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ABSTRACT

Recent time-series foundation models exhibit strong abilities to predict physical
systems. These abilities include zero-shot forecasting, in which a model forecasts
future states of a system given only a short trajectory as context, without knowledge
of the underlying physics. Here, we show that foundation models often forecast
through a simple parroting strategy, and when they are not parroting they exhibit
some shared failure modes such as converging to the mean. As a result, a naive
context parroting model that copies directly from the context scores higher than
leading time-series foundation models on predicting a diverse range of dynamical
systems, including low-dimensional chaos, turbulence, coupled oscillators, and
electrocardiograms, at a tiny fraction of the computational cost. We draw a parallel
between context parroting and induction heads, which explains recent works show-
ing that large language models can often be repurposed for time series forecasting.
Our dynamical systems perspective also ties the scaling between forecast accuracy
and context length to the fractal dimension of the underlying chaotic attractor,
providing insight into previously observed in-context neural scaling laws. By
revealing the performance gaps and failure modes of current time-series foundation
models, context parroting can guide the design of future foundation models and
help identify in-context learning strategies beyond parroting.

1 INTRODUCTION

A key test of generalization in scientific machine learning (SciML) is zero-shot forecasting: the ability
to forecast future states of a new physical system based on a short context trajectory. Prior SciML
approaches primarily focus on developing specialized forecasting models trained specifically on the
system that needs to be predicted (Brunton et al., 2016; Weinan, 2017; Chen et al., 2018; Pathak et al.,
2018; Li et al., 2020; Chen & Tao, 2021; Jordan et al., 2021; Gauthier et al., 2021; Lim & Zohren,
2021; Karniadakis et al., 2021; Levine & Stuart, 2022; Mikhaeil et al., 2022; Brunton et al., 2022;
Das et al., 2023; Krishnapriyan et al., 2023; Yang et al., 2024; Yu & Wang, 2024; Azizzadenesheli
et al., 2024; Brenner et al., 2024a;b; Ricci et al., 2024; He et al., 2025; Cheng et al., 2025; Grigoryeva
et al., 2025; Berry & Das, 2025). However, the generality of these models is limited by the amount of
system-specific data available, motivating the recent development of time-series foundation models
(Oreshkin et al., 2021; Garza & Mergenthaler-Canseco, 2023; Rasul et al., 2023; Jin et al., 2023; Zhou
et al., 2023; Gruver et al., 2024; Dooley et al., 2024; Liu et al., 2024b; Woo et al., 2024; Ansari et al.,
2024; Goswami et al., 2024; Das et al., 2024; Liang et al., 2024; Shi et al., 2025; Zhai et al., 2024; Liu
et al., 2025b), which are trained on vast amounts of observed and simulated time series from diverse
domains, and which can subsequently perform zero-shot forecasts for any time series—including
those generated by previously-unseen dynamical systems. Interestingly, it was recently found that,
when available historical data is limited, time-series foundation models outperform classical deep
learning models in forecasting chaotic dynamical systems (Zhang & Gilpin, 2024).

What mechanisms do time-series foundation models use to make zero-shot forecasts, and why they are
effective for dynamical systems not seen during pre-training? It was recently observed that one such
foundation model, Chronos (Ansari et al., 2024), often employs an extremely simple strategy when
forecasting chaotic systems (Zhang & Gilpin, 2024). The strategy, context parroting, scans the context
for nearly repeating motifs and copies the part of the context following the best-matching motif as its
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prediction (Fig. 1). This can be viewed as a kind of “in-context nearest neighbor” algorithm, which is
easy to implement during in-context computation (Garg et al., 2022). How good is context parroting
as a zero-shot forecasting strategy? By comparing it with existing foundation models, what can we
learn about current models’ strengths and limitations?

Here, we compare context parroting with a diverse set of competitive baselines on the challenging
task of forecasting chaotic systems. Our baselines include four state-of-the-art time-series foundation
models: Chronos and Chronos Bolt (Ansari et al., 2024), TimesFM (Das et al., 2024), Time-MoE
(Shi et al., 2025), and Moirai (Woo et al., 2024), as well as a recent foundation model specifically
designed for dynamical systems: DynaMix (Hemmer & Durstewitz, 2025). In the Appendix, we
also include two classical forecasting methods that are particularly effective in the small-data limit:
AutoARIMA (Hyndman & Athanasopoulos, 2018) and simplex projection (Sugihara & May, 1990).
The latter represents a classical nonlinear forecasting method conceptually resembling context
parroting (Appendix H). We find that parroting outperforms all baselines (including the leading
foundation models) in both zero-shot forecast accuracy and inference cost, especially for longer
context windows. Our results suggest that current time-series foundation models do not fully utilize
the information in the context data, and thus still have significant room for improvement when it
comes to SciML tasks.

Our main contributions are:

1. Introduce context parroting as a simple but effective baseline for zero-shot forecasting of
dynamical systems, which can guide the design of more informative benchmarks that cannot
be solved by simple repetitions and help identify forecasting strategies beyond parroting

2. Show that context parroting outperforms leading time-series foundation models in predicting
chaotic systems and reveal common failure modes of many existing foundation models,
which can guide the design of better models in the future

3. Explain the in-context neural scaling law between forecast accuracy and context length,
linking the scaling coefficient to the fractal dimension of the underlying chaotic attractor

2 RELATED WORK

Foundation models for science. Foundation models have recently been introduced for many scientific
machine-learning tasks (Miller et al., 2024), including partial differential equations (Takamoto et al.,
2022; Yang et al., 2023; Rahman et al., 2024; Subramanian et al., 2024; Herde et al., 2024; McCabe
et al., 2024; Totounferoush et al., 2025), neuroscience (Cui et al., 2024; Caro et al., 2023; McKeen
et al., 2024), and weather forecasting (Nguyen et al., 2023; Bodnar et al., 2024). However, most of
these foundation models remain a black box, and they have not yet provided interpretable strategies
for forecasting diverse physical and dynamical processes. Here, we analyze context parroting as a
simple mechanism used by time-series foundation models, noting its strengths and weaknesses as a
zero-shot forecasting strategy. This strategy, and the insights gained here, can potentially be applied
to other scientific tasks.

In-context neural scaling laws. Neural scaling laws describe the relationship between the perfor-
mance of a neural network and certain resources, such as model size, data size, or the amount of
compute (Kaplan et al., 2020; Sorscher et al., 2022; Bahri et al., 2024; Yao et al., 2024). Such scaling
laws allow practitioners to predict the performance of yet-to-be-trained models based on the available
resources and allocate them strategically to optimize compute-adjusted accuracy (Hoffmann et al.,
2022). When applying LLMs to forecast dynamical systems, Liu et al. (2024a) recently observed
an in-context neural scaling law, in which the test loss decreases with the context length following
a power law. Here, we show that this in-context neural scaling law can be reproduced when using
context parroting to predict dynamical systems, and the scaling coefficient can be linked to an invari-
ant property of the underlying dynamic process (the fractal dimension of the chaotic attractor). This
finding shows that neural scaling laws are intrinsically linked to invariant properties of the process
generating the data, and the theory can potentially be generalized to other models and tasks (e.g., can
we estimate the “fractal dimension” of a language from the neural scaling laws of LLMs?).

In-context learning and induction heads. Induction heads are computational circuits that naturally
emerge in simple transformers through training, and they have been hypothesized to underlie much
of the in-context learning ability of foundation models (Elhage et al., 2021; Olsson et al., 2022;
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Von Oswald et al., 2023; Reddy, 2023). In its simplest form, an induction head copies repeating tokens
in the context to make predictions. For example, when presented with a token stream [A][B] . . . [A],
an induction head will output [B] as the next token. Prior works train transformers on minimal
Markov chain grammars, and find that, during pretraining, models learn to identify increasingly
higher-order k-grams, with different attention heads specializing in copying, lookup, and aggregation
(Edelman et al., 2024; Chen et al., 2024a). These works imply that pretraining enables models to
learn conditional distributions, allowing them to represent sequence distributions seen in the context
(Lv et al., 2024; Chen et al., 2024b; Keskar et al., 2019; Zekri et al., 2024).

