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THE DEVIL IS IN THE DETAILS: ENHANCING VIDEO
VIRTUAL TRY-ON VIA KEYFRAME-DRIVEN DETAILS
INJECTION

Anonymous authors
Paper under double-blind review

Garment-To-Person Video Try-On

In-The-Wild Video Try-On

Person-To-Video Garment Transfer

Figure 1: KeyTailor enables generating realistic and natural try-on videos with fine-grained consis-
tency in both garment and background under challenging scenarios.

ABSTRACT

Although diffusion transformer (DiT)-based video virtual try-on (VVT) has made
significant progress in synthesizing realistic videos, existing methods still strug-
gle to capture fine-grained garment dynamics and preserve background integrity
across video frames. They also incur high computational costs due to additional
interaction modules introduced into DiTs, while the limited scale and quality of
existing public datasets also restrict model generalization and effective training.
To address these challenges, we propose a novel framework, KeyTailor, along
with a large-scale, high-definition dataset, ViT-HD. The core idea of KeyTailor is
a keyframe-driven details injection strategy, motivated by the fact that keyframes
inherently contain both foreground dynamics and background consistency. Specif-
ically, KeyTailor adopts an instruction-guided keyframe sampling strategy to filter
informative frames from the input video. Subsequently, two tailored keyframe-
driven modules—the garment details enhancement module and the collaborative
background optimization module—are employed to distill garment dynamics into
garment-related latents and to optimize the integrity of background latents, both
guided by keyframes. These enriched details are then injected into standard DiT
blocks together with pose, mask, and noise latents, enabling efficient and realistic
try-on video synthesis. This design ensures consistency without explicitly modi-
fying the DiT architecture, while simultaneously avoiding additional complexity.
In addition, our dataset ViT-HD comprises 15, 070 high-quality video samples at
a resolution of 810 × 1080, covering diverse garments. Extensive experiments
demonstrate that KeyTailor outperforms state-of-the-art baselines in terms of gar-
ment fidelity and background integrity across both dynamic and static scenarios.
The dataset and code will be publicly released.
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1 INTRODUCTION

The goal of video virtual try-on (VVT) is to generate natural, high-fidelity videos by substituting the
clothing worn by the main character with a user-specified target garment image, while maintaining
motion and visual consistency across consecutive frames. This technology not only addresses the
challenge of online garment fitting for consumers on e-commerce platforms but also offers a novel
and engaging experience for users on short-video platforms, making VVT an attractive direction for
both industry applications and academic research.
Owing to the successful deployment of diffusion models in video generation (Blattmann et al.,
2023; Wan et al., 2025; Kong et al., 2024), recent efforts in VVT increasingly employ diffusion
models as their generator (Fang et al., 2024; He et al., 2024; Xu et al., 2024; Li et al., 2025b;
Nguyen et al., 2025; Wang et al., 2024). These pioneers typically consist of a garment reference
branch alongside a generation branch. The garment branch is responsible for extracting clothing ap-
pearance features and then interacting with the main generation branch through a tailored attention
mechanism, thereby ensuring spatiotemporal consistency across frames. Although such approaches
have achieved significant results, they are limited by the representational capacity of the U-Net-
based (Ronneberger et al., 2015) backbone, especially when it comes to rendering complex textures
and details in human motions and garment appearance (Li et al., 2025a). To overcome this limita-
tion, recent studies (Li et al., 2025a; Chong et al., 2025b; Zuo et al., 2025) utilize large-scale video
diffusion transformers (DiTs) (Peebles & Xie, 2023) in place of the U-Net backbone. This alterna-
tive not only enhances the expressiveness and scalability of the network but also enables the joint
modeling of temporal and spatial patterns, thereby resulting in more consistent video generation.
However, such methods still face the following challenges:
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Figure 2: (a) Comparison of garment details; (b) Comparison of background details; (c) Comparison
of parameters and efficienty.

