩+Θ(η).

Proof of Lemma C.5. by Lemma A.7, we have

sgn(g
(0)
0,j,r) = −sgn

(∑
i∈I0

yiℓ
(0)
j,i σ

′(⟨w(0)
j,r , yiv⟩)− α

∑
i∈I0

yiℓ
(0)
j,i σ

′(⟨w(0)
j,r , ξi⟩)−Bλw

(0)
j,r [1]

)
.

Then with Lemma A.3 and facts that ℓ(0)j,i = Θ(1), by Lemma A.6, we have

yiℓ
(0)
j,i σ

′(⟨w(0)
j,r , yiv⟩) = sgn(j) · Θ̃(σq−1

0 ),

αyiℓ
(0)
j,i σ

′(⟨w(0)
j,r , ξi⟩) = sgn(j) · Θ̃(α(s1/2σpσ0)

q−1),

λw
(0)
j,r [1] = ±o(σq−1

0 σp).

Substituting them into g
(0)
0,j,r, with α = o(1), s1/2σp = Õ(1), λ = o(σq−2

0 σp/n), we get

sgn(g
(0)
0,j,r) = −sgn(j · Θ̃(σq−1

0 )) = −sgn(j).

By Lemma C.2 and η = o(σq−1
0 ), we have

⟨w(1)
j,r , jv⟩ = ⟨w(0)

j,r , jv⟩ − η

〈
m

(0)
j,r√

v
(0)
j,r + ϵ

, j · v

〉

= ⟨w(0)
j,r , jv⟩+ j · sgn(j) ·Θ(η)

= ⟨w(0)
j,r , jv⟩+Θ(η).

Now suppose that the equality holds for iterations 0, . . . , t. Then ⟨w(t)
j,r, j · v⟩ = Õ(1), ⟨w(t)

yi,r, ξi⟩ =
Θ̃(ηsσp) = O(1). Therefore, ℓ(t)j,i = Θ(1). By Lemma C.4, we have

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) = sgn(j) · Θ̃((σ0 + tη)q−1),

αyiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩) ≤ sgn(j) · Θ̃(α(s1/2σpσ0 + tη)q−1),

λw
(t)
j,r[1] = ±o(σq−2

0 σp(σ0 + tη)).

Substituting them into g
(t)
t,j,r, with α = o(1), s1/2σp = Õ(1), λ = o(σq−2

0 σp/n), we get

sgn(g
(t)
t,j,r) = −sgn(j · Θ̃(σq−1

0 )) = −sgn(j).

By Lemma C.2 and η = o(σq−1
0 ), we have

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩ − η

〈
m

(t)
j,r√

v
(t)
j,r + ϵ

, j · v

〉

= ⟨w(t)
j,r, jv⟩+ j · sgn(j) ·Θ(η)

= ⟨w(t)
j,r, jv⟩+Θ(η).

This completes the proof.

Lemma C.6 (Stage I, general dynamics). Given the training dataset S, if n
B ≥ Θ(log ϵ−1), η =

1/poly(d) and 0 < λ = o(σq−2
0 σp/n), then for any t ≤ T0 with T0 = Õ( 1η ) and any i ∈ [n],

⟨w(t+1)
j,r , j · v⟩ = ⟨w(t)

j,r, j · v⟩+Θ(η · n
B
),

⟨w(t+1)
j,r , ξi⟩ ≤ Θ̃(

√
sσpσ0 + α).
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Proof of Lemma C.6. We prove the claim by induction on t, using Lemma C.4 and C.5. At t = 0, by
Lemma A.3, at initialization we have ∣∣⟨w(0)

j,r , jv⟩
∣∣ ≤ Θ̃(σ0),

and hence
⟨w(0)

j,r , jv⟩ ≥ − Θ̃(σ0).

Therefore Lemma C.4 holds at t = 0. Suppose Lemma C.4 and C.5 for some t ≥ 0, then

⟨w(t+1)
j,r , jv⟩ ≥ − Θ̃(σ0)

by exactly the same proof used in the proof of Lemma C.5. This lower bound remains valid at step
t+ 1. Consequently, Lemma C.4 continues to hold, and the induction carries through all iterations.
This completes the proof.

Lemma C.7 (Stage II). Given the training dataset S, if n
B ≥ Θ(log ϵ−1), η = 1/poly(d)

and 0 < λ = o(σq−2
0 σp/n), then for any t > T0, j ∈ {±1}, r ∈ [m], i ∈ [n], let

r∗ = argmaxr∈[m]⟨w
(t)
j,r, jv⟩, then ⟨w(t)

j,r∗ , jv⟩ = Θ̃(1) and ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(ηsσp + α).

Proof of Lemma C.7. We begin by establishing the bound ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(ηsσp + α). According to

Lemma C.4, during the first T0 epochs, the number of iterations in which weight decay dominates the
update dynamics is at least

T0 ·
( n
B

− o
(
log(λη)−1

))
.

In each such iteration, the contribution from weight decay is lower bounded by Θ̃(ηsσp), leading to a
cumulative effect of

Θ̃
(
T0 ·

( n
B

− o
(
log(λη)−1

))
· ηsσp

)
= Θ̃

(nsσp

B

)
.

This term is asymptotically larger than Θ̃(
√
sσpσ0), i.e., nsσp/B = ω(

√
sσpσ0). Therefore, we

conclude that over the first T0 epochs, the weight decay effectively suppresses noise memorization,
ensuring that ⟨w(t)

j,r, ξi⟩ ≤ ⟨w(t)
j,r,−αyiv⟩+ Θ̃(ηsσp) ≤ Θ̃(ηsσp + α) holds.

Next, we focus on ⟨w(t)
j,r∗ , jv⟩ = Θ̃(1) for r∗ = argmaxr∈[m]⟨w

(t)
j,r, jv⟩. By Lemma C.6, we

know ⟨w(T0)
j,r∗ , j · v⟩ = Θ̃(1) and ℓ

(T0)
j,r = Θ(1). For t > T0, We show if ⟨w(t)

j,r∗ , j · v⟩ ≤(
1
m log

(
(λ)−1 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)

=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≥ 1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩

]
=

1

1 + exp
[
m ·

(
1
m log ((λ)−1 − 1)

) 1
q ·q
]

= Θ(λ).

where the inequality we use ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(ηsσp + α) and ηsσp = o(1), α = o(1). Then we have

sgn

(∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)−Bλw

(t)
j,r[1]

)

= sgn

(
sgn(j) · λ

(
1

m
log
(
(λ)−1 − 1

)) q−1
q

± λ

(
1

m
log
(
(λ)−1 − 1

)) 1
q
)
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= sgn(j),

where we use Lemma A.6, ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(ηsσp + α) and α = o(1). So we have

⟨w(t+1)
j,r∗ , j · v⟩ ≥ ⟨w(t)

j,r∗ , j · v⟩+Θ(η).

If ⟨w(t)
j,r∗ , j · v⟩ ≥ log(λ− 1

2 ), then ℓ
(t)
j,i = o(λ), then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)

=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≤ 1

1 + exp
[
m(1− α) ·

(
log(λ− 1

2 )
)q]

≤ 1

exp
[(

log(λ− 1
2 )
)q]

≤ 1

λ− q
2

= o

 λ(
log(λ− 1

2 )
)q−2

 .

Then we have

sgn

(∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

∑
i∈It

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)−Bλw

(t)
j,r[1]

)

= sgn

(
sgn(j) ·

(
log(λ− 1

2 )
)q−1

· o

 λ(
log(λ− 1

2 )
)q−2

± λ log(λ− 1
2 )

)

= sgn

(
sgn(j) · λ · o

(
log(λ− 1

2 )
)
± λ log(λ− 1

2 )

)
= sgn(−w

(t)
j,r[1])

= −sgn(w
(t)
j,r[1]).

So we have

⟨w(t+1)
j,r∗ , j · v⟩ ≥ ⟨w(t)

j,r∗ , j · v⟩ −Θ(η).

Therefore, ⟨w(t)
j,r∗ , j · v⟩ = Θ̃(1) for t > T0 = 1

η . This completes the proof.

Lemma C.8 (Convergence). Suppose the same conditions hold as in Lemma C.6 and C.7, if the step
size η = O(d−

1
2 ), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

Proof of Lemma C.8. We aim to prove the convergence of the objective function under the Adam
optimization algorithm in a non-convex setting. Recall the loss function for each data point i is

Li(W) = log

(
1 +

1

exp (Fyi(W,xi)− F−yi(W,xi))

)
,
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where W represents the parameter matrix, xi is the input data, yi is the true label, and Fj(W,xi)
are the logits for class j. The total objective is:

L(W) =
1

n

n∑
i=1

Li(W) + λ∥W∥2F ,

with λ = o(1) as a small regularization parameter.

Since Li(W) is non-convex, we exploit its smoothness with respect to the logits [Fj(W,xi)]j .
Specifically, Li(W) is 1-smooth in [Fj(W,xi)]j due to the properties of the cross-entropy loss.
Define:

∆Fj,i = Fj(W
(t+1),xi)− Fj(W

(t),xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W(t):

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.12)

This upper bound arises because the second derivative of Li with respect to the logits is bounded
by 1, a standard result for cross-entropy loss. The logits are defined as: Fj(W

(t),xi) =∑m
r=1[σ(⟨w

(t)
j,r, yiv⟩) + σ(⟨w(t)

j,r, ξi⟩)], where w
(t)
j,r the r-th neuron in j-th output of W(t), σ(z) =

[z]q+ is a smooth activation function (e.g., with q ≥ 3). By Lemma C.7 and C.1, we have
⟨w(t)

j,r,v⟩ ≤ Θ̃(1) and ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(1), ensuring the local smoothness of σ remains Õ(1) be-

tween ⟨w(t+1)
j,r , yiv⟩ and ⟨w(t)

j,r, yiv⟩ (similar for ⟨w(t)
j,r, ξi⟩). Then with Taylor expansion, we have∣∣∣σ(⟨w(t+1)

j,r , yiv⟩)− σ(⟨w(t)
j,r, yiv⟩)− ⟨∇wj,r

σ(⟨w(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

= Θ̃(1) ·

∥∥∥∥∥∥η ·
m

(t)
j,r√

v
(t)
j,r + ϵ

∥∥∥∥∥∥
2

2

≤ Θ̃(η2d), (C.13)

where the last inequality we use Lemma C.1. Similarly, we have∣∣∣σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)− ⟨∇wj,r
σ(⟨w(t)

j,r, ξi⟩),w
(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

= Θ̃(1) ·

∥∥∥∥∥∥η ·
m

(t)
j,r√

v
(t)
j,r + ϵ

∥∥∥∥∥∥
2

2

≤ Θ̃(η2d). (C.14)

Summing over r (with m = Θ̃(1)), we get

|∆Fj,i| ≤
∣∣∣⟨∇WFj(W

(t),xi),W
(t+1) −W(t)⟩

∣∣∣+ Θ̃(η2d). (C.15)

Additionally, ∥∇WFj(W
(t),xi)∥F ≤ Θ̃(1) since m = Θ̃(1), ⟨w(t)

j,r, yiv⟩ ≤ Θ̃(1), ⟨w(t)
j,r, ξi⟩ ≤

Θ̃(1). So we have

|∆Fj,i| ≤ Θ̃(ηsσp + ηα+ η + η2d) ≤ Θ̃(ηsσp + η2d). (C.16)

Substitute (C.15) and (C.16) into (C.12):

Li(W
(t+1))− Li(W

(t)) ≤ ⟨∇WLi(W
(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.17)
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For the full objective:

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[Li(W
(t+1))− Li(W

(t))] + λ(∥W(t+1)∥2F − ∥W(t)∥2F ).