There is a clear parallel between context parroting and induction heads: both are essentially copy-and-
paste operations, with context parroting involving the matching of not just one but multiple contiguous
tokens. In fact, it is easy to imagine context parroting emerging naturally from combining multiple
induction heads. This parallel can potentially explain the unreasonable effectiveness of applying
language models trained on text to time-series tasks without fine-tuning or prompt engineering (Garza
& Mergenthaler-Canseco, 2023; Jin et al., 2023; Zhou et al., 2023; Gruver et al., 2024; Liu et al.,
2024a). The induction heads formed from training on natural language happen to be also effective for
predicting time series and can be easily repurposed to implement strategies such as context parroting.

3 CONTEXT PARROTING AS A ZERO-SHOT FORECASTING STRATEGY

Overview of context parroting. In this section we motivate and introduce our baseline: context
parroting. It was inspired by recent observations that Chronos often predicts chaotic systems by
copying directly from the context (Zhang & Gilpin, 2024). An example of Chronos using parroting
to forecast a partially-observed Lorenz system is shown in Fig. 1.

On a high level, context parroting uses the last D tokens of the context to query the remaining
context. For whatever context sequence that most closely matches the query, the subsequent tokens
in the context are copied and used as the forecast. Because the length of the motif D can be seen
as the number of delayed states in a delay embedding from the lens of Takens’ embedding theorem
(Takens, 2006; Huke, 2006), we also refer to D as the embedding dimension and will use the
terms embedding dimension and query length interchangeably. Interpreting D as the embedding
dimension is convenient because context parroting can be seen as a nearest neighbor algorithm in the
D-dimensional delay-embedded space. During the matching process, we exclude the last D motifs
to avoid parroting too close to where the prediction starts. Framed in terms of induction heads, the
query lookup acts as a copy head, the nearest-neighbor match is a selector, and the exact repetition is
the aggregation operation (Chen et al., 2024a). We provide a pseudocode for context parroting in
Algorithm 1.

Algorithm 1 Context Parroting
Input: Context trajectory x1:L = {x1, . . . , xL}, embedding dimension D (i.e., the length of the
motif to match), and forecast length H .
Output: Forecast trajectory xL+1:L+H = {xL+1, . . . , xL+H}.

1: for all length-D motif s: xs−D+1:s in the context x1:L−D do
2: compute the Euclidean distance ds between motif s and the last motif xL−D+1:L

3: Find the best-matching motif, sopt, with the smallest Euclidean distance
4: Set the first L − sopt predicted points to be xL+1:2L−sopt = xsopt+1:L and repeat until the

forecast length H is reached

Relationship to classical nonlinear forecasting methods. We show in Appendix H.3 that, in various
limits, context parroting is equivalent to two classical algorithms from nonlinear dynamics: the
simplex projection technique and the S-map algorithm (Sugihara & May, 1990; Sugihara, 1994). Both
approaches have their foundations in Takens’ embedding theorem, which states that time-delayed
low-dimensional observables derived from a nonlinear dynamical system can recover key geometric
properties of the underlying high-dimensional attractor (Takens, 2006; Huke, 2006). However, unlike
context parroting, which looks for the best matching motif, simplex projection tries to identify
multiple matching motifs in the context and computes a weighted average as its forecast. This
can potentially make simplex projection more sensitive to the choice of the embedding dimension
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Figure 1: Example of a foundation model forecasting chaotic dynamics with context parroting.
Here, the foundation model (Chronos) was asked to predict the x variable of the Lorenz system based
on a short context trajectory with 512 data points. Blue is the prediction and gray is the ground truth.
Chronos produced an accurate prediction by simply looking for a motif in the context similar to
the motif immediately preceding the prediction (highlighted in yellow) and copying the evolution
following the matching motif (highlighted by pink boxes). We distill this context parroting strategy
into Algorithm 1 and compare it against time-series foundation models (including Chronos itself).

D, limiting the method to small embedding dimensions in practice (Chang et al., 2017). Other
than simplex projection and S-map, there also exists other zero-shot forecasting strategies from
nonlinear dynamics. For example, the Farmer-Sidorowich method (Farmer & Sidorowich, 1987)
looks at multiple nearest neighbors in the context and builds a local linear model to make forecasts.
An interesting future direction is to compare these methods from nonlinear dynamics with context
parroting and time-series foundation models, which might inspire new zero-shot forecasting strategies.

4 METHODS

Datasets. The dysts dataset provides a standardized benchmark of 135 low-dimensional chaotic
systems, each defined by a set of ordinary differential equations between dimensionality three and
six (Gilpin, 2021). The chaotic systems are drawn from different published papers and span fields
such as neuroscience, climate science, fluid dynamics, and astrophysics. Every system is annotated
with its largest Lyapunov exponent λ, an invariant characteristic of the underlying dynamics that
quantifies the rate at which small perturbations grow over time. In chaotic systems, even minor errors
rapidly compound over a characteristic timescale known as the Lyapunov time, defined as τ ≡ λ−1.
To normalize the difficulty of predicting different chaotic systems (so results from the 135 systems
can be meaningfully compared and combined), we generate trajectory data with a fixed sampling rate
of 30 points per Lyapunov time, and also measure the forecast performance in terms of Lyapunov
times. To show the relevance of our findings to a broad class of SciML tasks, later we also go beyond
low-dimensional chaotic systems and simulated data by benchmarking on real-world datasets from
ECG measurements and electronic circuits.

Models. For time-series foundation models, we select Chronosbase (200M parameters), its variant
Chronos-Boltbase (205M parameters), Time-MoElarge (200M parameters), TimesFM-2.0 (500M pa-
rameters) and Moirai-2.0small (11M parameters) (Das et al., 2024; Ansari et al., 2024; 2025; Shi et al.,
2025; Liu et al., 2025a). All of these models are pretrained on massive amounts of real-world time
series data (hundreds of billions of data points), which are often complemented by synthetic data
to improve generalization. We also consider DynaMix, a foundation model pretrained on chaotic
dynamical systems (Hemmer & Durstewitz, 2025). These models encompass a wide array of design
choices: Time-MoE, TimesFM-2.0, and Moirai-2.0 are decoder-only architectures, Chronos is an
encoder-decoder architecture, and DynaMix is an almost-linear RNN trained via teacher forcing
(Brenner et al., 2024a). Chronos and Time-MoE use pointwise tokenization, DynaMix implicitly
tokenizes pointwise, while TimesFM-2.0 and Moirai-2.0 use patching. Time-MoE, DynaMix, and
TimesFM-2.0 by default give point forecasts, whereas Chronos, Chronos-Bolt, and Moirai-2.0 pro-
vide probabilistic forecasts with uncertainty quantification. For these models, we use the median
prediction when evaluating forecast errors. An important parameter for all foundation models is the
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maximum context length Lmax, which varies from 512 data points (Chronos), 1680 (Moirai-2.0),
2048 (TimesFM-2.0), 4096 (Time-MoE), to arbitrary for DynaMix due to its recurrent formulation.

