
A2Perf: Benchmarking Autonomous Agents End-to-End in Realistic Domains

Ikechukwu Uchendu 1 * Jason Jabbour 1 Korneel Van den Berghe 2 Joel Runevic 1 Matthew Stewart 1

Jeffrey Ma 1 Srivatsan Krishnan 1 Izzeddin Gur 3 Austin Huang 3 Colton Bishop 3 Paige Bailey 3

Joe Wenjie Jiang 3 Ebrahim M. Songhori 3 Sergio Guadarrama 3 Jie Tan 3 Jordan K. Terry 4

Aleksandra Faust 3 ‡ Vijay Janapa Reddi 1 † ‡

Abstract
Autonomous agents and systems cover a number
of application areas, from robotics and digital as-
sistants to combinatorial optimization, all sharing
common, unresolved research challenges. It is not
sufficient for agents to merely solve a given task;
they must generalize to out-of-distribution tasks,
perform reliably, and use hardware resources effi-
ciently during training and on-device deployment,
among other requirements. Several classes of
methods, such as reinforcement learning and imi-
tation learning, are commonly used to tackle these
problems, each with different trade-offs. However,
there is a lack of benchmarking suites that define
the environments, datasets, and metrics which can
be used to provide a meaningful way for the com-
munity to compare progress on applying these
methods to real-world problems. We introduce
A2Perf —a benchmarking suite including three
environments that closely resemble real-world do-
mains: computer chip floorplanning, web naviga-
tion, and quadruped locomotion. A2Perf provides
metrics that track task performance, generaliza-
tion, system resource efficiency, and reliability,
which are all critical to real-world applications.
In addition, we propose a data cost metric to ac-
count for the cost incurred acquiring offline data
for imitation learning, reinforcement learning, and
hybrid algorithms, which allows us to better com-
pare these approaches. As an open-source and
extendable benchmark, A2Perf is designed to re-
main accessible, documented, up-to-date, and use-
ful to the research community over the long term.
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1. Introduction
Autonomous agents observe their environment, make de-
cisions, and perform tasks with minimal human interfer-
ence (Sutton & Barto, 2018). In this work, we generally
focus on autonomous agents trained with reinforcement
learning (RL) and imitation learning (IL) techniques, as
opposed to agents based on foundation models (Bommasani
et al., 2021). While these RL and IL agents have been
successfully evaluated across a wide range of application
domains, developing algorithms for their deployment in
real-world scenarios presents significant challenges (Dulac-
Arnold et al., 2021). These challenges include dealing with
high-dimensional state and action spaces, partial observ-
ability, non-stationarity, sparse rewards, and the need for
safety constraints. Furthermore, real-world environments
often have multiple objectives, require sample efficiency,
and necessitate robust and explainable decision-making. Ad-
dressing these challenges is crucial for productionizing rein-
forcement learning algorithms to real-world problems.

To enable researchers to develop algorithms with real-world
deployment considerations in mind, there is a need for
benchmarks that incorporate practical metrics. These in-
clude metrics such as the compute required for training
and inference, wall-clock time, and effort expended on data
collection. While there are existing benchmarks for au-
tonomous agents (Guss et al., 2019; Yu et al., 2020; Kempka
et al., 2016; Bellemare et al., 2013; Chevalier-Boisvert et al.,
2023; Tassa et al., 2018), most only evaluate an agent’s
raw performance on the same task on which it was trained,
without considering numerous other metrics that matter in
real-world production training and deployment scenarios.

In this paper, we introduce A2Perf1, a benchmarking frame-
work that aims to bridge the gap between algorithms re-
search and real-world applications by providing a compre-
hensive evaluation platform for autonomous agents, thereby
expanding the applicability of reinforcement learning to
a wide range of practical domains. In addition, it comes
equipped with a critical set of metrics for fair assessment.

1The project website and documentation can be found at
https://a2perf.farama.org/
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Benchmark Metrics Real-World
Tasks

Offline
DatasetsGeneralization System Data Cost Reliability

A2Perf ✓ ✓ ✓ ✓ ✓ ✓

D5RL (Rafailov et al., 2024) ✓ ✗ ✗ ✗ ✓ ✓
NeoRL (Qin et al., 2022) ✗ ✗ ✗ ✗ ✓ ✓

OGBench (Park et al., 2024) ✓ ✗ ✗ ✗ ✓ ✓
Meta-World (Yu et al., 2020) ✓ ✗ ✗ ✗ ✓ ✗

DM Control (Tassa et al., 2018) ✗ ✗ ✗ ✗ ✗ ✗
Jumanji (Bonnet et al., 2023) ✓ ✗ ✗ ✗ ✓ ✗

DSRL (Liu et al., 2023) ✗ ✗ ✗ ✗ ✓ ✓
Safety Gym (Ji et al., 2023) ✗ ✗ ✗ ✓ ✓ ✗

ALE (Bellemare et al., 2013) ✗ ✗ ✗ ✗ ✗ ✗
MineRL (Guss et al., 2019) ✓ ✗ ✗ ✗ ✗ ✓

Loon Benchmark (Greaves et al., 2021) ✓ ✗ ✗ ✗ ✓ ✓

Table 1: A2Perf compared to existing benchmarks that evaluate autonomous agents. Checkmarks (✓) indicate the presence of
a feature or metric, while crosses (✗) denote its absence. A2Perf distinguishes itself by including metrics for generalization,
system resource efficiency, data cost, and reliability, in addition to providing real-world tasks and offline datasets. Here,
real-world tasks refer to those that are often performed in industrial or consumer contexts. The selected domains in A2Perf
are designed to closely mirror real-world challenges, ensuring the relevance and transferability of the benchmark results to
practical applications.

A2Perf incorporates three challenging domains based on
prior work (Coumans, 2023; Mirhoseini et al., 2021;
Gur et al., 2021) that closely mirror scenarios that have
been demonstrated in the real world: computer chip-
floorplanning, website form-filling and navigation, and
quadruped locomotion. In addition, these domains were
chosen because they inherently exhibit a small Sim2Real
gap. The computer chip floorplanning domain (Mirhoseini
et al., 2020; 2021) was used to help create an iteration of
Google’s tensor processing unit2, where the agent optimizes
the layout of chip components. In the website form-filling
and navigation domain (Gur et al., 2018; 2021), agents au-
tonomously navigate and interact with websites in a Google
Chrome3 browser, making it identical to real-world web
navigation. The quadruped locomotion domain (Peng et al.,
2020) has demonstrated successful transfer of learned walk-
ing gaits to the Unitree Laikago4 robot.

Furthermore, to address the metrics gap, A2Perf provides
an open-source benchmarking suite that evaluates agents
across four key metric categories: (1) data cost, which quan-
tifies the effort required to gather training data for imitation
learning, (2) application performance, relating to the quality
of the agent’s task-specific execution, and its ability to gen-
eralize to tasks that it was not explicitly trained to perform;
(3) system resource efficiency, focusing on the hardware

2History of the Tensor Processing Unit: https://
shorturl.at/Bo71S

3Google Chrome Browser: https://www.google.com/
chrome/

4Unitree Laikago: https://shorturl.at/FD6uP

resources used during training and inference; and (4) relia-
bility, denoting the consistency of an agent’s performance
over training and inference. While three domains and four
classes of metrics are currently available, A2Perf allows for
straightforward expansion to benchmark on custom domains
and for custom metrics.

2. Metrics for Real-World Evaluation
2.1. Data Cost

Comparing agent performance trained using different ap-
proaches is challenging but important to gain a holistic
picture of the costs and trade-offs involved. IL methods
may be more sample efficient than RL methods, as they
do not need to interact with the environment online. How-
ever, this perspective overlooks the effort required to collect
demonstration data used for IL.

To facilitate fair comparisons between these approaches, we
propose the training sample cost metric, which quantifies
the effort required to obtain offline datasets used by the
agent. In this context, we denote the training sample cost of
an offline dataset D as CD. An agent that uses samples from
datasets D1, D2, . . . , DK will incur a total training sample
cost of Training Sample Cost =

∑K
i=1 CDi

. The
datasets Di could be of different expertise levels, meaning
they contain demonstrations from agents or humans with
varying levels of task proficiency.