(1) Insufficient Garment Dynamic Details: Although existing DiT-based methods introduce addi-
tional encoding components to learn garment appearance from both textual descriptions and visual
inputs, they still fail to fully capture garment dynamic details across consecutive frames. Fine-
grained cues such as backside textures, wrinkles caused by body motion (e.g., raising an arm), and
subtle lighting-dependent variations are often missing. As illustrated in Fig. 2(a), the SOTA method
produces results with an incorrect belt position for the dress, and the generated video frames fail
to capture garment variations induced by human motion (first row). In the third row, the generated
garment size does not accurately correspond to the reference. These issues lead to over-smoothed
garment appearances and insufficient fidelity compared to real-world dynamics.
(2) Inconsistency of Background Areas: Current methods solely rely on garment-agnostic videos
to provide background conditions for video synthesis. However, this approach often results in (a)
detail loss, where fine textures such as object patterns or edges are blurred; (b) temporal incon-
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sistency, where elements vary unnaturally across consecutive frames, producing artifacts; and (c)
environmental incoherence, where background structures deviate from the original video. For ex-
ample, as shown in Fig. 2(a), the floor textures generated by the SOTA method are blurred (1st row);
hair contours are inconsistent across frames, and the white frame on the wall does not align with the
ground truth (3rd row). Hence, the synthesized video exhibits incoherence between garment regions
and the background, and further fails to maintain background integrity, leading to degraded realism.
(3) Increased Model Complexity and Data Scarcity: To enhance generation conditions, existing
paradigms typically incorporate additional interaction modules into the DiT backbone. While these
components improve conditioning expressiveness, they also substantially increase model complexity
and computational cost. As illustrated in Fig.2(b) and Fig.2(c), we visualize the parameter counts
and efficiency of SOTA methods. It is evident that SOTA methods introduce a large number of
additional parameters and significantly increase training costs. In addition, currently available open-
source datasets (VVT (Dong et al., 2019) and ViViD (Fang et al., 2024)) remain limited in both
scale and quality. Each consists of only a few thousand short clips, often with low resolution,
simple backgrounds, and limited garment diversity. These constraints prevent DiT-based methods
from fully leveraging their expressive power, hindering generalization to complex scenarios and
restricting high-resolution video generation.
To address the lack of fine-grained details and reduce computational cost, we propose a novel DiT-
based framework, KeyTailor, built on a keyframe-driven details injection strategy. This design is mo-
tivated by the fact that informative keyframes inherently capture multi-view garment dynamics and
subtle background information, which can be utilized to improve garment fidelity and background
integrity. Specifically, KeyTailor employs an instruction-guided keyframe sampling approach to se-
lect frames that capture view and motion variations. This is followed by two lightweight, keyframe-
driven modules for details enrichment: a garment dynamics details enhancement module, which
enriches multi-view garment dynamic details (e.g., wrinkles and texture variations), and a collab-
orative background details optimization module, which preserves structural integrity and semantic
consistency in background regions. The enriched details are then fused with other conditions (e.g.,
pose and mask latents) and injected into DiTs for realistic video synthesis. As illustrated in both
Fig. 1 and Fig. 2(a), our KeyTailor ensures consistent garment dynamics and background integrity
across all frames, resulting in more natural video synthesis. Importantly, KeyTailor is built upon
standard DiTs without introducing additional interaction layers, and these are fine-tuned with a
LoRA adapter, thereby reducing computational demand, as evidenced by Fig. 2(b) and Fig. 2(c).
In addition, to combat data scarcity, we self-collect a large-scale dataset from multiple e-commerce
platforms, containing 15,070 high-quality samples at a resolution of 810×1080, to facilitate training
and evaluation. In summary, the contributions of this work are as follows:

• We propose KeyTailor, a novel DiT-based framework that adopts a keyframe-driven details
injection strategy to enhance garment fidelity and background integrity, without introducing
additional interaction layers into the DiT backbone.

• We design an instruction-guided keyframe sampling approach to select informative
keyframes, along with two lightweight keyframe-driven details injection modules–a gar-
ment dynamic details enhancement module and a collaborative background details opti-
mization module–to ensure that the details injected into DiTs provide sufficient garment
fidelity and background integrity.

• We curate ViT-HD, a new large-scale and high-definition dataset collected from multiple
e-commerce platforms, containing 15, 070 video samples at a resolution of 810 × 1080,
across various garment styles.

• We conduct extensive experiments on ViT-HD, as well as on two widely used VVT datasets
and two image-based virtual try-on datasets, demonstrating that KeyTailor outperforms
state-of-the-art baselines in both garment fidelity and background consistency across dy-
namic and static scenarios.

2 VIT-HD DATASET

Existing public datasets, VVT (Dong et al., 2019) and ViViD (Fang et al., 2024), either suffer from
extremely low resolution–resulting in the loss of fine-grained garment textures and details–or are re-
stricted to simple, repetitive runway scenes. Moreover, their limited scale still falls short of the grow-
ing need for large, high-quality video data. To address these limitations, we curate a new dataset,
ViT-HD, which significantly expands both the scale and quality of available resources. Table 1 pro-
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Table 1: Dataset Comparison. We compare ViT-HD with existing video virtual try-on datasets along
four dimensions: resolution, garment diversity (multi-class), video content quality (no start-frame
overexposure and intact subject integrity), and data scale.

Datasets Resulotion Multi Class No Start Overexposure Subject Integrity Scale
VVT 192× 256 × ✓ × 791

ViViD 632× 824 ✓ × × 9,700
ViT-HD (Ours) 810× 1080 ✓ ✓ ✓ 15,070

vides a detailed comparison between our dataset and existing ones. Our proposed ViT-HD contains
15, 070 samples featuring diverse garment styles, each with a resolution of 810× 1080.
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Figure 3: Dataset overview.

Data collection and processing: Our raw data
are downloaded from multiple e-commerce
platforms. Each raw data sample consists of
a high-resolution garment image together with
a corresponding high-definition model show-
case video, both cropped at a resolution of
1080 × 810. Then, for each raw data sample,
we follow ViViD (Fang et al., 2024) to extract
its pose video and masked video. Specifically,
we employ OpenPose (Cao et al., 2019) to de-
tect skeletal keypoints and generate pose se-
quences. To obtain masked videos, we adopt
the same segmentation pipeline as OOTDiffu-
sion (Xu et al., 2025). For each frame, we utilize OpenPose (Cao et al., 2019) together with Hu-
manParsing (Li et al., 2020) to infer body-part masks and create a garment-agnostic background
image by inpainting the clothed regions. The resulting frames are then post-processed and stitched
together to form the masked video. Furthermore, we categorize each data sample into one of three
types–upper-body, lower-body, or full-body outfits–using BLIP-2 (Li et al., 2023). During the data
processing stage, we discard videos that contain a large number of frames with incomplete clothing
occlusion to preserve subject integrity. In addition, we remove overexposed frames at the beginning
of the original videos to maintain consistent color tones across all frames within each video. Fig. 3
presents an overview of ViT-HD.

3 METHOD

Our KeyTailor is built upon diffusion transformers (DiTs), aiming to provide a lightweight solution
for synthesizing realistic, high-fidelity videos that capture dynamic garment details while maintain-
ing background consistency. To this end, we propose a keyframe-driven details injection strategy
with two tailored feature extraction modules: a garment dynamics enhancement module and a col-
laborative background optimization module. Specifically, these two modules strengthen garment
dynamics and background integrity by leveraging information from keyframes as supplementary in-
put. The enriched fine-grained details are then directly injected into DiTs to introduce multi-view
garment variations and preserve background consistency—without explicitly introducing interaction
modules into the DiT architecture, as required in prior work (Chong et al., 2025b; Li et al., 2025a;
Zuo et al., 2025). The overall framework of KeyTailor is illustrated in Fig. 4.