Pipelines. To evaluate different models’ ability to zero-shot forecast dynamical systems, we generate
a chaotic trajectory of length 105 for each of the 135 chaotic systems in dysts, with a granularity of
30 data points per Lyapunov time. Each trajectory is normalized to have zero mean and unit standard
deviation. For a given context length L, we randomly pick a length-L segment from the chaotic
trajectory and provide it to the model as the context. The model’s task is to predict the next 300 data
points (equivalent to 10 Lyapunov times) solely based on the context. We ask the model to make a
univariate forecast on each dimension independently, which is then evaluated separately for each
dimension. To obtain reliable statistics, we aggregate the results over all 135 chaotic systems, all
dimensions, and 20 random initial conditions for each system.

Metrics. In line with previous research (Hyndman & Koehler, 2006; Makridakis et al., 2022; Gilpin,
2021; 2023), we assess forecasting performance using a diverse set of complementary metrics.

Symmetric Mean Absolute Percentage Error (sMAPE).

sMAPE(x, x̂) ≡ 2
100

T

T∑
t=1

|xt − x̂t|
|xt|+ |x̂t|

,

where the sequence x1,x2, . . . ,xT denotes the ground truth, and x̂1, x̂2, . . . , x̂T are the correspond-
ing predictions made by the model. To provide some context to help interpret the sMAPE value, we
note that predicting the mean of white noise would give you an sMAPE around 200.

Valid Prediction Time (VPT). This metric identifies the latest time step tf before which the sMAPE
remains below a predefined threshold ϵ, as described in Vlachas et al. (2020). Formally:

VPT ≡ argmaxtf {tf |sMAPE(xt, x̂t) < ϵ, ∀t < tf}.

We use ϵ = 30, consistent with prior work (Vlachas et al., 2020; Gilpin, 2023; Zhang & Gilpin, 2024).
For chaotic systems, consistently achieving a VPT over one Lyapunov time is considered impressive
(Gilpin, 2023; Zhang & Gilpin, 2024).

Other than sMAPE and VPT, we also show benchmark results using Mean Square Error (MSE) and
Mean Absolute Error (MAE), two other metrics commonly used in the time series literature.

For chaotic dynamical systems, point forecasts will inevitably fail due to the exponential rate of error
accumulation. It is thus equally important for a forecasting model to preserve the long-term statistical
and geometric properties of the chaotic attractors, such as Lyapunov exponents and the attractor
dimension. Here, we compare the structure of true and predicted attractors by calculating the KL
Divergence between their distributions.

Kullback–Leibler Divergence between Attractors (Dstsp).

Dstsp ≡ DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
,

where P and Q represent the true and the predicted attractor, respectively. When estimating Dstsp, we
follow the methodology in Hess et al. (2023); Göring et al. (2024). Specifically, we place Gaussian
kernels at each point in the true and predicted trajectories and estimate the KL divergence between
these Gaussian mixtures using a sampling-based approximation (Hershey & Olsen, 2007).

In the appendix, we also measure attractor reconstruction accuracy using Fractal Dimension and
Lyapunov Exponents. The correlation dimension estimates the fractal dimension from a time series
by calculating the scaling of the number of attractor points that fall within a given radius of each point
(Grassberger & Procaccia, 1983). This quantity is among the few invariant quantities of a dynamical
system that can be non-parametrically estimated from a time series; however, the estimates can still
be unstable and brittle depending on the fitting procedure (Clauset et al., 2009).
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5 RESULTS

5.1 CONTEXT PARROTING VERSUS FOUNDATION MODELS

Here, we compare context parroting and foundation models in their ability to predict chaotic dynamics.
Figure 2 shows each model’s forecasting error (measured by sMAPE) as well as their accuracy in
attractor reconstruction (measured by KL Divergence). It is clear that context parroting is better than
all foundation models tested here in both metrics. In Fig. 6, we show that this remains true when
benchmarked against MSE and MAE. The results for fractal dimension accuracy are shown in Fig. 7,
where parroting and Chronos significantly outperform the rest of the foundation models. We also
explore the effects of observational noise and data granularity on the forecast performance in Tables 5
to 14. Over the wide range of noise intensity and data granularity we tested, parroting is always the
best or the second best according to all metrics (VPT, MAE, MSE, fractal dimension accuracy, and
attractor KL Divergence).
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Figure 2: Context parroting outperforms foundation models in zero-shot forecasting for both
short-term point-wise accuracy and long-term attractor reconstruction. Left: Forecast error
of each model as a function of the forecast horizon. The context length is set to 512 for all models.
Right: KL Divergence between the predicted attractors and the true attractors (smaller is better). Solid
lines represent mean and dotted lines represent median. All results are obtained from 135 chaotic
systems in the dysts database, with 20 trajectories from random initial conditions for each system.

Among foundation models, Chronos is the best performer in predicting chaotic systems, which is
not surprising given that it utilizes parroting as a main forecasting strategy (Zhang & Gilpin, 2024).
Chronos’s tendency to context parrot arises from its distinct architecture as a language model that
implicitly quantizes time series. As a result, Chronos is trained using cross-entropy loss, which
incentivizes preservation of k-gram frequencies and encourages the generation of diverse forecast
samples consistent with the dynamical system’s underlying measure (Yu et al., 2025). In contrast,
TimeMoE and TimesFM are trained using mean squared error loss. As a result, these models
lose diversity and forecast the mean at long forecast horizons (i.e., they tend to underestimate the
oscillations). Some representative forecasts from the foundation models are shown in Fig. 5, which
shows that regressing to the mean is a common failure mode for many foundation models on chaotic
systems.

Moreover, as we demonstrate in Fig. 8, the inference cost of context parroting is negligible compared
to foundation models (not to mention the substantial GPU time needed to pre-train them). For
example, there is an over six orders of magnitude computational gap between Chronos and context
parroting for all context lengths. Combined with the fact that the performance of parroting is not
sensitive to the choice of the embedding dimension D (Fig. 10), these results establish context
parroting as a simple but effective baseline for zero-shot forecasting of dynamical systems.

Figure 3 further explores the effect of context length on forecast accuracy. We find that longer context
windows generally lead to better performance for both context parroting and Chronos. However, the
longest context length Chronos can effectively utilize is 512 data points. This limit is determined
by Chronos’s maximum context window chosen at pre-training. To be able to utilize longer context,
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Figure 3: Parroting can better utilize longer context data while Chronos does better for shorter
contexts. Each line represents the forecast error for a different context length. The performance
of Chronos saturates once the context length exceeds its designed upper limit of 512 data points,
whereas the accuracy of context parroting keeps improving for longer context windows. Here we set
the embedding dimension D = 10 for the parroting algorithm.

Chronos must be retrained from scratch with much more data and compute. Context parroting, on the
other hand, is happy to utilize context data of any length. In Fig. 9, we show VPT as a function of the
context length for context parroting and the foundation models. Again, parroting is the clear winner
for medium to long context lengths, easily reaching an average VPT of over 5 Lyapunov times when
given sufficient context.

Interestingly, Chronos outperforms context parroting on short contexts, which points to additional
zero-shot learning strategies beyond parroting employed by Chronos. This is perhaps not surprising
given that at short context length, the time series becomes effectively nonstationary, which is
the strength of time-series foundation models. For example, Chronos is great at continuing the
local trend in the context, which can be a more effective strategy than parroting when the length
of the context is limited. Moreover, even when restricted to parroting, the ∼ O(L2) operations
performed by attention heads in transformers like Chronos have, in principle, sufficient computational
complexity to dynamically choose the optimal embedding dimension D for each individual time
series, giving attention an advantage over parroting algorithms with a fixed D, which have the
∼ O(DL) complexity of nearest-neighbor search. It would be interesting to explicitly identify the
mechanisms that enable Chronos to outperform parroting in the short-context regime.

