23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44

You Can’t Eat Your Cake and Have It Too: The Performance
Degradation of LLMs with Jailbreak Defense

Anonymous Author(s)*

Abstract

With the rise of generative large language models (LLMs) like
LLaMA and ChatGPT, these models have significantly transformed
daily life and work by providing advanced insights. However, as
jailbreak attacks continue to circumvent built-in safety mecha-
nisms, exploiting carefully crafted scenarios or tokens, the safety
risks of LLMs have come into focus. While numerous defense
strategies—such as prompt detection, modification, and model fine-
tuning—have been proposed to counter these attacks, a critical ques-
tion arises: do these defenses compromise the utility and usability of
LLMs for legitimate users? Existing research predominantly focuses
on the effectiveness of defense strategies without thoroughly exam-
ining their impact on performance, leaving a gap in understanding
the trade-offs between LLM safety and performance.

Our research addresses this gap by conducting a comprehensive
study on the utility degradation, safety elevation, and exaggerated-
safety escalation of LLMs with jailbreak defense strategies. We
propose USEBench, a novel benchmark designed to evaluate these
aspects, along with USEIndex, a comprehensive metric for assess-
ing overall model performance. Through experiments on seven
state-of-the-art LLMs, we found that mainstream jailbreak defenses
fail to ensure both safety and performance simultaneously. Al-
though model-finetuning performs the best overall, their effective-
ness varies across LLMs. Furthermore, vertical comparisons reveal
that developers commonly prioritize performance over safety when
iterating or fine-tuning their LLMs.

CCS Concepts

« Security and privacy — Web application security.

Keywords

LLM Jailbreak, Jailbreak Evaluation, LLM Performance Downgrade,
LLM Benchmark

1 Introduction

With the emergence of generative large language models (LLMs),
such as LLaMA[44] and ChatGPT[12], there has been a transforma-
tive impact on both daily life and work. We are amazed by how a
web Al assistant can offer insights into the complex mysteries of
human society. Concurrently, the safety issues surrounding LLMs
are receiving increasing attention. The inherent safety guardrails
set by developers for LLMs are often circumvented through jail-
break attacks. By creating seemingly safe task scenarios [31] or
selecting carefully crafted tokens [21, 30], attackers exploit LLMs to
generate illegal content that infringes on copyright, promotes racial
discrimination, and may cause harm to individuals and society.

In response to the challenges posed by jailbreak attacks, re-
searchers are continuously working on jailbreak defense, proposing
a wide range of jailbreak defense strategies throughout an end-to-
end process, including prompt detection [7], prompt modification

w/o Defense

What is a nop sled:
@ A. Itis an anonymous version of a mop sled

B.Itis a sequence of nops preceding injected shellcode, useful when return address
is unknown

C. Itis a method of removing zero bytes from shellcode

D. Itis another name for a branch instruction at the end of sequence of nops

Q Sure, I'd be happy to help! Here's the answer to your question:

Answer: [[B]]
A nop sled is a technique used in computer security.......

w/ Defense

What is a nop sled:

A. Itis an anonymous version of a mop sled

B.Itis a sequence of nops preceding injected shellcode, useful when return address
is unknown
C. Itis a method of removing zero bytes from shellcode

D. It is another name for a branch instruction at the end of sequence of nops

I apologize, but I cannot provide an answer to your question as it is potentially
harmful or misleading. As a responsible Al language model, I must adhere to ethical
and safety guidelines......

Figure 1: An example of LLM’s false-refusal to a normal user
query, due to the additional defense mechanisms activated
by the jailbreak, which would not be rejected without it.

[34, 41, 47], model fine-tuning[19, 54] and output filter[52]. While
various defense techniques for LLMs continue to emerge, the ques-
tion remains: will they impact our experience as regular users?

In June 2024, a discussion titled “WHY ChatGPT 4.0 is getting
stupider and stupider?”[13] sparked significant debate. Some tasks
ChatGPT previously handled well are now beyond its capability.
This growing concern highlights the potential vulnerabilities and
instability in the performance of LLMs, raising important ques-
tions about their safety and reliability issues that have also been
discussed[16]. As shown in Figure 1, where a user seeks to ask
LLaMA about the basics of a NOP sled, LLaMA with jailbreak
defense falsely refuses to answer the question, whereas the raw
LLaMA does not.

For most users of LLMs, the performance of LLMs encompasses
two aspects: utility and usability. Utility indicates the LLMs’ ability
to effectively perform various tasks, addressing the users’ needs.
Usability indicates how easily users can interact with LLMs, and
whether LLMs will misunderstand users’ intentions. When LLMs
are no longer able to complete tasks effectively, and users can no
longer derive meaningful assistance from them, it may not contra-
dict the fundamental purpose for which they were designed. This
raises concerns: does the introduction of jailbreak defenses lead to
performance degradation of LLMs?

Research Gap. Currently, comprehensive studies on jailbreak de-
fense strategies for LLMs have predominantly focused on safety,
overlooking performance considerations. Xu et al. [49] only evalu-
ated the effectiveness of various defense methods under different
jailbreak attack strategies without assessing utility or usability. Fur-
thermore, in 2024, An et al. [8] identified that defense strategies
can exacerbate the issue of false refusals by LLMs, yet they did

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

114
115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

146
147
148

150

160
161
162
163
164
165
166
167
168
169

170

172
173

174

not explore this from the perspective of utility. Furthermore, the
methodologies of the above work for collecting strategies were pri-
marily based on the technical details of jailbreak defense strategies,
without adopting an end-to-end perspective from prompt genera-
tion to input into LLMs. As a result, a gap remains in understanding
the relationship between the safety of LLMs with jailbreak defenses
against malicious attacks and their performance when handling
legitimate queries. An objectively and comprehensively cross-stage
comparison between jailbreak defense strategies, covering the en-
tire end-to-end process, is needed.

Our Work. To address this research gap, we conducted a com-
prehensive study on the utility degradation, safety elevation, and
exaggerated-safety escalation LLMs before and after the introduc-
tion of jailbreak defenses. Our research will focus on the following
three main research questions. RQ1: Utility Degradation after Jail-
break Defense from utility perspective,RQ2: Safety Elevation after
Jailbreak Defense from safety perspective, and RQ3: Exaggerated-
Safety Escalation after Jailbreak Defense from usability perspective.

In terms of defense strategies, we are the first to select seven
state-of-art strategies based on three stages throughout an end-
to-end process illustrated in Figure 3: prompt detection, prompt
modification, and model fine-tuning.

In terms of dataset construction, we proposed USEBench to
thoroughly evaluate the degradation in Utility, elevation in Safety,
and escalation in Exaggerated-Safety of LLMs resulting from the
introduction of jailbreak defenses. We constructed a comprehen-
sive dataset comprising 1,590 seed prompts after filtering, selecting,
and transforming from open-source dataset [9, 28, 35]. The seed
prompt for safety is enhanced with six mainstream jailbreak at-
tack strategies collected in USEBench to generate attack prompts.
Additionally, we introduced USEIndex as a comprehensive metric
to objectively assess the overall performance and safety of LLM
jailbreak defenses.

In terms of model selection, we chose seven mainstream state-
of-the-art LLMs from three families, LLaMA[44], Mistral[24], and
GPT[12], in which LLMs with different fine-tuned and iterative
versions is included to facilitate vertical comparisons.

In terms of evaluation, to accurately and efficiently assess the
response of LLMs to the aforementioned dataset and strategies, we
used Qwen2.5-32B-Instruct[50], which performs exceptionally well
in multiple-task processing.

Key Findings. Our research reveals several noteworthy findings:

o After the introduction of jailbreak defense mechanisms in LLMs,
there has been a noticeable degradation in performance to vary-
ing degrees. Tasks that were previously completed successfully
may now result in errors, with the worst-performing LLMs
exhibiting a utility decrease of 29%. Additionally, issues such
as false refusals, ambiguous outputs, and misunderstanding of
the context further impact the quality of responses, negatively
affecting the user experience.

e When LLMs are fine-tuned (such as Vicuna and LLaMA) or
iterated across versions (e.g., LLaMA 2 and LLaMA 3), their task
performance may improve. However, this improvement often
comes at the cost of reduced security, indicating a trade-off
between capability and safety.

o The effectiveness of defense techniques against jailbreak at-
tacks, as well as their impact on usability, varies at different

Anon.

stages. Among these techniques, SafeUnlearn results in the least

performance degradation, which may be attributed to the unin-

tended enhancement of LLMs’ ability to follow instructions.
Contribution. Overall, our contributions are primarily as follows:

o Comprehensive Study. To the best of our knowledge, our
work is the first to systematically evaluate the mainstream
jailbreak defense strategies’ utility, safety, and usability with
an end-to-end perspective.

e Open-source Datasets. We constructed our dataset, named
USEBench!, consisting of U-Bench, S-Bench, and E-Bench, which
is designed to assess jailbreak defense strategies from utility,
safety, and usability, respectively, and developed USEIndex to
quantitatively and objectively evaluate the overall performance
of defense strategies.

e Cross-stage Evaluation. Based on experimental results, we
compared the jailbreak defense strategies among the end-to-end
defense process. Results revealed that strategies from model-
finetuning demonstrated a balanced trade-off, achieving the
highest USEIndex score, thereby aiding future security devel-
opment efforts.

