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ABSTRACT

Recent voxel-wise multimodal brain encoding studies have shown that multimodal
large language models (MLLMs) exhibit a higher degree of brain alignment com-
pared to unimodal models in both unimodal and multimodal stimulus settings.
More recently, instruction-tuned multimodal models have shown to generate task-
specific representations that align strongly with brain activity. However, prior
work evaluating the brain alignment of MLLMs has primarily focused on uni-
modal settings or relied on non-instruction-tuned multimodal models for mul-
timodal stimuli. To address this gap, we investigated brain alignment, that is,
measuring the degree of predictivity of neural activity recorded while participants
were watching naturalistic movies (video along with audio) with representations
derived from MLLMs. We utilized instruction-specific embeddings from six video
and two audio instruction-tuned MLLMs. Experiments on 13 video task-specific
instructions show that instruction-tuned video MLLMs significantly outperform
in-context learning multimodal models (by ∼9%), non-instruction-tuned multi-
modal models (by ∼15%) and unimodal models (by ∼20%). Our evaluation of
MLLMs for both video and audio tasks using language-guided instructions shows
clear disentanglement in task-specific representations from MLLMs, leading to
precise differentiation of multimodal functional processing in the brain. We also
find that MLLM layers align hierarchically with the brain, with early sensory
areas showing strong alignment with early layers, while higher-level visual and
language regions align more with middle to late layers. These findings provide
clear evidence for the role of task-specific instructions in improving the alignment
between brain activity and MLLMs, and open new avenues for mapping joint in-
formation processing in both the systems.

1 INTRODUCTION

The alignment between internal representations of multimodal Transformer models and cortical ac-
tivation patterns obtained from naturalistic stimuli has emerged as a key focus in the study of brain-
model correspondence. Recent research has demonstrated that multimodal models in brain encoding
can be broadly categorized into two settings (see Appendix A Table 4): (i) multimodal models evalu-
ated with unimodal stimuli (Doerig et al., 2022; Wang et al., 2023; Oota et al., 2022b; Popham et al.,
2021; Tang et al., 2024; Oota et al., 2025a; Srijith et al., 2025), and (ii) multimodal models evaluated
with multimodal stimuli (Nakagi et al., 2024; Subramaniam et al., 2024; Dong & Toneva, 2023a;
Oota et al., 2025b; Sartzetaki et al., 2025). In the former setting, brain recordings are obtained from
unimodal image stimuli, but representations from multimodal models, which integrate modalities
such as vision and language, achieve a higher degree of brain alignment compared to vision-only
models (Doerig et al., 2022; Wang et al., 2023; Oota et al., 2022b; Popham et al., 2021). This obser-
vation holds true to the new class of instruction-tuned multimodal large language models (MLLMs),
especially when prompted with natural instructions (Oota et al., 2025a). In the latter setting, where
brain recordings are obtained from multimodal stimuli (e.g., watching movies with both visual and
auditory stimuli), studies show that multimodal models exhibit higher degree of brain alignment
over unimodal models (Dong & Toneva, 2023a; Oota et al., 2025b). While prior studies have exam-
ined brain alignment with instruction-tuned MLLMs (IT-MLLMs), they have largely been limited to
unimodal stimuli, or have used non-instruction-tuned models in the context of multimodal stimuli.
In this work, we bridge this gap by systematically investigating IT-MLLMs in the presence of rich
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Video Task-specific prompts (13 tasks)
Action recognition: What are main events captured in video
Video captioning: Caption the video in short sentence … 
Linking Events: ---

Audio Task-specific prompts (5 tasks)
Audio understanding: Describe audio content in detail?
Sound Event Detection: Identify and label sound events occurring in the audio 
…..

Figure 1: Leveraging instruction-tuned multimodal video and audio models for brain encoding with
a diverse set of instructions. For the given movie clip, we can obtain different multimodal repre-
sentations using instructions that ask the model to (i) generate the caption of the video, (ii) identify
whether temporal events are present, (iii) determine the primary colors dominant in the video, etc.
Using instruction-specific representations (X), we estimate the alignment using a simple linear func-
tion f (ridge regression), which maps MLLM representations to brain recordings. Here, W denotes
voxelwise encoding model weights.

multimodal stimuli. Specifically, we assess how well representations elicited through naturalistic,
task-specific instructions involving both video and audio align with brain activity across the cortical
hierarchy, from early sensory regions to higher-order cognitive areas.

Several unimodal studies report that task-specific fine-tuned Transformer models better align with
brain activity during text (Oota et al., 2022a; Aw & Toneva, 2023; Sun & Moens, 2023; Oota et al.,
2024b), speech (Oota et al., 2023; Tuckute et al., 2023; Oota et al., 2024a), and vision (Wang et al.,
2019; Conwell et al., 2022) processing, outperforming pretrained models in brain predictivity. How-
ever, these models are task-specific, limiting generalization, requiring separate data and training per
task. Instruction-tuning (Xu et al., 2023; Dai et al., 2023; Liu et al., 2024) offers a scalable alterna-
tive, fine-tuning a single LLM across diverse NLP tasks and surpassing task-specific models (Taori
et al., 2023; Touvron et al., 2023; Jiang et al., 2023; Abdin et al., 2024; Dubey et al., 2024), while
showing stronger brain alignment (Sun et al., 2023; Sun & Moens, 2023; Loong Aw et al., 2024)
(see Appendix B for more.) Building on this, recent work aligns IT-MLLMs with brain data for
text (Benara et al., 2024) and images (Oota et al., 2025a), though limited to unimodal stimuli. Mo-
tivated by advances in multimodal MLLMs for video and audio tasks, we ask: Do instruction-
tuned video/audio MLLMs prompted with natural language yield better brain alignment than their
pretrained in-context learning and non-instruction-tuned counterparts, while also distinguish task-
specific representations? To our knowledge, this is the first study to use such MLLMs to model
fMRI responses across video and audio tasks (workflow in Fig. 1).

Using brain recordings from participants watching several popular movies with audio (Boyle et al.,
2020), we investigate the brain alignment of IT-MLLMs. Specifically, we evaluate six video IT-
MLLMs, two audio IT-MLLMs, two pretrained video MLLMs with in-context learning, two non-
instruction-tuned multimodal models (video+audio), two unimodal models for video and one uni-
modal model for audio. These models are probed with 13 video task-specific instructions, and 5
audio task-specific instructions. Overall, this study addresses the following research questions: (1)
How do different task-specific instructions influence the degree of brain alignment in instruction-
tuned video and audio MLLMs? (2) Do instruction-tuned video MLLMs exhibit better brain align-
ment than their audio counterparts when exposed to multimodal stimuli? (3) Do IT-MLLMs produce
functionally distinct representations that map onto different brain regions, offering a data-driven al-
ternative to traditional experimental stimuli? (4) How do task instructions related to semantic cat-
egories (e.g., narrative understanding, spatial reasoning) explain differential activation across lan-
guage, auditory, and visual brain regions?

To further quantify how IT-MLLMs capture shared and distinct neural processes across tasks, we
use a variance partitioning approach. This analysis reveals the unique and overlapping contributions
of individual task-specific representations to brain responses, enhancing our understanding of the
brain’s functional organization in processing multimodal information.

Our analysis of IT-MLLMs and brain alignment with multimodal stimuli reveals several key con-
clusions: (i) Video-based IT-MLLMs show significantly higher brain alignment than audio-based
IT-MLLMs, pretrained in-context learning MLLMs, non-instruction-tuned multimodal models, as
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well as unimodal video and audio models. This holds across the whole brain, as well as within
language, visual and auditory regions. (ii) On the other hand, Audio MLLMs outperform both non-
instruction-tuned multimodal and unimodal models only in the auditory cortex (AC) and middle
frontal gyrus (MFG) language regions, while exhibiting comparable performance in other language-
related areas. (iii) Surprisingly, both video and audio MLLMs generate task-specific representations
based on task-instructions and effectively differentiate functional processing across brain regions.
For example, audio understanding and captioning tasks show stronger alignment with language ar-
eas, while sound event detection aligns with the auditory cortex and temporal lobe. (iv) Grouping
13 video tasks into 5 semantic categories reveals strong alignment of MLLM representations with
brain sub-regions in line with the existing literature. Tasks involving language and narrative under-
standing exhibit stronger alignment in language-related sub-regions such as angular gyrus and lat-
eral temporal regions, consistent with prior findings on event structure representation in naturalistic
stimuli (Baldassano et al., 2017). Similarly, spatial understanding tasks engage regions of the dorsal
visual pathway, particularly the intraparietal sulcus and surrounding parietal cortex. Overall, our
analysis reveals that IT-MLLMs capture both hierarchical and task-specific brain representations,
making them powerful tools for studying functional specialization and bridging cognitive modeling
with neuroscience. Our code is part of the supplementary material.

2 DATASET AND MODELS

2.1 BRAIN IMAGING DATASET

We experiment with Movie10 (Boyle et al., 2020), a multimodal naturalistic fMRI dataset, obtained
from the Courtois NeuroMod databank. This dataset was collected while four human subjects (s1,
s2, s3, s5; data for s4 and s6 is not public) passively watched four different movies: The Bourne
supremacy (∼100 mins), The wolf of wall street (∼170 mins), Hidden figures (∼120 mins) and Life
(∼50 mins). Among these, Hidden figures and Life are repeated twice, with the repeats used for
testing and the remaining movies for training. We use Life movie for testing where we average
the two repetitions to reduce noise. This is among the largest publicly available multimodal fMRI
datasets by samples per participant, with 4024 TRs (Time Repetitions) of The Bourne supremacy
and 6993 TRs of The wolf of wall street for training and 2013 TRs of Life for test. Train and test sets
are totally disjoint. The fMRI data is collected every 1.49 seconds (= 1 TR).

The dataset is already preprocessed and projected onto the surface space (“fsaverage6”). We use the
multimodal parcellation of the human cerebral cortex based on the Glasser Atlas (which consists
of 180 regions of interest in each hemisphere) to report the ROI (region of interest) analysis for
the brain maps (Glasser et al., 2016). This includes four visual processing regions (early visual
cortex (EVC), object-related areas (LOC), face-related areas (OFA) and scene-related areas (PPA)),
one early auditory area (AC), and eight language-relevant regions, encompassing broader language
regions: angular gyrus (AG), anterior temporal lobe (ATL), posterior temporal lobe (PTL), inferior
frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), middle frontal gyrus (MFG), posterior
cingulate cortex (PCC) and dorsal medium prefrontal cortex (dmPFC), based on the Fedorenko lab’s
language parcels (Milton et al., 2021; Desai et al., 2023). We show the flatmap with these labeled
ROIs in Appendix Fig. 6 and list the detailed sub-ROIs of these ROIs in Appendix C.

Estimating cross-subject prediction accuracy. To account for the intrinsic noise in biological
measurements, we adapt Schrimpf et al. (2021)’s method to estimate the cross-subject prediction
accuracy for a model’s performance for the Movie10 fMRI dataset. Each subject s ∈ ([1,4]) is
chosen as the prediction target and the other three are used to predict this target. We use a voxel-
wise encoding model (see Section 3) to predict one participant’s response from others. The detailed
approach is described in Appendix D. Note that the estimated cross-subject prediction accuracy is
based on the assumption of a perfect model, which might differ from real-world scenarios, yet offers
valuable insights into model’s performance. We present the cross-subject prediction accuracy across
voxels for the Movie10 fMRI dataset for each of the four participants in Appendix D. The plots
show that across all participants higher activity is observed in the language and visual regions with
a max correlation up to 0.4 implying that data has low noise and low cross-subject variability.