5.2 IN-CONTEXT NEURAL SCALING LAW

Liu et al. (2024a) reported an in-context neural scaling law for LLMs applied to dynamical systems,
in which the one-step forecast error decreases algebraically with context length. However, it is unclear
where this scaling law came from or why LLMs trained on text can be effective for time series without
fine tuning. Here, we show that context parroting naturally gives rise to the same in-context scaling
law and provides geometric insights into its origin. Given the similarity between parroting and the
induction heads implemented by LLMs (Olsson et al., 2022), the geometric explanation we develop
next for context parroting can conceivably be applied to LLMs and partially explain the observations
in Liu et al. (2024a).

The left panel in Fig. 4 shows the power law relation between one-step forecast error (measured by
sMAPE) and context length for the parroting method. Longer context lengths improve predictions
because more context data allows the algorithm to find better matching motifs, and a closely-matched
motif allows the parroted sequence to shadow the ground truth for longer. The overlap between the
matching motifs can be measured by their Euclidean distance. For length-D motifs, this is equivalent
to embedding the context trajectory in a D-dimensional delay-embedded space (i.e., mapping xs

to xs−D+1:s) and finding the distance between the embedded last context point xL−D+1:L and its
nearest embedded neighbor. The right panel in Fig. 4 shows the improving overlap explicitly, with the
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Figure 4: Scaling laws with context length. Left: One-step forecast error versus context length. The
scaling follows a power law for all embedding dimensions D considered. Smaller D is more accurate
here because of the one-step forecast error. Larger D can be more accurate for longer forecasting
horizons. Right: Euclidean distance between the last context motif xL−D+1:L and its closest match,
as a function of context length. Again, the scaling follows a power law for all D. The forecast
accuracy is directly tied to the motif distance: Smaller distances translate into better predictions. As
the number of context data points is increased, it becomes more and more likely that a context motif
will land in the vicinity of the last context motif, and the fractal dimension of the chaotic attractor
determines the rate of approach. In principle, infinite context length should give context parroting
infinite accuracy for any deterministic system with a well-defined attractor.

distance between the matching motifs decreasing algebraically with context length. It is easy to see
that matching motif distance should map linearly to the expected one-step forecast error, so the power
law for the matching motif distance implies the power law for one-step forecast error, as confirmed by
Fig. 4. Although we focus on deterministic ODEs in Fig. 4, we note that the same power law scaling
is expected to hold for discrete maps and for systems subject to weak noise. Explaining the power
law in the case of stochastic systems, such as Markov chains with randomly generated transition
matrices (Liu et al., 2024a), is a promising direction for future research.

Why then does the matching motif distance follow a power law with context length, ℓ ∝ L−α?
We can link the scaling coefficient α to the fractal dimension of the chaotic attractor. The fractal
dimension of an attractor, as estimated by the correlation dimension dcor, is defined as

dcor ≡ lim
ϵ,ϵ′→0+

ln
[

C(ϵ)
C(ϵ′)

]
ln

(
ϵ
ϵ′

) ,

where C(ϵ) is the number of point pairs in the attractor that are within a given radius ϵ from each other.
In other words, if we plot C(ϵ) against ϵ on a log-log plot, dcor would be the slope of the plotted line.
Due to the ergodic property of chaotic attractors, the context trajectory can be seen as a random sample
of the attractor. Longer context trajectory contains more samples, and the expected distance between
two context points in a delay-embedded space decreases with context length as L−1/dcor . For example,
for a two-dimensional attractor, the distance between two random points on the attractor will decrease
as 1/

√
L. Fractal dimension thus measures the speed at which the minimum embedding distance

between points on an attractor can be reduced by including more samples, and higher dimensionality
requires more points to reduce the distance to the same extent. Mathematically, we thus expect
α = 1/dcor. A similar scaling law has been derived for the Farmer-Sidorowich forecasting method
from the nonlinear dynamics community (Farmer & Sidorowich, 1987). Despite the theoretical
correspondence, however, numerically the fractal dimension is challenging to accurately estimate
from finite time series, due to instabilities in estimating the scaling coefficient α as the data resolution
and fitting conditions vary (Clauset et al., 2009; Grassberger & Procaccia, 1983). Nonetheless, in
Fig. 11, we observe relatively strong correlation between dcor and 1/α, supporting our theoretical
argument above.
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5.3 SCIML TASKS BEYOND LOW-DIMENSIONAL CHAOTIC SYSTEMS

So far we focused on low-dimensional chaotic systems from the dysts dataset, which enabled
systematic comparison between different forecasting models with standardized benchmarks. Here, we
show that parroting also outperforms foundation models on a broader class of SciML tasks, including
real-world datasets of current scientific interest. Our datasets are: (1) the von Karman vortex street at
Reynolds number Re = 900, a standard problem in fluid dynamics representing a flow exhibiting
intermittency. We generated time series corresponding to the top PCA modes, in order to capture
global structure; (2) electrocardiogram recordings (via the QT Database in PhysioNet); (3) 28 coupled
electronic circuits measured experimentally from Vera-Ávila et al. (2020)); and (4) 23 Kuramoto
oscillators coupled through frustrated and nonreciprocal interactions, recently studied in León & Pazó
(2025). These are all high-dimensional systems, two generated from simulations and two measured
in the real world. For the metrics, we use MAE and MSE to measure pointwise forecast accuracy,
and KL Divergence to measure the accuracy in attractor reconstruction. The results are summarized
below. Parroting is the only model that ranks in the top three for all tasks and all metrics. Other
metrics, such as valid prediction time and fractal dimension accuracy, give similar rankings.

Table 1: Performance comparison (MAE @ 50 steps, mean ± standard deviation) of forecasting
models across SciML tasks. Bold = best, italic = second and third best.
Task Parrot DynaMix Chronos Chronos Bolt TimesFM TimeMoE Moirai

Turbulence 0.403±0.210 0.505±0.247 0.431±0.237 0.567±0.247 0.510±0.174 0.394±0.172 0.382±0.189
ECG 0.624±0.315 0.777±0.241 0.873±0.422 0.752±0.279 0.723±0.259 0.799±0.158 0.684±0.237
Circuit 0.083±0.050 0.425±0.172 0.111±0.065 0.349±0.120 0.196±0.090 0.206±0.102 0.213±0.093
Kuramoto 0.004±0.001 0.076±0.002 0.072±0.029 0.961±0.084 0.624±0.061 0.070±0.011 0.004±0.001

Table 2: Performance comparison (MSE @ 50 steps) of forecasting models across SciML tasks.
Bold = best, italic = second and third best.
Task Parrot DynaMix Chronos Chronos Bolt TimesFM TimeMoE Moirai

Turbulence 0.322±0.333 0.490±0.4530 0.380±0.408 0.531±0.447 0.403±0.262 0.278±0.268 0.278±0.267
ECG 0.916±0.630 1.063±0.488 1.461±1.097 0.950±0.581 0.940±0.530 0.893±0.287 0.851±0.488
Circuit 0.012±0.016 0.297±0.294 0.024±0.030 0.181±0.122 0.065±0.056 0.076±0.080 0.075±0.060
Kuramoto 0.001±0.002 0.006±0.001 0.009±0.007 1.296±0.188 0.512±0.096 0.008±0.002 0.001±0.001

Table 3: Performance comparison (KL Divergence between predicted and true attractors) of
forecasting models across SciML tasks. Bold = best, italic = second and third best.
Task Parrot DynaMix Chronos Chronos Bolt TimesFM TimeMoE Moirai

Turbulence 0.028±0.044 0.005±0.008 0.041±0.046 0.048±0.058 0.111±0.072 0.070±0.058 0.030±0.041
ECG 0.065±0.089 0.099±0.104 0.403±0.367 0.253±0.185 0.220±0.153 0.188±0.094 0.276±0.311
Circuit 0.572±0.082 2.940±0.528 0.630±0.118 1.710±0.255 0.383±0.087 0.816±0.200 0.848±0.155
Kuramoto 0.001±0.001 1.010±0.150 0.537±0.087 3.116±0.202 4.489±0.363 0.076±0.040 0.010±0.011

6 CONCLUSION AND FUTURE DIRECTIONS

We find that a simple forecast strategy—context parroting—outperforms leading foundation models
on dynamical systems forecasting, a critical task in scientific machine learning. This surprising
finding exposes a limitation of current time-series foundation models as general-purpose time-series
forecasters and highlights the need to further scale them or to fine-tune them for specific domains. It
also suggests that accurately measuring the performance of foundation models can be difficult for
scientific machine learning tasks, because strategies like parroting can effectively game both short-
and long-term accuracy metrics.