The training sample cost can be measured with any metric
that meaningfully represents the effort required to generate
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samples for imitation learning. For example, the cost could
be expressed in terms of money spent on human labor or
computational resources, hours invested in collecting the
data, or any other relevant metric. The choice of metric
may depend on the specific application and the type of data
being collected since training samples can originate from
a variety of sources, such as human operators (Mandlekar
et al., 2020), pre-existing policies (Hester et al., 2018), or
logged experiences from different agents (Fujimoto et al.,
2019; Kostrikov et al., 2021).

In A2Perf, we adopt a simplified approach by focusing on
datasets generated solely from RL policies, using energy
consumption as our training sample cost metric. This de-
sign choice enables systematic evaluation while avoiding
the complexities of collecting and pricing human demon-
strations. Specifically, we define the training sample cost,
CD, of a dataset D as the average energy consumed to train
the policies that are used to generate the dataset D. This
can be expressed as:

CD =
1

|ΠD|
∑

π∈ΠD

Etrain(π) (1)

where ΠD is the set of policies used to generate the dataset
D, |ΠD| denotes the number of policies in this set, and
Etrain(π) represents the energy consumed to train the policy
π. As we strive for more equitable comparisons between
approaches to training autonomous agents, we urge the re-
search community to consider the cost of acquiring training
data. To this end, we release datasets for each domain and
task in A2Perf, along with their associated training sample
costs. While the specific expertise levels may vary across
domains and tasks, we generally consider three categories:
novice, intermediate, and expert. See Appendix
H for the dataset collection procedure and Appendix I for
details on the dataset format.

2.2. System Performance

System metrics provide insight into the feasibility of deploy-
ing autonomous agents, particularly considering the scaling
demands on energy and data efficiency (Frey et al., 2022).
A2Perf uses the CodeCarbon library (Initiative, 2021) to
track metrics during training, such as energy usage, power
draw, RAM consumption, and wall-clock time. Energy and
power usage inform the user about the sustainability and
costs associated with training the agent, which is particu-
larly important in power-constrained environments or when
planning for long-term, continuous training (Parisi et al.,
2019). RAM consumption metrics help in understanding
the memory efficiency of the training process, as high RAM
consumption may limit the settings where the agent can be
trained or require costly hardware upgrades (Li et al., 2023).
During the inference phase, A2Perf records power draw,

RAM consumption, and average inference time (see Ap-
pendix A.4 for metric reporting guidelines and Appendix F
for our full experimental setup).

2.3. Reliability

Reliability signifies safety, accountability, reproducibility,
stability, and trustworthiness (Chan et al., 2019; Roszel et al.,
2021). A2Perf uses the statistical methods proposed by
Chan et al. (2019) to measure the reliability of autonomous
agents during training and inference. For a detailed descrip-
tion of each metric and their calculation, please refer to the
work by Chan et al. (2019).

2.4. Application Performance

Application performance is measured using task perfor-
mance and generalization. Task performance is the agent’s
mean returns when rolled out for 100 episodes on the task it
was trained for. Since autonomous agents deployed in real-
world settings must often handle scenarios that differ from
their exact training distribution, measuring generalization to
tasks outside this distribution is crucial. Generalization is
computed as the sum of mean returns for all tasks, including
the task the agent was trained to perform.

3. Evaluation
Our evaluation aims to answer three key questions. (Q1)
How can data cost metrics be used in practice to compare
methods that use offline data to those that do not? (Q2)
How do system performance metrics inform training and
deployment feasibility? (Q3) Can reliability metrics reveal
tradeoffs between different agents that are not captured by
raw task performance?

For all domains and tasks, results are averaged over ten
random seeds to ensure robustness and reproducibility. See
Appendix E for more experimental results.

3.1. Q1: Comparing Across Algorithm Types with Data
Cost

A2Perf provides datasets generated with agents of varying
expertise (Section 2.1), along with their associated training
sample costs. This enables the comparison of agents by
considering both task performance and the cost of acquiring
training data, which can vary significantly across different
approaches like IL and RL.

Our experiments in the chip floorplanning domain reveal im-
portant insights about the true costs of different approaches.
While BC’s performance is competitive with DDQN and
PPO (Appendix Table 4), the training sample cost – mea-
sured as the average energy consumed to train an agent
that generates the data – was 48.28 kWh. In contrast, on-
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Figure 1: Comparison of energy consumption and training-sample cost for BC, DDQN, and PPO on the Ariane Netlist task,
enabled by A2Perf. Note: The plot is not to scale for visibility of smaller values. Online methods (DDQN and PPO) have
no training-sample cost because they are initialized without pre-collected data. BC’s energy consumption (0.11 kWh) is
significantly smaller than its training-sample cost (48.28 kWh), which represents the energy used to generate the training
data.

line methods like DDQN and PPO learn purely through
environment interaction without requiring any pre-collected
datasets, resulting in a training sample cost of zero.

The data cost metric allows researchers to combine the train-
ing sample cost with the energy consumed during training
for a more comprehensive comparison. This approach pro-
vides a total energy cost that can be directly compared across
offline, online, or hybrid methods. For example, offline train-
ing of a BC agent for the Ariane netlist consumed only 0.11
kWh. Therefore, the total energy cost for a BC agent would
be 48.39 kWh (48.28 kWh for generating the offline data +
0.11 kWh for offline training).

When comparing total energy costs, we find that despite
requiring pre-collected data, BC’s total energy cost (48.39
kWh) is still lower than the energy consumed by online
methods like DDQN and PPO, which amounted to 108.20
kWh and 120.53 kWh, respectively (Figure 1). For hybrid
methods that use both offline data and online environment
interactions, the total energy cost would similarly be calcu-
lated by adding the training sample cost for the offline data
to the energy consumed during the online training phase.

3.2. Q2: System Performance for Training and
Deployment Feasibility

Our experiments in the web navigation domain highlight
the importance of considering hardware constraints and
performance requirements of autonomous agents. During
training, PPO agents had a peak RAM usage of 2.3± 0.14
TB (Appendix Table 10). This high memory footprint can
be attributed to the need for distributed experiments running
hundreds of Google Chrome processes and storing batches

Figure 2: Latency of web-navigation agents compared with
typical human reaction time. Even when served from the
cloud, the agents respond quickly enough for real-time form-
filling and similar interactive tasks.

of data, which involves tokenizing the entire DOM5 tree
of HTML elements on each web page. Such memory de-
mands can limit the accessibility of training agents, as not
all researchers may have access to the necessary hardware
resources. To put this into perspective, training a variant of
the GPT-3 language model with approximately 72 billion
parameters would require a similar amount of memory, as-
suming each parameter is stored as a 32-bit floating-point
number (Brown et al., 2020).

However, the resource usage of these agents becomes more
manageable for deployment. The 120 ms inference time,
when combined with the median round-trip latency of ∼68

5https://en.wikipedia.org/wiki/Document_
Object_Model
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ms for a 5G network (Schafhalter et al., 2023), results in
a total latency of ∼200 ms. This combined latency is still
faster than the average human reaction time of ∼273 ms6,
enabling real-time responsiveness during web navigation
tasks (Figure 2). Furthermore, the peak RAM usage of
2.19± 0.09 GB (Appendix Table 10) indicates the feasibil-
ity of deploying trained agents directly on consumer-grade
devices, such as smartphones, though the inference time
may be slower on-device.

3.3. Q3: Finding Tradeoffs with Reliability Metrics

Figure 3: Reliability metrics for quadruped locomotion
algorithms during inference on the dog-pace task. SAC
shows markedly better reliability than PPO, achieving a
3.7× lower worst-case return and a 1.8× lower dispersion
across rollouts.

In analyzing the “Dog Pace" task of QuadrupedLocomotion-
v0 (Appendix Table 7), we observe overlapping error bars
on the returns for PPO and SAC. To better understand their
tradeoffs, we use the reliability metrics. PPO provides a 2x
reduction in both short-term and long-term risks compared
to SAC, making PPO more stable. This stability potentially
makes PPO a safer option for training quadrupeds in the real
world, where less sporadic behavior is needed. Conversely,
SAC performs 3.7x better than PPO in the worst-case roll-
outs on average and demonstrates a 1.8x improvement in
dispersion across rollouts, indicating more consistent gaits
during deployment – essential from a safety perspective
(Figure 3).