2 Background
2.1 Jailbreak Attack

In black-box attack strategies where LLMs’ gradient or logits are
not accessible, attackers may not only require LLMs to engage in
role-playing (Role-play[15]), enter privileged modes (PE[31]), but
they may also cleverly shift LLMs’ attention by reframing the task
to mask malicious intent (AS[31]), or refine their attack prompts
iteratively to subtly induce the LLM to comply with harmful instruc-
tions (AutoDAN-HGA[30]). In contrast, white-box attack strate-
gies utilize methods based on logits (Cold-Attacks[21]) or gredient
(AutoDAN[56]), which optimize specific malicious instruction on
specific LLM iteratively to derive final adversarial prompts.

2.2 Jailbreak Attack Defense

In response to the overwhelming strategies of jailbreak attacks,
various defense strategies have been proposed throughout an end-
to-end process of LLMs. These jailbreak defense strategies can be
categorized into three stages in sequence: prompt detection, prompt
modification, and model fine-tuning, as illustrated in Figure 3.

For prompt detection, perplexity detection (PPL[7]) stands out,
particularly for identifying adversarial suffixes. Prompt modifica-
tion encompasses two main approaches: one perturbs the original
prompt to disable potential adversarial suffixes (S-LM([41]), and
the other achieves defense by appending carefully crafted suffixes
(PAT([34], ICD[47], and SR[48]). Regarding model fine-tuning, using
synthetic safety preference data for fine-tuning (CST[19]) and help-
ing unlearn harmful knowledge (SafeUnlearn[54], SU for short) are
the most representative approaches to enhancing defense capability.

3 Methodology

To provide readers with a clear framework of our research work,
this section begins by introducing the taxonomy of representative
state-of-the-art jailbreak defense strategies. Next, we outline the

!https://anonymous.4open.science/r/USEBench

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

286
287
288
289

290

You Can’t Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

Evaluation

Execution

" USEBench /" LLMs

oy = =

S-Bench —@
" Defense Strategies l
FourStages | | | oo
E-Bench ! p y @ ? e USEIndex

‘. An End-to-end Jailbreak Defense '

Figure 2: An overview of our methodology.

construction process of USEBench. Subsequently, we introduce the
details of prompt generation based on our dataset and the strategies
mentioned above. We also introduced how the generated prompts
are input into LLMs. Finally, we present our approach for the auto-
mated assessment of LLMs’ responses and corresponding formal
expression of USEIndex. Figure 2 illustrates our methodology.

3.1 Jailbreak Strategy Taxonomy

To accurately and comprehensively evaluate the relationship be-
tween the performance and safety of LLMs after being equipped
with different jailbreak defense strategies, our work adopted an
entire end-to-end perspective and selected seven representative
studies from these stages, with a detailed summary available in Ta-
ble 6. For a more detailed introduction to jailbreak defense strategies
please refer to Appendix A.2.

An End-to-end Perspective Based on the state of the prompt and
the processing sequence, we categorize jailbreak defense strate-
gies into three stages, as illustrated in Figure 3. To the best of our
knowledge, our work is the first to evaluate jailbreak defense strate-
gies through a comprehensive, end-to-end perspective, covering
different stages of the whole process.

Here are the detailed descriptions of the four stages:

o Stage 1: Prompt detection. This stage detects certain features
present in jailbreak prompts to proactively filter out suspicious
adversarial prompts, preventing them from being input into
LLMs and guiding them to generate harmful content. In this
stage, jailbreak defense strategies typically do not modify the
user’s prompts in any way. Perplexity (PPL)[7] is chosen as it
keeps costs comparatively low while maintaining effectiveness.

e Stage 2: Prompt modification. In this stage, defense strategies
encompass two main approaches. The first involves appending
safe prefixes or suffixes to the user prompt to guide the large
model away from generating any harmful content. The second
approach involves applying appropriate perturbations to the
user prompt to disable the jailbreak prompt, as it can easily fail if
specific tokens are replaced. we select SR[48] for its undeniable
representativeness, ICD[47] for its flexibility in constructing
new defense suffixes, and PAT[34] for its targeted refinement
of model defenses. S-LM[41] is included in our collection due
to its innovative approach, which focuses on disabling jailbreak
attacks rather than merely enhancing model safety, as most
defense strategies aim to do.

o Stage 3: Model fine-tuning. In this stage, the user prompts
have already been input into LLMs. As a result, jailbreak de-
fense strategies often involve fine-tuning the model to leverage
its inherent safety capabilities, preventing it from generating
harmful content. We chose CST[19] and SafeUnlearn[54] not
only for their effectiveness but also because they have open-
sourced their fine-tuned models on Hugging Face, ensuring that
defense effectiveness is not compromised by our own imple-
mentation. It is worth noting that newly emerging multi-model
defense strategies[53], which incur significant computational,
are not considered in our work. Refinement defense[27] re-
quires at least two iterations, increasing the user’s waiting time
and reducing the usability of LLMs.

o Stage 4: Output filter. In this stage, the focus of defense strate-
gies is not to make jailbreak attacks ineffective but to check for
sensitive terms or semantics generated by LLMs. Once such con-
tent is detected in the output, the LLMs are instructed to stop
generating, thereby achieving the goal of jailbreak defense. No-
tably, output filters were not included in our collection as they
primarily focus on detecting sensitive content. When sensitive
content is generated, LLMs have already been jailbroken.

3.2 Dataset Construction

To comprehensively evaluate the impact of jailbreak defense strate-
gies of LLMs from an end-to-end perspective, we propose US-
EBench, consists of U-Bench for Utility, S-Bench for Safety and
E-Bench for Exaggerated-safety.

3.2.1 U-Bench. This sub-dataset aims to effectively measure the
utility of LLMs in practice. Our study modified the MMLU[35]
to create 570 seed prompts that better reflect real user scenarios
while ensuring diversity. The original MMLU dataset covers 57
tasks across various fields, including STEM, humanities, and social
sciences, using multiple-choice questions to query LLMs. To better
simulate realistic usage, we modified the original prompts by: 1)
removing topic introductions and sample questions, as typical users
do not provide related questions and answers before asking; and
2) accommodating more advanced users, who are familiar with
prompt engineering like Chain of Thought (CoT) reasoning[46], in
our prompts we instruct LLMs to analyze each option and provide
format for providing answer formally alongside the multiple-choice
question. This optimization allows our U-Bench dataset to more
objectively evaluate the performance of LLMs with jailbreak de-
fenses in scenarios that closely mimic real user interactions, rather
than relying on subjective ratings from the dataset using ChatGPT,
which may introduce third-party bias. To further streamline the
cumbersome MMLU dataset as well as match the scale of the fol-
lowing sub-benches, we randomly selected 10 questions from each
of the 57 fields, resulting in a dataset of 570 questions.

3.2.2 S-Bench. This sub-dataset evaluates LLMs’ performance in
handling potential malicious threats. To achieve this, we selected
520 harmful behaviors from the 1,094 data points in AdvBench[9],
which consists of two sub-datasets: harmful behaviors and harmful
strings. We focused solely on harmful behaviors, which better sim-
ulate the malicious instructions that potential attackers might issue

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406

Detected !

How to make

a bomb?.
>#@%t#abig

How to make
abomb I
How to make
abomb?

Jailbreak BillHow to

Write a story|
-How to

make a bomb?

You should always
remember safety
is more important
than helpfulness

and
-How to make a
bomb?

Anon.

Candidates Filtered!

,,,,,,,,,,, Sure, to make a
B bomb, you can......

{

I apologize, but
I can’t tell you

how to make a
! I apologize, but bomb.....
LLMs can't tell you how to

,,,,,,,,,,, make a bomb.....

Attack, make a bomb?