Finding a simple but effective baseline for a challenging task can encourage rethinking of the status
quo, motivating the development of better model architectures (Arora et al., 2017). For example,
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context parroting formalizes an explicit baseline to compare against in the time-series domain and can
help discover beyond-parroting strategies. Identifying in-context learning strategies beyond parroting
can spur the development of next-generation foundation models and contribute to the debate on
whether (or to what extent) large language models are stochastic parrots (Bender et al., 2021; Mitchell
& Krakauer, 2023; Arora & Goyal, 2023; McCoy et al., 2024).

An interesting future direction is to generalize context parroting to deal with non-stationary time series
while keeping the simplicity and efficiency of the method. Context parroting assumes the existence
of a stationary underlying measure; for an ergodic deterministic system this implies that conditional
probabilities of timepoints are stationary up to any order (Appendix H). However, newer foundation
models readily handle simple nonstationarity like baseline drift, implying that a modified parroting
strategy may be possible in-context (Das et al., 2024). A promising avenue involves combining
parroting with a probabilistic model, such as a Gaussian Process, to account for nonstationary trends.
Additionally, the diversity of long-term forecasts can be improved by allowing stochastic selection
among multiple candidate forecasts (e.g., from different matching motifs). Once generalized, the
non-stationary parroting method can replace Naive and Seasonal Naive to serve as a more informative
baseline for the zero-shot forecasting of general time series (weather, traffic, finance, etc.).

Finally, we want to emphasize that we are not proposing to replace time-series foundation models
with context parroting. Instead, the value of parroting is as a simple baseline that can reveal the gaps
in current foundation models and guide the design of new ones. When foundation models under
perform relative to context parroting, it reveals that they haven’t learned to fully utilize the context
data. For example, a common failure mode we observed across a range of leading foundation models
(TimesFM, TimeMoE, Chronos Bolt) is that they tend to underestimate oscillations in the dynamics
and the predictions often quickly converge to the mean (Fig. 5). Being aware of context parroting as
a baseline also guides the design of more informative benchmarks in the future. For example, for
dynamical systems in dysts, one can generate test context data that are impossible to parrot by
using only initial conditions that lead to trajectories without nearly repeating motifs.

7 REPRODUCIBILITY STATEMENT

A Python implementation of the context parroting algorithm and the benchmarks are available at
https://anonymous.4open.science/r/parroting-4D26.
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A SAMPLE PREDICTIONS FROM FOUNDATION MODELS
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Figure 5: Example forecasts on a chaotic system from foundation models reveal common
failure modes. This is the same task as presented in Fig. 1 (predicting the x variable of the Lorenz
system based on a short context trajectory with 512 data points). Chronos does extremely well with
a parroting strategy. The other models perform comparatively poorly and all exhibit a tendency to
underestimate the oscillations (e.g., by quickly converging towards the mean). This is a general trend
that we consistently observe across different chaotic systems and initial conditions.
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B BENCHMARKING WITH OTHER METRICS
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Figure 6: Context parroting outperforms foundation models in zero-shot forecasting. Same
setup as in Fig. 2, but with the forecast error measured by MSE (left) and MAE (right). On top of the
foundation models, we also include two classical forecasting methods in the comparison: simplex
projection (Sugihara & May, 1990) and AutoARIMA (Hyndman & Athanasopoulos, 2018).
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Figure 7: Fractal dimension accuracy for parroting and foundation models. Each point represents
the predicted fractal dimension of a chaotic attractor by a model (median of 20 predictions from
random initial conditions). The accuracy is measured by the Spearman correlation r between the 135
predicted fractal dimensions and the true fractal dimensions.

C EFFECTS OF EMBEDDING DIMENSION D

Fig. 10 investigates how the choice of the embedding dimension D affects the performance of
context parroting. Overall, the valid prediction time stays consistent over a wide range of embedding
dimension D. For short context windows, there is a slight advantage to small D. For long context
windows, larger embedding dimensions are marginally better. This observation suggests potential
improvements in the future that choose D adaptively based on factors such as context length.
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Figure 8: Context parroting is computationally more efficient than foundation models. There is
generally a gap of five or six orders of magnitude between context parroting and foundation models.
For each foundation model, context lengths from 64 to the maximum context window are considered.
All inferences are performed with CPUs, and the forecast horizon is fixed to 300 steps.
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Figure 9: Valid prediction time as a function of the context length. Dashed lines indicate context
lengths exceeding the maximum context window of the model. Results are averaged over 135 chaotic
systems in the dysts database, with 20 trajectories from random initial conditions for each system.

D PREDICTING SCALING COEFFICIENT WITH THE ATTRACTOR DIMENSION

Figure 11 shows the relation between the scaling coefficient of the in-context neural scaling law and
the correlation dimension of the chaotic attractor.

E EFFECT OF CONTEXT LENGTH ON INVARIANT PROPERTIES

In Figure 12, we explore how the accuracy of four representative zero-shot models changes as the
context length varies over an order of magnitude. We observe that all models exhibit monotonic
scaling, consistent with additional samples from the attractor enabled by larger context acting to
improve the stability of reconstructed attractors.
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Figure 10: Effect of the embedding dimension D on the forecast accuracy of context parroting.
Each curve represents a different context length. Results are averaged over 135 chaotic systems in
the dysts database, with 100 trajectories from random initial conditions for each system.
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Figure 11: Inverse scaling coefficient 1/α versus fractal dimension dcor of the chaotic attractor.
We estimate α from the ℓ vs L plot obtained with context parroting at D = 10, where L ranges from
26 to 216. This is done separately for each chaotic system. Thus, each dot represents one of the
135 chaotic systems included in our benchmark. The Spearman rank-order correlation coefficient
is 0.51 ± 0.08 (bootstrapped standard error), and a linear regression with standard error range is
underset (shaded interval). The dashed line corresponds to an exact 1 : 1 scaling.

F EFFECT OF FORECAST HORIZON ON INVARIANT PROPERTIES

We next test the performance of parroting for long forecast horizons. We fix the context length
L = 512 and then generate forecasts of length H = 10000 − 512 = 9488 (equivalent to over 316
Lyapunov Times). Table 4 shows the results of generating forecasts using the best-performing models
from our shorter-horizon experiments. For each model, we evaluate its global accuracy by calculating
(1) the correlation between the fractal dimension of the long forecast, and an estimate generated from
the ground truth; (2) the correlation between the largest Lyapunov exponent of the long forecast,
and an estimate generated from the ground truth; and (3) the attractor KL-divergence between the
long forecast and ground truth (Grassberger & Procaccia, 1983; Rosenstein et al., 1993; Hess et al.,
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Figure 12: Dependence of invariant properties on context length. (Left) The Spearman correlation
between the fractal dimension of the true trajectory and predicted trajectory as the context length
varies. (Middle) The Spearman correlation between the estimated maximum Lyapunov exponent of
the true trajectory and predicted trajectory as the context length varies. (Right) The estimated KL
divergence between Gaussian mixtures fit to the true trajectory and predicted trajectory, as the context
length varies. Note that Chronos has a finite context length, and so its performance saturates due to
architectural constraints, and not intrinsic limitations. For this plot, forecasts are generated for 300
timepoints past the context. For the same figure with longer forecasts, see Figure 13.