4. Conclusion
We need more holistic metrics and representative bench-
marks to measure progress. To this end, we introduced

6https://humanbenchmark.com/tests/
reactiontime/statistics

A2Perf, a benchmarking suite that can be used for evaluat-
ing autonomous agents on challenging tasks from domains
such as computer chip floorplanning, web navigation, and
quadruped locomotion. A2Perf provides a standardized
set of metrics across data cost, application performance,
system resource efficiency, and reliability, enabling a com-
prehensive comparison of different algorithms. Our evalua-
tions demonstrate A2Perf’s effectiveness in identifying the
strengths and weaknesses of various approaches to develop-
ing autonomous agents. We encourage the community to
contribute new domains, tasks, and algorithms to A2Perf,
making it an even more comprehensive platform for bench-
marking autonomous agents in real-world-inspired settings.
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A. Metrics
A.1. Overview

Data Cost System Reliability Application

Training Training Sample Cost
Energy
Power

RAM Usage
Wall-Clock Time

Dispersion (Runs)
Dispersion (Time)

Long-Term Risk (Time)
Risk (Runs)

Short-Term Risk (Time)

Episodic Returns
Generalization Returns

Inference N/A Inference Time
Power

RAM Usage

Dispersion (Rollouts)
Risk (Rollouts)

N/A

Table 2: A2Perf assesses four categories—data cost, system performance, reliability, and application performance—during
training and inference. These metrics provide a comprehensive evaluation of autonomous agents. See Section 2 for
detailed descriptions of the metric categories. Data Cost is marked as "N/A" at inference time since pre-existing data and
demonstrations are only used during training. Application metrics are marked as "N/A" during inference since performance
and generalization are evaluated based on the complete training process.

A.2. Applying Metrics to Guide Real-World Algorithm Selection
Our experimental evaluation across three domains demonstrates how different metrics in A2Perf reveal complementary
aspects of autonomous agent performance that are essential for real-world deployment decisions. While task performance
provides a necessary baseline for comparison, the additional dimensions of data cost, system performance, and reliability
metrics offer crucial insights for practitioners making algorithm selection decisions.

The relative importance of different metrics varies significantly by domain, reflecting different priorities in real-world
applications. For chip floorplanning, reliability metrics revealed PPO’s advantage in providing consistent initial layouts—a
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property not evident from task performance alone but critical for human designers who need predictable starting points.
In web navigation, system performance metrics demonstrated that while training requires substantial compute resources,
inference can be performed efficiently enough for real-time web interaction. For quadruped locomotion, reliability metrics
exposed a fundamental tradeoff between PPO’s training stability and SAC’s deployment stability that would be entirely
missed by examining only average returns.

These findings illustrate A2Perf’s value as a comprehensive evaluation framework that enables informed algorithm selection
based on application-specific priorities. Researchers developing new autonomous agent algorithms should consider which
metrics matter most for their target domains: data-intensive applications may prioritize training sample cost, resource-
constrained deployments might emphasize inference efficiency, safety-critical systems would focus on reliability metrics, and
applications requiring adaptability would value generalization performance. By providing this multidimensional perspective,
A2Perf helps bridge the gap between algorithm development and successful real-world deployment of autonomous agents.

A.3. Using A2Perf Metrics in Practice

The metrics provided by A2Perf across data cost, application performance, system performance, and reliability offer a
holistic view of an agent’s performance. However, the relative importance of these metrics can vary significantly depending
on the specific application domain. For instance, in resource-constrained environments, system performance metrics may be
critical, while in safety-critical applications, reliability metrics might take precedence. In Section 3, we demonstrate how
these metrics can be applied and interpreted in the context of our three benchmark domains: computer chip floorplanning,
web navigation, and quadruped locomotion.

A.4. Community Benchmarking with A2Perf

While system performance metrics like energy usage, inference time, and memory consumption can vary significantly
across different hardware platforms and software implementations, these measurements become meaningful when properly
contextualized. To facilitate fair and useful comparisons, A2Perf will include a community leaderboard where researchers
must report:

• Hardware Configuration:

– CPU model
– GPU model

• Software Environment:

– Deep learning framework (e.g., PyTorch (Paszke et al., 2019), Tensorflow (Abadi et al., 2016), Jax (Bradbury
et al., 2018), etc.)

– Python Version
– Operating System

• Metric Results:

– Data Cost
– System Performance
– Reliability
– Application Performance

• Experimental Details:

– Number of random seeds used
– All Hyperparameter Settings

To facilitate this standardized reporting and obtain the metric results above, researchers can leverage A2Perf’s easy-to-use,
open-source codebase. The codebase includes detailed tutorials, examples, and docker containers that simplify the evaluation
process. Its modular implementation allows users to integrate their own custom algorithms without needing to modify the
benchmarking code. As a result of this flexible design, A2Perf seamlessly integrates with existing tools for experiment
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tracking such as TensorBoard7, WandB8, or MLFlow9, allowing researchers to continue using their preferred development
and visualization tools while still benefiting from A2Perf’s standardized evaluation framework.

By standardizing the reporting of system configurations, researchers can meaningfully compare results across similar
hardware and software setups, providing insights into how different agents perform under comparable conditions. The
community leaderboard also enables understanding of performance scaling across different platforms, from resource-
constrained environments to high-performance systems. Furthermore, practitioners can use this information to make
informed decisions about deployment requirements and track optimization progress for specific hardware targets.

For example, researchers deploying a quadruped with a specific compute stack could filter the leaderboard entries to
find results from comparable system configurations. As the community contributes results to A2Perf, this repository
of performance data will expand across many computing environments, providing comprehensive coverage of different
configurations.

B. Related Work
Benchmarking Autonomous Agents Table 1 offers a comparison between A2Perf and existing benchmarks, highlighting
the unique contributions of our proposed benchmarking suite. Existing benchmarks for autonomous agents, such as those
introduced by Brockman et al. (2016); Bellemare et al. (2013); Tassa et al. (2018), provide diverse environments for testing
various algorithms. However, these benchmarks often focus on specific types of learning algorithms or on evaluating
particular desirable qualities in autonomous agents. For example, Fu et al. (2020) and Gulcehre et al. (2020) evaluate offline
reinforcement learning (Levine et al., 2020), while Yu et al. (2020) focuses on meta-reinforcement learning (Wang et al.,
2016). Similarly, Ye et al. (2021) tests sample efficiency, Guss et al. (2019) challenges agents on long-horizon tasks, and
Cobbe et al. (2019) evaluates generalization ability. While these benchmarks provide insights, they do not fully capture the
challenges faced by autonomous agents in real-world applications (Dulac-Arnold et al., 2021). Environments, benchmarks,
and datasets have been made to foster the development of autonomous agents in real-world scenarios, such as aerial balloon
navigation (Greaves et al., 2021), autonomous driving (Sun et al., 2020), website navigation (Gur et al., 2021), and furniture
assembly (Lee et al., 2021). Yet, these initiatives are often domain-specific and lack the comprehensive scope needed to
evaluate agents across a wide range of real-world challenges as outlined by prior work (Dulac-Arnold et al., 2021), which
forms the basis for our work.

Consequently, there remains a need for more benchmarking suites that encompass a diverse set of tasks and environments,
reflecting the complexity and variety of problems encountered in real-world applications. Among recent benchmarks,
NeoRL (Qin et al., 2022) provides realistic environments for stock trading, utility management and industrial control, while
OGBench (Park et al., 2024) emphasizes realistic tasks in the offline, goal-conditioned setting. Jumanji (Bonnet et al., 2023)
focuses on providing fast, JAX-accelerated (Bradbury et al., 2018) implementations of combinatorial optimization tasks
inspired by industry applications.

A2Perf differentiates itself by incorporating different real-world domains such as web navigation and computer chip
floorplanning, while also including system performance, data cost, and reliability metrics in a unified package. This
comprehensive approach allows for a more holistic evaluation of autonomous agents across diverse, practically relevant
tasks and crucial deployment considerations.