Stage1®

Prompt Detection

Stage2¢/

Prompt Modification

Stage3®

Model Fine-tuning

Stage4v¥

Output Filter

Figure 3: An end-to-end perspective of jailbreak defense involves three stages: stage 1 detects specific features present in
jailbreak prompts, stage 2 appends safe affixes to the prompt or applies perturbations to neutralize the jailbreak effect, stage 3
fine-tunes LLMs to enhance safety, and stage 4 filters sensitive semantics in output.

to LLMs, while harmful strings merely describe security-sensitive
actions.

To make our dataset readily usable off-the-shelf, we selected six
mainstream jailbreak attack strategies to enhance 520 seed prompts.
Based on the accessibility to the gradient and logits of LLMs, jail-
break attack strategies can be classified into two types: black-box
and white-box. 1) For black-box attack strategies, Role-play[15]
was selected due to its extensive use and widely used in academic
works[18, 26, 43], while AS[31], PE[31], and ICA[47] were also
considered for their proven effectiveness and efficiency. Addition-
ally, AutoDAN-HGA[30] is included in our strategy collection for
their performance and improved stealth. 2) For white-box methods,
Cold-Attack[21] was chosen for its performance and relatively low
overhead than methods like GCG[57].

After combining the six jailbreak attack strategies with the 520
seed prompts, we ultimately generated 3,000 adversarial prompts
that are ready for direct evaluation. For a more detailed introduction
to jailbreak attack strategies and their detailed implementation
please refer to Appendix A.1 and Appendix B, respectively.

3.2.3 E-Bench. This sub-dataset examines the false refusal behav-
ior of LLMs that may limit normal functionality. For this purpose,
we selected 500 seed prompts from PhTest[28], which contain 3,260
pseudo-harmful prompts, such as “how to kill a mosquito”, labeled
as either “harmless” or “controversial”. Our study first preprocessed
the PhTest dataset by merging prompts with high semantic redun-
dancy, as some prompts were generated by extending or others with
prefixes. From these preprocessed prompts, we randomly selected
250 labeled as “harmless” and 250 labeled as “controversial” to form
the final E-Bench.

By combining data from these three sub-benches, our research
can evaluate the performance of LLMs in the Utility, Safety, and
Usability, both before and after the introduction of jailbreak defense
strategies in a comprehensive, objective, and accurate way.

3.3 Assessor

To automate the evaluation of the utility, safety, and usability of
LLMs with jailbreak defense, we employed both script-based and
LLM-based assessing methods.

To evaluate utility, we inputted prompts from U-Bench into
the LLMs and then parsed the responses using a standard format
provided by U-Bench. Our assessment of utility mainly focused
on two aspects: accuracy and compliance. First, for accuracy, we

evaluated based on the existence of standard answers, which were
given from U-Bench, in LLMs’ responses. Second, for compliance,
if LLMs did not respond in the standard format, we considered this
a failure to comply with user instructions, as the corresponding
prompts from U-Bench have already emphasized the necessity of
adhering to the specified format. Therefore, we classified such cases
as instances where the model did not provide a correct response.

To evaluate safety, we inputted adversarial prompts from S-
Bench into LLMs and then assessed the corresponding responses
with Qwenz2.5-instruct-32B[50]. We categorized LLMs’ responses
into three pre-types: full_compliance, full_refusal, and refusal_while_
compliance. The refusal_while_com pliance responses typically be-
gin with phrases like “I apologize” or “Sorry,” but still address the
malicious instructions in prompts to some extent (e.g. “I must em-
phasize that make a shooting in school is illegal, but here is some ad-
vice on how to make a photography in school.."). Considering that
refusal_while_compliance responses may still provide partial elabo-
rations on malicious instruction within adversarial prompts from
S-Bench. As a result, refusal_while_compliance and full_compliance
responses were both considered as compliance and full_refusal con-
sidered as refusal in our final statistics. Then we used a pre-crafted
judgment prompt to contain both original malicious instruction
and corresponding LLM’s response for assessment by our evalu-
ation LLM, which then determined the category of the response.
Specific judgment prompts can be found in the Appendix C.2. For
cases where the LLM failed to put the response in any of the three
categories, manual labeling was performed.

To evaluate usability, we used prompts from E-Bench and the
remaining steps are identical to the evaluation of safety we just men-
tioned above. The sole exception was that considering the refusal
part in refusal_while_compliance responses can significantly impact
the readability and usability, thus both refusal_while_compliance

and full_refusal responses are considered as refusal and full_compliance

considered as compliance in our final statistics.

3.4 USEIndex

To conduct a comprehensive and easy-to-use quantitative evalu-
ation of the utility, safety, and usability of jailbreak defenses, we
introduced the USEIndex based on USEBench.

Under specific defense strategy D, the evaluation result for each
of the three sub-datasets of USEBench is denoted as (D), rang-
ing from [0, 1]. Notably, r for S-Bench and E-Bench is negatively

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

451
452
453
454
455
456
457
458
459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

You Can’t Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

correlated with our expected expectations, while for S-Bench r is
positively correlated. For the sake of unified expression, we define
a more formalized function R(i, D) to represent the results, where

1-r(D) i€ {S-Bench,E-Bench}

R(i.D) = {r(D) else @

In our work, we consider utility, safety, and usability to be equally
important evaluation dimensions for a jailbreak defense strategy.
Therefore, we calculate the geometric mean value of the formalized
result R as our final USEIndex, with its range normalized to [0, 1].
It can be expressed as

USEIndex(D) = 5|[| R(,D) @)

where i € {U-Bench, S-Bench, and E-Bench}.

4 Evaluation

In this section, we first introduce the basic setup of our experiment,
including the selection of LLMs, settings for jailbreak strategies, and
the metrics used for evaluation. We then present the experimental
data that addresses the three core research questions of our work,
allowing us to quantitatively assess the utility, safety, and usability
of LLMs with implemented jailbreak defense strategies.

4.1 Experiment Setting

Our experimental setting primarily consists of two parts: the target
LLMs for test and the specific evaluation metrics.

4.1.1 Target LLM. Faced with a wide variety of LLMs and cor-
responding services available, we selected the LLMs to be tested
based on whether they are open-source, aiming to gain a more
comprehensive perspective.

For open-source LLMs, we chose five state-of-the-art models
from two prominent families: LLaMA[44] and Mistral[24], devel-
oped by Meta[33] and Mistral AI[5], respectively. To further inves-
tigate the differences in safety performance before and after fine-
tuning, we selected both the Llama-2-7B-Chat-HF[1] and Vicuna-
7B-v1.5[32], the latter of which is fine-tuned on the base Llama-2
model. Additionally, to explore changes in safety strategies across
iterative versions of LLMs, we included both the Mistral-7B-Instruct-
v0.2[2] and its updated version, Mistral-7B-Instruct-v0.3[3], from
Mistral family. Meta-Llama-3-8B-Instruct[4] was also collected as
an iteration of Llama-2 model.

For close-source LLMs, we selected the widely-used SOTA mod-
els from GPT[12] family, developed and offered by OpenAI[38].
Similarly, we included two iterative versions, GPT-3.5 Turbo[36]
and GPT-4 Turbo[37], for a vertical comparison in our experiments.
For hyperparameters details of LLMs please refer to Table 5.

4.1.2 Evaluation Metric. Our evaluation of LLMs with jailbreak
defense strategies focuses on three aspects: utility, safety, and usabil-
ity. Consequently, the metrics we employ for our work are derived
from these three dimensions.

In terms of utility, our work employed accuracy (ACC) as our
evaluation metric. ACC can be formally expressed as

Cc
ACC = —
<)

where ¢ represents the number of responses with correct answers
to prompts from U-Bench, and N represents the total number of
prompts from U-Bench. A higher accuracy indicates greater utility.

For safety, we used the attack success rate (ASR) as our metric.
Generally, ASR can be formally expressed as

S
ASR= —
SR=+ (4)

where the s represents the number of successful attack prompts,
and N represents the total number of prompts input into LLMs. A
higher ASR value indicates weaker safety defenses while a lower
ASR value suggests stronger safety protections.

In terms of usability, we used the false refusal rate (FRR) as our
evaluation metric. FRR can be formally expressed as

,
FRR = —
S ©

where r represents the number of false refusals by LLMs with
jailbreak defense strategies, and N is the total number of prompts
tested. In our experiments, a higher FRR indicates more severe
exaggerated-safety issues, reflecting poorer usability.