2.2 INSTRUCTION-TUNED MULTIMODAL MODELS FOR VIDEO AND AUDIO

To investigate whether IT-MLLMs models, when prompted using natural language-guided instruc-
tions, align with the way humans process multimodal information in the brain, we consider six
popular modern instruction-tuned video MLLMs (InstructBLIPVideo (Dai et al., 2023), Video-
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Table 1: Pretrained MLLMs for video, audio vs.
multimodal, unimodal models (IT: Instruction-tuned)
(IC: In-context learning).

Model Name IT #Layers Modality
InstructBLIPVideo ✓ 33 Video+Text
Video-LLaVA ✓ 33 Video+Text
LLaVa-NeXT-Video ✓ 33 Video+Text
Qwen-2.5-VL ✓ 29 Video+Text
Videochat-R1 ✓ 29 Video+Text
LLaVA-OneVision ✓ 28 Video+Text
Qwen-2.5-Audio ✓ 29 Audio+Text
Kimi-Audio ✓ 29 Audio+Text
Qwen-2.5-Omni (IC) ✕ 29 Video+Audio+Text
InternVL (IC) ✕ 29 Video+Text
VILA ✕ 29 Video+Audio
TVLT ✕ 12 Video+Audio
VideoMAE ✕ 24 Video
TimeSFormer ✕ 12 Video
AST ✕ 24 Audio

Table 2: Instructions for various multi-
modal audio tasks.

Task Description
Audio Understanding Can you describe the audio

content in detail?
Audio Comprehension What are people doing in the

audio?
Audio Captioning Caption the audio in a short

sentence.
Sound Event Detection Identify and label the sound

events occurring in the audio.
Speaker Identification Who is speaking in the audio?

LLaVA (Lin et al., 2024), LLaVA-Next-Video (Zhang et al., 2024), Qwen-2.5-VL (Wang et al.,
2024), Videochat-R1 (Li et al., 2025), LLaVA-OneVision (Li et al., 2025)) and two instruction-
tuned audio MLLMs (Qwen-2.5-Audio (Chu et al., 2024), Kimi-Audio (Kimi Team, 2024)). We
also experiment with two pretrained video MLLMs with in-context learning (Qwen-2.5-Omni (Xu
et al., 2025) and InternVL (Chen et al., 2024)), two non-instruction-tuned multimodal (VILA (Lin
et al., 2023) and TVLT (Tang et al., 2022)), two video unimodal models (VideoMAE (Tong et al.,
2022) and TimeSFormer (Bertasius et al., 2021)), and one audio unimodal (AST (Baade et al., 2022))
model. Details for these models are reported in Table 1.

2.3 NATURAL LANGUAGE INSTRUCTIONS AND FEATURE EXTRACTION FROM IT-MLLMS

Video-specific tasks. To ensure the diversity of task-specific instructions while considering videos
as input, we consider 13 instructions, as shown in Table 3, and extract the language-guided repre-
sentations from multimodal instruction-tuned video models. This set of 13 tasks are inspired from
VideoInstruct100K dataset (Maaz et al., 2024). We borrowed those tasks, which are generally appli-
cable to any video regardless of the contents in the image frames. We provide a sample of generated
outputs for all the six video MLLMs in Tables 5, 6, 7, 8, 9 and 10 in Appendix E .

To extract instruction-specific representations from multimodal instruction-tuned video models for
the brain encoding task, we input a video and task instruction to obtain the embeddings for the
language-guided instruction. For in-context learning models, a video is paired with a natural lan-
guage prompt without instruction tuning. For TVLT and VILA, we input video and audio. For
TimesFormer and VideoMAE we input video only. We perform zero-shot inference on these mod-
els. For all multimodal instruction-tuned video models, we use the pretrained Transformer weights,
which generate hidden state representations at each layer. We then average these hidden state repre-
sentations at layer level of output generated tokens to obtain final embedding at each layer for each
video with respect to task instruction.

Audio-specific tasks. Similar to video tasks, we consider five natural instructions while consid-
ering audio as input, as shown in Table 2, and extract the language-guided representations from
multimodal instruction-tuned audio model. We provide a sample of generated outputs for one of the
instruction-tuned audio models across the five tasks in Tables 11 and 12 in Appendix E.

Similar to instruction-tuned video models, to extract instruction-specific representations from the
multimodal instruction-tuned audio model for the brain encoding task, we input a audio and task
instruction to obtain the embeddings for language-guided instruction. For AST we input audio only.
We follow similar feature extraction method as video-tasks to extract audio task representations.

3 METHODOLOGY

Voxel-wise encoding model. We train banded ridge regression based voxel-wise encoding mod-
els (la Tour et al., 2022) to predict the fMRI brain activity associated with the stimulus represen-
tations obtained from 13 task-specific instructions from multimodal instruction-tuned video mod-
els. Banded ridge regression optimizes a different regularization hyperparameter per feature space,
and decomposes the explained variance over feature spaces. This decomposition helps in identify-
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Table 3: Instructions for various multimodal video tasks.
Task Description
Action Recognition What are the main events captured in the video?
Video Understanding Can you describe the video content in detail?
Visual Question Answering How many people are in the video, and what are they doing?
Video Captioning Caption the video in a short sentence.
Object and Scene Recognition What are the main objects and people visible in the video? Describe each one briefly.
Commonsense Reasoning Why did the character take this action? What could have motivated them to do this?
Spatial Understanding Where is this video taken from? What place/landmark is shown in the video?
Temporal Ordering Step-by-step describe the activity shown in the video.
Video reasoning What is unusual about this video?
Narrative Understanding Summarize the main storyline of the movie. What is the central conflict, and how is it resolved?
Emotion and Sentiment Analysis What emotions do the characters express during the video? How does the video make you feel overall?
Global Appearance Describe changes in characters’ appearances throughout the video, including any noticeable outfit changes.
Linking Events Explain how an early event in the video influences later developments.

ing which task-specific instruction contributes most to the explainable variance in different brain
regions. Overall, banded ridge regression helps to accurately identify the contribution of each
task-specific instruction, leading to better prediction accuracy and better interpretability. We em-
ploy z-score thresholding separately for both input stimulus representations and brain recordings for
training and test datasets. For each subject, we account for the delay in the hemodynamic response
by modeling hemodynamic response function using a finite response filter (FIR) per voxel with 5
temporal delays (TRs) corresponding to ∼7.5 seconds (Huth et al., 2022). Formally, at each time
step t, we encode the stimuli as Xt ∈ RD and brain region voxels Yt ∈ RV , where D denotes the di-
mension of the concatenation of delayed 5 TRs, and V denotes the number of voxels. Overall, with
N such TRs, we obtain N training examples. Detailed hyper-parameter settings are in Appendix F.

Evaluation metrics. We evaluate our models using Pearson Correlation (PC), which is a standard
metric for evaluating brain alignment (Jain & Huth, 2018; Schrimpf et al., 2021; Goldstein et al.,
2022). Let TR be #time repetitions in the test set. Let Y = {Yi}TR

i=1 and Ŷ = {Ŷi}TR
i=1 denote actual

and predicted value vectors for a single voxel. Thus, Y and Ŷ ∈ RTR. We use PC to compute
the correlation function, corr(Y, Ŷ ). The final measure of a model’s performance is obtained by
calculating Pearson’s correlation between the model’s predictions and neural recordings. To quantify
the model predictions, the resulting model prediction correlations are divided by the estimated cross-
subject prediction accuracy; and averaged across voxels, regions, and participants, resulting in a
standardized measure of performance referred to as normalized brain alignment. For calculating
normalized alignment, we select the voxels with cross-subject prediction accuracy ≥ 0.05.

4 RESULTS

4.1 INSTRUCTION-TUNED VIDEO MLLMS REPRESENTATIONS ALIGN WELL WITH BRAIN
ACTIVITY ACROSS WHOLE BRAIN, LANGUAGE, VISUAL AND AUDITORY REGIONS

First, we examine the brain alignment by measuring the degree of brain predictivity using rep-
resentations extracted from instruction-tuned video MLLMs, focusing on whole brain, language,
visual and auditory regions. For each instruction-tuned MLLM, we calculate the average normal-
ized brain alignment across 13 tasks, multiple subjects, and best MLLM layer, using the Movie10
fMRI dataset. Similarly, for instruction-tuned Audio MLLMs, we calculate the average normalized
brain alignment across five tasks, multiple subjects, and best MLLM layer. Additionally, we re-
port the brain alignment performance of in-context learning video MLLMs, non-instruction-tuned
multimodal models, unimodal video models, and unimodal audio model (AST). We treat the non-
instruction-tuned multimodal models and unimodal models (audio and video) as the baselines when
comparing against the IT-MLLMs.

Whole brain analysis. Fig. 2 (a) shows the results for whole brain analysis. We make the following
observations: (i) At the whole-brain level, the Wilcoxon signed-rank test reveals that the differences
in brain alignment between instruction-tuned video MLLMs and in-context learning models, the
non-instruction-tuned multimodal and unimodal models are statistically significant. In particular,
all instruction-tuned video MLLMs achieve over ∼9% improvement in brain alignment compared
to in-context learning models, and ∼15% improvement compared to other baselines. This contrasts
with prior findings on instruction-tuned image-based MLLMs, which demonstrated comparable per-
formance to multimodal models when evaluated on unimodal image stimuli (Oota et al., 2025a),
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Figure 2: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across whole brain, language, visual and
auditory regions. Error bars indicate the standard error of the mean across participants. ∗ implies that
instruction-tuned MLLM embeddings are significantly better than multimodal models and ∧ means
that instruction-tuned MLLM embeddings are significantly better unimodal models with p≤ 0.05.

et al., 2025a), suggesting that instruction-tuned video MLLMs are more effective at capturing brain-
relevant representations. (ii) Instruction-tuned audio MLLM embeddings show less alignment com-
pared to non instruction-tuned multimodal and unimodal video models. These findings imply that
instruction-tuned video MLLM models capture brain-relevant representations and contain additional
information beyond the non-instruction-tuned multimodal and unimodal models.

Language, visual and auditory region analysis. We also present the average normalized brain
alignment across language, visual and auditory regions in Fig. 2 (b, c and d). The results from
Wilcoxon signed-rank test is consistent with whole-brain performance both in the language and
visual regions i.e instruction-tuned video MLLM embeddings exhibit significantly higher alignment
in both language and visual regions compared to non-instruction-tuned multimodal, unimodal video,
and audio models. On the other hand, instruction-tuned audio MLLM embeddings show significant
alignment primarily in the auditory cortex and the middle frontal gyrus (MFG); when compared to
non-instruction-tuned multimodal and unimodal models. Results for detailed language, visual and
auditory sub-regions are shown in Fig. 8 and 9 in Appendix H.

These results suggest that instruction-tuned video MLLMs more effectively capture brain-relevant
multimodal representations, particularly when processing naturalistic multimodal stimuli.

Additionally, we present contrast of brainmaps to display the average normalized brain alignment
across voxels for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal
TVLT in Figs. 10, 11, 12, and 13 in Appendix I. The results show that instruction-tuned video
MLLMs consistently achieve significantly higher alignment across all brain voxels. However,
Figs. 14 and 15 in Appendix I reveal clear differences between audio MLLMs and multimodal
models: the prediction performance of audio MLLMs lacks brain-relevant semantic information
compared to multimodal models.