Benchmarking System Performance In addition to evaluating task-specific performance metrics, analyzing the end-to-
end performance cost and examining the hardware resources required to apply learning algorithms on specific environments
has gained significant attention (Wu et al., 2022; Patterson). Benchmarks such as MLPerf (Reddi et al., 2020) and
DAWNBench (Coleman et al., 2017) have been developed to assess various aspects of commercial deep learning workloads
across training and inference, considering a diverse class of systems. Furthermore, recent studies have investigated the
environmental impact of deep learning by quantifying the carbon footprint associated with training and inference using
large neural network models (Patterson et al., 2021). This line of research has also extended to autonomous agents, with
works like QuaRL demonstrating reduced energy consumption and emissions through lower-precision distributed training
(Krishnan et al., 2022). Despite these efforts, there remains a need for evaluating the system performance and energy

7https://www.tensorflow.org/tensorboard
8https://wandb.ai
9https://mlflow.org
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Real-World Challenges Chip
Floorplanning

Web
Navigation

Quadruped
Locomotion

(RW1)* Training offline from fixed logs. ✓ ✓ ✓

(RW2) Learning on the real system from limited samples. ✗ ✗ ✓

(RW3) High-dimensional and continuous state and action spaces. ✓ ✗ ✓

(RW4) Safety constraints. ✗ ✓ ✓

(RW5) Tasks are partially observable, non-stationary or stochastic. ✗ ✗ ✓

(RW6) Unspecified, multi-objective or risk sensitive reward functions. ✓ ✓ ✓

(RW7) Need for explainable policies. ✗ ✓ ✗

(RW8) Real-time inference at the control frequency of the system. ✗ ✓ ✓

(RW9) Delays in actuators, sensors or rewards. ✗ ✓ ✓

Table 3: Real-World Challenges proposed by Dulac-Arnold et al. (Dulac-Arnold et al., 2021). Checkmarks (✓) indicate
challenges commonly encountered in the general domain area, while (✗) denotes challenges less frequently encountered.
The challenge marked with an asterisk (*), RW1, applies to all A2Perf domains, as learning from offline data is possible for
all environments. Each broad challenge is encountered in at least one of the A2Perf domain areas, highlighting the relevance
of the selected domains to current real-world reinforcement learning problems.

consumption of autonomous agents to provide valuable insights into their practical feasibility and sustainability.

Reliability Metrics for Reinforcement Learning Reliability is a concern in reinforcement learning (RL), as current
metrics often rely on point estimates of aggregate performance, which fail to capture the true performance of algorithms
and make it challenging to draw conclusions about the state-of-the-art (Agarwal et al., 2021; Henderson et al., 2018; Colas
et al., 2018). The increasing complexity of benchmarking tasks has made it infeasible to run hundreds of training runs,
necessitating the development of tools to evaluate reliability based on a limited number of runs (Agarwal et al., 2021).
For real-world deployments, reliability is essential to ensure that RL algorithms perform consistently and robustly across
different conditions and environments. To assess reliability, it is essential to consider metrics across three axes of variability:
time (within a training run), runs (across random seeds), and rollouts of a fixed policy (Chan et al., 2019). By incorporating
reliability metrics into A2Perf, we will be able to better assess the robustness and consistency of RL algorithms.

C. A2Perf Domains

Figure 4: The three domains included in A2Perf: computer chip floorplanning for optimizing integrated circuit layouts, web
navigation for automated form filling and website interaction, and quadruped locomotion for robotic control. These specific
domains were selected based on their demonstrated transfer from simulation to real-world applications.

Our guiding question when selecting domains for A2Perf was “how can we choose domains that reflect real-world
applications of autonomous agents?” To identify suitable domains, we conducted interviews with industry practitioners
to understand where autonomous agents are currently deployed and where they show future promise. This process led us
to three application areas with significant industrial relevance: computer chip floorplanning, quadruped locomotion, and
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website navigation.

From these industrially relevant application areas, we specifically selected domains with demonstrated simulation-to-reality
transfer. This selection criterion enables researchers without access to specialized hardware (like robots or chip fabrication
facilities) to make meaningful contributions using simulated environments. The circuit training domain was used in creating
an iteration of Google’s Tensor Processing Unit (TPU) (Mirhoseini et al., 2021). The quadruped locomotion domain has
been shown to transfer successfully to real Unitree Laikago robots (Peng et al., 2020). The web navigation domain is derived
from MiniWob (Shi et al., 2017), MiniWob++ (Liu et al., 2018), and gMiniWob (Gur et al., 2021), and operates in an actual
Google Chrome browser, mirroring real-life web interactions. Additionally, (Gur et al., 2018) showed that policies trained in
MiniWob++ transfer to real-life web pages for task completion.

By focusing on domains with demonstrated real-world applicability, progress made within the A2Perf benchmark can
directly contribute to improving the performance of downstream real-world (RW) tasks. We specify how each domain aligns
with the real-world challenges presented by Dulac-Arnold et al. (2021) (Table 3), and denote which of A2Perf’s metric
categories are important for each domain.

C.1. Circuit Training (RW1, RW3, RW6)

Chip floorplanning involves creating a physical layout for a microprocessor, a task that has resisted automation for decades
and requires months of human engineering effort. To address this challenge, Google has made Circuit Training available as
an open-source framework that uses RL to generate chip floorplans (Guadarrama et al., 2021). In this domain, an agent
places macros (reusable blocks of circuitry) onto the chip canvas, with the objective of optimizing wirelength, congestion,
and density. Even though the state and action spaces are discrete, the number of states and actions increases combinatorially
with the number of nodes and cells on the chip (RW3). As an illustration, Mirhoseini et al. (2021) calculate that placing
1,000 clusters of nodes on a grid with 1,000 cells results in a state space on the order of 102,500, which is vastly larger
than the state space of Go at 10360. Chip design also involves optimizing for multiple objectives, such as maximizing
clock frequency, reducing power consumption, and minimizing chip area (RW6). During training, these objectives are
approximated using proxy metrics. However, evaluating the true objectives requires time-consuming simulations with
industry-grade placement tools 10. If the results are unsatisfactory, the proxy metrics must be adjusted, and the agents must
be retrained, leading to a costly iterative and resource-intensive process.

Important Metric Categories For Circuit Training agents, the following metric categories are most critical for real-world
use:

• Task Performance: Circuit Training agents must generate high-quality macro placements by minimizing wirelength,
congestion, and density of the chip.

• Inference Reliability: Chip designers use these agents to generate initial macro placements, then manually refine
them. Agents must produce consistent macro placements across multiple rollouts. Inconsistent placements would force
designers to repeatedly roll out the same policy to try achieving favored initial placements.

• Inference System Performance: Fast inference time is crucial to enable interactive use by human designers. Designers
need to quickly evaluate and refine different placement options.

• Generalization: The ability to handle new circuit architectures without retraining is vital, as new circuits are frequently
created. Strong generalization performance reduces the need to train separate agents for each new netlist.

• Data Cost: Many circuit netlists are proprietary, and generating high-quality macro placements requires significant
human effort. Understanding data collection costs helps evaluate the practicality of different learning approaches.

C.2. Web Navigation (RW1, RW4, RW6, RW7, RW8, RW9)
Software tools exist to automate browser tasks11, but due to the varied formatting of websites, hand-crafted algorithms are
not a viable solution for general web navigation. Researchers have begun applying learning algorithms to design agents that
can understand web pages (Gur et al., 2022) and automatically navigate through them to fill out forms (Gur et al., 2021;

10For example, Cadence Innovus and Synopsys IC Compiler
11Selenium, used in A2Perf, is a popular browser automation tool.
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2018). In A2Perf, we use gMiniWob (Gur et al., 2021) to create mock websites that act as environments for the agent.
See Appendix K for details about the website generation process and agent interaction. To achieve maximum rewards,
the agent must avoid malicious links and advertisement banners (RW4) while correctly filling out all fields in web forms.
The combination of these constraints create a multi-objective reward function (RW6). The explainability of an agent’s
decision-making is also important, particularly when agents handle sensitive tasks such as online shopping or investing
(RW7). Finally, agents must be robust to the system challenges of real-time inference, such as inference speed and network
delays (RW8, RW9).