(C.18)

Since λ∥W∥2F is 2λ-smooth and λ = o(1), the regularization term contributes:

λ(∥W(t+1)∥2F − ∥W(t)∥2F ) ≤ 2λ⟨W(t),W(t+1) −W(t)⟩+ λΘ̃(η2d), (C.19)

where the quadratic term is absorbed into Θ̃(η2d). Substitute (C.17) and (C.19) into (C.18), we have

L(W(t+1))− L(W(t)) ≤ ⟨∇L(W(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.20)

Take expectation for the stochastic gradient of both side in (C.20),

E
[
L(W(t+1))− L(W(t))

]
≤ E

[
⟨∇L(W(t)),W(t+1) −W(t)⟩

]
+ Θ̃(η2d)

≤ −η · E

 ∑
j∈{±1}

∑
r∈[m]

∥∥∥g(t)t,j,r

∥∥∥
1

+ Θ̃(d · η2) + Θ̃(ns · η2sσp) + Θ̃(η2d)

≤ −η ·
∑

j∈{±1}

∑
r∈[m]

∥∥∥E [g(t)t,j,r

]∥∥∥
1
+ Θ̃(η2d)

= −η∥∇L(W(t))∥1 + Θ̃(η2d),

where we use Lemma C.2 that the update aligns with the gradient’s sign for large gradient and the
fact that ns2σp = O(d) and Jensen’s inequality. This completes the proof.

Lemma C.9 (Generalization Performance of Stochastic Adam). Suppose the same conditions hold
as in Lemma C.8. We have the following results for T = poly(n)

η , with training dataset S

• The training error is zero: errS(W(T )) = 0.

• The test error is near-zero: errD(W(T )) = o(1).

Proof of Lemma C.9. By Lemma C.7, we have

⟨w(T )
j,r∗ , jv⟩ = Θ̃(1), ⟨w(T )

j,r , ξi⟩ = Õ(ηsσp + α).

Recall Fj(W,x) in Definition 3.2, with ηsσp = o(1), α = o(1), we directly have

errS(W
(T )) = E(x,y)∼S 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
= 0,

since Fyi
(W(T ),xi) = Ω̃(1), while F−yi

(W(T ),x) ≤ Θ̃(ηsσp + α). Besides, for test data
(x, y) ∼ D with x = [yv⊤, ξ⊤]⊤, it is clear that with high probability ⟨w(T )

y,r∗ , yv⟩ = Θ̃(1)

and [⟨w(T )
y,r , ξ⟩]+ ≤ Θ̃(ηsσp + α), then similar as training error, we have

Fy(W
(T ),x) ≥ σ(⟨w(T )

y,r∗ , yv⟩) = Ω̃(1),

while

F−y(W
∗,x) =

m∑
r=1

[
σ(⟨w∗

−y,r, yv⟩) + σ(⟨w∗
−y,r, ξ⟩)

]
≤ Θ̃(ηsσp + α).

Therefore, we have

errD(W
(T )) = E(x,y)∼D 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
= o(1).

This implies that mini-batch Adam can achieve nearly zero test error. This completes the proof.
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C.1.3 Proof of Corollary 4.3

Corollary 4.3 follows directly from Lemma C.10.

Lemma C.10. Suppose the same conditions hold as in Lemma C.3 and C.6, if λ = ω(σq−2
0 ), then

⟨w(t)
j,r, jv⟩ ≤ Θ̃(σ0),

⟨w(t)
j,r, ξi⟩ ≤ Θ̃(s1/2σpσ0).

Proof of Lemma C.10. This corollary is an immediate consequence of Lemmas C.3 and C.6. In
particular, Lemma A.3 guarantees that at t = 0

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0), |⟨w(0)

j,r , ξi⟩| = Θ̃(s1/2 σp σ0), w
(0)
j,r [k] = Θ̃(σ0).

Since λ = ω(σ q−2
0 ), Lemma A.7 implies that, at initialization, the weight decay regularization term

overwhelmingly dominates the gradient:

λ
∣∣w(0)

j,r [1]
∣∣ ≫ σ′(⟨w(0)

j,r , yiv⟩
)
+ ασ′(⟨w(0)

j,r , ξi⟩
)
,

λ
∣∣w(0)

yi,r[k]
∣∣ ≫ σ′(⟨w(0)

yi,r, ξi⟩
)
ξi[k].

Hence, by Lemma C.2, the updates remain in the regularization-dominated regime, and no coordinate
ever grows beyond its Θ̃(σ0) scale throughout training. This completes the proof.

C.2 Proof of Stochastic AdamW

Lemma C.11. Consider the update of stochastic AdamW in (3.6). Let W(t) be the weight at the
t-th iteration. Suppose that ⟨w(t)

j,r, yiv⟩, ⟨w
(t)
j,r, ξi⟩ = Θ̃(1) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and

β2
1 < β2. We have the approximate update rule for each coordinate weight as follows:

• For k = 1, we have either |g(t)t,j,r[1]| ≤ Θ̃(η) or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t,j,r[k]

)
·Θ(1).

• For every k ∈ Bi, i ∈ It−τ , τ ∈ Tk := {τ0 + i · n
B : i ∈ {0} ∪ [ τ̄

n/B ], τ0 < n
B }, where τ0

represents the number of iterations away from the current iteration t, coordinate k is affected by ξi
sampled at the iteration t− τ0 since the moving average, and we define τ̄ = Θ(log(λη)−1)

– If n
B ≤ Θ(1), for any τ0 < n

B , we have either∣∣∣g(t)t−τ0,j,r
[k]
∣∣∣ ≤ Θ̃

(
B−1ηsσp|ℓ(t)j,i |

)
or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t−τ0,j,r

[k]
)
·Θ(1).

– If n
B ≥ Θ(log(λη)−1) = Θ̃(1), for τ0 ≤ Θ(log(λ−1sσp)) such that βτ0

1 ≥ Θ( λ
sσp

), we have
either ∣∣∣g(t)t−τ0,j,r

[k]
∣∣∣ ≤ Θ̃

(
B−1ηsσp|ℓ(t)j,i |

)
or

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= sgn
(
g
(t)
t−τ0,j,r

[k]
)
·Θ(1).

For τ0 ≥ Θ(log(λη)−1) such that β
τ0
2

2 ≤ Θ(λ2η2), we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= ±Θ̃(λη) = o(1).

44



• For the remaining coordinates k ̸= 1 and k /∈ Bi, i ∈ It−τ0 , τ0 ∈ {0} ∪ [τ̄ ], where τ0 represents
the number of iterations away from the current iteration t, coordinate k is affected by ξi sampled
at the iteration t− τ0 since the moving average, and we define τ̄ = log(λη)−1. Then we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

= ±Õ(λη) = o(1).

Proof of Lemma C.11. The proof is similar to Lemma C.2. We select τ̄ = Θ(log(λη)−1) such that∑t
τ=τ̄+1 β

τ
1 (1− β1) = O(λ2η2) and

∑t
τ=τ̄+1 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k] = Õ(λ2η2).

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λ2η2)√∑τ̄
τ=τ̄ β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 + ϵ± Õ(λ2η2)

.

Recall the gradient of stochastic AdamW given in Lemma A.8, we want to approximate g
(t−τ)
t−τ,j,r[k]

to g
(t)
t−τ,j,r[k], such that we can use the current weight to approximate sign update. By Lemma C.1,

the upper bound of the normalized moving average of each coordinate in one step is Θ(η) since
λ = Õ(1). Then for τ ∈ [t− τ̄ , t], we have∣∣∣⟨w(t)

j,r, yiv⟩ − ⟨w(τ)
j,r , yiv⟩

∣∣∣
≤

t−1∑
k=τ

∣∣∣⟨w(k+1)
j,r , yiv⟩ − ⟨w(k)

j,r , yiv⟩
∣∣∣

≤
t−1∑
k=τ

ηλ
∣∣∣⟨w(k)

j,r , yiv⟩
∣∣∣+ t−1∑

k=τ

η

∣∣∣∣∣∣
〈

m
(k)
j,r√

v
(k)
j,r + ϵ

, yiv

〉∣∣∣∣∣∣
≤ Θ̃(ητ̄). (C.21)

The last inequality we use the fact that ⟨w(k)
j,r , yiv⟩ = Θ̃(1), λ = Õ(1) and Lemma C.1. Similarly,

we have ∣∣∣⟨w(t)
j,r, ξi⟩ − ⟨w(τ)

j,r , ξi⟩
∣∣∣ ≤ Θ(ητ̄sσp). (C.22)

Then recall the predict function

Fj(W
(t),xi) =

m∑
r=1

[
σ
(
⟨w(t)

j,r, yiv⟩
)
+ σ

(
⟨w(t)

j,r, ξi⟩
)]

.

We have∣∣∣Fj(W
(t),xi)− Fj(W

(τ),xi)
∣∣∣

≤
m∑
r=1

∣∣∣σ (⟨w(t)
j,r, yiv⟩

)
− σ

(
⟨w(τ)

j,r , yiv⟩
)∣∣∣+ m∑

r=1

∣∣∣σ (⟨w(t)
j,r, ξi⟩

)
− σ

(
⟨w(τ)

j,r , ξi⟩
)∣∣∣

≤
m∑
r=1

Θ̃(1) ·
∣∣∣⟨w(t)

j,r, yiv⟩ − ⟨w(τ)
j,r , yiv⟩

∣∣∣+ m∑
r=1

Θ̃(1) ·
∣∣∣⟨w(t)

j,r, ξi⟩ − ⟨w(τ)
j,r , ξi⟩

∣∣∣
≤ Θ̃(mητ̄sσp) + Θ̃(mητ̄)

= Θ̃(ητ̄sσp), (C.23)

where the second inequality we use the convexity of σ(·) and the facts that |⟨w(t)
j,r, yiv⟩| = Θ̃(1) and

|⟨w(t)
j,r, ξi⟩| = Θ̃(1), the last inequality we use m = Θ̃(1) and sσp = ω(1).

Then we can approximate ℓ
(τ)
j,r to ℓ

(τ)
j,r in the gradient A.8.