4.2 VIDEO AND AUDIO IT-MLLMS SUCCESSFULLY DIFFERENTIATE TASK-SPECIFIC
INSTRUCTIONS

To investigate which instructions are more effective in predicting brain activity and whether IT-
MLLMs differentiate task-specific representations and provide clear separation in brain regions, we
analyze the voxels as follows. For each voxel, we select the instruction that results in the highest
normalized brain alignment and apply the instruction-specific color code to the voxel.

Instruction-tuned video MLLMs. Fig. 3 (left) shows brain maps for Qwen-2.5-VL for video tasks
for average normalized brain predictivity across subjects where the voxel color codes are projected
onto the flattened cortical surface of the ‘fsaverage’ subject. The color-scheme corresponding to
each instruction is also reported. We make the following observations: (i) Video understanding
exhibits the strongest alignment across the whole brain. (ii) Tasks such as spatial understanding,
narrative understanding, and visual question answering show higher alignment in language-related
regions, including the angular gyrus, posterior temporal lobe, and visual regions. (iii) Higher-order
language regions in the frontal cortex are predominantly identified by the video understanding task,
with a smaller proportion of voxels also activated by video reasoning and temporal ordering tasks.

These findings suggest that instruction-tuned video MLLMs not only capture modality-specific rep-
resentations (e.g., visual, linguistic), but also encode task-specific instructions involving semantic
integration and event structure (like video understanding). This highlights that these models can
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Figure 2: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs in-context learning video MLLMs vs multimodal and unimodal models
across whole brain, language, visual and auditory regions. Error bars indicate the standard error of
the mean across participants. ∗ implies that instruction-tuned MLLM embeddings are significantly
better than multimodal models and ∧ means that instruction-tuned MLLM embeddings are signifi-
cantly better unimodal models with p≤ 0.05.

suggesting that instruction-tuned video MLLMs are more effective at capturing brain-relevant rep-
resentations. (ii) Instruction-tuned audio MLLM embeddings show less alignment compared to non
instruction-tuned multimodal and unimodal video models. These findings imply that instruction-
tuned video MLLM models capture brain-relevant representations and contain additional informa-
tion beyond the in-context learning, non-instruction-tuned multimodal and unimodal models.

Language, visual and auditory region analysis. We also present the average normalized brain
alignment across language, visual and auditory regions in Fig. 2 (b, c & d). The results from
Wilcoxon signed-rank test is consistent with whole-brain performance both in the language and vi-
sual regions i.e instruction-tuned video MLLMs embeddings exhibit significantly higher alignment
in both language and visual regions compared to in-context learning video MLLMs, non-instruction-
tuned multimodal, unimodal video, and audio models. On the other hand, instruction-tuned audio
MLLM embeddings show significant alignment primarily in the auditory cortex and the middle
frontal gyrus; when compared to non-instruction-tuned multimodal and unimodal models. Results
for detailed language, visual and auditory sub-regions are shown in Fig. 8 and 9 in Appendix H.

These results suggest that instruction-tuned video MLLMs more effectively capture brain-relevant
multimodal representations, particularly when processing naturalistic multimodal stimuli.

Additionally, we present contrast of brainmaps to display the average normalized brain alignment
across voxels. Figs. 10 and 11 in Appendix I compare instruction-tuned video MLLMs with in-
context learning video MLLMs (InternVL and Qwen-2.5-Omni, respectively). Figs. 12, 13, 14, 15,
and 16 in Appendix J compare instruction-tuned video MLLMs with the non-instruction-tuned
multimodal VILA and TVLT. The results show that instruction-tuned video MLLMs consistently
achieve significantly higher alignment across all brain voxels. However, Figs. 17 & 18 in Appendix J
reveal clear differences between audio MLLMs and multimodal models: the prediction performance
of audio MLLMs lacks brain-relevant semantic information compared to multimodal models.

4.2 VIDEO AND AUDIO IT-MLLMS SUCCESSFULLY DIFFERENTIATE TASK-SPECIFIC
INSTRUCTIONS

To investigate which instructions are more effective in predicting brain activity and whether IT-
MLLMs differentiate task-specific representations and provide clear separation in brain regions, we
analyze the voxels as follows. For each voxel, we select the instruction that results in the highest
normalized brain alignment and apply the instruction-specific color code to the voxel.

Instruction-tuned video MLLMs. Fig. 3 (left) shows brain maps for Qwen-2.5-VL for video tasks
for average normalized brain predictivity across subjects where the voxel color codes are projected
onto the flattened cortical surface of the ‘fsaverage’ subject. The color-scheme corresponding to
each instruction is also reported. We make the following observations: (i) Video understanding
exhibits the strongest alignment across the whole brain. (ii) Tasks such as spatial understanding,
narrative understanding, and visual question answering show higher alignment in language-related
regions, including the angular gyrus, posterior temporal lobe, and visual regions. (iii) Higher-order
language regions in the frontal cortex are predominantly identified by the video understanding task,
with a smaller proportion of voxels also activated by video reasoning and temporal ordering tasks.

These findings suggest that instruction-tuned video MLLMs not only capture modality-specific rep-
resentations (e.g., visual, linguistic), but also encode task-specific instructions involving semantic
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Figure 3: Each voxel is color-coded with the instruction that led to the highest normalized brain
alignment. The color bar highlights color codes for each instruction. The voxels are projected
onto the flattened cortical surface of the ‘fsaverage’ subject. (Left): video MLLM (Qwen-2.5-VL).
(Right): audio MLLM (Qwen-2.5-Audio).

integration and event structure (like video understanding). This highlights that these models can
encode complex neural patterns. We observe similar performance gains in other instruction-tuned
video MLLMs, flatmaps showing task-specific encoding performance for average of subjects are
shown in Figs. 19 and 20 in Appendix K.

Instruction-tuned audio MLLMs. Fig. 3 (right) shows brainmap for Instruction-tuned audio
MLLM (Qwen-2.5-Audio) where the predictions are average across subjects. The voxel color codes
are projected onto the flattened cortical surface of the ‘fsaverage’ subject. There is a clear distinction
between different audio tasks. Audio captioning and sound detection are aligned with the auditory
cortex (AC), while audio understanding activates higher-level regions like the inferior temporal (IT)
cortex and inferior frontal gyrus (IFG). In contrast, speaker identification shows very sparse and
scattered alignment, with some unexpected activation in the primary visual cortex (V1), suggesting
it does not strongly reflect brain-relevant semantic processing. Fig. 21 in Appendix K shows similar
brainmap for Kimi-Audio.

IT-MLLMs capture layer-wise cortical hierarchy. Inspired from previous literature (Namburi
et al., 2023; Mitchell et al., 2022) which shows that Transformers process information differently
across layers, we examine whether IT-MLLMs reflect the brain’s hierarchy of information process-
ing across layers by analyzing the voxels as follows. For each voxel, we select the layer that results in
the highest normalized brain alignment and apply a color code for the 29/33 layers for each MLLM.
Fig. 4 presents brain maps for the Qwen-2.5-VL & Qwen-2.5-Audio, where the voxels with their
corresponding color codes are projected onto the flattened cortical surface of the ‘fsaverage’ subject.
We make the following observations: (i) Early sensory areas-including early visual regions and early
auditory cortex-are best aligned with the lower layers of the model, suggesting that shallow model
representations capture low-level sensory features. (ii) High-level visual areas such as the lateral oc-
cipital complex (LOC) and parahippocampal place area (PPA), as well as language-related regions
like the superior temporal sulcus and angular gyrus, show stronger alignment with the middle to
deeper layers of the model. This reflects the model’s progression toward more abstract and seman-
tically rich representations. (iii) Notably, language-related areas such as the inferior frontal gyrus
(IFG), anterior temporal lobe (ATL), and angular gyrus show strongest alignment with the deepest
layers of the model. These results indicate that IT-MLLMs naturally develop a layered structure that
maps well onto the brain’s own representational hierarchy. Similar brain maps for the remaining
models are provided in Fig. 22 in Appendix L.

4.3 REPRESENTATIONS FROM INSTRUCTION-TUNED VIDEO MLLMS FOR SEMANTIC TASK
GROUPS REVEAL DISTINCT COGNITIVE AND NEURAL PROFILES

To further examine how instruction-tuned video MLLMs generate task-specific representations and
reveal functional specialization in the brain, we group the 13 video tasks into 5 cognitively grounded
categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotemporal un-
derstanding, Language and narrative understanding, and Social and affective understanding. Fig. 5
illustrates that this grouping captures meaningful distinctions.

Tasks in the Language and narrative understanding group show broader and denser cortical en-
gagement, particularly across the temporal and parietal cortices, compared to visual and frontal
regions. In particular, we observe strong activity in the bilateral temporal lobes for narrative under-
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(a) Qwen-2.5-VL (b) Qwen-2.5-Audio
Figure 4: (a) Qwen-2.5-VL and (b) Qwen-2.5-Audio (layer-wise alignment): Each voxel is color
coded with the MLLM layer number (out of 29) that led to the highest normalized brain alignment.
The color bar highlights color codes for each layer. The voxels are projected onto the flattened
cortical surface of average across subjects on ‘fsaverage’ surface.

Figure 5: Semantic Task Group Analysis: Each voxel is color coded with the task instruction that led
to the highest normalized brain alignment. The color bar highlights color codes for each instruction.
The voxels are projected onto the flattened cortical surface averaged across all subjects for video
MLLM (Qwen-2.5-VL). While this plot shows brain maps for 3 groups, brain maps for remaining 2
task groups are in Fig. 23 in Appendix M.

standing, as well as in the angular gyrus, posterior superior temporal sulcus (pSTS), and posterior
cingulate cortex (PCC) regions known to support multimodal integration, which is critical for nar-
rative comprehension. This is aligned with previous work (Mar, 2011; Baldassano et al., 2017).

Spatiotemporal understanding. Temporal ordering elicits more widespread activation in the an-
gular gyrus and posterior temporal lobe, whereas spatial understanding shows stronger engagement
in the dorsal parietal cortex (part of the dorsal visual pathway) and anterior temporal lobe (Zacks
et al., 2007; Baldassano et al., 2017). Additionally, we observe that early visual areas are more ac-
tive during the spatial understanding task, whereas early auditory cortex shows higher activity in the
temporal ordering task, likely due to its role in processing sound-based events (Belin et al., 2000).
However, the brain does not strictly separate spatial and temporal processing. These representations
often co-exist, particularly in narrative and event-based cognition.

Cognitive Reasoning. Commonsense reasoning elicits widespread activation in the temporal cor-
tex, angular gyrus, and higher-order visual regions, reflecting its reliance on semantic processing
and world knowledge. In contrast, video reasoning shows strong alignment with early visual areas
(V1, V2, V3), indicating a greater dependence on visual perception and motion processing. Linking
events tasks activate the early auditory cortex and show more distributed engagement of anterior tem-
poral lobe (involved in word-level semantics), inferior frontal gyrus, and angular gyrus, highlighting
the integration of temporal, linguistic, and episodic information necessary for narrative comprehen-
sion. These results show that different forms of higher-order reasoning highlights the brain’s flexible
organization for supporting diverse reasoning demands across modalities and timescales.

Similarly, we observe task-specific differences in brain regions for perceptual visual processing, and
affective social processing (Appendix M). These patterns underscore the ability of IT-MLLMs to
modulate their representations based on distinct cognitive demands reflected in the brain.

4.4 PARTITIONING EXPLAINED SHARED AND UNIQUE VARIANCE BETWEEN TASK-SPECIFIC
INSTRUCTIONS

While the previous analysis reveals that task-specific instructions from MLLMs modulate their rep-
resentations based on distinct cognitive demands, we further examine the representations of task-
specific instructions to measure the overlap in brain variance explained by MLLMs. To accomplish
this we use variance partitioning approach discussed in Appendix N.