Important Metric Categories For web navigation agents, the following metric categories are most critical for real-world
use:

• Task Performance: Agents must accurately complete web forms and navigate sites correctly.

• Inference System Performance: Agents need to operate at speeds comparable to human web browsing to provide a
seamless user experience. This includes both inference time and resource usage on consumer devices.

• Inference Reliability: Reliability is crucial for safety, as unreliable agents might occasionally click on malicious links
or advertisements. Even rare mistakes in web navigation can have serious consequences.

• Generalization: Websites vary greatly in design and structure. Agents must adapt to different layouts, styles, and
interaction patterns without requiring retraining for each new site.

• Training System Performance: Web navigation training involves processing HTML pages and running multiple
browser instances, creating significant computational demands.

C.3. Quadruped Locomotion (RW1, RW2, RW3, RW4, RW5, RW6, RW8, RW9)
In recent years, the robotics community has gradually shifted towards training autonomous agents for robotic control. A
prominent example of this trend is seen in quadruped locomotion, where RL has become the dominant technique. We
followed the work of Peng et al. (2020), in which a quadruped robot learns complex locomotion skills such as pacing,
trotting, spinning, hop-turning, and side-stepping by imitating motion capture data from a real dog.

Given the physical dynamics involved in quadruped locomotion, research often necessitates learning directly from limited
samples on the actual robot (RW2). Learning walking gaits also involves high-dimensional, continuous state and action
spaces (RW3), as the robot needs to precisely control multiple joints and limbs to navigate complex environments. The
agent must reason about complex dynamics, avoid unsafe falls (RW4), adapt gaits to various speeds and terrains (RW5), and
operate in partially observable environments (RW5) where states like contact forces are not directly measurable. Optimizing
robotic controllers is usually multi-objective (RW6), balancing competing objectives like locomotion speed, stability,
satisfying safety constraints, and minimizing energy expenditure. Furthermore, real-time inference (RW8) and dealing with
system delays (RW9) are critical for controlling robots, as slow computations or delays can negatively impact stability and
performance.

Important Metric Categories For quadruped locomotion agents, the following metric categories are most critical for
real-world use:

• Task Performance: Agents must accurately reproduce desired walking gaits, as poor imitation of natural movements
can lead to inefficient or unstable locomotion.

• Inference Reliability: The agent must maintain smooth, stable motions without sudden movements or changes in
behavior. Inconsistent movements could damage the robot or cause falls in real-world environments.

• Inference System Performance: Quadrupeds require real-time responsiveness from their onboard computers to
maintain stability. Both inference speed and energy efficiency are crucial, as robots often operate with limited
computing resources and battery power.

• Generalization: Robots must adapt to different terrains, slopes, and surface conditions without retraining. Strong
generalization also helps robots handle variations in their own morphology due to wear or manufacturing differences.
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Ariane (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost ↓ 48.28 0 0

Application Generalization (100 eps. [all tasks]) ↑ -2.18 -2.19 -2.05
Returns (100 eps.) ↑ -1.10 ± 0.04 -1.13 ± 0.04 -0.99 ± 7.25e-03

Reliability Dispersion Across Runs (IQR) ↓ N/A 0.03 ± 0.03 0.04 ± 0.02
Dispersion Within Runs (IQR) ↓ N/A 0.02 ± 0.03 4.77e-03 ± 4.92e-03
Long Term Risk (CVaR) ↓ N/A 1.20 0.03
Risk Across Runs (CVaR) ↑ N/A -1.17 -1.03
Short Term Risk (CVaR) ↓ N/A 0.07 0.01

System Energy Consumed (kWh) ↓ 0.11 ± 6.45e-04 108.20 ± 4.29 120.53 ± 2.78
GPU Power Usage (W) ↓ 211.35 ± 16.76 585.98 ± 172.50 692.94 ± 120.08
Mean RAM Usage (GB) ↓ 4.72 ± 0.53 849.37 ± 64.85 834.05 ± 55.90
Peak RAM Usage (GB) ↓ 5.25 ± 0.07 889.56 ± 23.44 906.45 ± 68.01
Wall Clock Time (Hours) ↓ 0.48 ± 2.61e-03 21.94 ± 0.90 23.95 ± 0.54

Ariane (Inference)
Reliability Dispersion Across Rollouts (IQR) ↓ 0.01 0.05 0.01

Risk Across Rollouts (CVaR) ↑ -1.23 -1.25 -1.01
System GPU Power Usage (W) ↓ 136.91 ± 21.48 69.50 ± 4.60 49.43 ± 30.29

Inference Time (ms) ↓ 10.0 ± 0.46 20.0 ± 2.69 20.0 ± 2.68
Mean RAM Usage (GB) ↓ 2.19 ± 0.21 2.15 ± 0.30 2.51 ± 0.49
Peak RAM Usage (GB) ↓ 2.29 ± 0.01 2.28 ± 0.13 2.71 ± 0.62

Table 4: Metrics for the Ariane Netlist task of CircuitTraining-v0. All metrics are averaged over ten random seeds. We
report mean and standard deviation for metrics where it is applicable. BC results are obtained by training on the entire
intermediate dataset. Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform
online rollouts in the environment. The ↑ symbol indicates metrics where higher values are better, while ↓ indicates metrics
where lower values are better. Bold values highlight the best performing algorithm for each metric.

D. Limitations and Future Work
A2Perf includes three domains that cover a diverse range of real-world applications and challenges, but there is room for
expansion to a wider range of tasks. Thanks to A2Perf’s integration with Gymnasium (Towers et al., 2023) (previously
OpenAI Gym) and the implementation of baselines using TF-Agents (Guadarrama et al., 2018), adding new domains and
baselines is straightforward, making it easy for researchers to contribute to the platform.

Future work could expand A2Perf to include multi-agent domains and tasks, reflecting real-world scenarios where au-
tonomous agents interact with other agents and humans. Many real-world applications inherently involve multiple agents
coordinating or competing: autonomous vehicles navigating in traffic, robot teams in warehouse settings, or trading agents
in financial markets. Integrating multi-agent domains would require additional metrics to capture interaction dynamics, such
as coordination efficiency, communication overhead, and emergent social behaviors. For example, extending the quadruped
locomotion domain to include multiple robots collaboratively navigating complex terrain would test both individual control
and collective coordination capabilities, potentially revealing new insights about algorithm robustness in social contexts.

Another area of future work is the addition of support for measuring system performance on custom hardware platforms.
This would provide more precise insights into performance in target deployment environments, as current evaluations
are conducted primarily on desktop and server machines. This extension is particularly important for edge computing
applications such as robotics, where power constraints, thermal limitations, and specialized accelerators significantly
influence real-world performance. By developing standardized benchmarking procedures for specific deployment platforms
such as NVIDIA Jetson12, Google Coral13, or custom FPGA implementations, A2Perf could offer more accurate predictions

12https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
13https://coral.ai/
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of deployment performance. This would help bridge the gap between research prototypes and production systems by
identifying specific optimization opportunities for the target hardware.

To further standardize evaluations in A2Perf, future work should address potential variations due to different hardware setups,
Python versions, and code implementations. Even with our current efforts to ensure reproducibility, subtle differences in
environment configurations can lead to meaningful performance variations. Creating a centralized evaluation server, similar
to the approach taken by MLPerf (Reddi et al., 2020), could further standardize comparisons by running all submissions
in identical environments. These enhancements would facilitate more accurate comparisons between different computing
environments.

As an open-source platform, A2Perf is designed to evolve through community contributions. Researchers can extend the
benchmark in multiple ways: by adding new domains through the standard Gymnasium interface, by implementing additional
baseline algorithms, or by introducing domain-specific metrics that capture other aspects of real-world performance. The
repository includes detailed contribution guidelines, templates, and documentation to facilitate these extensions. This
collaborative approach ensures A2Perf remains relevant to emerging research challenges while expanding its coverage of
real-world autonomous agent applications.

E. Additional Experiments
We present an extensive set of additional experiments that showcase A2Perf’s capabilities in evaluating autonomous agents
across various domains and tasks. The results encompass a wide range of metrics, including data cost, reliability, system
performance, and application performance, providing a holistic view of the strengths and limitations of different algorithmic
approaches.