3.1 KEYFRAME-DRIVEN DETAILS INJECTION

The goal of VVT is to synthesize a new video by replacing the clothing worn by a character, while
preserving all other aspects—such as motion, background, and garment dynamics—consistent with
the original video. We argue that keyframes naturally capture critical information about both gar-
ment variations and background consistency, making them highly beneficial for guiding DiTs. Based
on this assumption, we propose a keyframe-driven details injection strategy. This strategy is imple-
mented through an instruction-guided keyframe sampling module and two lightweight keyframe-
driven injection modules: a garment dynamic details enhancement module and a collaborative back-
ground details optimization module.
Instruction-guided keyframe sampling. Effectively selecting informative keyframes is the key
to our keyframe-driven details injection. To ensure that the selected frames adequately capture
both view changes (e.g., front and back) and action changes (e.g., raising a hand) from Vin, we
propose an instruction-guided keyframe sampling module (IKS). IKS first employs a large visual-
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the garment, and raise your 
hand to reveal the sleeves.”
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Figure 4: Overall framework of KeyTailor. KeyTailor takes as input a reference garment image
Iref, a source video Vin, its corresponding agnostic video Vagn, agnostic masks Magn, and pose repre-
sentations P . These inputs are encoded into garment-related latents Lg , background-related latents
Lbg, pose latents Lp, and resized masks Lm. Specifically, garment-related latents are generated by
the GDDE module, background-related latents by the CBDO module, and pose latents by a train-
able pose guider. Subsequently, all these latents, together with noise latents, are injected into N
DiT blocks to produce the final try-on video tokens, which are then decoded by a VAE-based video
decoder to synthesize the output video.

language model (e.g., QWen (Bai et al., 2023)) to parse the predefined view–action instruction and
extract the target views Vtar and actions Atar, which reflect view variation and action dynamics,
respectively. Then, IKS applys HumanParsing (Li et al., 2020) to generate standardized multi-
anchor pose frames Fanc corresponding to Vtar and Atar. Subsequently, for each frame f ∈ Vin, IKS
computes a motion-difference score Sm(f) with respect to Fanc, along with a garment-area ratio
score Sr(f) (see Appendix E for details). The final score of the frame f is computed as:

Sf (f) = 1− Sm(f) + λ · Sr(f), (1)

where λ is a balancing coefficient. Next, all frames are sorted in descending order according to their
Sf . Rather than simply selecting the top-k frames to construct the final multi-view keyframes Fkey,
we adopt a dual-selection strategy to reduce redundancy and ensure temporal uniformity. Specif-
ically, two thresholds are defined to constrain both the score difference and the temporal interval
between the current frame f and candidate frames fkey ∈ Fkey. The pseudo-code for this procedure
is provided in Algorithm 1 in Appendix H.
Garment Dynamic Details Enhancement. Unlike previous works that learn garment appearance
solely by embedding the garment image Iref or incorporating textual descriptions, our garment dy-
namic details enhancement module (GDDE) instead encodes the edited first-frame result and fur-
ther enriches it with features extracted from keyframes. Specifically, GDDE first crops the initial
frame f0

agn from the agnostic video Vagn, and employs a pre-trained single-image try-on model with
LoRA (Hu et al., 2022) layers to inject the garment appearance into f0

agn. The resulting try-on frame
is then projected into a latent representation Lg using a pre-trained VAE-based image encoder EVAE.
Then, GDDE enriches Lg with fine-grained garment variations derived from Fkey, such as backside
textures and wrinkles caused by raised arms. It first extracts garment-specific features Lgar

key from Fkey

by encoding the garment regions of each keyframe using EVAE, where the garment regions are ob-
tained through the segmentation operation. Subsequently, GDDE employs a lightweight distillation
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component D to inject garment variation details from Lgar
key into Lg , formulated as:

L̄g = D(Concat(Lg,
1

|Fkey|
∑

Lk∈Lgar
key

Lk)). (2)

Here, D is implemented using two 1× 1 convolution layers followed by a LayerNorm layer.
Collaborative Background Details Optimization. Preserving background integrity is crucial for
synthesizing realistic video scenes. Existing methods typically encode the garment-agnostic video
Vagn into a latent representation as the background condition for DiTs. However, since Vagn is gen-
erated by applying image inpainting to each frame of the original video to fill in garment regions,
it inevitably loses subtle background details. To this end, we design a collaborative background
details optimization module (CBDO), which introduces keyframes as supplementary cues to enrich
the semantics of Vagn. Specifically, CBDO consists of two branches: a coarse global background
encoding branch and a fine-grained keyframe-driven local detail enrichment branch. In the first
branch, CBDO employs a mask guider EBG to project Vagn into a latent representation Lbg , thereby
capturing the global structural layout and semantic context of the background. EBG is implemented
with four 3D convolutional layers, having channel dimensions of 32, 96, 192, and 256, respectively.
To facilitate smoother latent guidance during video synthesis training, the linear layer in EBG is
zero-initialized. In the second branch, CBDO extracts subtle background details from keyframes.
Specifically, it first crops the background regions using an inverse human-body mask operation and
then encodes them into latent representations with EVAE, denoted as Lbg

key. To avoid redundancy and
ambiguity in fine-grained background details, we select only the frame with the highest background
completeness score as the supplementary input to Lbg, yielding the enhanced background latents:

L̄bg = α · Lbg + (1− α)Lmax
key , (3)

where α is a balance weight, with a default setting to 0.3.