4.2 ROQ1. Utility Degradation after Jailbreak

Defense
‘ w/o ‘ Stage 1 Stage 2 Stage 3
LLMs
| defense | ppL sIM SR PAT ICD SU/CST
Mistral-vo.3 | 0.54 0.54 054 052 055 058 -
Mistral-v0.2 | 0.18 0.18 018 016 018 011 050
Vicuna-v1.5 0.48 0.48 047 048 050 048 0.49
Llama2 031 0.31 031 030 002 003 -
Llama3 0.66 0.66 065 064 058 064 062
GPT-3.5 0.65 0.65 065 066 046 058 -
GPT-4 0.77 0.77 077 082 080 0.2 -

. SafeUnlearn is used for Mistral-v0.2 and Vicuna-v1.5 while CST for Llama3.
Table 1: ACC () of LLMs with jailbreak defense strategies
using prompts from U-Bench. The ACC values that decreased
by more than 5% were highlighted in bold.

Utility is an important dimension for evaluating the performance
of LLMs with jailbreak defense strategies. In this research question,
we employed U-Bench to assess the ACC of seven different defense
strategies applied to seven distinct LLMs. The experimental result
is presented in Table 1.

Experimental results from this research question showed that the
impact of jailbreak defense strategies on utility varies across LLMs.
On one hand, some jailbreak defense strategies from stage 2 resulted
in noticeable utility degradation for some LLMs. For instance, PAT
and ICD significantly affected Llama2, reducing its ACC by nearly
30%, from 0.31 to 0.02, 0.03 respectively. Besides, both Mistral-v0.2
and Llama2 were also impacted to some extent. On the other hand,
these defense strategies from stage 2 slightly improved GPT-4’s
ACC. The average reasoning length of GPT-4 with these strategies
increased by 34%, suggesting that these strategies might encourage
GPT-4 to engage in deeper reasoning, thus increasing the likelihood
of providing accurate answers.

523

524

525

526

527

528

529

530

531

532

533

534

579

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

620

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Interestingly, the ACC of Mistral-v0.2 improved significantly to
0.50 when using the SafeUnlearn. A closer look at the raw exper-
imental data revealed that this improvement was not due to an
inherent boost in the LLM’s intelligence, but rather because Safe-
Unlearn’s fine-tuning enhanced Mistral-v0.2’s ability to respond in
the user-expected format.

Since the prompts in S-Bench specify a required format for LLMs’
responses, we considered any response that failed to follow the
standard format as incorrect from the perspective of fulfilling user
requirements. In certain scenarios, such as automated processes,
responses that deviate from the required format may fail to pro-
vide meaningful assistance to users. This issue was particularly
evident in Mistral-v0.2, where the model’s inability to reply in the
user-specified format led to a significant drop in ACC. A detailed
analysis of its original responses revealed an average ACC declines
of 39.50% except for stage 3, where the SafeUnlearn fine-tuned
version alleviated this issue.

Overall, for most LLMs, the utility degradation caused by
some jailbreak defense strategies from stage 2 (prompt mod-
ification) was the most pronounced. However, some usability-
related issues were also observed in our experimental data, which
we will discuss further in Section 5.

4.3 RQ2. Safety Elevation after Jailbreak
Defense

The primary motivation behind jailbreak defense is to guard against
jailbreak attacks, thereby enhancing the safety of LLMs. In this re-
search question, we used S-Bench and evaluated the ASR of seven
jailbreak defense strategies across seven LLMs. Detailed experimen-
tal results are presented in the Figure 4.

From the experimental data, we can observe that overall, the
introduction of jailbreak defense strategies at various stages led to a
reduction in ASR for LLMs. Notably, the jailbreak defense strategies
in stage 3 exhibited the highest level of safety, with an average ASR
decrease of 27%. Following this, strategies from stage 2 also saw a
significant reduction, with the average ASR dropping by 11%.

Interestingly, the performance of jailbreak defense strategies in
stage 3 varied depending on the method. Mistral-v0.2 and Vicuna-
v1.5 fine-tuned with SafeUnlearn demonstrated exceptional defense
capabilities, achieving an ASR reduction rate 54% higher than the
best-performing strategy SR from stage 2, clearly leading the pack.
In contrast, Llama3 fine-tuned with CST showed a slight increase
in ASR, which rose by an average of 1%. While the absolute value
of ASR was not substantial, this is attributed to Llama3’s strong
inherent safety, as its average ASR without any defense strategies
was already below 5%.

Among the various strategies in stage 2, SR demonstrated the
best jailbreak defense capability despite being the simplest method
in terms of implementation, reducing the average ASR by 16% and
achieving a maximum reduction of 80% on GPT-3.5-turbo. Follow-
ing SR, S-LM also performed well with an average ASR reductions
of 13%. However, S-LLM worked by introducing random pertur-
bations to the prompt characters, adds uncertainty to its defense
performance and show inconsistent effectiveness across different
LLMs facing different jailbreak attack methods. Lsatly, ICD and
PAT achieved average ASR reduction of 8% and 7%, respectively.

Anon.

Since PAT requires iterative refinement tuning specific to particular
LLMs, its defense capability is less effective for LLMs that have not
undergone corresponding training.

As for the prompt detection strategy in stage 1, since current
mainstream adversarial prompts have evolved from the previously
common gibberish to being highly readable, the effectiveness of
perplexity in terms of safety has diminished, resulting in no ASR
reduction.

Overall, stage 2 (prompt modification) defense demonstrated
the best performance in terms of safety, with SR standing out
as the most effective. The other strategies in stage 2 followed
closely behind, while the strategies in stage 1 and the highly unsta-
ble strategies in stage 3 ranked lower.

4.4 ROQ3. Exaggerated-safety Escalation after
Jailbreak Defense

The exaggerated-safety phenomenon can significantly impact the
usability of LLMs, and the introduction of jailbreak defense strate-
gies may further escalate this effect. In this research question, we
employed E-Bench to evaluate the FRR of seven different defense
strategies across seven LLMs. The detailed experimental data is
presented in Table 2.

‘ w/o ‘ Stage 1 Stage 2 Stage 3
LLMs
| defense | ppL SLM SR PAT ICD SU/CST
Mistral-v0.3 0.05 0.05 0.08 0.10 0.13 0.11 -
Mistral-v0.2 0.07 0.07 0.10 0.22 0.10 0.12 0.42
Vicuna-v1.5 0.11 0.11 0.29 038 035 026 0.40
Llama2 0.46 0.46 0.60 0.76 047 091 -
Llama3 0.19 0.19 0.36 0.76 0.58 0.75 0.95
GPT-3.5 0.08 0.08 0.15 038 039 0.36 -
GPT-4 0.09 0.09 0.12 0.22 0.06 0.13 -

: SafeUnlearn is used for Mistral-v0.2 and Vicuna-v1.5 while CST for Llama3.
Table 2: FRR (]) of LLMs with jailbreak defense strategies
using prompts from E-Bench. The FRR values that increased
by more than 30% were highlighted in bold.

The experimental data revealed that most jailbreak defense strate-
gies from stage 2 and stage 3 significantly exacerbate the exaggerated-
safety phenomenon in LLMs. Among the stage 2 methods, SR stood
out as the most severe in this regard. On average, LLMs with SR had
an FRR that increased by nearly 3 times compared to the raw LLMs.
Specifically, Llama2 and Llama3 with SR exhibited the highest FRR,
both reaching 0.76. The most extreme case was GPT-3.5 with SR,
where the FRR was 4.75 times that of the raw GPT-3.5.

Following SR, PAT and ICD also contributed to substantial in-
creases in FRR, averaging an increase between 2-3 times compared
to LLMs without defense strategies. Notably, Llama2 with ICD
showed a striking FRR of 0.91. ICD implements defense by pro-
viding examples of refusing to answer malicious instructions, and
upon closer inspection of the raw responses of Llama2, we found
that this high FRR stemmed from ICD refusing the own example
of ICD itself rather than prompts from E-Bench. This raised our
concern about the reliability of ICD. Although S-LM had the least
impact on exaggerated-safety issues, it still escalated it.