ℓ
(τ)
j,i =

eF−j(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)
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=
eF−j(W

(t),xi)±Θ̃(ητ̄sσp)

eFj(W(t),xi)±Θ̃(ητ̄sσp) + eF−j(W(t),xi)±Θ̃(ητ̄sσp)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |), (yi = j)

ℓ
(τ)
j,i =

−eFj(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

=
−eFj(W

(t),xi)±Θ̃(ητ̄sσp)

eFj(W(t),xi)±Θ̃(ητ̄sσp) + eF−j(W(t),xi)±Θ̃(ητ̄sσp)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |), (yi ̸= j)

where we use the fact that Θ̃(ητ̄sσp) = o(1) and (C.23). So we have

ℓ
(τ)
j,i = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |),

for all τ ∈ [t − τ̄ , t]. Further, by (C.21), (C.22) and the facts that |⟨w(t)
j,r, yiv⟩| = Õ(1) and

|⟨w(t)
j,r, ξi⟩| = Õ(1), recall σ(x) = max(0, x)q , we have

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩)

≤ ℓ
(τ)
j,i σ

′(⟨w(t)
j,r, yiv⟩) + |ℓ(τ)j,i | · Θ̃(ητ̄)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩) + Θ(|ℓ(t)j,i |) · Θ̃(ητ̄),

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩)

≥ ℓ
(τ)
j,i σ

′(⟨w(t)
j,r, yiv⟩)− |ℓ(τ)j,i | · Θ̃(ητ̄)

= sgn(ℓ
(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩)−Θ(|ℓ(t)j,i |) · Θ̃(ητ̄).

So we conclude that

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , yiv⟩) = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, yiv⟩)±Θ(|ℓ(t)j,i |) · Θ̃(ητ̄). (C.24)

Similarly, we have

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , ξi⟩) = sgn(ℓ

(t)
j,i ) ·Θ(|ℓ(t)j,i |) · σ

′(⟨w(t)
j,r, ξi⟩)±Θ(|ℓ(t)j,i |) · Θ̃(ητ̄sσp). (C.25)

Now, we have all the tools we need to approximate g
(t−τ)
t−τ,j,r[k] to g

(t)
t−τ,j,r[k]. Recall Lemma A.8,

substitute (C.24) and (C.25) into g
(t−τ)
t−τ,j,r[k], we have

• For k = 1,

g
(t−τ)
t−τ,j,r[1] = Θ

(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1

B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄). (C.26)

• For all k ∈ Bi, i ∈ It−τ ,

g
(t−τ)
t−τ,j,r[k] = Θ

(
g
(t)
t−τ,j,r[k]

)
±Θ

( |ℓ(t)j,i |
B

)
· Õ(ητ̄sσp). (C.27)

• For k ̸= 1 and k /∈ Bi, i ∈ It−τ ,

g
(t−τ)
t−τ,j,r[k] = g

(t)
t−τ,j,r[k] = 0. (C.28)

Plugging (C.26), (C.27) and (C.28) into (C.1), with facts that τ̄ = Θ̃(1), λ = o(1), |⟨w(t)
j,r, ξi⟩| =

Θ̃(1), |⟨w(t)
j,r, yiv⟩| = Θ̃(1), |ℓ(t)j,i | = Θ(1), ϵ = Θ(λη) and Lemma A.6, we have
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• For k = 1,

m
(t)
j,r[1]√

v
(t)
j,r[1] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[1]± Õ(λ2η2)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[1]
2 + ϵ± Õ(λ2η2)

=

∑τ̄
τ=0 β

τ
1 (1− β1) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1
B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄)

)
± Õ(λ2η2)√∑τ̄

τ=0 β
τ
2 (1− β2) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
±Θ

(
1
B

∑
i∈It−τ

|ℓ(t)j,i |
)
· Õ(ητ̄)

)2

+ ϵ± Õ(λ2η2)

=

∑τ̄
τ=0 β

τ
1 (1− β1) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
± Θ̃(ητ̄)

)
± Õ(λ2η2)√∑τ̄

τ=0 β
τ
2 (1− β2) ·

(
Θ
(
g
(t)
t−τ,j,r[1]

)
± Θ̃(ητ̄)

)2
+ ϵ± Õ(λ2η2)

=
Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(ητ̄)± Õ(λ2η2)√(

Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(ητ̄)

)2
+ ϵ± Õ(λ2η2)

=
Θ
(
g
(t)
t,j,r[1]

)
± Θ̃(η)

Θ
(
|g(t)t,j,r[1]|

)
± Θ̃(η)

.

• For k ∈ Bi, i ∈ It−τ0 , τ0 ∈ {0} ∪ [τ̄ ], where τ0 represents the number of iterations away from the
current iteration t, coordinate k is affected by ξi sampled at the iteration t− τ0 since the moving
average. We note that if the number of iteration in one epoch n

B is less than τ̄ , the moving average
will use some sample x multiply times. We denote Tk := {τ0 + i · n

B : i ∈ [ τ̄
n/B − 1]} as the

timestamp set involved using noise ξi (i.e., i ∈ It−τ for any τ ∈ Tk), and k ∈ Bi, τ0 ≤ n
B .

If n
B > τ̄ , in this case we have Tk := {τ0} for any k ∈ Bi, and ξi was used in iteration t − τ0.

Then we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λ2η2)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 + ϵ± Õ(λ2η2)

=

∑
τ∈Tk

βτ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λ2η2)√∑
τ∈Tk

βτ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 + ϵ± Õ(λ2η2)

=
βτ0
1 ·Θ(g

(t−τ0)
t−τ0,j,r

[k])± Õ(λ2η2)√
βτ0
2 ·Θ(g

(t−τ0)
t−τ0,j,r

[k]2) + ϵ± Õ(λ2η2)

=

βτ0
1

(
Θ
(
g
(t)
t−τ0,j,r

[k]
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

))
± Õ(λ2η2)

β
τ0
2

2

(
Θ
(
|g(t)t−τ0,j,r

[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

))
+ ϵ± Õ(λ2η2)

.

Now we handle βτ0
1 and β

τ0
2

2 with more care. First we have βτ0
1 < β

τ0
2

2 and |g(t)t−τ0,j,r
[k]| = Õ(1).
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Then if n
B ≤ Θ(1), then βτ0

1 = Θ(1) and β
τ0
2

2 = Θ(1) since τ0 < n
B . In this case, we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

Θ
(
g
(t)
t−τ0,j,r

[k]
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
Θ
(
|g(t)t−τ0,j,r

[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

) .

If n
B ≥ Θ(log ϵ−1) = Θ(log(λη)−1) = Θ̃(1) such that β

n
2B
2 ≤ Θ(λ2η2), then for τ0 =

O(log(λ−1sσp)) such that βτ0
1 ≥ Θ( ϵ

ηsσp
) = Θ( λ

sσp
), we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

Θ
(
g
(t)
t−τ0,j,r

[k]
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

)
Θ
(
|g(t)t−τ0,j,r

[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

B

) .

For τ0 < n
B , τ0 ≥ Θ(log(λη)−1) such that β

τ0
2

2 = O(λ2η2), we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=
±Õ(λ2η2)

ϵ± Õ(λ2η2)
= ±Õ(λη) = o(1),

since ϵ = Θ(λη).

• For k ̸= 1 and k /∈ Bi, i ∈ It−τ , τ ∈ [0, τ̄ ], recall g(t)t−τ,j,r[k] = 0, we have

m
(t)
j,r[k]√

v
(t)
j,r[k] + ϵ

=

∑τ̄
τ=0 β

τ
1 (1− β1) · g(t−τ)

t−τ,j,r[k]± Õ(λ2η2)√∑τ̄
τ=0 β

τ
2 (1− β2) · g(t−τ)

t−τ,j,r[k]
2 + ϵ± Õ(λ2η2)

=
±Õ(λ2η2)

ϵ± Õ(λ2η2)

= ±Õ(λη)

= o(1).

This completes the proof.

C.2.1 Proof of Theorem 4.4

Lemma C.12 (Stage I, pattern learning). Given the training dataset S , if n
B = Θ(1) or n

B = o(sσp),
η = 1/poly(d), λ = Ω̃(B

2

n ∧ 1) and λ = Õ(1), then for any t ≤ T0 with T0 = Õ( 1
ηsσp

),

⟨w((t+1)· n
B )

j,r , j · v⟩ ≤ ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
)

⟨w((t+1)· n
B )

yi,r , ξi⟩ = ⟨w(t· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

Proof of Lemma C.12. We prove this Lemma by induction. By Lemma C.1,

⟨w( n
B )

j,r , j · v⟩ = (1− λη)⟨w( n
B−1)

j,r , j · v⟩ − η

〈
m
( n

B−1)
j,r√

v
( n

B−1)
j,r + ϵ

, jv

〉

≤ (1− λη)⟨w( n
B−1)

j,r , j · v⟩+Θ(η)
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≤ (1− λη)
n
B ⟨w(0)

j,r , j · v⟩+Θ(η) ·
n
B−1∑
k=0

(1− λη)k

= ⟨w(0)
j,r , j · v⟩ −Θ(λη · n

B
) · ⟨w(0)

j,r , j · v⟩+Θ(η · n
B
)

= ⟨w(0)
j,r , j · v⟩+Θ(η · n

B
),

where the second equality we use Taylor expansion and λη · n
B = o(1), and the last equality we have

⟨w(0)
j,r , j · v⟩ = Θ̃(σ0) by Lemma A.3. Now suppose the inequality holds for t = 0, . . . , t0 with

t0 ≤ T0. We have

⟨w(t0· n
B )

j,r , j · v⟩ ≤ ⟨w(0)
j,r , j · v⟩+Θ(η · n

B
· t0) ≤ Θ̃(σ0 +

n

Bsσp
) = Õ(1),

since n
B = o(sσp). For t = t0 + 1,

⟨w((t0+1)· n
B )

j,r , j · v⟩ = (1− λη)⟨w((t0+1)· n
B−1)

j,r , j · v⟩ − η

〈
m
((t0+1)· n

B−1)
j,r√

v
((t0+1)· n

B−1)
j,r + ϵ

, jv

〉

≤ (1− λη)⟨w((t0+1)· n
B−1)

j,r , j · v⟩+Θ(η)

≤ (1− λη)
n
B ⟨w(t0· n

B )
j,r , j · v⟩+Θ(η) ·

n
B−1∑
k=0

(1− λη)k

= ⟨w(t0· n
B )

j,r , j · v⟩ −Θ(λη · n
B
) · ⟨w(t0· n

B )
j,r , j · v⟩+Θ(η · n

B
)

≤ ⟨w(t0· n
B )

j,r , j · v⟩+Θ(η · n
B
).

Hence, we have ⟨w(t)
j,r, j · v⟩ = Õ(1). Then, we prove ⟨w((t+1)· n

B )
yi,r , ξi⟩ = ⟨w(t· n

B )
yi,r , ξi⟩+ Θ̃(ηsσp)

by induction. By Lemma A.3, we have

|⟨w(0)
j,r , ξi⟩| = Θ̃(s1/2σpσ0), w

(0)
j,r [k] = Θ̃(σ0),

which imply that |ℓ(0)j,i | = Θ(1). Assume that sample (xi, yi) is in batch Iτ in the first epoch. Then
we have

⟨w(τ)
yi,r, ξi⟩ ≥ (1− λη)⟨w(τ−1)

yi,r , ξi⟩ −Θ(ηα)

≥ ⟨w(0)
yi,r, ξi⟩ − Θ̃(λησ0 + ηα)

= Θ̃(σ0),

since λη = o(1), η = o(σ0), α = o(1) and s1/2σp = Õ(1). Additionally, we have ηs = o(σq−1
0 )

and |ξi[k]| ≥ Θ̃(σp) with high probability. Then |B−1σq−1
0 ξi[k]| ≥ Θ̃(ηB−1sσp|ℓ(0)j,i |) for i ∈ Iτ .