3.2 VIRTUAL TRY-ON VIDEO GENERATION

After obtaining the enhanced garment-related latents L̄g and optimized background-related latents
L̄bg, we adopt a three-step fusion strategy rather than directly concatenating them with the pose
latent Lp, the resized agnostic masks Lm, and the noise ϵ as input to the DiTs. First, Lp and Lm

are concatenated and patchified into input tokens Tinp, which are then fused with L̄g through a
projection layer R to produce L. L is then concatenated with patchified ϵ to form L̄. Finally,
L̄bg is injected into L̄ via the “addto” operation, yielding the final guidance tokens for DiTs. In
this way, the guidance preserves fine-grained background details while maintaining pose structure
and garment dynamics. During the denoising step, we stack N DiT blocks and apply LoRA to
finetune their attention modules, including both self-attention and cross-attention. Moreover, the
garment-related latents L̄g is injected into the cross-attention component, substituting the original
text tokens to mitigate the loss of garment details. Architecturally, KeyTailor only performs detail
injection without modifying any component of the original DiT architecture, thereby avoiding the
introduction of massive training parameters compared to prior works (Li et al., 2025a). After several
denoising iterations within the DiT backbone, the network generates try-on video tokens, which are
subsequently decoded into video sequences by the Video VAE decoder. The training details of
KeyTailor are described in Appendix F.

4 EXPERIMENTS

4.1 SETUPS: DATASETS, METRICS AND DETAILS

Datasets: We conduct experiments on our proposed dataset ViT-HD, as well as on the publicly
available VVT (Dong et al., 2019) and ViViD (Fang et al., 2024) datasets. ViViD contains 7,759
paired video training samples, while ViT-HD provides 13,070 paired training samples and 2,000
test samples after partitioning. For training, we combine ViT-HD with ViViD, and for testing,
we additionally evaluate on indoor scenarios using the ViViD-S and VVT datasets. To further as-
sess generalization ability, we also perform experiments on two image-based virtual try-on datasets,
VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022).
Metrics: Following previous works (Zhang et al., 2018; Wang et al., 2004; Carreira & Zisser-
man, 2017; Hara et al., 2018), we adopt three widely used metrics to evaluate video generation
quality: SSIM, LPIPS, and VFID. SSIM measures the structural similarity between generated and
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reference videos, LPIPS captures perceptual differences between image pairs, and VFID assesses
both temporal consistency and overall video quality, where I3D (Carreira & Zisserman, 2017) and
ResNeXt (Xie et al., 2017) are different backbone models. For image virtual try-on, we additionally
use FID and KID, along with SSIM and LPIPS (Li et al., 2025a). Herein, FID and KID measure the
similarity between the distributions of two images.
Implementation Details: We adopt the pre-trained weights from Wan2.1-I2V-14B-720P as the base
model. To address overexposure and subject loss in the opening frames of ViViD videos, we truncate
the initial frames of each sequence. During training, each video sample consists of 81 frames, with
a batch size of 1, and training is performed for 14,500 iterations. We use the AdamW optimizer with
a fixed learning rate of 1e-4. FiTDiT (Jiang et al., 2024) is employed as the image-based virtual
try-on model, following the official default settings. For video inference, the number of inference
steps is set to 25. To ensure fairness, all model variants in the ablation studies are evaluated under
the same hyperparameter configurations during inference.

Table 2: Quantitative Comparison of Video Virtual Try-On Results on ViT-HD. The best and second-
best results are marked with red and blue, respectively. p and u denote the paired setting and unpaired
setting, respectively.

Methods Venue VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓ VFIDu
I ↓ VFIDu

R↓
Image-centered Method
StableVITON (Kim et al., 2024) CVPR’24 38.2686 0.8021 0.7986 0.1608 39.2286 0.8525
OOTDiffusion (Xu et al., 2025) AAAI’25 30.2521 4.0068 0.7925 0.1125 38.5214 5.5221
CatVTON (Chong et al., 2025a) ICLR’25 22.2365 0.4028 0.8156 0.1325 28.2065 0.7352

Video-centered Method
ViViD (Fang et al., 2024) arxiv’24 19.0568 0.7525 0.8022 0.1363 22.6856 0.7925

CatV2TON (Chong et al., 2025b) CVPRW’25 15.8725 0.2898 0.8545 0.0976 20.0187 0.5762
MagicTryOn Li et al. (2025a) arxiv’25 14.0587 0.2461 0.8622 0.0828 19.2253 0.5587

Ours Ours 7.5267 0.1628 0.9066 0.0397 13.6628 0.3519

Table 3: Quantitative Comparison of Video Virtual Try-On Results on VVT (Dong et al., 2019)
(Left) and ViViD (Fang et al., 2024) (Right).

Methods VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓
FW-GAN 8.019 0.1215 0.675 0.283
MV-TON 8.367 0.0972 0.853 0.233
ClothFormer 3.967 0.0505 0.921 0.081
ViViD 3.793 0.0348 0.822 0.107
CatV2TON 1.778 0.0103 0.900 0.039
MagicTryOn 1.991 0.0084 0.958 0.024

Ours 1.226 0.0059 0.968 0.016

Methods VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓ VFIDu
I ↓ VFIDu

R↓
StableVITON 34.2446 0.7735 0.8019 0.1338 36.8985 0.9064
OOTDiffusion 29.5253 3.9372 0.8087 0.1232 35.3170 5.7078
IDM-VTON 20.0812 0.3674 0.8227 0.1163 25.4972 0.7167
ViViD 17.2924 0.6209 0.8029 0.1221 21.8032 0.8212
CatV2TON 13.5962 0.2963 0.8727 0.0639 19.5131 0.5283
MagicTryOn 12.1988 0.2346 0.8841 0.0815 17.5710 0.5073
DreamVVT 11.0180 0.2549 0.8737 0.0619 16.9468 0.4285

Ours 8.2164 0.1854 0.8768 0.0522 14.1521 0.3866

Table 4: Quantitative Comparison of Image Virtual Try-on Results on VITON-HD (Choi et al.,
2021) and DressCode (Morelli et al., 2022).