Fig. 24 presents Venn diagrams for the whole brain, language and visual regions, depicting shared
and unique variance across these regions between narrative understanding and other task instruc-
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tions. Similarly, we show analysis for all pairs from the 13 tasks in Table 13 in Appendix N. Across
nearly all task pairs, the whole brain region consistently exhibits the highest shared variance. Tasks
that are conceptually or functionally related exhibit high shared variance in all regions, indicating
similar cognitive processing demands. Higher-level semantic and reasoning tasks (e.g., Narrative
Understanding, Commonsense Reasoning, Temporal Ordering) show increased unique variance in
the language network, indicating language-specific processing distinct from visual features. High
visual load tasks (e.g., Action Recognition, Object and Scene Recognition, Global Appearance)
contribute more uniquely in visual cortex, especially when paired with non-visual tasks.

5 DISCUSSION AND CONCLUSION

Using instruction-tuned representations from both video and audio MLLMs for various task-specific
instructions, we evaluated how well these representations predict fMRI brain activity when partici-
pants viewed naturalistic movies (video included with audio). Additionally, we compared different
video and audio MLLMs’ representations, assessing their alignment with each instruction across
whole brain, language, visual and auditory regions. We show that instruction-tuned video MLLMs
exhibit significantly better brain alignment than audio MLLMs, vision-only, audio-only, and non-
instruction-tuned multimodal models.

Our study on IT-MLLMs and their alignment with multimodal stimuli yields several key findings:
(1) Although instruction-tuned video MLLMs demonstrate strong brain alignment across the whole
brain (including language, visual, and auditory regions) audio MLLMs show effective alignment
primarily in auditory and language-related areas such as the middle frontal gyrus (MFG). This high-
lights the potential of instruction-tuned audio MLLMs to capture different features relevant to au-
ditory processing, providing information on the function of the auditory cortex similar to those ob-
served in previous studies (Oota et al., 2024a; 2025b). However, their performance remains compa-
rable to non-instruction-tuned multimodal models, indicating that further improvements are needed
for instruction-tuned audio MLLMs to fully capture brain-relevant representations – an effort that
aligns with recent work on inducing brain-relevant biases in model design (Moussa et al., 2025;
Vattikonda et al., 2025). (2) The surprising effectiveness of task-specific instructions in predicting
multimodal brain activity across different regions points out that both video and audio MLLMs gen-
erate distinct task-specific representations. These representations enable the models to effectively
differentiate functional processing across brain regions, unlike prior work by Oota et al. (2025a),
which did not observe such differentiation when using unimodal stimuli (e.g., static images). Specif-
ically, certain audio instructions, such as audio captioning and audio understanding, show stronger
alignment with language-related regions, while tasks such as sound event detection better align
with the auditory cortex and temporal lobe. These findings imply that IT-MLLMs offer a powerful
framework for designing controlled stimuli by a systematic manipulation of task goals through in-
structions, allowing researchers to isolate and examine task-specific brain responses using the same
input. (3) By grouping task-specific instructions into functional categories, we find that narrative un-
derstanding consistently engages the bilateral temporal lobes, angular gyrus, and posterior cingulate
cortex which are regions known for multimodal integration. Temporal ordering tasks elicit stronger
responses in the angular gyrus and posterior temporal lobe, while spatial understanding activates
the dorsal parietal cortex. These findings highlight the potential of instruction-tuned video MLLMs
as powerful tools for probing functional specialization in the brain, offering a structured and inter-
pretable framework for mapping high-level cognitive processes to specific neural substrates. (4) The
observed correspondence between IT-MLLM layers and the brain’s functional hierarchy suggests
that these models inherently develop structured, brain-like representations, ranging from early sen-
sory information processing in shallow layers to abstract semantic processing in deeper layers. This
layered alignment not only enhances their interpretability but also highlights their potential as tools
for investigating how the brain encodes and organizes complex, task-driven information.

Our findings also clearly show that despite the growing popularity of instruction-tuned video and
audio MLLMs in handling generic task instructions, we are still far from fully interpreting how
language-based instructions guide information flow through model layers and how fine-grained de-
tails are processed across layers to achieve brain-like representations. Future work should focus
on leveraging the alignment strengths of these models using more fine-grained instruction-driven
prompts, similar to controlled stimulus paradigms in neuroscience, to deepen our understanding of
functional specialization in the brain. Lastly, we discuss limitations of our work in Appendix O.
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REPRODUCIBILITY STATEMENT

Both the naturalistic stimuli (movies) and the fMRI recordings used in this study are publicly avail-
able, with preprocessing steps and experimental settings described in Section 2.1 and further detailed
in Appendix C. Task-specific instruction representations from instruction-tuned video and audio
MLLMs, as well as in-context learning video MLLMs, are described in Section 2.3. Implementation
details of voxelwise brain encoding models and evaluation metrics are provided in Section 3, with
hyperparameters listed in Appendix F. To facilitate reproducibility, we release anonymized source
code for all models (instruction-tuned, in-context learning, multimodal, unimodal), brain encoding,
and evaluation in the supplementary zip file.
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A OVERVIEW OF MULTIMODAL MODEL EVALUATION SETTINGS IN BRAIN
ENCODING STUDIES

Table 4: Overview of multimodal model evaluation settings in brain encoding studies.
Study Model Type Stimulus Modality Brain

Data
Dataset Instruction-Tuned

Doerig et al. (2022) Vision-Language (CLIP) Unimodal (Images) fMRI NSD ✗
Wang et al. (2023) Vision-Language (CLIP) Unimodal (Images) fMRI NSD ✗
Oota et al. (2022b) Vision-Language (CLIP, Vi-

sualBERT, LXMERT)
Unimodal (Images) fMRI BOLD5000 ✗

Popham et al. (2021) Vision-Only CNNs vs.
Vision-Language

Unimodal (Silent Videos) fMRI Gallant lab short
video clips

✗

Tang et al. (2022) non-instruction-tuned multi-
modal model (BridgeTower)

Unimodal (Silent Videos),
Unimodal (listening stories)

fMRI Gallant lab short
video clips

✗

Oota et al. (2025a) Instruction-tuned Im-
age+Text MLLMs

Unimodal (Images) fMRI NSD ✓

Sartzetaki et al. (2025) Image Recognition models,
Action recognition models

Unimodal (Visual) fMRI Bold Moments
Dataset

✗

Nakagi et al. (2024) Language models (BERT,
GPT-2, Lllama2, OPT)

Multimodal (Videos with
audio)

fMRI 8.3 hours of video
dataset

✗

Subramaniam et al.
(2024)

non-instruction-tuned multi-
modal models (SLIP-CLIP,
SimCLR, BLIP, BEIT)

Image frame-text pairs
(Movies)

SEEG AMMT ✗

Dong & Toneva (2023a) non-instruction-tuned mul-
timodal models (Merlore-
serve)

Multimodal (Movies:
Videos with audio)

fMRI Neuromod Friends
dataset

✗

Oota et al. (2025b) non-instruction-tuned multi-
modal models (TVLT and
ImageBind)

Multimodal (Movies:
Videos with audio)

fMRI Neuromod Movie10 ✗

Our study instruction-tuned video and
audio MLLMs, in-context
learning video and audio
MLLMs

Multimodal (Movies:
Videos with audio)

fMRI Neuromod Movie10 ✓

B RELATED WORK

Brain encoding using multimodal models. Our work is closely related to that of Conwell et al.
(2022); Wang et al. (2023); Doerig et al. (2022); Tang et al. (2024); Nakagi et al. (2024); Dong
& Toneva (2023b); Oota et al. (2025b), who proposed using multimodal model representations to
study the contribution of brain alignment in unimodal and multimodal stimuli. The majority of
brain encoding studies in using multimodal models focused on a single modality of input – vision
alone (Conwell et al., 2022; Wang et al., 2023; Doerig et al., 2022; Wang et al., 2023; Tang et al.,
2024; Nakagi et al., 2024). Recently, Dong & Toneva (2023b); Oota et al. (2022b) interpreted
the effectiveness of multimodal Transformer language models in multimodal naturalistic stimuli.
However, these studies focus on pretrained multimodal models which are not generic to tasks and
lack the investigation of recent instruction-tuned models.

Task-based brain alignment. Our work is also closely related to that of Wang et al. (2019); Oota
et al. (2022a); Aw & Toneva (2023); Sun et al. (2023) and Loong Aw et al. (2024), who propose
using task-specific model representations to study the contribution of individual tasks to brain align-
ment. Wang et al. (2019) investigated 21 computer vision tasks to explore which vision tasks are
more aligned with the brain while subjects engaged in viewing passive images. Similarly, Oota
et al. (2022a) and Sun et al. (2023) explored 10 GLUE NLP tasks to study which NLP tasks are
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more brain-aligned during reading and listening to stories. More recent work by Loong Aw et al.
(2024) uses instruction-tuned LLMs to investigate the effect of natural language instruction model
representations on brain alignment across layers for language comprehension. Further, Oota et al.
(2025a) use IT-MLLMs (image+text), using natural language instructions across diverse vision tasks
to analyze their alignment with brain activity across layers during visual processing. However, these
studies primarily focused on unimodal stimuli and thus do not fully capture the capabilities of mul-
timodal instruction-tuned models under multimodal conditions. We complement these works by
examining the impact of a wide range of IT-MLLMs—spanning video and audio-based models with
text-based prompts—on their alignment with brain activity from multimodal stimuli.

C DETAILED SUB-ROIS OF LANGUAGE, VISUAL AND AUDITORY REGIONS

The data covers seven brain regions of interest (ROIs) in the human brain with the following sub-
divisions: (i) early visual (EV: V1, V2, V3, V3B, and V4); (ii) object-related areas (LO1 and LO2);
(iii) face-related areas (OFA), (iv) scene-related areas (PPA), (v) middle temporal (MT: MT, MST,
LO3, FST and V3CD), (vi) late language regions, encompassing broader language regions: angular
gyrus (AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC: STSda, STSva, STGa,
TE1a, TE2a, TGv, TGd, A5, STSdp, STSvp, PSL, STV, TPOJ1), inferior frontal gyrus (IFG: 44,
45, IFJa, IFSp) and middle frontal gyrus (MFG: 55b) (Baker et al., 2018; Milton et al., 2021; Desai
et al., 2023).

Figure 6: Flattened cortical surfaces for language-, visual- and auditory-selective regions displayed
on the ‘fsaverage’ surface, used as the mask for all participants.

D CROSS-SUBJECT PREDICTION ACCURACY

We follow the method introduced by Schrimpf et al. (2021) to estimate how well brain activity in
one individual can be predicted from others, using the Movie10 fMRI dataset. Starting with data
from n participants (e.g., n = 4), for each subject s ∈ ([1,4]) is chosen as the prediction target
and the other three are used to predict this target, we use a voxel-wise encoding model (see Sec.
3) to predict one participant’s response from others. For every combination, one participant was
randomly chosen as the target, and the model was trained to predict their brain responses using data
from the remaining s−1 participants. This gave us an average prediction score (correlation) for each
voxel at each participant. To extrapolate to infinitely many humans and thus to obtain the highest
possible (most conservative) estimate, as suggested by Schrimpf et al. (2021), we fit the equation
v = v0 ×

(
1− e−

x
τ0

)
where x is each subsample’s number of participants, v is each subsample’s

correlation score and v0 and τ0 are the fitted parameters. This fitting was performed for each sensor
independently with 100 bootstraps each to estimate the variance where each bootstrap draws x and
v with replacement. The final ceiling value was the median of the per-voxel ceilings v0.