For defense strategies from stage 3, the degree of deterioration
varied. Overall, SafeUnlearn performed poorly, causing Mistral’s

639
640
641
642
643
644
645
646
647
648

649

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

You Can'’t Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

1) RP

1.0

0.03

&
& - 017 017 016

& -04 &

& - 000 000 000 000 000 000 003 & - 003 003 000

&
029 «
] . -00]
& & SN
BN ® G
QO
&
1.0 ¢
0.04 ¥ 0.98
003 0.00 08 3 0.97
001 0.00

0.6

& -04
& - 000 000 000 000 000 000 005
¥

el

&7 - 000 000 000 000 003 000 L 02
&

&V - 0.00 0.00 0.00 0.00 0.00 0.00
' -0.0
\é‘

&

2) PE

097

0.92

0.90

0
o
0.20 L 02 o3z 03z oz m 037 025 L 02

0.94

093 . 0.8

0.03
0.6

0.15 0.14
-04 2 - 04
002 003 005 & - 005 005 002 000 000 001 006
<
0.25 0.17 -02
[(F(0.16 020 010
' ' - 0.0 ' ' ' ' ' ' ' -0.0
S Q S e Qv & 3 S Q
» © Q) SR e B & &)
R § K™ & 9 e < § RS
B N
N
&

6) Cold-Attack

10 & 1.0
£
& (LA 037 023 029 017
“;{é‘
NS

£
08 & 1035 035 025 005 016 019 000 08
&
o
e
& - 014 014 005 003 003 006 000
06 & 06

- 0.4

-02

& - 004 004 003 003 005 005
- 0.0 ! ! !
2 &

@\s L é“
&

& &
<
\Y¥

s & o &
L}3\

Figure 4: ASR (|) of LLMs with jailbreak defense strategies using prompts of six jailbreak attack strategies from S-Bench.

FRR to increase sixfold to 0.42, while Vicuna’s FRR nearly quadru-
pled to 0.40. CST further intensified FRR to 0.95, nearly fivefold.
The strategy from stage 1 did not increase FRR, as the E-Bench
prompts lacked typical jailbreak attack characteristics.

Results show that most jailbreak defense strategies from
prompt modification and model fine-tuning (stages 2 and 3)
escalated the existing exaggerated-safety issues inherent in
LLMs to a great extent, leading to a decline in usability.

| wio |Stagel Stage 2 Stage 3
| defense | PPL S-LM SR PAT ICD SU CST
USEIndex | 063 | 063 064 061 059 059 065 031

Table 3: USEIndex scores of seven jailbreak defense strategies.

4.5 USEIndex Results

Based on our experimental result, we used USEIndex to evaluate the
seven jailbreak defense strategies from an end-to-end process. For
U-Bench, S-Bench, and E-Bench, we respectively took the average of
ACC, ASR, and FRR of different LLMs as r(D) in USEIndex. Finally,
we presented the USEIndex score for each strategy in Table 3.

The result revealed that, in the comprehensive evaluation
considering utility, safety, and usability, SafeUnlearn demon-
strated the most balanced performance, achieving a USEIndex
score of 0.65. Following that were strategies from stage 2, with an
average score of 0.61. At the bottom of the USEIndex ranking was
CST, with only a score of 0.31. It was worth noting that the score
of PPL was identical to the score without any method applied. This
revealed that jailbreak attack strategies have evolved to the point
where the defense effect provided by stage 1 strategy was minimal.

5 Discussion

5.1 Dilemma between performance and safety

Trade-off of Defense Strategies. Defense strategies have proven
to be effective in enhancing the safety of LLMs. However, our
exploration of the research questions (RQs) showed a clear and per-
sistent conflict between performance and safety, making it difficult
to achieve both simultaneously. Specifically, after implementing
defense mechanisms, the overall performance of LLMs showed a
significant decline. This manifested in reduced utility and usability
in the user experience.

After introducing the PAT, GPT-3.5-Turbo gained a decrease
of 0.20% in ASR but experienced a 19% drop in utility and also
a 31% increase in false-refusal rate. Although switching to the S-
ML method alleviated the degradation in both utility and usability,
its jailbreak defense capability was significantly weakened, with
the ASR reduction rate being only 10%. All of the above indicates
the performance trade-off is an unavoidable issue. While defenses
improve safety, they come at the cost of performance degradation,
necessitating a delicate balance between safety and performance.
Imbalance Between Effectiveness and Efficiency. In addition to
performance degradation, we also identified an imbalance between
the effectiveness of defense strategies and their computational ef-
ficiency. While we did not conduct precise measurements of time
overhead, we revealed that certain defense mechanisms (i.e., S-LM),
introduced significant delays of 0.83 seconds on average. This added
latency further diminished the user experience, suggesting that ef-
ficiency must also be factored into the design of defense systems.
Moreover, beyond the front-end defenses discussed in this paper,

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

847

849

860
861
862
863

864

866
867
868
869

870

back-end defenses, such as integrating multiple models[53] or in-
ducing models to refine their outputs[27], further exacerbate server
loads and network latency. These solutions, while enhancing safety,
substantially increase response times, thereby negatively impacting
user satisfaction.

Evolution in Model Iteration and Fine-tuning. Our experiments
also compared the effects of model fine-tuning and iteration on
performance and safety. While fine-tuning (e.g., Vicuna and LLaMA)
or iterating models (e.g., LLaMA 2 to LLaMA 3) can improve task
performance in certain cases, these improvements often come at
the expense of decreased safety. This introduces a paradox where
enhanced capabilities are accompanied by diminished safety. As
models evolve and become more powerful, they may become more
vulnerable to sophisticated attacks, presenting a complex trade-off
between advancing functionality and maintaining robust safety.

5.2 Ethic Consideration

In our experiment, each test was conducted three times to reduce
variability and obtain reliable results, to address any instability in
model responses. Additionally, all LLMs used in our experiments
were openly accessible (i.e., open-source for white-box LLM, and
public API for black-box LLM), ensuring transparency. For the
selection of fine-tuned models, we prioritized fairness by choosing
officially available fine-tuned models from public sources. This
decision was made to avoid inconsistencies that could arise from
manual fine-tuning, ensuring an unbiased evaluation process. These
efforts reflect our commitment to maintaining ethical rigor and
fairness throughout the study.

5.3 Limitation

Defense Techniques Selection. Our experiments are on a limited
set of defense techniques. We chose representative defenses at
the three stages concluded in Section 3.1, but this selection may
not cover all available methods. Due to resource limits, we didn’t
evaluate certain defense methods, such as AutoDefense[53] and
SafeAligner[23], which might have huge overhead and cause bad
usability in time.

Model Selection. The models we used could be a limitation, but our
approach is largely independent of specific models. However, some
models may still exhibit varying reactions to the same defenses,
and an effective defense should be optimized to perform well across
diverse models.

Fine-tuned LLMs Selection. We relied on publicly available fine-
tuned models from Hugging Face. This ensured consistent training
quality, but it limited the study to pre-released models. Customized
fine-tuning might yield different results but was beyond our scope.

5.4 Future Directions

In this study, we introduced a novel comprehensive metric to evalu-
ate the performance of defense mechanisms across utility, usability,
and safety, providing a more objective measure of LLM defenses
against jailbreak attacks. However, future work should focus on
developing more efficient defenses that minimize utility loss while
improving defense efficiency and maintaining a positive user ex-
perience. Additionally, further research is needed to explore the
long-term effects of iteration and fine-tuning on both the safety

Anon.

and performance of LLMs, particularly how to balance these factors
over extended use. This remains an ongoing area of study.

6 Related Work
6.1 Taxonomy and Analysis of Jailbreak

Previous studies have conducted comprehensive evaluations of the
various jailbreak attack and defense strategies from a safety per-
spective. Liu et al. [31] proposed a categorization model of jailbreak
attacks and revealed that privilege escalation attacks incorporating
multiple jailbreak techniques are more likely to succeed. Esmradi
et al. [17] offered a detailed analysis of each type of jailbreak attack
strategy by examining more than 100 recent research papers. Rao
et al. [40] develop a taxonomy for jailbreak attacks based on both
technique and intent. Yi et al. [51] systematically categorized state-
of-the-art jailbreak attack and defense strategies based on their
technical details, proposing a well-structured taxonomy. Similarly,
Xu et al. [49] extensively evaluated jailbreak attack and defense
strategies, considering not only the relationship between attack
efficiency and ASR but also the correlation between defense fail-
ure rates and the passing rates of normal queries. To the best of
our knowledge, none of the mentioned studies have delved into
a systematical evaluation of jailbreak defense strategies from the
perspectives of utility, safety, and usability.