Metric Methods

GP-VTON LaDI-VTON IDM-VTON OOTDiffusion CatVTON CatV2TON MagicTryOn Ours

V
IT

O
N

-H
D

FIDp ↓ 8.726 11.386 6.338 9.305 6.139 8.095 8.036 5.293
KIDp ↓ 3.944 7.248 1.322 4.086 0.964 2.245 1.235 0.720
SSIM ↑ 0.8701 0.8603 0.8806 0.8187 0.8691 0.8902 0.8936 0.9201
LPIPS ↓ 0.0585 0.0733 0.0789 0.0876 0.0973 0.0572 0.0477 0.0566
FIDu ↓ 11.844 14.648 9.611 12.408 9.143 11.222 8.696 8.528
KIDu ↓ 4.310 8.754 1.639 4.689 1.267 2.986 1.130 0.788

D
re

ss
C

od
e

FIDp ↓ 9.927 9.555 6.821 4.610 3.992 5.722 5.428 2.746
KIDp ↓ 4.610 4.683 2.924 0.955 0.818 2.338 1.078 0.517
SSIM ↑ 0.7711 0.7656 0.8797 0.8854 0.8922 0.9222 0.9572 0.9621
LPIPS ↓ 0.1801 0.2366 0.0563 0.0533 0.0455 0.0367 0.0271 0.0347
FIDu ↓ 12.791 10.676 9.546 12.567 6.137 8.627 6.962 5.147
KIDu ↓ 6.627 5.787 4.320 6.627 1.549 3.838 0.908 1.012
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4.2 PERFORMANCE COMPARISON WITH SOTA METHODS

Quantitative Comparison: Table 2 and Table 3 report the results of SOTA baselines and our Key-
Tailor for the video virtual try-on task on ViT-HD, VVT, and ViViD, respectively. It is evident
that KeyTailor outperforms existing SOTA methods across nearly all metrics in both paired and
unpaired settings. This demonstrates that KeyTailor achieves superior visual quality and temporal
consistency in synthesized videos. We attribute this improvement to the injection of keyframe in-
formation, which provides both garment dynamics and subtle background details. Leveraging these
cues enhances garment fidelity and preserves background integrity consistently across video frames.
Additionally, the results on the image virtual try-on task (Table 4), show that KeyTailor also delivers
better performance in static scenarios, further validating its generalization ability.

Source Video MagicTryOn OursCatV2TON Source Video MagicTryOn OursCatV2TON Source Video MagicTryOn OursCatV2TON

Figure 5: Qualitative comparison of video virtual try-on results on the ViViD dataset (1st column),
our ViT-HD dataset (2nd column), and in-the-wild scenarios (3rd column). Our KeyTailor restores
fine-grained garment details while preserving background integrity.

(a) Person-To-Video Garment Transfer Results

Source VideoMagicTryOn Ours

(b) Person-To-Video Garment Transfer Comparisons

Source Video MagicTryOn Ours

Figure 6: Qualitative results and comparisons in person-to-video garment transfer scenarios. Our
method combines background, person, and garment more naturally in complex scenarios.

Qualitative Comparison: We present the synthesized results of baselines and our method in Fig. 5
and Fig. 6. In Fig. 5, we visualize results on ViViD and our dataset, as well as an example under
an in-the-wild scenario. It can be observed that KeyTailor not only preserves garment details but
also maintains background consistency. Specifically, our method retains more garment details and
patterns, adapts better to human motion, and produces more reasonable and natural fits, whereas

8
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49.2% 43.9% 6.9%

44.4% 52.5% 3.1%

Overall Quality

54.8% 41.0% 4.2%Semantic Quality

Visual Quality

53.7% 42.7% 3.6%

51.9% 44.8% 3.3%

65.2% 32.2% 2.6%

79.8% 19.3% 0.9%

76.6% 21.6% 1.8%

63.7% 34.1% 2.2%

Ours  vs  MagicTryon Ours  vs  CatV2TON Ours  vs  ViViDBetter Same Worse

Figure 7: User Study. We report pairwise preference rates from the perspectives of visual quality,
semantic consistency, and overall quality.

other methods often lose details or even alter garment styles. Additionally, regions outside the
garment remain more consistent with the original video in our results, exhibiting fewer artifacts and
clearer background structures. In Fig. 6, we evaluate SOTA methods and our KeyTailor using a more
challenging reference garment image, i.e., person-to-video garment transfer. Our KeyTailor still
preserves fine-grained garment details and maintains background consistency, demonstrating robust
performance even under complex garment transfer scenarios.
User Study. We conduct a user study following the standard win-rate methodology to evaluate
our approach. Each questionnaire contains 15 randomly selected generated videos presented in
randomized order, and participants are asked to evaluate them along three dimensions: visual quality,
semantic consistency, and overall quality. In total, we collect 80 completed feedback forms, with the
results presented in Fig. 7. The majority of participants prefer our KeyTailor over SOTA methods,
with particularly clear advantages compared to CatV2TON and ViViD. These findings demonstrate
that our method produces more realistic, coherent, and user-preferred video try-on results.