Fig. 7 shows the estimated cross-subject prediction accuracy for all four participants for the nat-
uralistic movie watching. Pearson correlation scores for each voxel in each subject are projected
onto the subject’s flattened cortical surface. The plots show that across all subjects higher activity is
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observed in the language and visual regions with a max correlation up to 0.4 implying that data has
low noise and low cross-subject variability.

(a) Subject-01

(a) Subject-02

(b) Subject-03

(c) Subject-05

Figure 7: Estimated cross-subject prediction accuracy for all four participants for the naturalistic
movie watching. Pearson correlation scores for each voxel in each subject are projected onto the
subject’s flattened cortical surface.
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E MODEL GENERATED OUTPUTS ACROSS INSTRUCTIONS

Tables 5, 6, 7, 8, 9 and 10 show model generated outputs for a sample video from the Movie10
dataset using InstructBLIPVideo, Qwen-2.5-VL, Video-LLaVA, LLaVa-NeXT-Video, LLaVA-
OneVision and VideoChat-R1 models, respectively. Similarly, Tables 11 and 12 show model gener-
ated outputs for a sample video from the Movie10 dataset using Qwen-2.5 Audio and Kimi-Audio
models.

Table 5: Outputs from InstructBLIPVideo for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main event captured in the video is a man sitting at a bar with a glass of beer, engaging in con-

versation with another man. The man is wearing glasses and is sitting in a dining area, surrounded by
other people, possibly in a bar or restaurant. The scene also features a man wearing a towel, which is
wrapped around his neck.

Video Understanding In the scene, a man is sitting in a bar with a beer in his hand, engrossed in a conversation with another
man. The two men are sitting at a table, with one of them holding a glass of wine. There are multiple
bottles of beer visible in the background, placed on a table and around the bar area. A few other
people can also be seen in the scene, possibly patrons or other bar visitors, scattered around the bar
and interacting with the two main characters. The scene is set in a dimly lit environment with some
lighting, providing a relaxed atmosphere for the men’s conversation.

Visual Question Answering There are two people in the scene, one man and one woman. They are having a conversation at a bar,
sitting at a table, and drinking.

Video Captioning A man with glasses sitting at a table talking with another man.
Object and Scene Recognition In the scene, there is a man wearing glasses sitting in a bar, talking to another person, who is also

sitting in a chair next to him. The man is holding a glass of beer, while the other person is holding a
cup.

Commonsense Reasoning The man is sitting in a bar with a glass of wine, engaging in conversation with another man, possibly
discussing something. This action could have motivated the man to take this step for various reasons.
It could be that he is seeking to socialize, share his thoughts or ideas, or simply engage in casual
conversation with a friend or acquaintance.

Spatial Understanding Restaurant
Temporal Ordering The scene depicted in the video shows a man sitting at a bar, engaging in a conversation with another

man. The man is wearing glasses and is holding a glass in his hand, which suggests that he is drinking
or holding a drink. They appear to be having a casual conversation, possibly discussing something of
interest or sharing a story.

Video reasoning In this video, there is an unusual scene where a man with glasses is having a conversation with another
man in a bar, and they are both holding glasses. This is an unusual scene because it is not a typical
social setting for two men to be having a conversation in a bar. They are sitting in a dark, dimly lit
environment, which adds to the unusual nature of their interaction.

Narrative Understanding The central conflict in the movie is the man sitting in a bar talking to another man, who is wearing
glasses. The man in the bar is having a conversation with another man, possibly discussing something
of interest. It is not specified what the topic of their conversation is, but it is likely related to the
movie’s storyline.

Emotion and Sentiment Analysis The video shows a man sitting at a bar with a friend, talking and having a conversation, which suggests
a social and relaxed atmosphere. The man is wearing glasses, and the scene is set in a dimly lit bar,
which creates a more intimate and cozy atmosphere.

Global Appearance Man with glasses and a towel
Linking Events The scene depicted in the image shows a man wearing glasses sitting at a bar, talking to another person,

possibly a friend, while holding a glass of beer. This early event sets the stage for the later development
of a story or a situation that may unfold in the video.

F IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

All feature extraction experiments were conducted on a machine equipped with an NVIDIA A100
GPU with 80 GB of GPU RAM, partitioned into two devices of 40 GB each. The voxelwise encoding
models were trained on NVIDIA GeForce RTX 3050 GPU with 4GB of GPU RAM. We used banded
ridge-regression with the following parameters: MSE loss function; L2-decay (λ) varied from 10−1

to 103; the best λ was chosen by tuning on validation data that comprised a randomly chosen 10%
subset from the train set used only for hyper-parameter tuning.
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Table 6: Outputs from Qwen-2.5-VL for a sample video from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video appears to be a still from a movie or a scene from a film. It shows two individuals engaged

in a conversation in what looks like a dimly lit bar or restaurant setting. The person on the left is
wearing a suit and tie, holding a drink, and seems to be listening intently. The person on the right
is gesturing with their hand, possibly emphasizing a point during the conversation. The atmosphere
suggests a serious or intense discussion.

Video Understanding The video depicts a scene from a movie or TV show, featuring two characters engaged in a conver-
sation. The character on the left is dressed in a formal gray suit with a patterned tie and is holding a
cigarette in his right hand. He appears to be listening intently to the other character, who is partially
visible from behind. The setting seems to be an indoor environment, possibly a bar or a similar estab-
lishment, as suggested by the background elements such as a mirror and what looks like a bar counter.

Visual Question Answering There are two people in the scene. One person is sitting at a table, wearing a suit with a patterned tie,
and appears to be engaged in a conversation or interaction with another person who is partially visible
from behind. The second person is facing away from the camera, and their attire includes a plaid shirt.
The setting seems to be indoors, possibly in a bar or restaurant, given the background elements like
the glassware and the dim lighting.

Video Captioning A man in a suit is engaged in a conversation with another person in a dimly lit bar setting.
Object and Scene Recognition In the video, there are two main individuals and several objects: 1. The Man in the Suit: He is wearing

a brown suit with a white shirt and a red paisley tie. He has dark hair styled neatly and is holding a
glass of what appears to be a drink in his left hand. His expression seems serious or contemplative as
he looks at the other person. 2. The Other Person: Only the back of this individual’s head is visible,
suggesting they are facing away.

Commonsense Reasoning In the video, the character on the left appears to be in a conversation with another person whose back
is turned to the camera. The character’s hand is extended towards the other person, possibly gesturing
or pointing at something. This action could be motivated by several reasons: 1. Clarification or
Explanation: The character might be trying to explain something important or clarify a point in their
conversation. 2. Emphasis: The gesture could be used to emphasize a particular point they are
making.

Spatial Understanding The video appears to be from the movie “The Wolf of Wall Street”, directed by Martin Scorsese and
released in 2013. The setting looks like a bar or a lounge, which is consistent with the film’s depiction
of the characters’ activities in the financial world. However, there are no specific landmarks visible in
the image that would definitively identify the exact location within the movie. The scene is set in New
York City, as the film is based on the real-life events.

Temporal Ordering The image depicts a scene from a movie where two characters are engaged in a conversation. Here
is a step-by-step description of the activity shown: 1. Setting: The setting appears to be an indoor
environment, possibly a bar or a restaurant, given the presence of a glass and what looks like a menu
board in the background. 2. Characters: - The character on the left is wearing a suit with a patterned
tie and is holding a glass in his hand.

Video reasoning The video appears to be from a scene in a movie or TV show, featuring two characters engaged in
a conversation. The setting looks like a bar or a similar social environment, with dim lighting and a
relaxed atmosphere. What might be considered unusual is the character on the right, who seems to be
gesturing with their hand while holding a drink, which could indicate they are explaining something or
making a point during the conversation. However, without additional context, it’s difficult to determine
if there is anything particularly.

Narrative Understanding The movie depicted in the video is “The Wolf of Wall Street,” directed by Martin Scorsese and starring
Leonardo DiCaprio as Jordan Belfort. The film is based on the memoir of the same name by Belfort
himself. Main Storyline: The story follows Jordan Belfort, a young stockbroker who rises to become
one of the most successful and corrupt figures in the financial world during the late 1980s and early
1990s.

Emotion and Sentiment Analysis The video depicts two individuals in what appears to be a dimly lit, possibly upscale setting, such as a
bar or restaurant. The person on the left is dressed in a suit and tie, suggesting a formal or professional
demeanor, while the person on the right is wearing a plaid shirt, which might indicate a more casual
or relaxed attitude.

Global Appearance In the video provided, there is no indication of significant changes in the characters’ appearances or
outfit changes. The man on the left appears to be wearing a brown suit with a patterned tie and a white
shirt. He has dark hair styled neatly. The person on the right is seen from behind, wearing a plaid shirt
with a blue and red pattern. There are no visible changes in their attire or appearance within this single
frame.

Linking Events In the video provided, we see a scene from the movie “The Wolf of Wall Street,” where Leonardo
DiCaprio’s character, Jordan Belfort, is engaged in a conversation with another character. The setting
appears to be a dimly lit bar or lounge, which is typical for scenes involving discussions about business
deals or personal matters. An early event that could influence later developments in this scene might
involve a previous interaction between Jordan and his current interlocutor.

G STATISTICAL SIGNIFICANCE

To determine if normalized predictivity scores are significantly higher than chance, we run a per-
mutation test using blocks of 10 contiguous fMRI TRs (considering the slowness of hemodynamic
response) rather than individual TRs. By permuting predictions 5000 times, we create an empirical
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Table 7: Outputs from Video-LLaVA for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main events in the video include a man sitting at a bar, holding a beer, and talking to another man.

The man holding the beer is wearing a plaid shirt and glasses.
Video Understanding The video features a man sitting at a bar with a drink in his hand. He appears to be enjoying the

drink and is engaged in conversation with someone else at the bar. The man is wearing glasses and
a plaid shirt, giving him a casual and relaxed demeanor. The bar is well-lit, with a variety of bottles
and glasses on display, indicating a lively and bustling atmosphere. In the background, there are other
patrons.

Visual Question Answering There are three people in the scene. Two of them are sitting down, while the third man is standing up
and holding a beer glass.

Video Captioning A man in a blue and plaid shirt drinking beer at a bar.
Object and Scene Recognition In the scene, the main objects visible are a man sitting at a bar with a beverage in a glass and another

man sitting next to him. There are also two other men sitting at the bar, and a woman standing nearby.
The bar is well-stocked with various bottles and cups. The man sitting at the bar is wearing glasses, a
blue plaid shirt, and a beige blanket.

Commonsense Reasoning The character in the image is holding a beer glass and appears to be in a bar or a similar setting. The
motivation for the character to take this action could be due to various reasons, such as relaxation,
socialization, or simply enjoying a beverage during leisure time. The character may have chosen to
have a beer to unwind after a long day, to connect with others in a social setting, or simply to indulge
in a favorite beverage.

Spatial Understanding The video is taken from a bar, as indicated by the presence of multiple bottles on the bar and a man
holding a beer glass. The video also shows the man standing in front of a bar, suggesting the location
of the video is a bar or similar establishment.

Temporal Ordering The video depicts a man sitting at a bar, holding a beer in his hand. He is wearing a plaid shirt and
glasses. The scene is set in a dark room, and there are other people in the background. The man is
seen drinking from the beer glass, which is placed on the bar counter. The camera captures the man’s
facial expressions and body language, highlighting his relaxed and social atmosphere.