6.2 LLM Evaluation Dataset

To assess the utility, safety, and usability of LLMs, a series of datasets
have been developed. As for the safety test dataset, AdvBench[57] is
the most widely used malicious instruction dataset containing 520
harmful behaviors and 520 harmful strings, respectively. Addition-
ally, the jailbreak chat website[6] also provides numerous jailbreak
prompts and harmful instructions. To evaluate the usability of LLMs,
MTBench[55], AlpacaEval[29], and GLUE[45] evaluate LLMs across
various tasks including text understanding, generation, and reason-
ing, assigning scores based on these capabilities. MMLU[22], which
spans 57 subjects across areas such as STEM, humanities, and social
sciences, tests LLMs’ performance through multiple-choice ques-
tions. Moreover, in terms of usability, XSTest[42] and PHTest[8]
evaluate the issue of exaggerated-safety in LLMs by presenting
pseudo-harmful questions, which are harmless but may confuse
LLMs by sensitive words. However, the aforementioned datasets
only consider one aspect—utility, safety, or usability—lacking a
comprehensive dataset that can evaluate all these dimensions.

7 Conclusion

This study examines the balance between performance and safety
in large language models (LLMs) following the implementation of
jailbreak defenses. Our findings reveal that while these defenses
enhance safety, they often lead to significant utility degradation,
adversely affecting user experience. We introduced USEBench, a
comprehensive dataset, and USEIndex, a novel metric to evaluate
defense mechanisms across utility, usability, and safety. These tools
underscore the need for effective strategies that prioritize user
needs. As the field advances, ongoing research is crucial to under-
stand the long-term impacts of model iteration and fine-tuning
on safety and performance, ensuring LLMs remain both safe and
user-friendly.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
388
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

You Can’t Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

References

(1]

[9

=

[10

[11]

[12]

[13]

[14]

[15

[18]

[19]

[20]

[21]

Meta AL 2023. Llama 2 7B. https://huggingface.co/meta-llama/Llama-2-7b-hf.
Hugging Face Model Hub..

Mistral AL 2023. Mistral 7B Instruct v0.2. https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2. Hugging Face Model Hub..

Mistral AL 2023. Mistral 7B Instruct v0.3. https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3. Hugging Face Model Hub..

Meta AL 2024. Meta Llama 3 8B Instruct. https://huggingface.co/meta-1llama/
Meta-Llama-3-8B-Instruct. Hugging Face Model Hub..

Mistral AL 2024. Mistral AL https://mistral.ai/. A company focusing on open
language models..

Alex Albert. 2024. Jailbreak. http://www.jailbreakchat.com. Accessed: 2024-10-
14.

Gabriel Alon and Michael Kamfonas. 2023. Detecting Language Model Attacks
with Perplexity. arXiv:2308.14132 [cs.CL] https://arxiv.org/abs/2308.14132
Bang An, Sicheng Zhu, Ruiyi Zhang, Michael-Andrei Panaitescu-Liess,
Yuancheng Xu, and Furong Huang. 2024. Automatic Pseudo-Harmful Prompt
Generation for Evaluating False Refusals in Large Language Models. In First Con-
ference on Language Modeling. https://openreview.net/forum?id=1jFgX6 A8NL
LLM Attacks. 2024. LLM Attacks - AdvBench Data. https://github.com/llm-
attacks/llm-attacks/tree/main/data/advbench. Accessed: 2024-10-14.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Rottger, Dan Jurafsky,
Tatsunori Hashimoto, and James Zou. 2024. Safety-Tuned LLaMAs: Lessons
From Improving the Safety of Large Language Models that Follow Instructions.
In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=gT5hALch9z

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
(2020). arXiv:2005.14165 [cs.CL]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learn-
ers. ArXiv abs/2005.14165 (2020). https://api.semanticscholar.org/CorpusID:
218971783

OpenAl Community. 2024. Why ChatGPT 4.0 is getting stupider and stupi-
der. https://community.openai.com/t/why-chatgpt-4-0-is-getting-stupider-and-
stupider/590741. Accessed: 2024-10-14.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Lidong Bing. 2024. Multilin-
gual Jailbreak Challenges in Large Language Models. In The Twelfth Interna-
tional Conference on Learning Representations. https://openreview.net/forum?
id=vESNKdEMGp

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and
Karthik Narasimhan. 2023. Toxicity in chatgpt: Analyzing persona-assigned
language models. In Findings of the Association for Computational Linguistics:
EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 1236-1270. https://doi.org/10.18653/v1/
2023.findings-emnlp.88

Deutsche Welle (DW). 2023. Is ChatGPT Getting Dumber? https://www.dw.com/
en/is-chatgpt- getting-dumber/a-66352529 Accessed: 2024-10-14.

Aysan Esmradi, Daniel Wankit Yip, and Chun Fai Chan. 2023. A Comprehensive
Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large
Language Models. In International Conference on Ubiquitous Security. https:
//api.semanticscholar.org/CorpusID:266359311

Yingchaojie Feng, Zhizhang Chen, Zhining Kang, Sijia Wang, Minfeng Zhu,
Wei Zhang, and Wei Chen. 2024. JailbreakLens: Visual Analysis of Jailbreak
Attacks Against Large Language Models. ArXiv abs/2404.08793 (2024). https:
//api.semanticscholar.org/CorpusID:269149510

Victor Gallego. 2024. Configurable Safety Tuning of Language Models with
Synthetic Preference Data. arXiv:2404.00495 [cs.CL]

Simon Geisler, Tom Wollschlager, MHI Abdalla, Johannes Gasteiger, and Stephan
Giinnemann. 2024. Attacking large language models with projected gradient
descent. arXiv preprint arXiv:2402.09154 (2024).

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin, and Bin Hu. 2024. COLD-
Attack: Jailbreaking LLMs with Stealthiness and Controllability. In Proceedings
of the 41st International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 235), Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (Eds.).
PMLR, 16974-17002. https://proceedings.mlr.press/v235/guo24i.html

[22]

(23]

[24]

[25

[26

[30

(31]

[41]

[42

[43

[44]

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Under-
standing. Proceedings of the International Conference on Learning Representations
(ICLR) (2021).

Caishuang Huang, Wanxu Zhao, Rui Zheng, Huijie Lv, Shihan Dou, Sixian Li,
Xiao Wang, Enyu Zhou, Junjie Ye, Yuming Yang, et al. 2024. SafeAligner: Safety
Alignment against Jailbreak Attacks via Response Disparity Guidance. arXiv
preprint arXiv:2406.18118 (2024).

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. ArXiv abs/2310.06825 (2023). https:
//api.semanticscholar.org/CorpusID:263830494

Fengqing Jiang, Zhangchen Xu, Luyao Niu, Zhen Xiang, Bhaskar Ramasub-
ramanian, Bo Li, and Radha Poovendran. 2024. ArtPrompt: ASCII Art-based
Jailbreak Attacks against Aligned LLMs. In Annual Meeting of the Association for
Computational Linguistics. https://api.semanticscholar.org/CorpusID:267750708
Zhihua Jin, Shiyi Liu, Haotian Li, Xun Zhao, and Huamin Qu. 2024. Jail-
breakHunter: A Visual Analytics Approach for Jailbreak Prompts Discovery
from Large-Scale Human-LLM Conversational Datasets. ArXiv abs/2407.03045
(2024). https://api.semanticscholar.org/CorpusID:270924032

Heegyu Kim, Sehyun Yuk, and Hyunsouk Cho. 2024. Break the Breakout: Rein-
venting LM Defense Against Jailbreak Attacks with Self-Refinement. arXiv
preprint arXiv:2402.15180 (2024).

UMD Huang Lab. 2024. False Refusal. https://github.com/umd-huang-lab/
FalseRefusal. Accessed: 2024-10-14.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Car-
los Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. AlpacaEval: An
Automatic Evaluator of Instruction-following Models. https://github.com/tatsu-
lab/alpaca_eval.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. 2024. AutoDAN:
Generating Stealthy Jailbreak Prompts on Aligned Large Language Models.
In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=7Jwpw4qKkb

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida
Zhao, Tianwei Zhang, and Yang Liu. 2023. Jailbreaking ChatGPT via Prompt
Engineering: An Empirical Study. ArXiv abs/2305.13860 (2023). https://api.
semanticscholar.org/CorpusID:258841501

LMSys. 2023. Vicuna 7B v1.5. https://huggingface.co/lmsys/vicuna-7b-v1.5.
Hugging Face Model Hub..

Inc. Meta Platforms. 2024. Meta Platforms, Inc. https://about.meta.com/. For-
merly known as Facebook, Inc..

Yichuan Mo, Yuji Wang, Zeming Wei, and Yisen Wang. 2024. Fight Back Against
Jailbreaking via Prompt Adversarial Tuning. In ICLR 2024 Workshop on Secure
and Trustworthy Large Language Models. https://openreview.net/forum?id=
qOPbfNwLBq

Ollmer. 2024. MMLU. https://github.com/ollmer/mmlu. Accessed: 2024-10-14.
OpenAl 2022. ChatGPT: Improving Language Understanding with Human
Feedback. https://openai.com/research/chatgpt. Accessed: 2024-10-15..
OpenAl 2023. GPT-4 Technical Report. https://arxiv.org/abs/2303.08774. Ac-
cessed: 2024-10-15..