4.3 ABLATION STUDY

Input w/o IKS w/o w/o w/ow/o

w/o Fusion w/o CBDO w/o GDDE OursGarment

Figure 8: Qualitative comparison of of KeyTai-
lor with variants on ViT-HD.

We conduct an ablation study by deactivating
individual modules (see Appendix G for de-
tails) to demonstrate the effectiveness of each
component in KeyTailor. The results are re-
ported in Table 5. Overall, the full version of
KeyTailor outperforms all variants. Removing
any component leads to a clear performance
degradation, with the garment dynamics dis-
tillation (w/o D) showing the most significant
drop. The results of “w/o IKS” and “Fkey = 1”
demonstrate that the IKS module can accurately
select informative frames and highlight the im-
portance of using multiple keyframes. Fig. 8
provides an intuitive visual comparison, show-
ing that removing these components results in noticeable generation errors, such as unnatural color
shifts, distorted backgrounds, hallucinated objects, and skin tone changes.

Table 5: Ablation study of each component on the ViT-HD dataset.

Metric w/o IKS w/o Sr(f) w/o D w/o Qkey w/o Lbg
key w/o Fusion w/o CBDO w/o GDDE Fkey = 1 Ours

VFIDp
I↓ 16.2586 17.2568 22.5241 15.9878 16.2526 16.2885 17.2134 19.8968 16.3856 7.5267

VFIDp
R↓ 0.3568 0.4566 0.5869 0.8201 0.6645 0.6022 0.7826 0.5863 0.3988 0.1628

SSIM↑ 0.8035 0.8461 0.7658 0.8569 0.8622 0.8254 0.8523 0.8429 0.8165 0.9066
LPIPS↓ 0.1022 0.1125 0.2106 0.0807 0.0823 0.0935 0.0982 0.1136 0.0987 0.0397

VFIDu
I ↓ 21.6326 22.0187 25.3632 21.5855 22.3523 23.5525 22.3965 23.5662 21.8867 13.6628

VFIDu
R↓ 0.5679 0.5602 0.7901 0.6988 0.8725 0.8263 0.6885 0.8255 0.5969 0.3519

5 CONCLUSION

In this work, we present KeyTailor, a novel DiT-based video virtual try-on model, along with ViT-
HD, a large-scale high-definition dataset. KeyTailor is designed based on a keyframe-driven de-
tails injection strategy, implemented via an instruction-guided keyframe sampling module and two
lightweight keyframe-driven details injection modules: the garment dynamic details enhancement
and the collaborative background details optimization. Extensive experiments on both video and im-
age try-on tasks show that KeyTailor achieves superior garment fidelity, background integrity, and
temporal consistency, establishing strong baselines and resources for future research in this field.
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APPENDIX

A REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

B THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

C RELATED WORK

Video virtual try-on (VVT) aims to replace a person’s clothing with a target garment while preserv-
ing the spatiotemporal consistency of the video, i.e., the generated results should ensure a consistent
appearance of the target garment across frames, align seamlessly with the person’s pose and motion,
and maintain the rest of the scene without distortion.
GAN-based methods. Earlier works adopt GAN-based generators for VVT (Dong et al., 2019;
Choi et al., 2021; Zhong et al., 2021; Jiang et al., 2022). For instance, FW-GAN (Dong et al., 2019),
as the first attempt, introduces an optical flow–guided warping GAN to deform the target garment
and align it with the character’s body, thereby generating coherent video frames. MV-TON (Zhong
et al., 2021) leverages memory refinement to enhance details from previously generated frames.
ClothFormer (Jiang et al., 2022) employs a dual-stream transformer to address the temporal consis-
tency of warped input sequences.
Diffusion model-based methods. Inspired by the advances of diffusion models in video genera-
tion (Blattmann et al., 2023; Wan et al., 2025; Kong et al., 2024), the latest studies (Fang et al.,
2024; Chong et al., 2025b; Xu et al., 2024; Zheng et al., 2024) have delved deeper into developing
diffusion model–based frameworks for solving VVT tasks. For instance, ViVid (Fang et al., 2024)
and Tunnel Try-on (Xu et al., 2024) incorporate a clothing reference branch into the stable diffu-
sion framework to inject appearance features of the target garment. They further introduce temporal
modeling strategies to ensure temporal coherence across frames, achieving visually plausible and
temporally consistent video generation. However, these pioneering methods treat spatial and tem-
poral information separately and are limited to low-quality outputs due to the restricted expressive
capacity of U-Net (Ronneberger et al., 2015) backbones.
DiT-based methods. To achieve superior realism and fine-grained detail preservation in virtual try-
on applications, subsequent efforts (Chong et al., 2025b; Li et al., 2025a; Zuo et al., 2025) have
explored diffusion transformer (DiT)–based diffusion models. These methods typically adopt a
dual-branch architecture, where a dedicated clothing branch encodes appearance features, which are
then combined with other input conditions and fed into DiT blocks for garment transfer. The DiT
structure facilitates the joint modeling of spatial and temporal consistency. Furthermore, additional
interaction modules are incorporated into the DiT blocks to better preserve garment details.
Despite the significant advancements of these DiT-based methods, they still suffer from limitations
in fully capturing garment dynamics and background details. Furthermore, the introduction of addi-
tional components into DiT blocks often leads to increased complexity and computational overhead.
Finally, the broader applicability of the DiT architecture remains constrained by the limited scale of
publicly available datasets for virtual try-on tasks. Our KeyTailor offers a more lightweight solu-
tion that improves garment fidelity and background consistency by injecting keyframe-driven details
without explicitly modifying the DiT architecture. In addition, we curate a large-scale, high-quality
dataset ViT-HD, to address the issue of data scarcity.