Video reasoning The unusual aspect of this video is that it features a man in a plaid shirt and glasses, who is sitting in
a bar and drinking a beer. The man is also wearing a beige scarf, which adds a distinctive touch to
his appearance. However, the most striking feature of this video is that the man is not only drinking a
beer, but he is also holding a cell phone.

Narrative Understanding The central conflict in the movie is a man’s desire for a drink at a bar, but he is unable to get one due
to a bartender’s refusal. The man’s frustration and disappointment lead to him making a scene and
causing a commotion at the bar. The conflict is ultimately resolved when the man is given a drink, and
he leaves the bar with a smile.

Emotion and Sentiment Analysis In the video, the man in the blue shirt and the woman are seen laughing and smiling while enjoying
drinks and conversation. The man in the plaid shirt is seen drinking beer and looking down, while the
man in the blue shirt is holding a beer glass. The video conveys a sense of relaxation, camaraderie,
and enjoyment among the characters.

Global Appearance In the video, the main character, a man with a beard, is seen wearing a plaid shirt and a scarf. He is
also seen wearing a different outfit in one of the scenes, which is not specified in the given information.
The other man in the scene is wearing a dark shirt and glasses. There are also two other men in the
background, one wearing a dark jacket and the other wearing a dark shirt.

Linking Events The early event in the video is the man in the blue and white checkered shirt sitting at the bar with a
beer in his hand. This scene introduces the setting and the man’s presence at the bar, setting the stage
for later developments. The man’s interaction with other patrons, the woman, and the man in glasses
adds depth and complexity to the narrative.

distribution for chance performance, from which we estimate p-value of the actual performance.
The choice of these specific permutation test configurations is based on established methodologies
in previous research (Deniz et al., 2019; Reddy & Wehbe, 2021; Oota et al., 2024a). To estimate
the statistical significance of performance differences, such as between the model’s predictions and
chance or residual predictions and chance, we utilized the Wilcoxon signed-rank test (Conover,
1999), applying it to the mean normalized predictivity for the participants. Finally, the Benjamini-
Hochberg False Discovery Rate (FDR) correction for multiple comparisons (Benjamini & Hochberg,
1995) is used for all the tests (appropriate because fMRI data is considered to have positive depen-
dence (Genovese, 2000)).

H EFFECTIVENESS OF INSTRUCTION-TUNED VIDEO MLLMS VS AUDIO
MLLMS VS MULTIMODAL VS UNIMODAL REPRESENTATIONS FOR
VARIOUS BRAIN REGIONS

Fig. 8 show average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL, IFG,
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Table 8: Outputs from LLaVA-NeXT-Video for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main event captured in the video is a conversation between two men at a bar, where one of them

is wearing a red and white checkered shirt and glasses, while the other man is wearing a dark suit and
tie. They are discussing a topic, possibly related to a movie, as suggested by the context. There are
also other patrons in the background, and a bartender is visible in the foreground.

Video Understanding The video features a scene from the movie T̈he Hangoverf̈eaturing actors Zach Galifianakis and
Bradley Cooper. In the scene, Zach Galifianakis, portraying a character named Chip Baskin, is sit-
ting at a bar with a group of people. He is seen holding a beer and appears to be in a state of disbelief
as he looks on at the camera.

Visual Question Answering There are several people in the scene. The man with glasses is sitting at a bar, holding a drink, and
appears to be in a conversation with someone. Another man is standing at the bar, and there is a woman
sitting nearby. There is a bartender standing at the bar, and a person in the background who is partially
visible, but it’s unclear what their role is in the scene.

Video Captioning Two men are seen having a conversation in a bar, with the man in the plaid shirt appearing confused
or disbelieving the man in the suit.

Object and Scene Recognition In the scene, we can see a man in a suit sitting at a table with a woman and a bartender. There’s also
a man in a suit standing at a bar, a woman sitting at a table with a man, a woman standing at a bar, a
man standing at a bar, and a man sitting at a table with a woman.

Commonsense Reasoning In the video you provided, the character is seen holding up a beer bottle and making a face, which could
be interpreted as a playful or humorous gesture, possibly to amuse others or to express a lighthearted
or jovial moment. This action might be motivated by a desire to entertain, bond with others, or to
simply enjoy a casual and relaxed moment.

Spatial Understanding The video appears to have been taken from a scene in a movie, specifically “Goodfellas” featuring
Robert De Niro. The scene is set in a bar, and the background includes a sign that says “The Good-
fella’s.” This is a reference to the character Robert De Niro’s character, who is a bartender in the
movie. The specific setting and the sign are consistent with the movie’s depiction of the bar.

Temporal Ordering The video depicts two men sitting at a bar, engaged in a conversation. One man is wearing a suit, while
the other is dressed in a plaid shirt. They are both holding drinks and appear to be having a casual
conversation. The setting suggests they might be at a social event, such as a bar or a party, where
people gather to relax and enjoy drinks.

Video reasoning In the video, there is a scene where a man is seen sitting at a bar with another man. The man in glasses
appears to be engaged in a conversation with someone off-camera, but the camera is focused on the
other man, who is not the focus of the scene. The man with glasses is holding a beer and appears to be
in the middle of a discussion, but his face is not shown in the shot.

Narrative Understanding The movie “The Big Short” is a biographical comedy-drama film about the life of stockbroker Michael
Burry, who predicts the financial crisis of 20008. The central conflict of the story is the housing bubble
and the subprime mortgage market, which Burry sees as unsustainable and warns his colleagues about,
but they dismiss his ideas as unrealistic.

Emotion and Sentiment Analysis The characters in the video express a range of emotions, from surprise and shock to amusement and
even a bit of confusion. The video itself is quite humorous, with the man in a suit and tie appearing to
be in a state of disbelief or shock as the other man, who is wearing a plaid shirt and a hoodie, is seen
drinking from his beer bottle.

Global Appearance In the video, we can see a man with a beard who is wearing a suit at the beginning, but he is later seen
in a more casual outfit with a plaid shirt. There are also other people in the scene, including a man
with glasses and a red shirt, a man with a beard and a red shirt, and a woman in a red dress.

Linking Events In the scene you’ve described, a man is shown sitting in a bar with a drink in front of him, looking at
a TV. The TV shows a news segment about a man who has died, which is later revealed to be the man
himself. This early event in the video influences the later developments because it sets up the narrative
of the story, introducing the main character and establishing his presence in the scene.

MFG, IFGOrb, PCC and dmPFC) of language region. Fig. 9 show the same for visual, auditory and
motor regions.

I CONTRASTING INSTRUCTION-TUNED VIDEO MLLMS WITH IN-CONTEXT
LEARNING VIDEO MLLMS

We present contrast of brainmaps to display the average normalized brain alignment across voxels
for the instruction-tuned video MLLMs versus the in-context learning video MLLMs in Figures 10,
and 11. The results show that instruction-tuned video MLLMs consistently achieve significantly
higher alignment across all brain voxels.
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Table 9: Outputs from LLaVA-OneVision Video for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video captures a conversation between two individuals at a bar, with one person gesturing and

speaking while the other listens.
Video Understanding The video takes place in a lively bar setting, creating a warm and inviting atmosphere. The background

features a well-lit bar counter adorned with various bottles and glasses, and several people can be seen
in the background, adding to the bustling ambiance. In the foreground, two individuals are seated at a
table. One person is dressed in a gray suit with a red and white patterned tie, while the other is wearing
a blue and red plaid shirt with a yellow jacket draped over their shoulders.

Visual Question Answering There are two people in the scene, engaged in a conversation.
Video Captioning A man with curly hair and glasses sits at a table in a bar, holding a glass of beer, and engages in a

conversation.
Object and Scene Recognition The main objects and people visible in the scene are two men sitting at a table in a dimly lit, bustling

bar or restaurant. One man is dressed in a gray suit and tie, and the other is wearing a plaid shirt with a
beige sweater over it, holding a drink. The background features a bar with various bottles and glasses,
and other patrons are visible in the distance.

Commonsense Reasoning The character took this action to emphasize their point in the conversation, which could have been
motivated by the seriousness of the discussion or the need to convey a specific message.

Spatial Understanding The video is taken from a movie scene, and it shows a bar.
Temporal Ordering The video takes place in a dimly lit bar with a lively background filled with people and bottles on

shelves. Two individuals are seated at a table, engaged in a conversation. The person on the left
is dressed in a gray suit with a red and white patterned tie and is gesturing with their hand, while
the person on the right, wearing a blue and red plaid shirt with a yellow sweater draped over their
shoulders and holding a glass of beer, listens attentively.

Video reasoning The unusual aspect is that the scene remains static with minimal changes in the individuals’ expressions
and the background, suggesting a continuous conversation or interaction.

Narrative Understanding The central conflict involves two characters in a bar, with the character in the plaid shirt and yellow
sweater being advised or persuaded by the other character. The conflict is resolved through a conver-
sation, leading to a change in the character’s demeanor and posture.

Emotion and Sentiment Analysis The characters express a range of emotions, including surprise, concern, and contemplation. The video
creates a sense of intrigue and emotional depth, drawing the viewer into the characters’ conversation.

Global Appearance The character on the right initially has curly hair and is wearing a blue plaid shirt with a beige sweater,
but later, the character’s hair appears straight and they are dressed in a dark suit with a red tie.

Linking Events The man in the plaid shirt and glasses is seen holding a glass of beer and engaged in a conversation
with the man in the gray suit, which sets the stage for the unfolding dialogue and interaction.

J CONTRASTING INSTRUCTION-TUNED VIDEO MLLMS WITH
NON-INSTRUCTION-TUNED MULTIMODAL

We present contrast of brainmaps to display the average normalized brain alignment across voxels
for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal models VILA
and TVLT in Figures 12, 13, 14, 15, and 16. The results show that instruction-tuned video MLLMs
consistently achieve significantly higher alignment across all brain voxels. However, Figures 17
and 18 reveal clear differences between audio MLLMs and multimodal models: the prediction per-
formance of audio MLLMs lacks brain-relevant semantic information compared to multimodal mod-
els.

K BRAIN MAPS FOR TASK-SPECIFIC INSTRUCTIONS

Figures 19 and 20 show brain maps for InstructBLIPVideo, Video-LLaVA, LLaVA-NeXT-Video,
LLaVA-OneVision and VideoChat-R1 for video tasks for average normalized brain predictivity
across subjects where the voxel color codes are projected onto the flattened cortical surface of
the ‘fsaverage’ subject. The color-scheme corresponding to each instruction is also reported. We
make the following observations: (i) Video understanding exhibits the strongest alignment across the
whole brain. (ii) Tasks such as spatial understanding, narrative understanding, and visual question
answering show higher alignment in language-related regions, including the angular gyrus, poste-
rior temporal lobe, and visual regions. (iii) Higher-order language regions in the frontal cortex are
predominantly identified by the video understanding task, with a smaller proportion of voxels also
activated by video reasoning and temporal ordering tasks.
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Table 10: Outputs from VideoChat-R1 for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video captures a scene from what appears to be a social setting, possibly a bar or restaurant. Two

individuals are engaged in conversation. One person is wearing a plaid shirt and has a blanket draped
over their shoulders, suggesting they might be cold or seeking comfort. The other individual is dressed
in a suit and tie, indicating a more formal attire. The background shows other patrons and bar stools,
contributing to the ambiance of a casual gathering.

Video Understanding The video depicts a scene from what appears to be a movie or TV show, set in a dimly lit bar or lounge.
Two individuals are seated at a table, engaged in conversation. The person on the left is wearing a dark
suit and tie, while the individual on the right is dressed in a plaid shirt with a yellow scarf draped over
their shoulders. Both appear to be holding drinks, suggesting they might be enjoying a casual evening
out.