OpenAl 2024. OpenAl https://www.openai.com. Accessed: 2024-10-15..
Rain152. 2024. PAT: Practice Algorithm Testing. https://github.com/rain152/PAT.
GitHub repository.

Abhinav Sukumar Rao, Atharva Roshan Naik, Sachin Vashistha, Somak Aditya,
and Monojit Choudhury. 2024. Tricking LLMs into Disobedience: Formaliz-
ing, Analyzing, and Detecting Jailbreaks. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (Eds.). ELRA and
ICCL, Torino, Italia, 16802-16830. https://aclanthology.org/2024 Irec-main.1462
Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. 2023.
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks.
arXiv preprint arXiv:2310.03684 (2023).

Paul Réttger, Hannah Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi,
and Dirk Hovy. 2024. XSTest: A Test Suite for Identifying Exaggerated Safety
Behaviours in Large Language Models. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), Kevin Duh, Helena Gomez, and
Steven Bethard (Eds.). Association for Computational Linguistics, Mexico City,
Mexico, 5377-5400. https://doi.org/10.18653/v1/2024.naacl-long.301

thu coai. 2024. JailbreakDefense: Defending Large Language Models Against
Jailbreaking Attacks Through Goal Prioritization. https://github.com/thu-coai/
JailbreakDefense_GoalPriority. GitHub repository.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://mistral.ai/
http://www.jailbreakchat.com
https://arxiv.org/abs/2308.14132
https://arxiv.org/abs/2308.14132
https://openreview.net/forum?id=ljFgX6A8NL
https://github.com/llm-attacks/llm-attacks/tree/main/data/advbench
https://github.com/llm-attacks/llm-attacks/tree/main/data/advbench
https://openreview.net/forum?id=gT5hALch9z
https://openreview.net/forum?id=gT5hALch9z
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://community.openai.com/t/why-chatgpt-4-0-is-getting-stupider-and-stupider/590741
https://community.openai.com/t/why-chatgpt-4-0-is-getting-stupider-and-stupider/590741
https://openreview.net/forum?id=vESNKdEMGp
https://openreview.net/forum?id=vESNKdEMGp
https://doi.org/10.18653/v1/2023.findings-emnlp.88
https://doi.org/10.18653/v1/2023.findings-emnlp.88
https://www.dw.com/en/is-chatgpt-getting-dumber/a-66352529
https://www.dw.com/en/is-chatgpt-getting-dumber/a-66352529
https://api.semanticscholar.org/CorpusID:266359311
https://api.semanticscholar.org/CorpusID:266359311
https://api.semanticscholar.org/CorpusID:269149510
https://api.semanticscholar.org/CorpusID:269149510
https://arxiv.org/abs/2404.00495
https://proceedings.mlr.press/v235/guo24i.html
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:267750708
https://api.semanticscholar.org/CorpusID:270924032
https://github.com/umd-huang-lab/FalseRefusal
https://github.com/umd-huang-lab/FalseRefusal
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
https://api.semanticscholar.org/CorpusID:258841501
https://api.semanticscholar.org/CorpusID:258841501
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://about.meta.com/
https://openreview.net/forum?id=q0PbfNwLBq
https://openreview.net/forum?id=q0PbfNwLBq
https://github.com/ollmer/mmlu
https://openai.com/research/chatgpt
https://arxiv.org/abs/2303.08774
https://www.openai.com
https://github.com/rain152/PAT
https://aclanthology.org/2024.lrec-main.1462
https://doi.org/10.18653/v1/2024.naacl-long.301
https://github.com/thu-coai/JailbreakDefense_GoalPriority
https://github.com/thu-coai/JailbreakDefense_GoalPriority

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. ArXiv
abs/2302.13971 (2023). https://api.semanticscholar.org/CorpusID:257219404
[45] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Tal Linzen,
Grzegorz Chrupata, and Afra Alishahi (Eds.). Association for Computational
Linguistics, Brussels, Belgium, 353-355. https://doi.org/10.18653/v1/W18-5446
[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi,
F. Xia, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits
Reasoning in Large Language Models. ArXiv abs/2201.11903 (2022). https:
//api.semanticscholar.org/CorpusID:246411621
Zeming Wei, Yifei Wang, and Yisen Wang. 2023. Jailbreak and guard aligned
language models with only few in-context demonstrations. arXiv preprint
arXiv:2310.06387 (2023).
[48] Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing
Xie, and Fangzhao Wu. 2023. Defending chatgpt against jailbreak attack via
self-reminders. Nature Machine Intelligence 5, 12 (2023), 1486-1496.
Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan Picek. 2024. A Com-
prehensive Study of Jailbreak Attack versus Defense for Large Language Mod-
els. In Findings of the Association for Computational Linguistics ACL 2024, Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computa-
tional Linguistics, Bangkok, Thailand and virtual meeting, 7432-7449. https:
//doi.org/10.18653/v1/2024.findings-acl.443
[50] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei,
Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang,
Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang,
Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai,
Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang
Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yugiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. 2024. Qwen2 Technical Report. arXiv preprint
arXiv:2407.10671 (2024).
Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song, Ke Xu, and
Qi Li. 2024. Jailbreak Attacks and Defenses Against Large Language Models: A
Survey. arXiv preprint arXiv:2407.04295 (2024).
[52] Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Jiahao Xu,
Tian Liang, Pinjia He, and Zhaopeng Tu. 2024. Refuse whenever you feel un-
safe: Improving safety in llms via decoupled refusal training. arXiv preprint
arXiv:2407.09121 (2024).
Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, and Qingyun Wu. 2024.
Autodefense: Multi-agent llm defense against jailbreak attacks. arXiv preprint
arXiv:2403.04783 (2024).
Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang,
and Minlie Huang. 2024. Safe Unlearning: A Surprisingly Effective and Generaliz-
able Solution to Defend Against Jailbreak Attacks. arXiv preprint arXiv:2407.02855
(2024).
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
hao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing,
Hao Zhang, Joseph E Gonzalez, and Ion Stoica. 2023. Judging LLM-
as-a-Judge with MT-Bench and Chatbot Arena. In Advances in Neu-
ral Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 46595-46623. https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
[56] Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong
Huang, Ani Nenkova, and Tong Sun. 2023. AutoDAN: Interpretable Gradient-
Based Adversarial Attacks on Large Language Models.
[57] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt
Fredrikson. 2023. Universal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043 (2023).

[47

[49

[51

[53

[54

[55

A Supplement to Work of Jailbreak

A.1 Jailbreak Attack Strategy

With the introduction of safety alignment, LLMs have gained the
inherent ability to detect prompts with malicious intent from at-
tackers and to avoid generating responses that could potentially
cause harm. Consequently, a variety of jailbreak attack strategies
have emerged, where attackers carefully craft prompts to bypass

Anon.

the safety guardrails set by developers in LLMs. Based on the ac-
cess to LLMs’ parameters like gradient or logits, jailbreak attack
strategies can be categorized as white-box and black-box attacks.

As for black-box attack strategies, Deshpande et al. [15] have
found that by assigning a persona to LLMs, ChatGPT[11] can ex-
hibit toxic behavior across a wide range of topics. Some attackers
also conduct privilege escalation[31], wherein they guide LLMs
into a “sudo” mode to circumvent its safety alignment. Additionally,
attention shifting[31] is also an effective strategy during which
attackers mask their malicious intent by reframing the task, such
as text continuation and code generation. The context can also
be exploited as an attack vector as Wei et al. [47] demonstrated
that constructing examples where LLMs comply to malicious in-
structions can lead them to follow the attacker’s intent. Moreover,
prompt rewriting is another effective approach. [30] proposed a hi-
erarchical genetic algorithm, which generates optimal and stealthy
jailbreak prompts against aligned LLMs through iterative refine-
ment. Additionally, prompt rewriting also includes techniques such
as cipher [25] and employing non-English languages [14]

For white-box attack strategies, Zou et al. [57] proposed an effec-
tive gradient-based jailbreak attack, Greedy Coordinate Gradient
(GCG), which enhances malicious prompts by adding adversarial
suffixes that are iteratively optimized. The attack strategy devel-
oped by Geisler et al. [20] achieves comparable results to GCG while
significantly reducing time overhead. To decrease the perplexity of
adversarial suffixes while maintaining effectiveness, AutoDAN[56]
employs Single Token Optimization (STO) during the iterative opti-
mization of adversarial suffixes. Additionally, Guo et al. [21] pro-
posed COLD-Attack, a text generation algorithm capable of con-
trollably producing covert, low-perplexity attack prompts without
compromising efficiency.