The circuit training domain experiments (Appendix E.1) reveal interesting trade-offs between behavioral cloning, DDQN,
and PPO in terms of data efficiency, computational requirements, and performance consistency. Moving to the quadruped
locomotion domain (Appendix E.2), we observe how the reliability metrics shed light on the robustness and worst-case
behavior of the agents during both training and inference phases. The web navigation domain (Appendix E.2) introduces an
additional layer of complexity, with websites of varying difficulty levels. Here, the system performance metrics highlight the
substantial computational demands, particularly in terms of memory usage, associated with training web navigation agents.
To further facilitate a clear and intuitive comparison of the algorithms’ performance across all domains and tasks, we have
included graphical visualizations (Appendix E.4) that summarize the key metrics along different evaluation dimensions.

These experiments show A2Perf’s versatility in providing a comprehensive and nuanced evaluation of autonomous agents
operating in diverse and realistic settings. By considering multiple performance aspects and presenting the results in both
tabular and graphical formats, A2Perf enables researchers and practitioners to gain valuable insights into the behavior and
limitations of different algorithmic choices, ultimately guiding the development of more robust and efficient autonomous
agents.

E.1. Circuit Training

This section shows the full set of metrics for the toy macro standard cell and Ariane netlists in the circuit training domain.
The results highlight the differences in data cost, reliability, system performance, and application performance between
behavioral cloning (BC), DDQN, and PPO.

E.2. Quadruped Locomotion

This section reports the metrics for the dog pace, trot, and spin gaits in the quadruped locomotion domain. The reliability
metrics provide insights into the stability and worst-case performance of the algorithms during training and inference.

E.3. Web Navigation

This section details the evaluation on websites of varying difficulty levels in the web navigation domain. The system
performance metrics underscore the significant computational requirements, especially in terms of RAM usage, for training
web navigation agents.
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Toy Macro Standard Cell (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 4.44 0 0

Application Generalization (100 eps. [all tasks]) -2.19 -2.20 -2.13
Returns (100 eps.) -0.97 ± 2.27× 10−3 -1.05 ± 0.04 -0.97 ± 8.09× 10−3

Reliability Dispersion Across Runs (IQR) N/A 0.01 ± 0.01 9.07e-03 ± 6.43× 10−3

Dispersion Within Runs (IQR) N/A 8.80× 10−3 ± 0.01 2.51× 10−3 ± 3.61× 10−3

Long Term Risk (CVaR) N/A 1.10 0.04
Risk Across Runs (CVaR) N/A -1.08 -0.99
Short Term Risk (CVaR) N/A 0.03 9.89× 10−3

System Energy Consumed (kWh) 0.02 ± 1.97× 10−4 5.55 ± 2.03 15.37 ± 3.79
GPU Power Usage (W) 188.20 ± 21.98 448.00 ± 200.41 307.05 ± 69.75
Peak RAM Usage (GB) 4.71 ± 0.02 525.99 ± 205.64 675.26 ± 45.30
Wall Clock Time (Hours) 0.10 ± 1.36× 10−3 0.29 ± 0.57 1.79 ± 2.16

Toy Macro Standard Cell (Inference)
Reliability Dispersion Across Rollouts (IQR) 1.68× 10−3 0.09 2.43× 10−3

Risk Across Rollouts (CVaR) -0.97 -1.10 -0.99
System GPU Power Usage (W) 104.97 ± 22.85 59.45 ± 1.43 58.97 ± 1.14

Inference Time (ms) 8.93 ± 0.51 20 ± 2.69 20 ± 2.67
Mean RAM Usage (GB) 1.92 ± 0.42 1.45 ± 0.48 1.99 ± 0.30
Peak RAM Usage (GB) 2.14 ± 0.03 2.10 ± 0.05 2.16 ± 0.07

Table 5: Metrics for the "Toy Macro" netlist task of CircuitTraining-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.

Dog Pace (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 22.53 0 0

Application Generalization (100 eps. [all tasks]) 3.99 3.36 5.03
Returns (100 eps.) 7.00 ± 4.68 9.94 ± 15.59 6.96 ± 6.72

Reliability Dispersion Across Runs (IQR) N/A 9.63 ± 7.27 3.61 ± 3.88
Dispersion Within Runs (IQR) N/A 2.22 ± 1.97 2.98 ± 3.64
Long Term Risk (CVaR) N/A 13.00 25.82
Risk Across Runs (CVaR) N/A 13.74 8.55
Short Term Risk (CVaR) N/A 5.81 10.19

System Energy Consumed (kWh) 0.11 ± 0.02 32.46 ± 0.26 36.22 ± 2.33
GPU Power Usage (W) 240.64 ± 5.41 280.12 ± 23.69 266.37 ± 9.54
Mean RAM Usage (GB) 3.21 ± 0.24 532.93 ± 14.28 516.24 ± 75.03
Peak RAM Usage (GB) 3.25 ± 0.01 534.26 ± 2.04 545.16 ± 0.50
Wall Clock Time (Hours) 0.46 ± 0.07 18.73 ± 0.19 19.41 ± 2.74

Dog Pace (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.52 8.76 4.80

Risk Across Rollouts (CVaR) 0.33 0.46 1.69
System GPU Power Usage (W) 60.37 ± 1.78 59.11 ± 1.31 61.41 ± 1.96

Inference Time (ms) 2.33 ± 0.54 2.56 ± 0.39 2.52 ± 0.74
Mean RAM Usage (GB) 1.69 ± 0.31 1.81 ± 0.14 1.71 ± 0.30
Peak RAM Usage (GB) 1.82 ± 0.03 1.84 ± 9.05e-03 1.85 ± 0.04

Table 7: Metrics for the "dog pace" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.

17



Dog Trot (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 15.77 0 0

Application Generalization (100 eps. [all tasks]) 3.87 3.09 4.49
Returns (100 eps.) 1.06 ± 0.26 1.49 ± 1.02 3.51 ± 2.88

Reliability Dispersion Across Runs (IQR) N/A 9.07 ± 4.93 0.85 ± 1.29
Dispersion Within Runs (IQR) N/A 0.82 ± 0.84 0.93 ± 1.11
Long Term Risk (CVaR) N/A 6.79 8.46
Risk Across Runs (CVaR) N/A 6.00 2.58
Short Term Risk (CVaR) N/A 2.41 3.20

System Energy Consumed (kWh) 0.12 ± 0.02 16.82 ± 0.29 19.17 ± 0.64
GPU Power Usage (W) 242.12 ± 7.53 277.71 ± 23.47 269.18 ± 10.12
Mean RAM Usage (GB) 3.21 ± 0.25 535.00 ± 18.77 535.99 ± 29.49
Peak RAM Usage (GB) 3.26 ± 0.01 536.47 ± 1.98 544.80 ± 4.39
Wall Clock Time (Hours) 0.46 ± 0.06 18.57 ± 0.23 18.99 ± 6.78

Dog Trot (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.32 0.89 1.25

Risk Across Rollouts (CVaR) 0.63 0.36 1.33
System GPU Power Usage (W) 59.32 ± 1.08 58.91 ± 1.28 59.39 ± 1.23

Inference Time (ms) 2.32 ± 0.49 2.55 ± 0.57 2.45 ± 0.35
Mean RAM Usage (GB) 1.66 ± 0.33 1.76 ± 0.25 1.80 ± 0.17
Peak RAM Usage (GB) 1.82 ± 8.77× 10−4 1.85 ± 0.02 1.85 ± 0.03

Table 8: Metrics for the "dog trot" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.
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Dog Spin (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 30.17 0 0

Application Generalization (100 eps. [all tasks]) 3.97 2.69 4.61
Returns (100 eps.) 1.54 ± 0.42 3.82 ± 6.22 3.84 ± 1.46

Reliability Dispersion Across Runs (IQR) N/A 7.92 ± 4.60 0.74 ± 0.76
Dispersion Within Runs (IQR) N/A 1.00 ± 1.08 0.84 ± 1.26
Long Term Risk (CVaR) N/A 8.88 14.37
Risk Across Runs (CVaR) N/A 8.29 3.82
Short Term Risk (CVaR) N/A 3.09 2.99