Visual Question Answering There are two people in the scene. They appear to be engaged in a conversation at a bar or restaurant.
One person is wearing a plaid shirt and has a blanket draped over their shoulders, while the other
person is dressed in a suit. The setting suggests a casual social interaction.

Video Captioning Two individuals engage in conversation at a bar, surrounded by dim lighting and patrons.
Object and Scene Recognition The video shows two individuals seated at a bar, engaged in conversation. The person on the left is

wearing a dark suit and appears to be listening attentively. The person on the right is wearing a plaid
shirt with a yellowish blanket draped over their shoulders and is holding a drink. The background
features a bar setting with various bottles and glasses, indicating a social or casual environment. The
lighting suggests an indoor setting, likely during the evening.

Commonsense Reasoning In the video, one character appears to be engaged in a conversation with another character at what
looks like a bar or a similar social setting. The character on the right seems to be leaning forward
slightly, which might indicate that they are listening intently or trying to emphasize a point during
their conversation. The motivation for this action could be: 1. Engagement: The character might be
trying to show interest or engagement in the conversation by leaning closer.

Spatial Understanding The video appears to be from a movie or TV show set in a bar or restaurant. The setting includes a bar
counter with bottles and glasses, suggesting it could be a scene from a film or series that takes place in
a social or dining establishment. However, without additional context or recognizable landmarks, it’s
difficult to pinpoint the exact location or landmark shown in the video. It could be from a variety of
films or shows that feature such settings.

Temporal Ordering The video depicts two individuals seated at a bar, engaged in conversation. The person on the left is
wearing a suit and appears to be listening attentively. The individual on the right is dressed casually
in a plaid shirt with a blanket draped over their shoulders, suggesting they might be cold or seeking
comfort. They both have drinks in front of them, indicating they are likely enjoying a social setting.
The background shows other patrons and bar stools, contributing to the ambiance of a lively bar envi-
ronment.

Video reasoning The video appears to be from a scene in a movie or TV show, likely set in a bar or similar social
setting. The unusual aspect here is the presence of a large, animated hand with a glove that resembles
a cartoonish character, which seems out of place in a real-world setting like a bar. This suggests it
might be a special effect or a prop used for comedic or dramatic purposes within the context of the
film.

Narrative Understanding The video appears to be from a scene in the movie “The Hangover,” where the characters are at a bar,
seemingly engaged in a conversation. The central conflict in this movie revolves around a group of
friends who go on a bachelor party to Las Vegas but end up getting lost and having various mishaps.

Emotion and Sentiment Analysis The video depicts two individuals engaged in what appears to be an intense conversation at a bar. The
person on the right seems to be speaking with a sense of urgency or concern, as indicated by their
open mouth and expressive eyes. The other individual is listening attentively, suggesting a moment of
serious discussion. Overall, the scene conveys a sense of tension and engagement. The setting, with
its dim lighting and crowded bar, adds to the atmosphere of a private yet public interaction.

Global Appearance The video shows two characters sitting at a bar. The character on the left is wearing a dark suit and
tie, while the character on the right is wearing a plaid shirt with a yellow blanket draped over their
shoulders. There are no significant changes in their appearances or outfits throughout the video; they
remain in these respective outfits for the duration of the frames provided.

Linking Events In the video, two individuals are seated at a bar, engaged in conversation. The setting suggests a casual
and possibly intimate interaction, which could imply that they are discussing something personal or
significant. This early event of them sitting together and talking could influence later developments
by establishing a foundation for their relationship or the context of their conversation. For instance, if
this is part of a larger narrative, the initial interaction might set up themes such as friendship, trust, or
conflict that will unfold in subsequent scenes.

Fig. 21 shows brainmap for audio instruction-tuned MLLM (Kimi-Audio) where the predictions are
average across subjects. Here, the voxel color codes are projected onto the flattened cortical surface
of the ‘fsaverage’ subject. The figure shows a clear distinction between different audio tasks.
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Table 11: Outputs from Qwen-2.5 Audio for a sample audio from the Movie10 dataset (Wolf of
wallstreet).

Spectrogram
Instruction Model Output
Audio Understanding There’s a male singing in English with an angry mood, saying ’And she grew up hot.
Audio Comprehension They are talking and laughing.
Audio Captioning The audio is about someone’s upbringing.
Sound Event Detection There are no background sounds or music, only speech. A male voice speaks in English with the

phrase ’And she grew up hot.
Speaker Identification A man speaking in English with an angry mood said ’And she grew up hot, you know?

Table 12: Outputs from Kimi-Audio for a sample audio from the Movie10 dataset (Wolf of wall-
street)

Spectrogram
Instruction Model Output
Audio Understanding The audio contains a speech where kids are talking by the door in English with a female voice and a

neutral mood.
Audio Comprehension The people are talking and there is music playing in the background.
Audio Captioning A man is speaking loudly and aggressive.
Sound Event Detection There is no speech in this audio.
Speaker Identification The speaker in the audio is a Mandarin-speaking male, aged between 16-25 years old, with an angry

mood.

L BRAIN MAPS SHOWING LAYER-WISE DETAILS FOR VIDEO
INSTRUCTION-BASED MLLMS

To examine whether IT-MLLMs reflect the brain’s hierarchy of information processing across layers,
we analyze the voxels as follows. For each voxel, we select the layer that results in the highest
normalized brain alignment and apply a color code for the 29/33 layers across the various MLLMs.
Fig. 22 presents brain maps for four video MLLMs, where the voxels with their corresponding color
codes are projected onto the flattened cortical surface of the ‘fsaverage’ subject.

M DETAILS OF SEMANTIC TASK GROUP ANALYSIS

To further examine how instruction-tuned video MLLMs generate task-specific representations and
reveal functional specialization in the brain, we group the 13 video tasks into five cognitively
grounded categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotem-
poral understanding, High-level language and narrative understanding, and Social and affective un-
derstanding. This categorization allows us to disentangle the functional specificity of brain regions
engaged by different task types. The visualizations in Fig. 5 in Section 4.3 in the main paper and
Fig. 23 illustrate that this grouping captures meaningful distinctions.

N DETAILS OF EXPLAINED VARIANCE PARTITIONING

Variance partitioning. To disentangle task-specific instruction representations from multimodal
instruction-tuned models, we used a variance partitioning approach (de Heer et al., 2017; LeBel
et al., 2021). This method measures the overlap in brain variance explained by different task-specific
instruction representations. Specifically, variance partitioning separates the brain response variance
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Figure 8: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL,
IFG, MFG, IFGOrb, PCC and dmPFC) of language region. Error bars indicate the standard error of
the mean across participants. ∗ implies that instruction-tuned MLLM embeddings are significantly
better than multimodal models and ∧ means that instruction-tuned MLLM embeddings are signifi-
cantly better unimodal models with p≤ 0.05.

that can be attributed to two models based on their unique and overlapping contributions (Vaidya
et al., 2022; Deniz et al., 2019). To perform this, for every pair of instruction representations,
we fit separate encoding models for each space as well as a joint encoding model, obtained by
concatenating the features. Using set arithmetic, we can then derive the size of the intersection
(NBA)1∩2

v =(NBA)1v+(NBA)2v-(NBA)1∪2
v , where NBA refers to normalized brain alignment, v

refers to a specific voxel, (NBA)1v denotes alignment of model 1, (NBA)2v denotes alignment of
model 2 and (NBA)1∪2

v denotes alignment of the joint model. Similarly, the unique contribution of
model 1’s feature space is computed as (NBA)

1\2
v =(NBA)1v-(NBA)1∩2

v .

Shared and Unique Variance between Narrative Understanding and Remaining Task Instruc-
tions

Fig. 24 shows the shared variance of the Narrative Understanding task with other video tasks for
Qwen-2.5-VL.

Table 13 presents shared and unique variance explained by pairs of video tasks using brain-informed
models across three neural regions: whole brain, visual cortex, and language network. The results
are averaged across subjects and show how well representations from each task pair align with brain
activity in specific regions.

Key Observations are as follows.

• Whole Brain Shows Dominant Shared Variance: Across nearly all task pairs, the whole
brain region consistently exhibits the highest shared variance (often ¿80% in early task
pairs). For example, the pair Action Recognition and Video Understanding (1–2) shows
90.69% shared variance, with very little unique variance from either task. This suggests
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Figure 9: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs of visual cortex (PPA,
OFA, LOC, MT), Auditory cortex (AC), and Motor Area (PMA and SMA). Error bars indicate the
standard error of the mean across participants. ∗ implies that instruction-tuned MLLM embeddings
are significantly better than multimodal models and ∧ means that instruction-tuned MLLM embed-
dings are significantly better unimodal models with p≤ 0.05.

high redundancy and common processing across tasks when considering global brain ac-
tivity.

• Visual and Language Regions Yield More Balanced Partitioning: In contrast, visual and
language-selective voxels exhibit lower shared variance and comparatively higher unique
contributions from individual tasks. For the same task pair (1–2), shared variance in visual
is 72.05%, and in language it is 77.46%, with higher unique components (∼10-14%). This
suggests that fine-grained processing differences are more pronounced in modality-specific
regions.

• Task Similarity Reflects in Shared Variance: Tasks that are conceptually or functionally
related (e.g., Narrative Understanding-Linking Events (10-13) or Emotion and Sentiment
Analysis-Linking Events (11-13)) exhibit high shared variance in all regions, indicating
similar cognitive processing demands. Conversely, task pairs with less conceptual overlap
(e.g., Object Recognition-Commonsense Reasoning (5-6) or Visual QA-Object Recogni-
tion (3-5)) show lower shared variance and higher unique variance, especially in language
and visual regions.

• Language Regions Show Selectivity for High-Level Tasks: Higher-level semantic and rea-
soning tasks (e.g., Narrative Understanding, Commonsense Reasoning, Temporal Order-
ing) show increased unique variance in the language network, indicating language-specific
processing distinct from visual features. For instance, pair 6-13 (Commonsense Reasoning-
Linking Events) yields 16.75% unique variance for Linking Events in the language net-
work.

• Visual Cortex Captures Scene and Action Differentiation: Tasks with high visual load (e.g.,
Action Recognition, Object and Scene Recognition, Global Appearance) contribute more
uniquely in the visual cortex, especially when paired with non-visual tasks.
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O LIMITATIONS

One possible limitation of our study lies in interpreting the differences in brain alignment between
instruction-tuned video and audio MLLMs. The models we evaluate differ in several aspects, in-
cluding the amount of training data and the specific objective functions used during training. To
address this concern, we evaluated multiple models of each type, spanning a range of training ob-
jectives and dataset sizes, and found that our key results generalize within both video and audio
MLLM categories. Still, it is possible that some of the differences in brain alignment may still be
influenced by confounding factors related to model architecture, training objectives, or data scale.
Future work should explore these questions using models that are more tightly controlled across
these dimensions.