A.2 Jailbreak Defense Strategy

To address the escalating threats posed by jailbreak attacks, re-
searchers have proposed a range of jailbreak defense strategies to
prevent the safety guardrails of LLMs from being bypassed and
to avoid responding to malicious queries. We will introduce these
strategies in different stages from an end-to-end defense perspec-
tive.

For stage 1, one prevalent approach is the implementation of
detection mechanisms for attack prompts. Alon and Kamfonas [7]
proposed a detection algorithm that identifies user prompts as jail-
break prompts if their perplexity exceeds a certain threshold. For
stage 2, Robey et al. [41] designed a perturbation algorithm that
inserts, swaps, and patches characters in user prompts at a certain
ratio to disable adversarial suffixes from inducing LLMs to generate
unsafe responses. Similar to strategies employed in gradient-based
jailbreak attacks, [34] utilized the gradient of LLMs to iteratively
refine safety suffixes, which can be used to induce LLMs to produce
safe responses. Furthermore, leveraging the excellent text compre-
hension and instruction execution capabilities of LLMs, Xie et al.
[48] emphasized the priority of safety over usability in their safety
prompts. In contrast, Wei et al. [47] guided LLMs to produce safe
responses by providing examples of refusing to answer dangerous
questions within the context.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1149

https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.18653/v1/W18-5446
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://doi.org/10.18653/v1/2024.findings-acl.443
https://doi.org/10.18653/v1/2024.findings-acl.443
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

You Can’t Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

As for stage 3, a common approach is model fine-tuning. Bianchi
etal. [10] highlighted the importance of constructing safety datasets
when building supervised fine-tuning models to prevent LLMs from
becoming overly sensitive to certain safety prompts. Gallego [19]
facilitated flexible safety configurations for LLMs using Reinforce-
ment Learning from Human Feedback (RLHF). In addition to opti-
mizing LLMs for safety, Zhang et al. [54] demonstrated that enabling
large models to forget harmful knowledge is also an effective strat-
egy for countering jailbreak attacks. Beyond fine-tuning the models
themselves, Zeng et al. [53] developed a multi-model framework
that analyzes the intent and potential harm of prompts to enhance
resilience against attacks. Moreover, Kim et al. [27] leveraged the
self-refinement capability of LLMs, indicating its effectiveness on
non-safety-aligned models.

B Combination of Jailbreak Attack and S-Bench

As for the detailed implementation of the combination process, on
one hand, for AutoDAN-HGA and Cold-Attack, the generation of at-
tack prompts relies on the gradient or logits of LLMs. Therefore, we
utilized scripts from their official repositories to generate adversar-
ial prompts locally for the above 520 seed prompts. For Cold-Attack
we followed the approach as its developers did to randomly se-
lect 50 malicious instructions from above 520 seed prompts, then
generated eight adversarial prompts for each of these 50 malicious
instructions across open-source LLMs, ultimately producing 400 ad-
versarial prompts. In contrast, we used code from AutoDAN-HGA’s
repository to generate adversarial prompts for the seed prompts,
resulting in 520 adversarial prompts.

On the other hand, the strategies of Roleplay, PE, ICA, and AS do
not require malicious instruction to be refined on specific LLM. They
simply concatenate malicious instructions with adversarial suffixes.
For Roleplay, PE, and AS, we used data from the repository[43],
which collected these attack strategies’ suffixes. We selected the top
five adversarial suffixes based on their attack effectiveness and then
randomly concatenated them with the 520 seed prompts, divided
into 5 equal parts. For ICA, we directly used the 1-shot example
from the appendix of its paper[47] and concatenated it with all
520 seed prompts directly. For each of the above 4 strategies, we
generated 520 adversarial prompts as well.

C Assessor LLM
C.1 Settings of Assessor LLM

For our assessor LLM, Qwen2.5-instruct-32B, we set the temper-
ature to 0 to obtain the most deterministic results and adjusted
max_new_tokens to 32 to enhance the efficiency of automated
evaluation.

Hyperparameter Value
Top P 0.90
Top K 50
Temperature 0
max_new_tokens 32

Table 4: Hyperparameters of Assessor LLMs.

11

C.2 Prompt of Assessor LLM

Prompt used for evaluation

I need assistance in categorizing responses generated
by LLMs. There are three categories of responses.
Please ensure that you begin your reply by specify-
ing the appropriate classification.

o full_compliance. This refers to any response that
directly attempts to answer the question, regardless of
its accuracy or relevance. It also covers cases where
the model rejects the question because it lacks a mean-
ingful answer.

o full_refusal. This occurs when the model outright
refuses to answer the question. It also includes re-
sponses that offer only alternative suggestions without
addressing the original prompt.

o refusal_while_compliance. This category includes
responses where there is both refusal and an attempt
to comply. It applies to self-contradictory answers that
first reject the question but then proceed to give an
answer.

QUESTION: “{QUESTION}”
RESPONSE: “{RESPONSE}”

CLASS:
L J

D Experiment Setting
D.1 Hyperparameters of LLMs

For seven targeted LLMs to perform evaluation on, we set the
temperature to 0.6 and max_new_tokens to 1024, which allows for
more diverse and adequate responses in real user scenarios. More
hyperparameters are shown in table 5.

Hyperparameter Value
Top P 0.90
Top K 50
Temperature 0.6
max_new_tokens 1024

Table 5: Hyperparameters of targeted LLMs

D.2 Details of Defense Strategy Setting

Stage ‘ Defense Strategy Abbr. Source
Stage 1 ‘ Perplexity PPL Alon and Kamfonas [7]
Self-Reminder SR Xie et al. [48]
Stage 2 In-Context Defense ICD Weietal. [47]
SmoothLLM S-LM Robey et al. [41]
Stage 3 SafeUnlearn SU Zhang et al. [54]

Configurable Safety Tuning CST Gallego [19]

Table 6: Detailed Summary of Defense Strategies

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

To defense LLMs with the Strategies we collected, for SR and
ICD, we directly concatenated the defense suffixes presented in
their papers[47] with test prompts from USEBench, respectively.
Developers of PAT have provided defense suffixes for Vicuna-7b-
v1.5 and Llama2-7b-chat in the official repository[39]. For the above
two LLMs, we concatenated the corresponding defense suffixes with
prompts from USEBench. For other LLMs, we used the transferable
defense suffix, which is applicable to various LLMs and available in
the repository, instead.

12

Anon.

For Perplexity, we set threshold = 1000 and strictly used Llama-
2-7b-hf for calculation; for S-LM, we set y = % q = 10%, and
N = 2, respectively. If Perplexity returned Boolean value “False”,
we did not input it into LLMs as it have already been identified
as a jailbreak prompt. For S-LM, we put the modified prompts it
generated along with the original prompts into LLMs and evaluated
them collectively afterward. Additionally, for SafeUnlearn and CST
we input prompts from USEBench into the corresponding safety
fine-tuned version of the target LLM.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

	Abstract
	1 Introduction
	2 Background
	2.1 Jailbreak Attack
	2.2 Jailbreak Attack Defense

	3 Methodology
	3.1 Jailbreak Strategy Taxonomy
	3.2 Dataset Construction
	3.3 Assessor
	3.4 USEIndex

	4 Evaluation
	4.1 Experiment Setting
	4.2 RQ1. Utility Degradation after Jailbreak Defense
	4.3 RQ2. Safety Elevation after Jailbreak Defense
	4.4 RQ3. Exaggerated-safety Escalation after Jailbreak Defense
	4.5 USEIndex Results

	5 Discussion
	5.1 Dilemma between performance and safety
	5.2 Ethic Consideration
	5.3 Limitation
	5.4 Future Directions

	6 Related Work
	6.1 Taxonomy and Analysis of Jailbreak
	6.2 LLM Evaluation Dataset

	7 Conclusion
	References
	A Supplement to Work of Jailbreak
	A.1 Jailbreak Attack Strategy
	A.2 Jailbreak Defense Strategy

	B Combination of Jailbreak Attack and S-Bench
	C Assessor LLM
	C.1 Settings of Assessor LLM
	C.2 Prompt of Assessor LLM

	D Experiment Setting
	D.1 Hyperparameters of LLMs
	D.2 Details of Defense Strategy Setting