System Energy Consumed (kWh) 0.10 ± 0.04 17.42 ± 0.35 18.88 ± 0.59
GPU Power Usage (W) 216.72 ± 68.63 278.38 ± 22.60 264.46 ± 9.49
Mean RAM Usage (GB) 3.18 ± 0.26 534.56 ± 21.28 531.27 ± 55.64
Peak RAM Usage (GB) 3.23 ± 0.08 536.10 ± 3.03 477.22 ± 172.63
Wall Clock Time (Hours) 0.45 ± 0.08 17.13 ± 6.07 17.02 ± 9.05

Dog Spin (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.37 2.41 1.78

Risk Across Rollouts (CVaR) 0.28 0.12 0.55
System GPU Power Usage (W) 60.10 ± 1.14 59.70 ± 1.22 59.65 ± 1.73

Inference Time (ms) 2.33 ± 0.66 2.45 ± 0.48 2.41 ± 0.22
Mean RAM Usage (GB) 1.68 ± 0.32 1.79 ± 0.22 1.75 ± 0.26
Peak RAM Usage (GB) 1.82 ± 0.03 1.85 ± 0.02 1.84 ± 0.02

Table 9: Metrics for the "dog spin" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.
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Difficulty 1, 1 Website (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 14.15 0 0

Application Generalization (100 eps. [all tasks]) -12.94 -11.15 -24.54
Returns (100 eps.) -3.57 ± 2.80 -7.55 ± 5.74 -13.45 ± 0.51

Reliability Dispersion Across Runs (IQR) N/A 0.73 ± 0.63 4.20 ± 1.45
Dispersion Within Runs (IQR) N/A 0.37 ± 0.68 0.57 ± 0.53
Long Term Risk (CVaR) N/A 9.32 12.12
Risk Across Runs (CVaR) N/A -2.75 -13.11
Short Term Risk (CVaR) N/A 1.79 1.86

System Energy Consumed (kWh) 0.04 ± 6.02× 10−4 29.56 ± 7.23 28.82 ± 1.19
GPU Power Usage (W) 125.89 ± 2.53 265.09 ± 21.50 305.15 ± 34.41
Mean RAM Usage (GB) 4.10 ± 0.33 1140.98 ± 580.55 1592.45 ± 388.64
Peak RAM Usage (GB) 4.23 ± 0.04 1931.54 ± 242.31 2305.57 ± 135.48
Wall Clock Time (Hours) 0.31 ± 4.91× 10−3 8.13 ± 5.17 10.50 ± 0.44

Difficulty 1, 1 Website (Inference)
Reliability Dispersion Across Rollouts (IQR) 3.36 11.75 0.50

Risk Across Rollouts (CVaR) -10.65 -13.25 -13.75
System GPU Power Usage (W) 108.61 ± 15.76 59.61 ± 1.41 60.26 ± 1.14

Inference Time (ms) 3.07 ± 0.47 110 ± 9.93 120 ± 9.71
Mean RAM Usage (GB) 1.97 ± 0.32 2.08 ± 0.20 2.12 ± 0.17
Peak RAM Usage (GB) 2.11 ± 0.11 2.18 ± 0.11 2.19 ± 0.09

Table 10: Metrics for "difficulty 1, 1 website" task of WebNavigation-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.
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Difficulty 1, 5 Websites (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 13.66 0 0

Application Generalization (100 eps. [all tasks]) -13.34 -11.03 -23.86
Returns (100 eps.) -4.87 ± 3.33 -3.43 ± 4.58 -12.37 ± 3.53

Reliability Dispersion Across Runs (IQR) N/A 0.43 ± 0.55 3.42 ± 1.08
Dispersion Within Runs (IQR) N/A 0.49 ± 0.97 0.75 ± 0.55
Long Term Risk (CVaR) N/A 11.27 11.70
Risk Across Runs (CVaR) N/A -1.26 -12.60
Short Term Risk (CVaR) N/A 2.47 2.05

System Energy Consumed (kWh) 0.04 ± 4.82× 10−4 31.59 ± 5.19 28.48 ± 1.22
GPU Power Usage (W) 126.04 ± 4.03 265.81 ± 22.08 303.28 ± 34.99
Mean RAM Usage (GB) 4.03 ± 0.34 1206.86 ± 466.37 1545.56 ± 427.22
Peak RAM Usage (GB) 4.15 ± 0.11 1928.69 ± 209.62 2227.07 ± 210.77
Wall Clock Time (Hours) 0.30 ± 3.71× 10−3 9.35 ± 4.70 10.45 ± 0.31

Difficulty 1, 5 Websites (Inference)
Reliability Dispersion Across Rollouts (IQR) 5.96 0.29 0.50

Risk Across Rollouts (CVaR) -11.36 -13.46 -13.75
System GPU Power Usage (W) 108.13 ± 16.85 60.87 ± 5.78 60.17 ± 1.67

Inference Time (ms) 3.04 ± 0.44 110 ± 9.83 120 ± 9.21
Mean RAM Usage (GB) 1.97 ± 0.33 2.07 ± 0.32 2.12 ± 0.16
Peak RAM Usage (GB) 2.12 ± 0.03 2.57 ± 0.86 2.19 ± 0.01

Table 11: Metrics for "difficulty 1, 5 websites" task of WebNavigation-v0. All metrics are averaged over ten random seeds.
Note that the training reliability metrics for BC are marked as “N/A” since BC does not perform online rollouts in the
environment.
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E.4. Radar Plots for Easy Visual Comparison

These figures provide a graphical representation of the key metrics across all domains and tasks, enabling a visual comparison
of the algorithms’ performance along the different evaluation axes.
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Figure 5: Graphical representation of metrics for the "dog spin" gait of QuadrupedLocomotion-v0
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Figure 6: Graphical representation of metrics for the "dog trot" gait of QuadrupedLocomotion-v0

22



GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

CircuitTraining-v0 Toy Macro Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

CircuitTraining-v0 Toy Macro Inference Metrics

Figure 8: Graphical representation of metrics for the "Toy Macro" netlist task of CircuitTraining-v0
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Figure 9: Graphical representation of metrics for the "Ariane" netlist task of CircuitTraining-v0
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Figure 10: Graphical representation of metrics for the "difficulty 1, 1 website" task of WebNavigation-v0
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Figure 11: Graphical representation of metrics for the "difficulty 1, 5 websites" task of WebNavigation-v0

F. Experimental Setup
F.1. Training

We used the Tensorflow Agents (Guadarrama et al., 2018) library to conduct distributed reinforcement learning experiments
across the three domains: computer chip floorplanning, web navigation, and quadruped locomotion. Our training setup
consisted of one training server (a Google Cloud a2-highgpu-8g instance1) equipped with four NVIDIA A100 GPUs, and
multiple collect servers (Google Cloud n2-standard-96 instances2) with 96 vCPUs running in parallel.

The number of collect jobs running simultaneously varied depending on the specific domain and the available resources
(such as CPU and memory) on the collect machines, which are important for running the environments efficiently. When
using a collect machine with 96 vCPUs, we adjusted the number of environment instances based on the computational
requirements of each domain:

1cloud.google.com/compute/docs/gpus
2cloud.google.com/compute/docs/general-purpose-machines
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Figure 12: Graphical representation of metrics for the "difficulty 1, 10 websites" task of WebNavigation-v0

1. Quadruped Locomotion: With 96 vCPUs on the collect machine, we ran 44 quadruped locomotion environment
instances concurrently using Python 3.9.

2. Computer Chip Floorplanning: For the computer chip floorplanning domain, we ran 25 computer chip floorplanning
environment instances on a collect machine with 96 vCPUs using Python 3.10.

3. Web Navigation: When running web navigation experiments on a collect machine with 96 vCPUs, we instantiated 40
web navigation environment instances simultaneously using Python 3.10.

The behavioral cloning experiments for all three domains used the same setup as the online training experiments, with one
training server equipped with four A100 GPUs.