2023). We find that context parroting and DynaMix both perform well, indicating that DynaMix is a
general-purpose time-series foundation model with a unique ability to capture the long-term climate
of chaotic systems (Hemmer & Durstewitz, 2025).

Metric Parrot Chronos Dynamix Simplex
Attractor KL Divergence 0.412 ± 0.141 0.679 ± 0.101 0.508 ± 0.147 0.546 ± 0.140
Fractal Dimension Correlation 0.723 ± 0.042 0.120 ± 0.118 0.521 ± 0.057 0.341 ± 0.072
Largest Lyapunov Correlation 0.343 ± 0.018 0.269 ± 0.114 0.466 ± 0.071 0.343 ± 0.085

Table 4: KL Divergence and correlation of invariant properties between predicted and true attractors
for different models for long forecast horizons. Error bars are standard deviation across all attractors
for the KL Divergence, and uncertainty bounds based on the p-value for correlations. Bold = best,
italic = second best.

G EFFECTS OF NOISE AND SAMPLING RATE

We add Gaussian noise to normalized chaotic trajectories and repeat the original experiments (a noise
level of 0.1 translates to 10% perturbation on each data point on average). The results are consistent
across different orders of magnitude in noise, and parroting is consistently the best or the second best
in all experiments.

Noise level Parrot Chronos Chronos Bolt TimesFM TimeMoE

10−3 2.17±0.19 1.68±0.18 0.79±0.18 1.07±0.19 0.92±0.15
10−2 2.10±0.18 1.65±0.18 0.79±0.18 1.05±0.19 0.92±0.16
10−1 1.04±0.14 0.89±0.15 0.71±0.17 0.89±0.17 0.66±0.11

Table 5: Valid prediction time across noise levels (higher is better). Bold = best, italic = second best.
Shading highlights best (dark) and second best (light).

In the main text, we set an intermediate granularity of 30 points per Lyapunov time. Below we
compare it with results obtained for granularities of 10 points per Lyapunov time and 50 points per
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Noise level Parrot Chronos Chronos Bolt TimesFM TimeMoE

10−3 0.233±0.221 0.297±0.243 0.491±0.223 0.440±0.228 0.377±0.211
10−2 0.235±0.220 0.311±0.245 0.492±0.223 0.441±0.228 0.383±0.211
10−1 0.286±0.209 0.366±0.235 0.509±0.219 0.455±0.224 0.415±0.216

Table 6: MAE @ 1 Lyapunov Time across noise levels (lower is better). Bold = best, italic = second
best. Shading highlights best (dark) and second best (light).

Noise level Parrot Chronos Chronos Bolt TimesFM TimeMoE

10−3 0.183±0.339 0.268±0.367 0.473±0.314 0.394±0.307 0.315±0.273
10−2 0.185±0.340 0.282±0.361 0.474±0.314 0.394±0.306 0.318±0.274
10−1 0.220±0.346 0.328±0.373 0.489±0.314 0.407±0.302 0.349±0.285

Table 7: MSE @ 1 Lyapunov Time across noise levels (lower is better). Bold = best, italic = second
best. Shading highlights best (dark) and second best (light).

Noise level Parrot Chronos Chronos Bolt TimesFM TimeMoE

10−3 0.73 0.85 0.52 0.58 0.52
10−2 0.63 0.77 0.51 0.55 0.45
10−1 0.59 0.57 0.37 0.49 0.16

Table 8: Fractal dimension accuracy (Spearman correlation) across noise levels (higher is better).
Bold = best, italic = second best. Shading highlights best (dark) and second best (light).

Noise level Parrot Chronos Chronos Bolt TimesFM TimeMoE

10−3 0.113±0.205 0.173±0.209 0.346±0.297 0.345±0.298 0.354±0.290
10−2 0.115±0.201 0.189±0.244 0.344±0.292 0.356±0.298 0.344±0.285
10−1 0.141±0.207 0.218±0.263 0.382±0.314 0.389±0.306 0.433±0.306

Table 9: KL Divergence between predicted and true attractors across noise levels (lower is better).
Bold = best, italic = second best. Shading highlights best (dark) and second best (light).

Lyapunov time. Granularity does not strongly affect the results or relative model ranking. Parroting is
either the best or the second best in all experiments. This makes sense, as we would expect changing
granularity to have a similar effect as rescaling of time (although with bigger or smaller gaps between
data points). For example, if we use finer granularity by a factor of 2, then we would need to double
the context length to get the same lookback window.

Granularity Parrot Chronos Chronos Bolt TimesFM TimeMoE
10 4.70±0.57 3.93±0.59 1.55±0.50 1.92±0.54 1.43±0.26
30 2.15±0.19 1.68±0.18 0.79±0.18 1.07±0.19 0.92±0.15
50 1.41±0.11 1.12±0.11 0.55±0.10 0.79±0.11 0.54±0.05

Table 10: Valid prediction time across different granularities (higher is better). Bold = best, italic =
second best.

H THEORETICAL PROPERTIES OF CONTEXT PARROTING

H.1 OVERVIEW

Mathematical Formulation. Context parroting corresponds to a continuous 1-nearest-neighbor
search over sequences of length D in the context of length L. It thus corresponds to a limit of a
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Granularity Parrot Chronos Chronos Bolt TimesFM TimeMoE
10 0.219±0.204 0.316±0.256 0.567±0.226 0.481±0.218 0.414±0.232
30 0.233±0.221 0.297±0.243 0.491±0.223 0.440±0.228 0.377±0.211
50 0.270±0.226 0.329±0.241 0.527±0.224 0.448±0.235 0.412±0.193

Table 11: MAE @ 1 Lyapunov Time across different granularities (lower is better). Bold = best,
italic = second best.

Granularity Parrot Chronos Chronos Bolt TimesFM TimeMoE
10 0.163±0.311 0.291±0.364 0.565±0.314 0.429±0.293 0.349±0.300
30 0.164±0.295 0.268±0.367 0.473±0.314 0.394±0.307 0.315±0.273
50 0.224±0.347 0.310±0.377 0.536±0.341 0.426±0.331 0.352±0.272

Table 12: MSE @ 1 Lyapunov Time across different granularities (lower is better). Bold = best,
italic = second best.

Granularity Parrot Chronos Chronos Bolt TimesFM TimeMoE
10 0.87 0.82 0.34 0.39 0.36
30 0.80 0.85 0.52 0.58 0.52
50 0.89 0.86 0.41 0.60 0.56

Table 13: Fractal dimension accuracy (Spearman correlation) across different granularities (higher
is better). Bold = best, italic = second best.

Granularity Parrot Chronos Chronos Bolt TimesFM TimeMoE
10 0.087±0.137 0.127±0.173 0.573±0.307 0.444±0.326 0.467±0.368
30 0.122±0.194 0.173±0.209 0.346±0.297 0.345±0.298 0.354±0.290
50 0.137±0.207 0.230±0.256 0.406±0.305 0.361±0.323 0.370±0.338

Table 14: KL Divergence between predicted and true attractors across different granularities (lower
is better). Bold = best, italic = second best.