D PRELIMINARY

Diffusion Transformers (DiTs) have revolutionized video generation with their strong expressive
power, ensuring higher fidelity and alignment in video synthesis. Wan (Wan et al., 2025) repre-
sents the current state-of-the-art among open-source video diffusion models, offering broad prac-
tical value. It adopts an LLaVA-style architecture (Liu et al., 2023), consisting of a variational
autoencoder (VAE), a text encoder umT5 (Chung et al., 2023), and a DiT backbone. The core DiT
network is composed of a patchifying module, multiple Transformer blocks, and an unpatchifying
module. To ensure effective instruction following in long-context scenarios, Wan alternates between
cross-attention and self-attention mechanisms (Chen et al., 2021; Zhang et al., 2019).
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Wan processes noisy video tokens x0 ∈ RN×d and text condition embeddings ctxt ∈ RM×d, where
x0 ∼ N (0, I), d denotes the embedding dimension, and N and M represent the number of video and
text tokens, respectively. Leveraging flow matching, Wan circumvents iterative velocity prediction.
In flow matching, given a latent representation of the target video x1, a random noise sample x0, and
a timestep t ∈ [0, 1] sampled from a logit-normal distribution, the linear interpolation xt between
x0 and x1 is used as the training input:

xt = tx1 + (1− t)x0. (A1)

The corresponding ground truth velocity field is:

vt =
dxt

dt
= x1 − x0. (A2)

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a parameter-efficient finetuning technique
that introduces low-rank matrices to adapt pretrained models without directly updating the original
weights. Given a pre-trained weight matrix W0 ∈ Rd×k, LoRA approximates the updated weight
as:

W = W0 +∆W = W0 +ABT , (A3)

where A ∈ Rd×r and B ∈ Rk×r are trainable low-rank matrices with rank r ≪ min(d, k). This
low-rank decomposition significantly reduces the number of trainable parameters, enabling efficient
adaptation while preserving the performance of the original model.

E SCORE DEFINITION

In this section, we provide the definitions of the score functions used in our work, i.e., motion dif-
ference score (Sm(f)), garment-area ratio score (Sr(f)), and background integrity score (Sbg(f)).
The motion difference score is used to quantify the discrepancy between the motion of a given frame
and that of the anchor frames, and is defined as:

Sm(f) = min
fa∈Fanc

(
cos(D(f), D(fa))

)
, (A4)

where cos(·, ·) ∈ [0, 1]. A lower value indicates a larger difference in skeleton direction.
The garment-area ratio score measures the proportion of a frame occupied by the garment, and its
formulation is given as:

Sr(f) =
area(segment-cloth(f))

area(f)
. (A5)

Here, “segment-cloth” denotes the segmentation operation that extracts the garment area from the
frame, implemented by using HumanParsing (Li et al., 2020).
Similarly, the background integrity score measures the clarity and proportion of the preserved back-
ground, and is calculated as:

Sbg(f) = Background Ratio(f)× Clarity(f), (A6)

where the background ratio is:

Background Ratio(f) =
area(segment-background(f))

area(f)
. (A7)

Specifically, the segment-background(f) is accomplished via HumanParsing (Li et al., 2020), which
first extracts the human region, and the background is then computed as

segment-background(f) = f ⊙
(
1− segment-human(f)

)
. (A8)

And the clarity for frame f is computed as:

Clarity(f) =
(

|{E(x, y) > T}|
|{background pixels}|

)
×

(
1

255
·
∑

E(x,y)>T E(x, y)

|{E(x, y) > T}|

)
, (A9)

where E is the Sobel edge map of the background image, T is a fixed threshold (default 50). The
first term denotes the edge density, and the second term represents the normalized average gradient
strength.
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F TRAINING DETAILS

As shown in Fig. 4, finetuning is applied to the LoRA parameters added to the DiT blocks, the
single-image try-on model, and the parameters of the mask guider and pose guider. All of these are
initialized from pre-trained weights, while the remaining modules are kept frozen. The formulations
of the LoRA weights for finetuning image virtual try-on are shown as follows:

QImg = WQ,I +AQ,IB
⊤
Q,I ,

KImg = WK,I +AK,IB
⊤
K,I ,

VImg = WV,I +AV,IB
⊤
V,I ,

(A10)

Similarly, the LoRA weights for finetuning DiT in our KeyTailor are defined as:

QDiT = WQ,D +AQ,DB⊤
Q,D,

Qkey = QDiT +AkeyB
⊤
key · L⊤

avg-key,

KDiT = WK,D +AK,DB⊤
K,D,

VDiT = WV,D +AV,DB⊤
V,D,

(A11)

where W∗ denotes the pre-trained weight matrix of the original projection layers, and A∗ represents
a low-rank trainable matrix with rank r ≪ min(d, k). Qkey corresponds to the keyframe. This
parameter-efficient adaptation enables dynamic modulation of attention mechanisms while preserv-
ing the original model capacity. We further apply LoRA to the linear transformations in the feed-
forward network (FFN), where each weight matrix WF0 is similarly parameterized as:

WF = WF +AFB
⊤
F . (A12)

This extension allows for lightweight finetuning across both attention and MLP components of the
diffusion transformer.
By leveraging flow matching to maintain equivalence with the maximum likelihood objective, the
model is trained to learn the true velocity. The overall training objective L is defined as:

L = Ectxt,t,x1,x0

[
∥u(xt, L, ctxt, t; θ)− vt∥22

]
(A13)

where u(xt, L, ctxt, t; θ) denotes the velocity predicted by the model.

G SETTINGS OF ABLATION STUDY

In this section, we present the detailed settings of the ablation study in our experiments.
• w/o IKS: Replace instruction-guided keyframe sampling with random sampling of three

frames from the input video. This variant validates the effectiveness of the instruction-
guided keyframe sampling module.