Therefore, by Lemma C.11 and A.6, we have

sgn

(
− 1

B
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn

(
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn(ξi[k]). (C.29)

Then, by Lemma C.11 we have the following update according to (B.6), (C.29) and Lemma C.1.

⟨w(τ+1)
yi,r , ξi⟩

= (1− λη)⟨w(τ)
yi,r, ξi⟩ − η ·

〈
m

(τ)
yi,r√

v
(τ)
yi,r + ϵ

, ξi

〉
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≥ ⟨w(0)
yi,r, ξi⟩+Θ(η) ·

∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ − Õ(λησ0)−O(ηα)−O(ηsσp)

= ⟨w(0)
yi,r, ξi⟩+ Θ̃(ηsσp).

At the end of the first epoch, we have

⟨w( n
B )

yi,r , ξi⟩

≥ (1− λη)⟨w( n
B−1)

yi,r , ξi⟩ −O(ηα)

≥ ⟨w(τ+1)
yi,r , ξi⟩ − Õ(λη2sσp)−O(ηα)

≥ ⟨w(0)
yi,r, ξi⟩+ Θ̃(ηsσp).

This completes the base case for t = 1. For general t ≤ t0 with t0 ≤ T0, assuming ⟨w(t· n
B )

yi,r , ξi⟩ =
⟨w(t−1)· n

B )
yi,r , ξi⟩+ Θ̃(ηsσp). Then we have

⟨w(t· n
B )

yi,r , ξi⟩ = ⟨w(t−1)· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp)

= ⟨w(0)
yi,r, ξi⟩+ Θ̃(tηsσp)

= Θ̃(s1/2σpσ0 + tηsσp)

≤ Θ̃(1).

By Lemma C.1, we have

|w(t· n
B )

j,r [k]| ≤ |w(t· n
B−1)

j,r [k]|+Θ(η)

≤ |w(0)
j,r [k]|+Θ(η · t · n

B
)

≤ Θ̃(σ0 +
n

Bsσp
)

≤ Θ̃(1).

So we have |ℓ(t·
n
B )

j,i | = Θ(1). Follow the same proof above with t = t0 + 1, assuming that sample
(xi, yi) is in batch It0·n/B+τ in the t-th epoch. Then we have

⟨w(t0· n
B+τ)

yi,r , ξi⟩ ≥ (1− λη)⟨w(t0· n
B+τ−1)

yi,r , ξi⟩ −Θ(ηα)

≥ ⟨w(t0· n
B )

yi,r , ξi⟩ − Θ̃(λη + ηα)

= ⟨w(t0· n
B )

yi,r , ξi⟩,

since η = o(σ0) and α = o(1). Additionally, we have ηs = o(σq−1
0 ) and |ξi[k]| ≥ Θ̃(σp) with

high probability. Then |B−1(w
(0)
j,r [k] + tηsσp)

q−1ξi[k]| ≥ Θ̃(ηB−1sσp|ℓ(0)j,i |) for i ∈ It0·n/B+τ .
Therefore, by Lemma C.11 and A.6, we have

sgn

(
− 1

B
ℓ
(t0· n

B+τ)
yi,i

σ′(⟨w(t0· n
B+τ)

yi,r , ξi⟩)ξi[k]
)

= −sgn

(
ℓ
(t0· n

B+τ)
yi,i

σ′(⟨w(t0· n
B+τ)

yi,r , ξi⟩)ξi[k]
)

= −sgn(ξi[k]). (C.30)

Then, by Lemma C.11 we have the following update according to (B.6), (C.30) and Lemma C.1.

⟨w(t0· n
B+τ+1)

yi,r , ξi⟩

= (1− λη)⟨w(t0· n
B+τ)

yi,r , ξi⟩ − η ·

〈
m
(t0· n

B+τ)
yi,r√

v
(t0· n

B+τ)
yi,r + ϵ

, ξi

〉
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≥ ⟨w(t0· n
B )

yi,r , ξi⟩+Θ(η) ·
∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ − Õ(λη)−O(ηα)−O(ηsσp)

= ⟨w(t0· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

At the end of this epoch, we have

⟨w(t· n
B )

yi,r , ξi⟩

≥ (1− λη)⟨w(t· n
B−1)

yi,r , ξi⟩ −O(ηα)

≥ ⟨w(t0· n
B+τ+1)

yi,r , ξi⟩ − Õ(λη)−O(ηα)

≥ ⟨w(t0· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

This completes the proof.

Because in the large-batch regime we have n/B = o(sσp), Lemma C.12 tells us that noise
memorization outpaces feature learning. Early in Stage I, feature gradients predominate since
σ′(⟨w(t)

yi,r, yiv⟩) ≫ ασ′(⟨w(t)
yi,r, ξi⟩), given that α = o(1) and weight decay effect is negligible.

After a certain number of epochs, however, the noise component grows until ασ′(⟨w(t)
yi,r, ξi⟩) ≫

σ′(⟨w(t)
yi,r, yiv⟩), at which point feature learning slows, then reverses direction entirely. Lemma C.13

below characterizes this transition in detail.

Lemma C.13 (Stage I, fitting feature noise). Given the training dataset S, if n
B = Θ(1) or n

B =

o(sσp), η = 1/poly(d), λ = Ω̃(B
2

n ∧ 1) and λ = Õ(1), then if α ≥ Θ̃
(
(Bn sσp)

1−q
)
, for any

t ∈ [Tr, T0] with Tr = Õ
(

σ0

ηsσpα1/(q−1)

)
≤ T0,

⟨w((t+1)· n
B )

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩ −Θ(η · n
B
).

At epoch T0, we have (a) w
(T0· n

B )
j,r [1] = −sgn(j) · Ω̃( n

Bsσp
); (b) w

(T0· n
B )

j,r [k] = sgn(ξi[k]) ·

Ω̃( 1
sσp

) or ± Õ(η) for k ∈ Bi with yi = j; (c) w(T0· n
B )

j,r [k] = ±Õ(η) otherwise.

Proof of Lemma C.13. By Lemma C.12, we have

ασ′
(〈

w
(Tr· n

B )
yi,r , ξi

〉)
≥ α

(
Θ̃(s1/2σpσ0) + Tr · Θ̃(ηsσp)

)q−1

= α
(
Θ̃(s1/2σpσ0) + Θ̃(

σ0

α1/(q−1)
)
)q−1

≥ Θ̃(σq−1
0 ),

σ′(⟨w(Tr· n
B )

yi,r , yiv⟩) ≤
(
Θ̃(σ0) + Tr ·Θ(η · n

B
)
)q−1

=

(
Θ̃(σ0) +

nσ0

Bsσpα1/(q−1)

)q−1

≤ Θ̃(σq−1
0 ).

Hence, there exists some constant C > 0, for t ∈ [Tr · n
B , T0 · n

B ],

ασ′
(〈

w(t)
yi,r, ξi

〉)
≥ C · σ′(⟨w(t)

yi,r, yiv⟩).

Then by Lemma A.8, C.11 and A.6, we have〈
w

(t+1)
j,r , jv

〉
= (1− λη)

〈
w

(t)
j,r, jv

〉
− η ·

〈
m

(t)
j,r√

v
(t)
j,r + ϵ

, jv

〉
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≤
〈
w

(t)
j,r, jv

〉
−Θ(η) · j · sgn

(∑
i∈It

αyiℓ
(t)
j,iσ

′
(〈

w(t)
yi,r, ξi

〉))
=
〈
w

(t)
j,r, jv

〉
−Θ(η) · j · sgn(j)

=
〈
w

(t)
j,r, jv

〉
−Θ(η).

So we conclude that

⟨w((t+1)· n
B )

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩ −Θ(η · n
B
).

Moreover, at the end of epoch T0,〈
w

(T0· n
B )

j,r , jv
〉
= Θ̃(σ0) + Tr ·Θ(η · n

B
)− (T0 − Tr) ·Θ(η · n

B
)

= −Θ̃(
n

Bsσp
).

Multiply j on both side, we get

w
(T0· n

B )
j,r [1] = −sgn(j) · Θ̃(

n

Bsσp
).

For w(T0· n
B )

j,r [k], where k ∈ Bi and i ∈ [n], Lemma C.12 shows that it increases by Θ(η) in the

direction of sgn(ξi[k]) if ⟨w(0)
yi,r, ξi⟩ > 0, that is,

w
(T0· n

B )
j,r [k] = w

(0)
j,r [k] + sgn(ξi[k]) · T0 ·Θ(η)

= sgn(ξi[k]) · Θ̃
(

1

sσp

)
.

Otherwise, weight decay drives w(t)
j,r[k] toward zero if it is initially negative, in this case w(T0· n

B )
j,r [k] ∈

[−Θ̃(η), Θ̃(η)]. For the remaining coordinates, Lemma A.8 implies the gradients are zero, so the
updates are dominated by weight decay. Given the fact that T0η = ω(σ0), we have w

(T0· n
B )

j,r [k] ∈
[−Θ̃(η), Θ̃(η)]. This completes the proof.

Lemma C.13 implies that, by the end of Stage I, the model has fitted the feature noise −αyv. The
following Lemma C.14 shows that these pattern persist throughout Stage II, ultimately leading to
poor generalization.
Lemma C.14 (Stage II, preserve the noise). Suppose the same conditions hold as in Lemma C.12
and C.13, for t > T0 · n

B , j ∈ {±1}, r ∈ [m], i ∈ [n], let r∗ = argmaxr∈[m]⟨w
(t)
yi,r, ξi⟩, then

⟨w(t)
j,r, j · v⟩ = −Θ̃( n

Bsσp
) and ⟨w(t)

yi,r∗ , ξi⟩ = Θ̃(1).

Proof of Lemma C.14. By Lemma C.12, C.11 and (B.6), we have ⟨w(t)
−yi,r, ξi⟩ ∈

[−Θ̃(ηsσp), Θ̃(σ0)]. Because if ⟨w(t)
−yi,r, ξi⟩ ≥ Θ̃(σ0), then we have

⟨w(t+ n
B )

−yi,r , ξi⟩ ≤ ⟨w(t)
−yi,r, ξi⟩ − Θ̃(ηsσp),

while if ⟨w(t)
−yi,r, ξi⟩ < 0, we have

⟨w(t+1)
−yi,r, ξi⟩ ≥ (1− λη)⟨w(t)

−yi,r, ξi⟩+Θ(ηα).