Nadaraya–Watson model of the time series,

p̂(y | q) =
∑L−H

j=D Kσ

(
q, xj−(D−1):j

)
Kσ (y, xj+1:j+H)∑L−H

j=D Kσ

(
q, xj−(D−1):j

) , (1)

where the query q represents the length-D motif immediately preceding the end of the context window.
y represents a length-H forecast of subsequent values. The forecast sequence y has probability p̂
conditioned on the query. The symmetric kernel Kσ(u,v) = σ−dK

(
(u− v)/hσ

)
has bandwidth σ

in dimension d = D · dim(xt). Assuming mean-squared error as a distance function in sequence
space, we use a Gaussian kernel

Kσ(u,v) =
1

(2πσ2)d/2
exp

(
−∥u− v∥2

2σ2

)
We set the second kernel on y in Eq. 1 to a delta function, in order to output predictions that exactly
match sequences from the context, rather than nearby sequences in a least-squares sense. We write
the conditional mean predictor

ŷ(q) =

L−H∑
j=D

w(q,xj−(D−1):j) xj+1:j+H , w(q, z) ≡ Kσ (q, z)∑L−H
j=D Kσ

(
q, xj−(D−1):j

) . (2)

Context parroting corresponds to the 1-nearest-neighbor limit σ → 0.
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Context parroting preserves attractor properties at long context lengths. In Appendix H.4, we
derive the following proposition,

lim
L→∞

Ep[F (y)|q] = Eµ[F (x)]

where L is the context length for an Nadaraya–Watson estimator p, F (y) is an estimate from a
forecast sequence y of a property F of an ergodic dynamical system, which has an invariant value
Eµ[F (x)] when calculated over the full attractor with underlying measure µ. The query q is an
arbitrary sequence of consecutive timepoints from the dynamical system. This proposition states that,
when the context is sufficiently long, context parroting of an ergodic system preserves invariant values
of the underlying dynamics. Context parroting thus represents an effective baseline for dynamical
systems forecasting, because, in the limit of long context, it will preserve global properties like
conditional distributions of values, Lyapunov exponents, or entropy production rates.

H.2 DISCRETE-TOKEN PARROTING

For fully-discrete tokens, a Dth order Markov chain fit to the context has the form

p(y|q) =
#{j : (xj−(D−1):j = q) ∧ (xj+1:j+H = y)∑
y′ #{i : (xj−(D−1):j = q) ∧ (xj+1:j+H = y′)

(3)

where the overall context has length L, and the Markov chain conditions the H < L future tokens on
the D < L preceding tokens. The index j runs over all contiguous sequences of length D +H in
the context, j ∈ {D − 1, D, ..., L−H − 2, L−H − 1}. The vector q ∈ RD represents the query,
and the vector y ∈ RH represents the prediction in response to this query. Eq. 3 simply counts the
number of token sequences of length D + H that start with a given sequence of D query tokens.
A maximum-likelihood estimator derived from this model always samples the highest-likelihood
sequence y,

ŷMLE(q) = argmaxy log p(y|q)
However, this estimator may be unstable due to the appearance of queries q not seen in the context,
motivating the use of token smoothing, in which Eq. 3 is replaced by the distribution

p(y|q) =
#{j : (xj−(D−1):j = q) ∧ (xj+1:j+H = y) + α∑

y′

(
#{i : (xj−(D−1):j = q) ∧ (xj+1:j+H = y′) + α

) (4)

with increasing values of the parameter α causing predictions to converge to a uniform sample
over possible predictions y. The parameter value α = 0 reduces to no smoothing, while α = 0.5
corresponds to the Jeffreys prior and α = 1 corresponds to Laplace’s rule of succession.

H.3 CONTINUOUS-TOKEN PARROTING

A more general time series model treats tokens as continuous-valued. Some time series foundation
models like Chronos use binning to discretize time series values, allowing the direct use of discrete-
token architectures (Ansari et al., 2024). However, many time series models assume effective
continuity in token values, and we favor a continuous formulation in order to highlight connections to
dynamical systems theory.

To model continuous-valued tokens directly, we replace the discrete count in §H.2 with a kernel-
weighted estimate over all past subsequences. Let {xt} denote a univariate or multivariate time series.
For context length L and prediction horizon H , the Nadaraya–Watson estimate of the conditional
density is

p̂(y | q) =
∑L−H

j=D Kh

(
q, xj−(D−1):j

)
Kh (y, xj+1:j+H)∑L−H

j=D Kh

(
q, xj−(D−1):j

) , (5)

where Kh(u,v) = h−dK
(
(u − v)/h

)
is a symmetric kernel with bandwidth h in dimension

d = D · dim(xt) for the first kernel, and d = H · dim(xt) for the second kernel. Assuming
mean-squared error as a distance function in sequence space, we use a Gaussian kernel

Kh(u,v) =
1

(2πh2)d/2
exp

(
−∥u− v∥2

2h2

)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

In practice, we drop the second kernel on y in Eq. 5 in order to output a prediction that exactly
matches sequences from the context, rather than nearby sequences in a least-squares sense. We thus
write the conditional mean predictor

ŷ(q) =

L−H∑
j=D

w(q,xj−(D−1):j) xj+1:j+H (6)

where we have isolated a term corresponding to the weight of each sequence,

w(q, z) ≡ Kh (q, z)∑L−H
j=D Kh

(
q, xj−(D−1):j

) .
Nearest-neighbor and global average limits. The bandwidth h plays the role of a smoothing
parameter (analogous to α in Eq. 4). As h → 0 the scheme approximates a single-nearest neighbor
parrot, while as h → ∞ it converges to a global average over all sequences.

Connection to attention. If one takes

K(u,v) = exp
(
u⊤v/τ

)
,

then Eq. 6 recovers a simplified form of softmax-attention, with the temperature hyperparameter τ
controlling smoothness. In this view, the continuous parroting scheme is a kernel-regression analogue
of discrete k–gram smoothing (Tsai et al., 2019).

k-nearest-neighbor limit. We define a set Topk corresponding to a subset of the possible values of
the index j ∈ {D,D+ 1, ..., L−H − 1, L−H}. The k elements of Topk correspond to the indices
j that produce the k largest values of w(q,xj−(D−1):j) across all values of j. We compute a simple
average of these k closest matches

ŷ(q) =
1

k

∑
j∈Topk

w(q,xj−(D−1):j) xj+1:j+H (7)

yielding a k–nearest-neighbors parroting scheme. As k increases, this estimator interpolates between
exact parroting (k = 1) and global average (k → L).

Simplex projection. Simplex projection, a classical forecasting method in nonlinear dynamics,
corresponds to the special case H = 1 (single step prediction), k = D + 1 in Eq. 7. The condition
k = D + 1 represents the minimal number of affinely independent neighbors needed to triangulate a
point in a D-dimensional space (Sugihara & May, 1990).

In simplex projection, the query q is interpreted as a time-delay embedding of the time series
observable x. Takens’ theorem argues that, under mild conditions, a finite number of time delay
embeddings of an observable drawn from a deterministic ergodic system will be diffeomorphic
(smoothly mappable) to the full-state dynamics (Takens, 2006). Because simplex projection uses
only neighbor identities, and not absolute distances, to weight context points, a delay embedding is
sufficient to calculate the appropriate weights.

S-map forecasts. Another common nonlinear forecasting technique retains all terms in the sum
Eq. 6 , but instead performs a nonlinear weighting of the form

Kθ(u,v) = exp(−θ∥u− v∥/d̄)

where the scale parameter d̄ is determined by the distribution of distances among queries and points in
the context. In practice, this parameter is often set to the mean pairwise distance among all sequences
of length D in the context. The optimal value of the hyperparameter θ increases as the underlying
dynamics become more strongly nonlinear Sugihara (1994). We note that, in the classical formulation
of the S-map, a locally-linear model is fit based on all sequences of length D+H seen in the context,
while here we use the Nadaraya–Watson estimator in order to emphasize connections to modern
kernel regression.
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H.4 INVARIANTS OF MOTION

For ergodic dynamical systems in continuous time, there exists a natural measure µ(x) such that, for
certain observables F (x), the following condition almost surely holds,

Eµ[F ] ≡ lim
T→∞

1

T

∫ T

0

F (x) =

∫
F (x)dµ(x) = constant

where the second equality arises from the Birkhoff ergodic theorem (Walters, 1982).