F.2. Inference

For the inference phase, we used a single machine equipped with one NVIDIA V100 GPU to evaluate the trained models
across all three domains: computer chip floorplanning, web navigation, and quadruped locomotion. The difference in
hardware between the training and inference setups does not affect the application performance metrics, as these metrics are
independent of the hardware and reflect the effectiveness of the trained models. However, the system performance metrics,
such as inference time and memory usage, may vary depending on the specific hardware used during inference.

G. Hyperparameters

H. Dataset Collection
To collect datasets for each domain and task, we periodically saved the policies at fixed intervals throughout the training
process. We then evaluated all the saved policies on 100 episodes for each domain and task. Based on these evaluations, we
created a distribution of median returns and assigned an expertise level to each policy as follows:

1. Novice: The median return lies within one standard deviation below the mean.

2. Intermediate: The median return is within one standard deviation above or below the mean.

3. Expert: The median return is one standard deviation above the mean or higher.

In some cases, certain domains or tasks were too challenging, resulting in no policies of a given skill level. In such instances,
we only provide a novice dataset.
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I. Dataset Information
1. Dataset documentation and intended uses:

• The A2Perf datasets consist of data collected from three simulated environments: computer chip floorplanning,
web navigation, and quadruped locomotion. The data was generated by running reinforcement learning policies at
various stages of training, capturing the experiences of these policies interacting with the respective environments.
The datasets are intended for use in offline reinforcement learning, imitation learning, and hybrid approaches,
allowing researchers to evaluate and compare different algorithms without the need for online data collection.

2. Dataset availability:

• The datasets can be accessed at:
– Circuit Training: https://drive.google.com/drive/folders/1UMhLlnYmfbnjBPN_
JwVy4YXDUahXrWf6

– Quadruped Locomotion: https://drive.google.com/drive/folders/
1n1BJFip-reSPif8Bv3jXAnSOgfQAEje7

– Web Navigation: https://drive.google.com/drive/folders/
13EmCscVatl7Q5EFdWFRpwKlA2yRfonE5

3. Data format and usage:

• The datasets are provided in the widely-used HDF5 format, a data model and file format designed for efficient
storage and retrieval of large datasets. Detailed instructions on how to read and use the data with the Minari
framework are provided at: https://minari.farama.org/

4. Licensing:

• The A2Perf datasets are released under the MIT License. The authors confirm that they bear all responsibility in
case of violation of rights.

5. Maintenance and long-term preservation:

• The datasets are hosted on a Google Cloud Bucket maintained by the Farama Foundation, a non-profit organization
dedicated to supporting open-source machine learning projects. This ensures the long-term availability and
accessibility of the datasets for the research community.

J. Software Usage
A2Perf is a benchmark harness designed to be used flexibly on various machines. The user has the option to either run it in a
Docker container or to run the benchmark locally. A Docker container is available in the harness and can be adapted to
your needs. If you would like to run the benchmark locally, a guide is available to install the A2Perf benchmark harness on
your Linux or MacOS system. While you can benchmark on both operating systems, it is important to note that system
performance metrics are tracked using CodeCarbon. This allows to capture energy, power and memory usage at regular time
intervals, and uses pyRAPL to compute the Running Average Power Limit (RAPL). However, RAPL uniquely measures
power consumption information for Intel CPUs, DRAM for server architectures and GPU for client architectures. When
using systems using CPU architectures different then the Intel CPUs, the power consumption metric will return a computed
estimate rather than a measured metric.

The benchmark harness allows you to benchmark both the training and inference of your algorithm and agents respectively.
In order to benchmark your algorithms, you need to create a submission folder which includes several files which A2Perf
calls. First, a training file, train.py contains a function train(), which starts the training process of your algorithm
when called. Similarly, inference.py covers the inference of your trained model. This file includes several functions
responsible for the loading of your trained model, preprocessing observations and running inference on your model. Using a
requirements.txt file, additional Python packages and versioning can be specified. Running the benchmark is done
through a command line interface. Using flags, we can pass additional information to the submission to set up the benchmark.
A gin_config flag allows the user to define the settings for your environment and training process. Additionally, we need
to pass the path to the submission folder using the participant_module_path flag. For a more detailed description,
tutorials are available in the repository.
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K. Website Generation & Agent Interaction
To create environments for the web navigation tasks, we generate synthetic websites that agents must learn to navigate.
These websites serve as training and evaluation environments, where agents need to fill forms and interact with various web
elements. Here we describe our procedural website generation process.

To generate the set of websites W , we first assume a target number of websites, denoted as Nwebsites. Following the approach
in Gur et al. (2021) (shown in Table 4 of the paper), we consider 42 possible primitives that can be added to a web page and
introduce two additional primitives: a "new page" primitive and a "stop" primitive, resulting in a total of 44 primitives.

The website generation process begins with an empty web page. We repeatedly sample uniformly from the 44 primitives and
add them to the current page. If the "new page" primitive is selected during the sampling process, we start adding primitives
to a new linked page. If the "stop" primitive is selected, we conclude the generation of the current website and proceed to
generate the next website, if necessary. This process continues until we have generated the desired number of websites,
Nwebsites. Each website in the resulting set W consists of one or more web pages, with each page containing a sampled set of
primitives.

We define the difficulty of a web page as the probability of a random agent interacting with the correct primitive(s).
The difficulty of page pi is given by − log

(
nactive

nactive+npassive

)
, where nactive and npassive denote the number of active and

passive primitives on the page, respectively. The difficulty of an entire sequence of web pages is determined by summing
the difficulty of all individual pages it contains. Based on these difficulty calculations, we partition the websites into
three difficulty levels. The three levels of difficulty correspond to the probability thresholds of 50%, 25%, and 10%
for levels 1, 2, and 3, respectively. Users can select a specific difficulty level of web navigation by executing Python
commands such as env = gym.make("WebNavigation-Difficulty-01-v0", num_websites=1), where
the num_websites argument defines the pool of websites available for the environment. During training or evaluation,
each episode begins by randomly selecting one website from this pool at the specified difficulty level. For example, if
num_websites=10, the environment will generate 10 websites at the specified difficulty level, and each episode will
randomly assign one of these websites for the agent to navigate. At each timestep, the agent can interact with an HTML
element on the page, such as modifying the text field or clicking on the element, with the objective of entering correct
information into forms and clicking "next" or "submit" to advance between web pages.

L. Reliability Metrics

14https://en.wikipedia.org/wiki/Expected_shortfall
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Phase Metric Name Description Equation

Tr
ai

ni
ng

Dispersion Within Runs Measures higher-frequency variability using
IQR within a sliding window along the

detrended training curve. Lower values indicate
more stable performance.

1

T − 4

T−2∑
t=3

IQR
(
{∆Pt′}t+2

t′=t−2

)

Short-term Risk (CVaR) Estimates extreme short-term performance
drops. Lower values indicate less risk of sudden

drops.

CVaRα (∆Pt)
T
t=1

Long-term Risk (CVaR) Captures potential for long-term performance
decrease. Lower values indicate less risk of

degradation.

CVaRα

(
max
t′≤t

Pt′ − Pt

)

Dispersion Across Runs Measures variance across training runs. Lower
values indicate more consistent performance

across runs.

1

T

T∑
t=1

IQR
(
{Pt,j}nj=1

)
Risk Across Runs (CVaR) Measures expected performance of

worst-performing agents. Higher values indicate
better worst-case performance.

CVaRα (PT,j)
n
j=1

In
fe

re
nc

e

Dispersion Across Rollouts Measures variability in performance across
multiple rollouts. Lower values indicate more

consistent performance.

IQR (Ri)
m
i=1

Risk Across Rollouts (CVaR) Measures worst-case performance during
inference. Higher values indicate better

worst-case performance.

CVaRα (Ri)
m
i=1

Table 16: Reliability Metrics from Chan et al. (2019) with Mathematical Formulations. Pt: performance at time t. Pt,j :
performance at time t for run j. Ri: performance during rollout i. ∆Pt = Pt − Pt−1: performance change between
consecutive time steps (detrended value). CVaRα

14: Conditional Value at Risk at level α. IQR: Inter-Quartile Range. Sliding
window length is 5 time steps centered on t, calculated over all t from 3 to T − 2 to ensure the window is valid. T : total
number of time steps. n: number of runs (10 for our experiments). m: number of rollouts (100 for our experiments).
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