Now, suppose ⟨w(t)
yi,r∗ , ξi⟩ ≤

(
1
m log

(
(λη)−1 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)
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=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≥ 1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, ξi⟩

]
≥ 1

1 + exp
[
m ·

(
1
m log ((λη)−1 − 1)

) 1
q ·q
]

= Θ(λη),

where the inequality we use ⟨w(t)
j,r, jv⟩ < 0. Then, in epoch Ta, which contains iteration t, it follows

from Lemmas C.11, C.12 and (B.6) that for all ta ∈ [t, Ta +
n
B ], we have

⟨w(ta)
yi,r∗ , ξi⟩ ≥ (1− λη)⟨w(t)

yi,r∗ , ξi⟩+ Θ̃(ηsσp)

≥ ⟨w(t)
yi,r∗ , ξi⟩+ Θ̃(ηsσp).

If ⟨w(t)
yi,r∗ , ξi⟩ ≥

(
log
(
(λη)−2 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)

=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≤ 1

1 + exp
[
σ(⟨w(t)

yi,r∗ , ξi⟩)
]

≤ 1

1 + exp
[
(log ((λη)−2 − 1))

1
q ·q
]

= Θ(λ2η2),

where the inequality we use ⟨w(t)
−j,r, jv⟩ ≤ Θ̃( n

Bsσp
), n

B = o(sσp), ⟨w(t)
−j,r, ξi⟩) ≤ Θ̃(σ0). Then

by Lemma C.11, C.12 and (B.6), we have

⟨w(t+1)
yi,r∗ , ξi⟩ ≤ (1− λη)⟨w(t)

yi,r∗ , ξi⟩+ Θ̃(λη · ηsσp)

≤ ⟨w(t)
yi,r∗ , ξi⟩,

since ηsσp = o(1). For ⟨w(t)
j,r, jv⟩ = −Θ̃( n

Bsσp
), the same proof applies, since sσp = o(1) and

n
B = o(sσp). If ⟨w(t)

yi,r∗ , ξi⟩ ≥
(
log
(
(λη)−2 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i ≤ Θ(λ2η2).

Then by Lemma C.11, C.12 and (B.5), we have

⟨w(t+1)
j,r , jv⟩ ≥ (1− λη)⟨w(t)

j,r, jv⟩ −Θ(λη · η)

≥ ⟨w(t)
j,r, jv⟩+ Θ̃(λη · n

Bsσp
)−Θ(λη · η)

≥ ⟨w(t)
j,r, jv⟩,

since η = o( 1
sσp

). This completes the proof.

Lemma C.15 (Convergence). Suppose the same conditions hold as in Lemma C.12, C.13 and C.14,
if the step size satisfies η = O(d−1/2), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).
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Proof of Lemma C.15. The proof is similar to Lemma C.8. We aim to prove the convergence of the
objective function under the AdamW optimization algorithm in a non-convex setting. Recall the loss
function for each data point i is

Li(W) = log

(
1 +

1

exp (Fyi
(W,xi)− F−yi

(W,xi))

)
,

where W represents the parameter matrix, xi is the input data, yi is the true label, and Fj(W,xi)
are the logits for class j. The total objective is:

L(W) =
1

n

n∑
i=1

Li(W)

Since Li(W) is non-convex, we exploit its smoothness with respect to the logits [Fj(W,xi)]j .
Specifically, Li(W) is 1-smooth in [Fj(W,xi)]j due to the properties of the cross-entropy loss.
Define:

∆Fj,i = Fj(W
(t+1),xi)− Fj(W

(t),xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W(t):

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.31)

This upper bound arises because the second derivative of Li with respect to the logits is bounded
by 1, a standard result for cross-entropy loss. The logits are defined as: Fj(W

(t),xi) =∑m
r=1[σ(⟨w

(t)
j,r, yiv⟩) + σ(⟨w(t)

j,r, ξi⟩)], where w
(t)
j,r the r-th neuron in j-th output of W(t), σ(z) =

[z]q+ is a smooth activation function (e.g., with q ≥ 3). By Lemma C.14 and C.1, we have
⟨w(t)

j,r,v⟩ ≤ Θ̃(1) and ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(1), ensuring the local smoothness of σ remains Õ(1) be-

tween ⟨w(t+1)
j,r , yiv⟩ and ⟨w(t)

j,r, yiv⟩ (similar for ⟨w(t)
j,r, ξi⟩). Then with Taylor expansion, we have∣∣∣σ(⟨w(t+1)

j,r , yiv⟩)− σ(⟨w(t)
j,r, yiv⟩)− ⟨∇wj,rσ(⟨w

(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

= Θ̃(1) ·

∥∥∥∥∥∥λη ·w(t)
j,r + η ·

m
(t)
j,r√

v
(t)
j,r + ϵ

∥∥∥∥∥∥
2

2

≤ Θ̃(η2d), (C.32)

where the last inequality we use Lemma C.1 and ∥w(t)
j,r∥22 ≪ Θ(d) by Lemma C.13 and C.14.

Similarly, we have∣∣∣σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)− ⟨∇wj,r
σ(⟨w(t)

j,r, ξi⟩),w
(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

≤ Θ̃(η2d). (C.33)

Summing over r (with m = Θ̃(1)), we get

|∆Fj,i| ≤
∣∣∣⟨∇WFj(W

(t),xi),W
(t+1) −W(t)⟩

∣∣∣+ Θ̃(η2d). (C.34)

Additionally, ∥∇WFj(W
(t),xi)∥F ≤ Θ̃(1) since m = Θ̃(1), ⟨w(t)

j,r, yiv⟩ ≤ Θ̃(1), ⟨w(t)
j,r, ξi⟩ ≤

Θ̃(1). So we have

|∆Fj,i| ≤ Θ̃(ηsσp + ηα+ η + η2d) ≤ Θ̃(ηsσp + η2d). (C.35)
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Substitute (C.34) and (C.35) into (C.31):

Li(W
(t+1))− Li(W

(t)) ≤ ⟨∇WLi(W
(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.36)

For the full objective:

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[Li(W
(t+1))− Li(W

(t))]. (C.37)

Substitute (C.36) into (C.37), we have

L(W(t+1))− L(W(t)) ≤ ⟨∇L(W(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.38)

Take expectation for the stochastic gradient of both side in (C.38),

E
[
L(W(t+1))− L(W(t))

]
≤ E

[
⟨∇L(W(t)),W(t+1) −W(t)⟩

]
+ Θ̃(η2d)

≤ −η · E

 ∑
j∈{±1}

∑
r∈[m]

∥∥∥g(t)t,j,r

∥∥∥
1

− λη · ⟨∇L(W(t)),W(t)⟩+ Θ̃(d · η2) + Θ̃(ns · η2sσp) + Θ̃(η2d)

≤ −η ·
∑

j∈{±1}

∑
r∈[m]

∥∥∥E [g(t)t,j,r

]∥∥∥
1
+ Θ̃(

ληn

Bsσp
) · ∥∇L(W(t))∥1 + Θ̃(η2d)

≤ −η∥∇L(W(t))∥1 + Θ̃(η2d),

where we use Lemma C.11 that the update aligns with the gradient’s sign for large gradient and the
fact that ns2σp = O(d), and Jensen’s inequality, Hölder’s inequality and n

B = o(sσp), ∥W(t)∥∞ ≤
Θ̃( n

Bsσp
) by Lemma C.13 and C.14. This completes the proof.

Lemma C.16 (Generalization of Stochastic AdamW, large-batch). Suppose the same conditions hold
as in Lemma C.15. We have the following results for T = poly(n)

η , with training dataset S

• The training error is zero: errS(W(T )) = 0.

• The test error is high: errD(W(T )) ≥ 1
2 − o(1).

Proof of Lemma C.16. By Lemma C.14, we have

⟨w(T )
j,r , jv⟩ = −Θ̃(

1

sσp
), ⟨w(T )

yi,r∗ , ξi⟩ = Θ̃(1), ⟨w(T )
−yi,r, ξi⟩ ≤ Θ̃(σ0).

Recall Fj(W,x) in Definition 3.2, with ηsσp = o(1), α = o(1), we directly have

errS(W
(T )) = E(x,y)∼S 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
= 0,

since Fyi(W
(T ),xi) = Ω̃(1), while F−yi(W

(T ),x) ≤ Θ̃( 1
sσp

+ σ0) and sσp = ω(1). Besides,

for test data (x, y) ∼ D with x = [yv⊤, ξ⊤]⊤, it is clear that with high probability ⟨w(T )
y,r , yv⟩ =

−Θ̃( 1
sσp

), then similar as training error, we have

Fy(W
(T ),x) =

m∑
r=1

[
σ(⟨w(T )

y,r , yv⟩) + σ(⟨w(T )
y,r , ξ⟩)

]
=

m∑
r=1

[
α

sσp
+ ζy,r

]q
+

,

while

F−y(W
(T ),x) =

m∑
r=1

[
σ(⟨w∗

−y,r, yv⟩) + σ(⟨w∗
−y,r, ξ⟩)

]
=

m∑
r=1

[
[Θ̃(

1

sσp
)]q + [ζ−y,r]

q
+

]
.
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Here, ζy,r and ζ−y,r are independent and symmetric random variables. Therefore, if the term

Θ̃
(

1
sσp

)
dominates ζy,r and ζ−y,r, then it is immediate that Fy(W

(T ),x) < F−y(W
(T ),x), since

α = o(1). This implies that large-batch AdamW yields high test error. On the other hand, if
Θ̃
(

1
sσp

)
is dominated by both ζy,r and ζ−y,r, then with probability at least 1/2 − o(1), we have

Fy(W
(T ),x) < F−y(W

(T ),x), as ζy,r and ζ−y,r are independent of v. In this case, large-batch
AdamW incurs at least 1/2− o(1) test error. Therefore, we conclude:

errD(W
(T )) = E(x,y)∼D 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
≥ 1

2
− o(1).

This completes the proof.

C.2.2 Proof of Theorem 4.5

Lemma C.17 (Stage I). Given the training dataset S, if n
B ≥ Θ(n1/2 ∨ log ϵ−1) and n

B = ω(sσp),
η = 1/poly(d), λ = Ω̃(B

2

n ∧ 1) and λ = Õ(1), then for any t ≤ T0 with T0 = Õ( B
ηn ),

⟨w((t+1)· n
B ))

j,r , jv⟩ = ⟨w(t· n
B )

j,r , jv⟩+Θ(η · n
B
),

⟨w((t+1)· n
B )

yi,r , ξi⟩ = ⟨w(t· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

Proof of Lemma C.17. We prove this Lemma by induction. First, we prove ⟨w((t+1)· n
B )

yi,r , ξi⟩ =

⟨w(t· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp). It is same as Lemma C.12. By Lemma A.3, we have

|⟨w(0)
j,r , ξi⟩| = Θ̃(s1/2σpσ0), w

(0)
j,r [k] = Θ̃(σ0),

which imply that |ℓ(0)j,i | = Θ(1). Assume that sample (xi, yi) is in batch Iτ in the first epoch. Then
we have

⟨w(τ)
yi,r, ξi⟩ ≥ (1− λη)⟨w(τ−1)

yi,r , ξi⟩ −Θ(ηα)

≥ ⟨w(0)
yi,r, ξi⟩ − Θ̃(λησ0 + ηα)

= Θ̃(σ0),

since λη = o(1), η = o(σ0), α = o(1) and s1/2σp = Õ(1). Additionally, we have ηs = o(σq−1
0 )

and |ξi[k]| ≥ Θ̃(σp) with high probability. Then |B−1σq−1
0 ξi[k]| ≥ Θ̃(ηB−1sσp|ℓ(0)j,i |) for i ∈ Iτ .