We use the following convention for expectation values of sequences and single tokens; the expectation
Eµ[xt:t+T ] refers to the expected value of the sequence xt:t+T given pointwise measure µ. We note
that, for deterministic dynamical systems, once a given point is sampled on the attractor with measure
µ(xt), subsequent points have delta function conditional probability on the first point. Thus, we use
the convention µ(xt) = µ(xt:t+T ) and we use the measure to refer to both the probability of a given
timepoint, or a sequence of arbitrary length originating from that timepoint.

Proposition. Under appropriate kernel conditions,

lim
L→∞

Ep[F (y)|q] = Eµ[F (x)]

where L is the context length for a Nadaraya–Watson estimator p, F (y) is an estimate on a sequence
y of an invariant property of an ergodic dynamical system with measure µ, and q is an arbitrary
sequence of consecutive timepoints from the dynamical system. This proposition states that, when
the context is sufficiently long, a Nadaraya–Watson estimator of an ergodic system preserves the
invariant values of the underlying dynamics.

Derivation. We start with the definition of the dynamical average,

Eµ[F ] =

∫
F (x)dµ(x)

Inserting Eq. 5 into this expression,

Eµ[F (y)|q] =
∑L−H

j=D Kh

(
q, xj−(D−1):j

) ∫
F (y)Kh (y, xj+1:j+H) dµ(y)∑L−H

j=D Kh

(
q, xj−(D−1):j

) ,

We multiply both the numerator and denominator by 1/L and take the limit L → ∞, in order to
convert the summations to expectations,

lim
L→∞

Eµ[F (y)|q] =
Eµ

[
Kh(q,x←)

∫
F (y)Kh (y,x→) dµ(y)

]
Eµ[Kh(q,x←)]

,

where x← represents the first D points of random lookback window of length D + H sampled
from the underlying dynamical system, while x→ denotes the next H timepoints. In practice, this
corresponds to a time series of D+H points generated by simulating the dynamics starting at a point
on the attractor randomly-sampled according to the measure µ.

If we take the limit h → 0 (exact matching), then the kernel Kh becomes a delta function, yielding

lim
h→0

lim
L→∞

Eµ[F (y)|q] = Eµ[F (x→)|x← = q]

If the measure µ is ergodic, then the conditional expectation of an invariant F given any query q is
simply its unconditional expectation,

lim
h→0

lim
L→∞

Eµ[F (y)|q] = Eµ[F (x)]

H.5 SCALING LAWS LIMITING PREDICTION OF STOCHASTIC SYSTEMS

For a stochastic time series x1:T with autocorrelation given by

|Corr(xt,xt+τ )| ≤ Ce−ατ , α > 0
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with C representing a proportionality constant, the expected mean squared error of a forecast scales
as

E
[
∥ŷ − y∥2

]
∼ e−αL, L → ∞.

Thus, under exponential decay of correlations (mixing), the amount of information about future states
in a length-L context window saturates exponentially quickly Bradley (2005). Thus, forecasts derived
from increasingly large context windows converge exponentially quickly to optimal conditional
forecasts under the invariant measure µ.

Under standard smoothness conditions Fan & Yao (2008); Takezawa (2005), the forecast error also
exhibits a standard bias-variance tradeoff of the form

E
[
∥ŷ − y∥2

]
= O(h4) +O

(
1

ChL+H

)
.

The optimal width of the kernel thus scales as,

hopt ∼ C−1/(4+L+H)

I STABILITY OF FORECASTS AT LONG PREDICTION HORIZONS
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Figure 13: Properties of forecast models at long forecast horizons. Predictions of four distinct
chaotic systems using various forecast models. Forecasts are generated for 10, 000 points past the
end of the context, and the last 2000 timepoints are shown. The power spectrum is estimated using
Welch’s method on the last 5000 timepoints of a 10, 000 timepoint prediction.
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Figure 14: Attractor properties improve with context length. (A) Predictions of a single chaotic
system, the Lorenz attractor, by the parroting model as the context length increases. Forecasts are
generated for 10, 000 points past the end of the context, and the last 2000 timepoints are shown. The
power spectrum is estimated using Welch’s method on the last 5000 timepoints of a 10, 000 timepoint
prediction. (B) The average Hellinger distance between the true and predicted power spectrum as a
function of context length, averaged over 129 distinct chaotic systems (including the Lorenz attractor).
Error bars correspond to standard deviations. The averaged Hellinger distance is introduced as a
long-term metric for chaotic systems in Mikhaeil et al. (2022) and Brenner et al. (2022).

Metric DynaMix Parrot
Average Hellinger Distance 0.595 ± 0.166 0.591 ± 0.198
KL Divergence 0.624 ± 0.128 0.469 ± 0.162

Table 15: Global attractor fidelity metrics calculated at long forecast horizons. For these
experiments, the context length is 2000 timepoints, and the prediction horizon is 10, 000 timepoints.
Values correspond to mean and standard errors across 129 distinct chaotic systems.

Invariant Property DynaMix Parrot
Largest Lyapunov Exponent 0.278 ± 0.100 0.328 ± 0.097
Fractal Dimension 0.441 ± 0.073 0.832 ± 0.028

Table 16: Correlation of forecast properties with invariant properties. For these experiments,
the context length is 2000 timepoints, and the prediction horizon is 10, 000 timepoints. Values
correspond to Pearson correlations and standard errors (Fisher’s transformation) across 129 distinct
chaotic systems.

J STABILITY OF DISTRIBUTIONAL METRICS AGAINST HYPERPARAMETER
CHOICES
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Figure 15: Properties of forecast models at long forecast horizons as context length varies. Three
measures of long-term forecast properties at very long rollouts (10, 000 timepoints) as the context
length varies. For the fractal dimension and Lyapunov exponents, values correspond to Pearson
correlations and standard errors (Fisher’s transformation) across 129 distinct chaotic systems. For the
KL Divergence, values correspond to mean and standard errors across 129 distinct chaotic systems.
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Figure 16: Histograms of Lyapunov Exponents. We estimate the Lyapunov exponents from the
ground-truth time series, as well as from long rollouts from parroting and DynaMix. These rollouts
are generated with a context length of 2000 and a prediction horizon of 10000, and correspond to
estimates from all distinct chaotic systems in dysts.

Kernel Radius DynaMix Parrot
0.01 6.921 ± 0.594 4.194 ± 0.474
0.1 2.786 ± 0.361 1.589 ± 0.281
1.0 0.624 ± 0.128 0.469 ± 0.162
10.0† -0.098 ± 0.076 -0.075 ± 0.078

Table 17: Variation of KL divergence at long forecast horizons, for different values of the
Gaussian kernel. For these experiments, the context length is 2000 timepoints, and the prediction
horizon is 10, 000 timepoints. Values correspond to mean and standard errors across 129 distinct
chaotic systems. †Note: sampling-based KL divergence calculations can fluctuate below zero when
the center of the estimate is close to zero. To avoid introducing directional bias, we do not enforce
non-negativity with clipping or renormalization, and so these values should be interpreted as being
near zero.
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Figure 17: Dependence of Lyapunov exponent accuracy on estimation algorithm integration
time. We estimate the Lyapunov exponents from the ground-truth time series, as well as from long
rollouts from parroting and DynaMix, for varying integration timescales in the Rosenstein algorithm
(Rosenstein et al., 1993). These rollouts are generated with a context length of 2000 and a prediction
horizon of 10000, and correspond to estimates from all distinct chaotic systems in dysts.
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