• w/o Sr(f): Use only the motion-difference score Sm(f) to guide keyframe selection, with-
out incorporating user-instruction parsing, keeping the rest unchanged. This variant evalu-
ates the contribution of instruction guidance.

• w/o D: Directly use the first frame of the input video to generate garment latents, without
incorporating keyframe-driven garment details, keeping the rest unchanged. This variant
examines the role of the distillation component.

• w/o Qkey: Continue injecting L̄g into DiTs, but remove the keyframe-LoRA weight matrix
Qkey , keeping the rest unchanged. This variant tests the importance of keyframe-aware
LoRA adaptation.

• w/o Lbg
key: Use only the background features Lbg extracted from Vagn, without fusing

keyframe-based background features, keeping the rest unchanged. This variant validates
the role of collaborative background details optimization.

• w/o Fusion: Replace weighted fusion of background features with direct concatenation
Concat(Lm, Lmax-bg

key ), keeping the rest unchanged. This variant examines the benefit of
weighted fusion.

• w/o CBDO: We deactivate the entire collaborative background details optimization mod-
ule, while keeping all other components unchanged. This variant evaluates the contribution
of background detail refinement.
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• w/o GDDE: We deactivate the entire garment dynamic details enhancement module, while
keeping all other components unchanged. This variant validates the importance of enrich-
ing garment dynamics.

• Fkey = 1: We restrict the keyframe set to only the first frame (K = 1) as input, while keep-
ing all other settings unchanged. This variant evaluates the importance of using multiple
keyframes.

H INSTRUCTION-GUIDED KEYFRAME SAMPLING

Algorithm 1: Instruction-Guided Keyframe Sampling
Input: Vin: Input video (T frames, indices 0 ∼ T − 1 with timestamps t0 ∼ tT−1)
Ins: User instruction (e.g., “Show front/back of clothes, raise hand to display sleeves”)
Params: Kmax (max keyframes: 3 for short video, 6 for long video),
w1 = 0.3, w2 = 0.2, w3 = 0.3, w4 = 0.2 (weight coefficients),
Tthres (temporal interval threshold: video duration/5),
Occluthres = 0.2 (garment occlusion threshold),
λ = 0.5 (skeleton difference weight)
Output: Fkey: Selected keyframe list (length ≤ Kmax)
Viewtargets,Actiontargets = parse instruction(Ins) ;
Fanchor = [ ] ;
for each view ∈ Viewtargets do

Fanchor.append(generate standard pose(view)) ;

for each action ∈ Actiontargets do
Fanchor.append(generate standard pose(action)) ;

Danchor = [compute joint direction(f) | f ∈ Fanchor] ;
S = [ ] ;
for i = 0 to T − 1 do

f = Vin[i], t = timestamp of f ;
Sins = vlm score(f, Ins) ;
Df = compute joint direction(f) ;
Sm = min({cosine distance(Df , d) | d ∈ Danchor}) ;
cloth mask = segment garment(f) ;
Scloth = area(cloth mask)/area(f) ;
occlusion ratio = area(occluded region(cloth mask))/area(cloth mask) ;
if occlusion ratio > Occluthres then

Continue ;

initial score = w1 ∗ Sins + w2 ∗ (1− Sm) + w3 ∗ Scloth + w4 ∗ 1.0 ;
S.append((i, t, initial score)) ;

Ssorted = sort(S, key = λx : x[2], reverse=True) ;
Idxkey = [ ], Tselected = [ ] ;
for each (idx, t, score) ∈ Ssorted do

if |Idxkey| ≥ Kmax then
Break ;

if Tselected is empty then
St = 1.0 ;

else
min t dist = min({|t− ts| | ts ∈ Tselected}) ;
St = min t dist/Tthres ;

final score = score ∗ St ;
if Idxkey is empty then

Idxkey.append(idx) ;
Tselected.append(t) ;

else
min score diff = min({|final score − S[ik][2]| | ik ∈ Idxkey}) ;
if min score diff ≥ 0.1 and min t dist ≥ Tthres then

Idxkey.append(idx) ;
Tselected.append(t) ;

Fkey = [Vin[idx] | idx ∈ Idxkey] ;
return Fkey ;
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I MORE QUALITATIVE RESULTS

Fig. A1–Fig. A3 present additional visual comparisons between our KeyTailor and SOTA methods
on the ViViD dataset, while Fig. A4–Fig. A6 show additional results on our self-collected ViT-
HD. It is evident that KeyTailor produces more realistic and natural videos, capturing finer garment
dynamics, preserving coherent background details, and maintaining temporal consistency across
frames compared to existing methods.

Source Video MagicTryOn OursCatV2TONGarment

Figure A1: Additional qualitative comparison results on the ViViD dataset. Please zoom in for more
details.
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Source Video MagicTryOn OursCatV2TONGarment

Figure A2: Additional qualitative comparison results on the ViViD dataset. Please zoom in for more
details.
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Source Video MagicTryOn OursCatV2TONGarment

Figure A3: Additional qualitative comparison results on the ViViD dataset. Please zoom in for more
details.
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Source Video MagicTryOn OursCatV2TONGarment

Figure A4: Additional qualitative comparison results on our ViT-HD dataset. Please zoom in for
more details.
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Source Video MagicTryOn OursCatV2TONGarment

Figure A5: Additional qualitative comparison results on our ViT-HD dataset. Please zoom in for
more details.
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Source Video MagicTryOn OursCatV2TONGarment

Figure A6: Additional qualitative comparison results on our ViT-HD dataset. Please zoom in for
more details.
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