Therefore, by Lemma C.11 and A.6, we have

sgn

(
− 1

B
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn

(
ℓ
(0)
yi,i

σ′(⟨w(0)
yi,r, ξi⟩)ξi[k]

)
= −sgn(ξi[k]). (C.39)

Then, by Lemma C.11 we have the following update according to (B.6), (C.29) and Lemma C.1.

⟨w(τ+1)
yi,r , ξi⟩

= (1− λη)⟨w(τ)
yi,r, ξi⟩ − η ·

〈
m

(τ)
yi,r√

v
(τ)
yi,r + ϵ

, ξi

〉

≥ ⟨w(0)
yi,r, ξi⟩+Θ(η) ·

∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ − Õ(λησ0)−O(ηα)−O(ηsσp)

= ⟨w(0)
yi,r, ξi⟩+ Θ̃(ηsσp).

At the end of the first epoch, we have

⟨w( n
B )

yi,r , ξi⟩
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≥ (1− λη)⟨w( n
B−1)

yi,r , ξi⟩ − Õ(ηα)

≥ ⟨w(τ+1)
yi,r , ξi⟩ − Õ(λη2sσp)− Õ(ηα)

≥ ⟨w(0)
yi,r, ξi⟩+ Θ̃(ηsσp).

This completes the base case for t = 1. For general t ≤ t0 with t0 ≤ T0, assuming ⟨w(t· n
B )

yi,r , ξi⟩ =
⟨w(t−1)· n

B )
yi,r , ξi⟩+ Θ̃(ηsσp). Then we have

⟨w(t· n
B )

yi,r , ξi⟩ = ⟨w(t−1)· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp)

= ⟨w(0)
yi,r, ξi⟩+ Θ̃(tηsσp)

= Θ̃(s1/2σpσ0 + tηsσp)

≤ Θ̃(1).

By Lemma C.1, we have

|w(t· n
B )

j,r [k]| ≤ |w(t· n
B−1)

j,r [k]|+Θ(η)

≤ |w(0)
j,r [k]|+Θ(η · t · n

B
)

≤ Θ̃(1).

It’s also obvious that ⟨w(t· n
B )

j,r , jv⟩ = Õ(1). So we have |ℓ(t·
n
B )

j,i | = Θ(1). Follow the same proof
above with t = t0 + 1, assuming that sample (xi, yi) is in batch It0·n/B+τ in the t-th epoch. Then
we have

⟨w(t0· n
B+τ)

yi,r , ξi⟩ ≥ (1− λη)⟨w(t0· n
B+τ−1)

yi,r , ξi⟩ −Θ(ηα)

≥ ⟨w(t0· n
B )

yi,r , ξi⟩ − Θ̃(λη + ηα)

= ⟨w(t0· n
B )

yi,r , ξi⟩,

since η = o(σ0) and α = o(1). Additionally, we have ηs = o(σq−1
0 ) and |ξi[k]| ≥ Θ̃(σp) with

high probability. Then |B−1(w
(0)
j,r [k] + tηsσp)

q−1ξi[k]| ≥ Θ̃(ηB−1sσp|ℓ(0)j,i |) for i ∈ It0·n/B+τ .
Therefore, by Lemma C.11 and A.6, we have

sgn

(
− 1

B
ℓ
(t0· n

B+τ)
yi,i

σ′(⟨w(t0· n
B+τ)

yi,r , ξi⟩)ξi[k]
)

= −sgn

(
ℓ
(t0· n

B+τ)
yi,i

σ′(⟨w(t0· n
B+τ)

yi,r , ξi⟩)ξi[k]
)

= −sgn(ξi[k]). (C.40)

Then, by Lemma C.11 we have the following update according to (B.6), (C.30) and Lemma C.1.

⟨w(t0· n
B+τ+1)

yi,r , ξi⟩

= (1− λη)⟨w(t0· n
B+τ)

yi,r , ξi⟩ − η ·

〈
m
(t0· n

B+τ)
yi,r√

v
(t0· n

B+τ)
yi,r + ϵ

, ξi

〉

≥ ⟨w(t0· n
B )

yi,r , ξi⟩+Θ(η) ·
∑
k∈Bi

⟨sgn(ξi[k]), ξi⟩ − Õ(λη)−O(ηα)−O(ηsσp)

= ⟨w(t0· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

At the end of this epoch, we have

⟨w(t· n
B )

yi,r , ξi⟩
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≥ (1− λη)⟨w(t· n
B−1)

yi,r , ξi⟩ −O(ηα)

≥ ⟨w(t0· n
B+τ+1)

yi,r , ξi⟩ − Õ(λη)−O(ηα)

≥ ⟨w(t0· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

Next, we prove ⟨w((t+1)· n
B ))

j,r , jv⟩ = ⟨w(t· n
B )

j,r , jv⟩+Θ(η · n
B ). By Lemma A.3, A.8 and C.11, we

have

σ′(⟨w(0)
j,r , jv⟩)− ασ′(⟨w(0)

j,r , ξi) ≥ Θ̃(σq−1
0 ),

since α = o(1), and we have η = o(σq−1
0 ). By Lemma A.6, we have

sgn(g
(0)
0,j,r) = sgn(−sgn(j)) = −sgn(j).

Apply Lemma C.11, we get

⟨w(1)
j,r , j · v⟩ = (1− λη)⟨w(0)

j,r , j · v⟩ −Θ(η) · ⟨sgn(g(0)0,j,r), jv⟩

= ⟨w(0)
j,r , j · v⟩+Θ(η),

since ⟨w(0)
j,r , j · v⟩ = Θ̃(σ0) and λ = Õ(1). We have

⟨w((t+1)· n
B )

yi,r , ξi⟩ ≥ ⟨w(t· n
B )

yi,r , ξi⟩+ Θ̃(ηsσp).

So we have ⟨w(t)
yi,r, ξi⟩ ≤ Θ̃(s1/2σpσ0 + ηsσp) for t ∈ [0, n

B ]. Thus, for t ∈ [0, n
B ], we have

σ′(⟨w(t)
j,r, jv⟩) ≫ ασ′(⟨w(t)

j,r, ξi),

since α = o(1). By Lemma A.8 and A.6, we have

sgn(g
(t)
t,j,r) = sgn(−sgn(j)) = −sgn(j).

Apply Lemma C.11, for t ∈ [0, n
B ], we get

⟨w(t)
j,r, j · v⟩ = (1− λη)⟨w(t−1)

j,r , j · v⟩ −Θ(η) · ⟨sgn(g(t−1)
t−1,j,r), jv⟩

≥ ⟨w(0)
j,r , j · v⟩+Θ(η · t),

since ⟨w(0)
j,r , j · v⟩ = Θ̃(σ0) and λ = Õ(1). So we have for t = 0,

⟨w((t+1)· n
B )

j,r , j · v⟩ = ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
).

Now suppose the equality holds for t = 0, . . . , t0 with t0 ≤ T0. We have

⟨w(t0· n
B )

j,r , j · v⟩ = ⟨w(0)
j,r , j · v⟩+Θ(η · n

B
· t0) ≤ Õ(1).

Since n
B = ω(sσp). We have

⟨w(t0· n
B )

j,r , j · v⟩ = Θ̃(σ0 + η · n
B

· t0),

⟨w(t0· n
B )

yi,r , ξi⟩ = Θ̃(s1/2σpσ0 + ηsσp · t0),

⟨w(t0· n
B )

j,r , j · v⟩ ≥ ⟨w(t0· n
B )

yi,r , ξi⟩.
Therefore, for t ∈ [(t0 + 1) · n

B , (t0 + 2) · n
B ],

σ′(⟨w(t)
j,r, jv⟩) ≫ ασ′(⟨w(t)

j,r, ξi).

Apply Lemma C.11, for t = t0 + 1, we have

⟨w((t+1)· n
B )

j,r , j · v⟩ = (1− λη)⟨w((t+1)· n
B−1)

j,r , j · v⟩ −Θ(η) · ⟨sgn(g((t+1)· n
B−1)

((t+1)· n
B−1),j,r), jv⟩

≥ ⟨w(t· n
B )

j,r , j · v⟩+Θ(η · n
B
),

since ⟨w(t)
j,r, j · v⟩ = Õ(1) and λ = Õ(1). This completes the proof.
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Lemma C.18 (Stage II). Given the training dataset S , if n
B ≥ Θ(n1/2 ∨ log ϵ−1) and n

B = ω(sσp),
η = 1/poly(d), λ = Ω̃(B

2

n ∧ 1) and λ = Õ(1), then for any t > T0, j ∈ {±1}, r ∈ [m], i ∈ [n],
let r∗ = argmaxr∈[m]⟨w

(t)
j,r, jv⟩, then ⟨w(t)

j,r∗ , jv⟩ = Θ̃(1) and ⟨w(t)
yi,r, ξi⟩ ≤ Θ̃(

Bsσp

n ).

Proof of Lemma C.18. By Lemma C.17, we know that ⟨w(t)
j,r, jv⟩ increases at a faster rate than

⟨w(t)
yi,r, ξi⟩ since n

B = ω(sσp). We also have ⟨w(t)
−yi,r, ξi⟩ ∈ [−Θ̃(ηsσp), Θ̃(σ0)] following

Lemma C.14.

Now suppose that ⟨w(t)
j,r∗ , jv⟩ ≥

(
log
(
(λη)−2 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)

=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≤ 1

1 + exp
[
σ(⟨w(t)

j,r∗ , jv⟩)
]

≤ 1

1 + exp
[
(log ((λη)−2 − 1))

1
q ·q
]

= Θ(λ2η2),

where the inequality we use ⟨w(t)
−j,r, jv⟩ < 0, ⟨w(t)

−j,r, ξi⟩) ≤ Θ̃(σ0). Then by Lemma C.11, C.17
and (B.5), we have

⟨w(t+1)
j,r∗ , jv⟩ ≤ (1− λη)⟨w(t)

j,r∗ , jv⟩+ Θ̃(λη · η)

≤ ⟨w(t)
j,r∗ , jv⟩,

since η = o(1). Similarly, if ⟨w(0)
yi,r, ξi⟩ ≥ Θ̃(σ0)

⟨w(t+1)
yi,r , ξi⟩ ≤ (1− λη)⟨w(t)

yi,r, ξi⟩+ Θ̃(λη · ηsσp)

≤ ⟨w(t)
yi,r, ξi⟩.

Otherwise, ⟨w(t)
yi,r, ξi⟩ ∈ [−Θ̃(σ0), Θ̃(σ0)] and satisfies ⟨w(t)

yi,r, ξi⟩ ≤ Θ̃(
Bsσp

n ).