P LLM USAGE

We used OpenAI ChatGPT for grammar correction and language polishing.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 10: Qwen-2.5-VL vs.InternVL: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in each
subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict higher
prediction accuracy estimates during instruction-tuned video MLLM and in-context learning video
MLLM (InternVL), respectively. Voxels that have similar cross-subject prediction accuracy appear
white. Here, middle frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital
(IFGOrb), angular gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC
denotes early visual cortex and AC denotes auditory cortex.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 11: Qwen-2.5-VL vs.Qwen-2.5-Omni: Contrast of estimated cross-subject prediction accu-
racy for all participants for the naturalistic movie watching. Pearson correlation scores for each
voxel in each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels
depict higher prediction accuracy estimates during instruction-tuned video MLLM and in-context
learning video MLLM (Qwen-2.5-Omni), respectively. Voxels that have similar cross-subject pre-
diction accuracy appear white. Here, middle frontal gyrus (MFG), inferior frontal gyrus (IFG),
inferior frontal gyrus orbital (IFGOrb), angular gyrus (AG), and lateral temporal cortex (LTC) are
late language regions, EVC denotes early visual cortex and AC denotes auditory cortex.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 12: Qwen-2.5-VL vs. VILA: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal VILA,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 13: Qwen-2.5-VL vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 14: InstructBLIPVideo vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 15: Video-LLaVA vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 16: LLaVA-NeXT-Video vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 17: Qwen-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 18: Kimi-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for all
participants for the naturalistic movie watching. Pearson correlation scores for each voxel in each
subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict higher
prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT, respec-
tively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle frontal
gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular gyrus
(AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual cortex
and AC denotes auditory cortex.
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(a) InstructBLIPVideo

(b) Video-LLaVA

(c) LLaVA-NeXT-Video

Figure 19: Each voxel is color coded with the instruction (out of 13) that led to the highest nor-
malized brain alignment. The color bar highlights color codes for each instruction. The voxels are
projected onto the flattened cortical surface averaged across all 4 subjects for 3 video MLLM (In-
structBLIPVideo, Video-LLaVA and LLaVA-NeXT-Video).
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(a) LLaVA-OneVision

(b) VideoChat-R1

Figure 20: Each voxel is color coded with the instruction (out of 13) that led to the highest nor-
malized brain alignment. The color bar highlights color codes for each instruction. The voxels
are projected onto the flattened cortical surface averaged across all 4 subjects for 2 video MLLM
(LLaVA-OneVision, VideoChat-R1).
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Figure 21: Kimi-Audio: Each voxel is color-coded with the instruction (out of 5) that led to the
highest normalized brain alignment. The color bar highlights color codes for each instruction. The
voxels are projected onto the flattened cortical surface of average across subjects on ‘fsaverage’
surface.
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(a) InstructBLIPVideo

(b) Video-LLaVA

(c) LLaVa-NeXT-Video

(d) LLaVA-OneVision

Figure 22: Each voxel is color coded with the video MLLM layer number (out of 33) that led to
the highest normalized brain alignment. The color bar highlights color codes for each layer. The
voxels are projected onto the flattened cortical surface of average across all 4 subjects on ‘fsaverage’
surface for four MLLMs.
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Figure 23: Semantic Task Group Analysis: Each voxel is color coded with the task instruction
that led to the highest normalized brain alignment. The color bar highlights color codes for each
instruction. The voxels are projected onto the flattened cortical surface averaged across all subjects
for video MLLM (Qwen-2.5-VL). While this plot shows brain maps for 2 groups, brain maps for
remaining 3 task groups are in Fig. 5 in Section 4.3 in the main paper.
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Figure 24: Shared and Unique Variance: Narrative Understanding vs. Linking Events Dark orange
(left) shows variance unique to Narrative Understanding, indigo (right) shows variance unique to
Linking Events, and the overlap indicates shared variance between both tasks.
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Whole Brain Visual Language
Task1 Task2 Shared Uniq1 Uniq2 Shared Uniq1 Uniq2 Shared Uniq1 Uniq2

1 2 90.69 5.26 4.05 72.05 13.91 14.04 77.46 12.07 10.47
1 3 83.53 10.05 6.42 73.67 10.28 16.05 77.05 10.72 12.23
1 4 84.51 9.65 5.84 71.87 13.82 14.31 75.97 12.27 11.76
1 5 79.16 13.51 7.33 66.82 14.35 18.83 73.47 13.07 13.46
1 6 81.48 13.34 5.18 68.44 17.28 14.28 73.59 15.37 11.04
1 7 83.07 10.44 6.49 71.99 11.88 16.13 75.20 12.30 12.50
1 8 81.25 14.18 4.57 69.82 17.63 12.54 75.87 14.83 9.30
1 9 86.94 7.57 5.50 73.42 10.25 16.34 78.27 9.05 12.68
1 10 84.55 9.06 6.39 73.46 10.59 15.95 76.42 10.32 13.26
1 11 85.44 8.51 6.05 74.92 11.12 13.96 76.56 10.96 12.48
1 12 82.46 11.66 5.88 72.88 12.75 14.37 76.02 12.50 11.48
1 13 91.81 4.20 3.99 74.92 11.82 13.26 80.06 10.00 9.94
2 3 83.59 9.72 6.69 73.14 11.39 15.47 74.15 12.80 13.05
2 4 86.25 7.40 6.36 73.32 13.52 13.16 74.41 12.14 13.45
2 5 77.09 14.33 8.58 64.55 17.14 18.31 70.20 15.08 14.72
2 6 79.86 13.99 6.15 69.43 17.86 12.71 73.10 14.96 11.94
2 7 83.62 9.46 6.92 72.53 12.65 14.82 71.61 14.43 13.95
2 8 81.30 13.10 5.60 67.98 18.96 13.05 72.05 16.07 11.88
2 9 86.64 7.42 5.93 73.55 12.35 14.11 75.55 10.62 13.83
2 10 85.25 7.97 6.78 72.98 12.28 14.73 73.28 12.51 14.21
2 11 84.70 8.31 7.00 73.27 12.25 14.48 72.48 13.27 14.25
2 12 82.97 11.16 5.88 73.06 14.41 12.54 72.99 14.99 12.02
2 13 91.78 3.66 4.55 74.89 12.59 12.52 78.19 9.77 12.03
3 4 68.68 13.67 17.64 68.53 18.38 13.09 71.98 14.19 13.83
3 5 50.07 24.61 25.32 52.60 24.08 23.32 60.68 17.79 21.53
3 6 61.39 21.67 16.94 61.59 22.97 15.44 65.21 18.68 16.12
3 7 65.21 17.99 16.80 64.73 20.33 14.94 66.85 17.80 15.35
3 8 66.30 20.20 13.49 61.04 23.96 15.00 62.43 21.86 15.71
3 9 70.23 13.71 16.06 70.07 16.68 13.25 72.20 12.52 15.28
3 10 66.99 13.00 20.01 68.60 15.97 15.42 64.43 15.79 19.78
3 11 68.07 14.39 17.54 66.84 17.50 15.66 66.97 16.85 16.18
3 12 61.81 19.24 18.95 65.81 19.69 14.50 67.09 17.92 14.99
3 13 83.92 6.44 9.64 71.83 16.87 11.31 76.76 12.86 10.38
4 5 55.03 24.36 20.61 53.05 20.94 26.00 59.06 18.82 22.13
4 6 61.72 25.66 12.62 59.66 24.72 15.62 63.75 21.99 14.26
4 7 69.00 17.62 13.38 66.08 17.45 16.47 67.89 17.50 14.61
4 8 63.88 21.85 14.27 60.24 23.59 16.17 65.25 19.95 14.80
4 9 71.16 16.55 12.28 65.51 18.15 16.34 68.66 16.14 15.19
4 10 66.37 18.11 15.53 63.85 17.11 19.04 57.73 20.94 21.33
4 11 72.37 13.56 14.07 70.00 13.01 16.99 70.64 13.35 16.02
4 12 66.38 18.76 14.86 64.80 17.67 17.53 67.94 17.21 14.85
4 13 86.69 6.09 7.23 71.23 16.28 12.49 76.56 13.87 9.57
5 6 50.13 27.24 22.63 51.63 27.81 20.56 58.56 23.05 18.39
5 7 49.08 24.63 26.29 53.55 25.15 21.30 55.77 24.66 19.57
5 8 47.03 27.55 25.43 53.22 28.86 17.93 53.88 26.92 19.21
5 9 55.06 21.61 23.34 56.84 24.75 18.42 62.62 19.24 18.15
5 10 47.76 23.54 28.70 55.84 22.99 21.17 54.52 22.48 23.00
5 11 52.17 22.58 25.25 57.44 22.32 20.24 57.94 22.48 19.58
5 12 47.50 26.51 25.99 56.38 25.48 18.15 58.21 23.50 18.29
5 13 79.36 6.98 13.67 66.31 16.96 16.74 71.80 12.91 15.29
6 7 60.01 17.04 22.96 59.05 17.09 23.86 61.14 18.01 20.84
6 8 54.31 21.48 24.22 57.44 21.55 21.01 62.62 18.13 19.25
6 9 64.33 13.06 22.61 60.10 16.20 23.69 64.68 13.72 21.60
6 10 57.84 16.91 25.25 61.41 14.59 24.00 61.01 16.15 22.84
6 11 62.94 14.26 22.81 62.17 15.15 22.68 63.32 15.40 21.28
6 12 55.82 19.64 24.54 60.18 17.37 22.45 60.36 18.93 20.71
6 13 81.42 5.21 13.37 67.46 13.51 19.02 71.93 11.31 16.75
7 8 58.19 23.15 18.65 60.58 23.47 15.95 61.00 20.86 18.13
7 9 70.87 14.02 15.11 70.43 15.05 14.51 71.25 12.70 16.05
7 10 68.57 12.51 18.92 67.67 13.27 19.06 63.76 14.39 21.84
7 11 60.77 18.94 20.29 58.79 21.23 19.98 55.14 21.77 23.09
7 12 66.57 17.86 15.57 67.97 17.05 14.98 67.18 17.38 15.44
7 13 85.27 6.01 8.72 72.66 15.56 11.78 74.88 13.08 12.03
8 9 62.84 15.99 21.18 63.11 15.66 21.22 68.03 13.67 18.31
8 10 60.10 17.38 22.52 59.39 16.80 23.81 60.46 16.80 22.74
8 11 60.31 14.63 25.07 61.67 13.24 25.09 61.38 15.64 22.98
8 12 60.04 18.69 21.28 62.31 17.41 20.28 65.74 16.70 17.56
8 13 81.06 5.66 13.27 68.01 14.38 17.61 74.50 11.65 13.85
9 10 69.21 14.34 16.44 68.83 12.98 18.19 67.69 15.88 16.44
9 11 70.80 13.15 16.05 69.96 14.08 15.96 70.82 14.04 15.15
9 12 69.68 16.60 13.72 70.09 14.45 15.46 70.62 16.10 13.29
9 13 87.40 5.23 7.37 72.02 15.46 12.53 77.48 12.70 9.82

10 11 68.63 16.35 15.02 67.96 16.43 15.61 64.85 19.12 16.04
10 12 65.06 20.66 14.27 63.79 21.85 14.36 61.84 23.65 14.50
10 13 85.63 6.39 7.99 72.34 16.92 10.73 75.85 14.09 10.06
11 12 61.95 22.51 15.54 65.60 19.55 14.85 63.80 21.51 14.69
11 13 86.42 6.00 7.58 74.60 14.29 11.11 76.83 12.89 10.28
12 13 83.82 5.77 10.41 71.56 15.38 13.06 75.37 12.20 12.43

Table 13: Variance partitioning for all the 13 video tasks averaged across all subjects for whole brain,
visual and language regions with Qwen-2.5-VL model. Tasks are as follows: (1) Action Recognition
(2) Video Understanding (3) Visual Question Answering (4) Video Captioning (5) Object and Scene
Recognition (6) Commonsense Reasoning (7) Spatial Understanding (8) Temporal Ordering (9)
Video reasoning (10) Narrative Understanding (11) Emotion and Sentiment Analysis (12) Global
Appearance (13) Linking Events. 43
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