If ⟨w(t)
j,r∗ , jv⟩ ≤

(
1

2m log
(
(λη)−1 − 1

)) 1
q , then for (xi, yi) with yi = j,

ℓ
(t)
j,i =

eF−j(W
(t),xi)∑

j∈{−1,1} e
Fj(W(t),xi)

=
1

1 + exp
[∑m

r=1 σ(⟨w
(t)
j,r, jv⟩) + σ(⟨w(t)

j,r, ξi⟩)− σ(⟨w(t)
−j,r, jv⟩)− σ(⟨w(t)

−j,r, ξi⟩)
]

≥ 1

1 + exp
[
2m · σ(⟨w(t)

j,r∗ , jv⟩
]

≥ 1

1 + exp
[
2m ·

(
1

2m log ((λη)−1 − 1)
) 1

q ·q
]

= Θ(λη),

where the inequality we use ⟨w(t)
−j,r, jv⟩ < 0, ⟨w(t)

−j,r, ξi⟩) ≤ Θ̃(σ0). Then by Lemma C.11, C.17
and (B.5), we have

⟨w(t+1)
j,r∗ , jv⟩ ≥ (1− λη)⟨w(t)

j,r∗ , jv⟩+ Θ̃(η)
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≥ ⟨w(t)
j,r∗ , jv⟩,

since λ = Õ(1). This completes the proof.

Lemma C.19 (Convergence). Suppose the same conditions hold as in Lemma C.17 and C.18, if the
step size satisfies η = O(d−1/2), then for any t,

E
[
L(W(t+1))− L(W(t))

]
≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

Proof of Lemma C.19. The proof is same as Lemma C.15. We aim to prove the convergence of the
objective function under the AdamW optimization algorithm in a non-convex setting. Recall the loss
function for each data point i is

Li(W) = log

(
1 +

1

exp (Fyi
(W,xi)− F−yi

(W,xi))

)
,

where W represents the parameter matrix, xi is the input data, yi is the true label, and Fj(W,xi)
are the logits for class j. The total objective is:

L(W) =
1

n

n∑
i=1

Li(W)

Since Li(W) is non-convex, we exploit its smoothness with respect to the logits [Fj(W,xi)]j .
Specifically, Li(W) is 1-smooth in [Fj(W,xi)]j due to the properties of the cross-entropy loss.
Define:

∆Fj,i = Fj(W
(t+1),xi)− Fj(W

(t),xi).

Using the smoothness property, we apply a second-order Taylor-like expansion around W(t):

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.41)

This upper bound arises because the second derivative of Li with respect to the logits is bounded
by 1, a standard result for cross-entropy loss. The logits are defined as: Fj(W

(t),xi) =∑m
r=1[σ(⟨w

(t)
j,r, yiv⟩) + σ(⟨w(t)

j,r, ξi⟩)], where w
(t)
j,r the r-th neuron in j-th output of W(t), σ(z) =

[z]q+ is a smooth activation function (e.g., with q ≥ 3). By Lemma C.18 and C.1, we have
⟨w(t)

j,r,v⟩ ≤ Θ̃(1) and ⟨w(t)
j,r, ξi⟩ ≤ Θ̃(1), ensuring the local smoothness of σ remains Õ(1) be-

tween ⟨w(t+1)
j,r , yiv⟩ and ⟨w(t)

j,r, yiv⟩ (similar for ⟨w(t)
j,r, ξi⟩). Then with Taylor expansion, we have∣∣∣σ(⟨w(t+1)

j,r , yiv⟩)− σ(⟨w(t)
j,r, yiv⟩)− ⟨∇wj,r

σ(⟨w(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

= Θ̃(1) ·

∥∥∥∥∥∥λη ·w(t)
j,r + η ·

m
(t)
j,r√

v
(t)
j,r + ϵ

∥∥∥∥∥∥
2

2

≤ Θ̃(η2d), (C.42)

where the last inequality we use Lemma C.1 and ∥w(t)
j,r∥22 ≪ Θ(d) by C.18. Similarly, we have∣∣∣σ(⟨w(t+1)

j,r , ξi⟩)− σ(⟨w(t)
j,r, ξi⟩)− ⟨∇wj,r

σ(⟨w(t)
j,r, ξi⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣∣

≤ Θ̃(1) ·
∥∥∥w(t+1)

j,r −w
(t)
j,r

∥∥∥2
2

≤ Θ̃(η2d). (C.43)
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Summing over r (with m = Θ̃(1)), we get

|∆Fj,i| ≤
∣∣∣⟨∇WFj(W

(t),xi),W
(t+1) −W(t)⟩

∣∣∣+ Θ̃(η2d). (C.44)

Additionally, ∥∇WFj(W
(t),xi)∥F ≤ Θ̃(1) since m = Θ̃(1), ⟨w(t)

j,r, yiv⟩ ≤ Θ̃(1), ⟨w(t)
j,r, ξi⟩ ≤

Θ̃(1). So we have

|∆Fj,i| ≤ Θ̃(ηsσp + ηα+ η + η2d) ≤ Θ̃(ηsσp + η2d). (C.45)

Substitute (C.44) and (C.45) into (C.41):

Li(W
(t+1))− Li(W

(t)) ≤ ⟨∇WLi(W
(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.46)

For the full objective:

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[Li(W
(t+1))− Li(W

(t))]. (C.47)

Substitute (C.46) into (C.47), we have

L(W(t+1))− L(W(t)) ≤ ⟨∇L(W(t)),W(t+1) −W(t)⟩+ Θ̃(η2d). (C.48)

Take expectation for the stochastic gradient of both side in (C.48),

E
[
L(W(t+1))− L(W(t))

]
≤ E

[
⟨∇L(W(t)),W(t+1) −W(t)⟩

]
+ Θ̃(η2d)

≤ −η · E

 ∑
j∈{±1}

∑
r∈[m]

∥∥∥g(t)t,j,r

∥∥∥
1

− λη · ⟨∇L(W(t)),W(t)⟩+ Θ̃(d · η2) + Θ̃(ns · η2sσp) + Θ̃(η2d)

≤ −η ·
∑

j∈{±1}

∑
r∈[m]

∥∥∥E [g(t)t,j,r

]∥∥∥
1
+ Õ(λη) · ∥∇L(W(t))∥1 + Θ̃(η2d)

≤ −η∥∇L(W(t))∥1 + Θ̃(η2d),

where we use Lemma C.11 that the update aligns with the gradient’s sign for large gradient and the fact
that ns2σp = O(d), and Jensen’s inequality, Hölder’s inequality and λ = Õ(1), ∥W(t)∥∞ ≤ Θ̃(1)
by Lemma C.18. This completes the proof.

Lemma C.20 (Generalization of Stochastic AdamW, mini-batch). Suppose the same conditions hold
as in Lemma C.19. We have the following results for T = poly(n)

η , with training dataset S

• The training error is zero: errS(W(T )) = 0.

• The test error is near-zero: errD(W(T )) = o(1).

Proof of Lemma C.20. By Lemma C.18, we have

⟨w(T )
j,r∗ , jv⟩ = Θ̃(1), ⟨w(T )

yi,r, ξi⟩ ≤ Θ̃(
Bsσp

n
), ⟨w(T )

−yi,r, ξi⟩ ≤ Θ̃(σ0).

Recall Fj(W,x) in Definition 3.2, with α = o(1), we directly have

errS(W
(T )) = E(x,y)∼S 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
= 0,

since Fyi(W
(T ),xi) = Ω̃(1), while F−yi(W

(T ),xi) ≤ Θ̃(σ0 + α).

For test data (x, y) ∼ D with x = [yv⊤, ξ⊤]⊤, it is clear that with high probability ⟨w(T )
y,r∗ , yv⟩ =

Θ̃(1). Let B = supp(ξ), ∥wB∥22 =
∑

k∈B wy,r[k]
2, ζy,r =

∑
k∈B wy,r[k]·ξ[k] ∼ N (0, ∥wB∥22·σ2

p),
then we have

⟨w(T )
y,r , ξ⟩ ≤ ζy,r.
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Now we calculate the upper bound of ∥wB∥22. By Lemma A.4, we know ⟨ξi, ξj⟩ = 0 for i ̸= j, i, j ∈
[n]. Then let

Σ =

n∑
i=1

ξiξ
⊤
i , S = span{ξ1, . . . , ξn}.

We have

w
(T )
j,r = PSw

(T )
j,r + r+ cv, r ⊥ S ∪ {v},

where c = Θ̃(1). By Lemma C.18, we have

λ+
min(Σ) · ∥PSw

(T )
j,r ∥

2
2 ≤ (PSw

(T )
j,r )

⊤Σ(PSw
(T )
j,r ) =

n∑
i=1

⟨w(T )
j,r , ξi⟩

2 = Õ(
B2s

n
).

Since ∥ξi∥22 ∼ σ2
pχ

2
s and s = ω(log n), we have ∥ξi∥22 = Θ̃(sσ2

p) with high probability. Hence,
λ+
min(Σ) = mini ∥ξi∥22 = Θ̃(sσ2

p). With a little abuse of notation, we have

∥PSw
(T )
j,r ∥

2
2 ≤ Θ̃(

B2

nσ2
p

).

By Lemma C.11, λ = Ω̃(B
2

n ∧ 1) and ληT = ω(1), we have

∥r∥22 ≤ Θ̃(η2d).

So the upper bound of ∥wB∥22 is

∥wB∥22 ≤ ∥PSw
(T )
j,r ∥

2
2 + ∥r∥22 ≤ Θ̃(

B2

nσ2
p

).

Finally, with high probability

ζy,r ≤ Θ̃(

√
B2

nσ2
p

· σp) = o(1),

since n
B = ω(n1/2). The same result holds for ζ−y,r. Then, we have

Fy(W
(T ),x) ≥ σ(⟨w(T )

y,r∗ , yv⟩) = Ω̃(1),

while

F−y(W
(T ),x) =

m∑
r=1

[
σ(⟨w(T )

−y,r, yv⟩) + σ(⟨w(T )
−y,r, ξ⟩)

]
= m · [α+ ζ−y,r]

q
+ = o(1).

Therefore, we have

errD(W
(T )) = E(x,y)∼D 1

[
Fy(W

(T ),x) ≤ F−y(W
(T ),x)

]
= o(1).

This implies that mini-batch AdamW can achieve nearly zero test error. This completes the proof.

C.2.3 Proof of Corollary 4.6

By Conditions A.1 and A.2, along with Definition 3.2, we know that d = poly(n), and hence

σq−2
0 = Θ

(
1

d(q−2)/4

)
, with q ≥ 3.

This directly implies that the effective weight decay parameter for Adam satisfies

λAdam ∼ σq−2
0 ≪ min

{
B2

n
, 1

}
∼ λAdamW.

This completes the proof.
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D Experimental details and results

This section presents the complete details of our experiments.

D.1 Experimental Details for Real-world Data

For the real-world experiments in Figures 1 and 2, we use the CIFAR-10 dataset, VGG16 and
ResNet18 architectures, and the Adam and AdamW optimizers, all implemented in PyTorch. We do
not use data augmentation in order to avoid any additional regularization effects.

In Figure 1, we report the test error as a function of batch size. The batch sizes considered are
{16, 32, 64, 256, 1024, 4096, 8192}, with training conducted for 100 epochs. The weight decay
is set to 5 × 10−4 for Adam and 1 × 10−2 for AdamW; the momentum parameters are fixed at
(β1, β2) = (0.9, 0.99) for both optimizers. Each configuration is evaluated with three learning rates:
{5× 10−4, 1× 10−4, 1× 10−5}, and we report the best test performance for each batch size. All
experiments can be run within one hour on a single RTX 4090 GPU. The only exception is training
ResNet18 with a batch size of 8192, which requires three GPUs due to memory constraints.

Figure 1(a) presents the test error versus batch size for Adam with VGG16 and ResNet18, while
Figure 1(b) shows the corresponding results for AdamW. Both demonstrate that test performance
degrades as batch size increases, which is consistent with our theoretical findings in Section 4,
showing that small-batch Adam and AdamW outperform their large-batch counterparts.

In Figure 2, we report the test error as a function of weight decay λ for Adam and AdamW, using
VGG16 (Figure 2(a)) and ResNet18 (Figure 2(b)). We fix the batch size to 16, the learning rate to
1 × 10−4, and set (β1, β2) = (0.9, 0.99). The weight decay values for Adam are {1 × 10−1, 5 ×
10−2, 1× 10−2, 5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5, 5× 10−6, 1×
10−6, 5× 10−7}, and for AdamW are {5× 10−1, 1× 10−1, 5× 10−2, 1× 10−2, 5× 10−3, 1×
10−3, 5× 10−4, 1× 10−4}. All models are trained for 100 epochs.

Figure 2(a) shows results for training VGG16, and Figure 2(b) for ResNet18, both using Adam
and AdamW. For a fair comparison, we scale the weight decay λ of AdamW by a factor of 1/25.
The results show that Adam suffers from poor generalization under large weight decay values
(e.g., λ > 0.05), while AdamW maintains stable performance even with larger weight decays (e.g.,
λ = 0.5), which aligns with our theoretical results in Section 4.

D.2 Experimental Details for Synthetic Data

For the data model defined in Definition 3.1, we set the input dimension to d = 1000 and the number
of training samples to n = 200, consisting of 100 positive and 100 negative samples. The sparsity
level is set to s = 0.1d = 100, and the noise strength is σp = 1/

√
s = 0.1. The feature noise

strength is set to α = 0.2, and the model weights are initialized with standard deviation σ0 = 0.01.
The network, defined in Definition 3.2, has width m = 20.

All synthetic experiments are trained for T = 104 epochs with a learning rate of η = 5 × 10−5,
and evaluated on a test dataset of size 104. For Adam and AdamW optimizers, we adopt the default
momentum hyperparameters β1 = 0.9 and β2 = 0.999.

We primarily focus on the following metrics:

• Training error: errS(W).
• Test error: errD(W).
• Feature learning: maxr∈[m]⟨wj,r, jv⟩.
• Noise memorization: mini∈[n]:yi=j maxr∈[m]⟨wj,r, ξi⟩ or maxi∈[n]:yi=j maxr∈[m]⟨wj,r, ξi⟩.

Large-batch Adam vs. Mini-batch Adam. We set λ = 1 × 10−5 for both large-batch Adam
(batch size B = 100) and mini-batch Adam (batch size B = 2). Table 1 presents the training and
test errors of the solutions obtained by the two training methods. Although both large-batch and
mini-batch Adam achieve zero training error, their generalization performance differs significantly.
Specifically, large-batch Adam suffers from high test error (greater than 0.5), while mini-batch Adam
achieves zero test error. This observation verifies Theorems 4.1 and 4.2.

63



Table 1: Training and test errors of Adam with large (B = 100) and mini-batch (B = 2) settings.

Batch size B = 100 B = 2

Training error 0 0
Test error 0.9545 0
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(a) Large-batch Adam (B = 100)
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(b) Mini-batch Adam (B = 2)

Figure 3: Feature learning and noise memorization of Adam in the training.

Moreover, Figure 3(a) illustrates the dynamics of feature learning, measured by maxr∈[m]⟨wj,r, jv⟩,
and noise memorization, measured by mini∈[n]:yi=j maxr∈[m]⟨wj,r, ξi⟩, under large-batch Adam.
The results are consistent with Figure 2 in Zou et al. (2023b). Figure 3(b) shows the corresponding
dynamics for mini-batch Adam, where feature learning maxr∈[m]⟨wj,r, jv⟩ increases steadily, while
noise memorization maxi∈[n]:yi=j maxr∈[m]⟨wj,r, ξi⟩ remains suppressed at the end of Pattern
Learning Stage. In the subsequent Regularization Stage, feature learning saturates at a stable
threshold and stops increasing. This behavior is consistent with Lemma C.7.

Large-batch AdamW vs. Mini-batch AdamW. We set λ = 0.01 for both large-batch AdamW
(batch size B = 100) and mini-batch AdamW (batch size B = 2). Table 2 reports the training and
test errors for both training methods. Although both large-batch and mini-batch AdamW achieve
zero training error, their test performance differs significantly: large-batch AdamW suffers from high
test error (exceeding 0.5), while mini-batch AdamW attains zero test error. This observation supports
Theorems 4.4 and 4.5.

Figure 4(a) illustrates the dynamics of feature learning, measured by maxr∈[m]⟨wj,r, jv⟩, and noise
memorization, measured by mini∈[n]:yi=j maxr∈[m]⟨wj,r, ξi⟩, under large-batch AdamW. Initially,
feature learning increases, but it is eventually flipped by noise memorization, which grows at a faster
rate. As a result, the model begins fitting to the feature noise, which is negatively aligned with the
true feature direction. Specifically, noise memorization increases rapidly during the Pattern Learning
Stage and saturates at a logarithmic rate in the Regularization Stage. These behaviors are consistent
with Lemmas C.12, C.13, and C.14.

Figure 4(b) shows the corresponding dynamics for mini-batch AdamW. Feature learning increases
steadily and remains unaffected by noise memorization during the Pattern Learning Stage. In the
Regularization Stage, feature learning saturates at a stable threshold, which causes the gradient
to become small and consequently suppresses further growth of noise memorization (recall that
ξi[1] = −αyi). This behavior is consistent with Lemmas C.17 and C.18.

Large weight decay regularization λ hinders Adam training. We repeat the experiments from
Large-batch Adam vs. Mini-batch Adam using a larger weight decay parameter λ = 0.05, and

Table 2: Training and test errors of AdamW with large (B = 100) and mini-batch (B = 2) settings.

Batch size B = 100 B = 2

Training error 0 0
Test error 0.5485 0
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Figure 4: Feature learning and noise memorization of AdamW in the training.
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(a) Large-batch Adam (B = 100)
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(b) Mini-batch Adam (B = 2)

Figure 5: Training error and test error over epochs of Adam training with λ = 0.05.
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Figure 6: Training error and test error over epochs of AdamW training with λ = 0.5.

those from Large-batch AdamW vs. Mini-batch AdamW with λ = 0.5. Figure 5 reports the
training accuracy over epochs for Adam, while Figure 6 shows the same for AdamW. It can be
observed that Adam fails to train under large weight decay. In contrast, AdamW remains robust and
achieves results consistent with those in Large-batch AdamW vs. Mini-batch AdamW, even with
a larger λ = 0.5. These results support Corollaries 4.3 and 4.6.

D.3 Additional Experimental Results

Error bars across random seeds, Figures 7 and 8. We provide additional results to support our
theoretical findings. To assess statistical significance, we repeat the CIFAR-10 experiments from
Figures 1 and 2 with five random seeds (0–4), using the same settings as in Section D.1. Figures 7
and 8 report the results, with error bars denoting the standard deviation across runs. The results
confirm that both Adam and AdamW degrade in performance as the batch size increases, and that
Adam is more sensitive to weight decay than AdamW.
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Figure 7: Error bars across seeds: Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

10 6 10 5 10 4 10 3 10 2 10 1
Weight Decay for Adam

Weight Decay × 1/25 for AdamW

14

16

18

20

22

24

26

Te
st

 E
rro

r (
%

)

Adam
AdamW

(a) VGG16

10 6 10 5 10 4 10 3 10 2 10 1
Weight Decay for Adam

Weight Decay × 1/25 for AdamW

16

18

20

22

Te
st

 E
rro

r (
%

)

Adam
AdamW

(b) ResNet18

Figure 8: Error bars across seeds: Test error vs. weight decay (batch size = 16), comparing Adam and
AdamW.
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Figure 9: Error bars across (β1, β2): Test error vs. batch size for VGG16 and ResNet18 on CIFAR-10.

Sensitivity to momentum parameters (β1, β2), Figures 9 and 10. We further study the sensitivity
of Adam and AdamW to the momentum parameters (β1, β2), which are treated as constants in our
theory. We sweep over β1 ∈ {0, 0.5, 0.9} and β2 ∈ {0.5, 0.9, 0.95}, yielding 8 valid combinations
under β2

1 < β2, plus the standard setting (β1, β2) = (0.9, 0.99), for a total of 9 configurations.
Figures 9 and 10 report the results, with error bars showing the standard deviation across the 9 runs.
The findings again confirm that both Adam and AdamW suffer performance degradation as batch
size increases, and that Adam is more sensitive to weight decay than AdamW.

Large-scale vision experiments with ResNet-50 on ImageNet-1K subset, Figures 11 and 12. To
further validate our theory, we conduct large-scale experiments on ImageNet-1K. We construct a
subset by randomly sampling 100 training images per class (seed=0), ensuring a controlled large-
batch regime ( n

B = Θ(1)) while keeping computation feasible. ResNet-50 is trained for 90 epochs
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Figure 10: Error bars across (β1, β2): Test error vs. weight decay (batch size = 16), comparing Adam
and AdamW.
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Figure 11: ImageNet-1K subset: Top-5 validation error vs. batch size for Adam and AdamW with
ResNet-50.

with standard ImageNet preprocessing. We report top-5 validation error against batch size (Figure 11)
and weight decay (Figure 12), comparing Adam and AdamW.

For Figure 11, we set learning rate η = 1 × 10−4, (β1, β2) = (0.9, 0.99), and weight
decay λ = 1 × 10−4 for Adam and λ = 1 × 10−2 for AdamW. Batch sizes are
{64, 128, 256, 512, 1024, 2048, 3072, 4096, 8192, 16384, 32768}.

For Figure 12, we fix B = 64, η = 1× 10−3, and (β1, β2) = (0.9, 0.99). Weight decay values for
Adam are {5× 10−7, 1× 10−6, 5× 10−6, 1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 5×
10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1}, and for AdamW are {1 × 10−4, 5 × 10−4, 1 × 10−3, 5 ×
10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1}.

The results again confirm that both optimizers degrade as batch size increases, and that Adam is more
sensitive to weight decay than AdamW.
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Figure 12: ImageNet-1K subset: Top-5 validation error vs. weight decay for Adam and AdamW with
ResNet-50 (batch size = 64).
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