
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARS-SQL: A MULTI-AGENT REINFORCE-
MENT LEARNING FRAMEWORK FOR TEXT-TO-
SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Translating natural language to SQL remains difficult for complex queries. Such
queries often need environmental interaction and self-correction. To address this,
we introduce MARS-SQL, a novel multi-agent framework that combines princi-
pled task decomposition and interactive reinforcement learning (RL). Our system
comprises three specialized agents: a Grounding Agent for schema linking, a Gen-
eration Agent for query generation, and a Validation Agent for final selection. The
core of our framework is the Generation agent, which is trained via a multi-turn
RL policy. Adopting a ReAct-style Think-Act-Observe loop, the agent iteratively
generates thoughts, executes SQL actions against a live database, and revises its
strategy based on execution feedback, enabling dynamic, stateful reasoning and
self-correction. At inference time, we generate multiple interaction trajectories to
explore diverse reasoning paths. The Validation agent, then selects the optimal
trajectory by modeling verification as a next-token prediction task and choosing the
solution with the highest generation probability. This structured workflow pipelines
specialized agents. It combines interactive RL for generation with generative mod-
eling for verification. The approach proves highly effective for robust and accurate
SQL generation. Experiments show that MARS-SQL achieves state-of-the-art
Execution Accuracy of 77.84% on the BIRD dev set and 89.75% on the Spider test
set.

1 INTRODUCTION

Translating natural language questions into executable Structured Query Language (SQL) is an
essential task that allows non-expert users to access structured data (Xie et al., 2025a; Li et al., 2024a;
2023). Recent Large Language Models (LLMs) can generate simple queries for well-organised
academic benchmarks. However, they often struggle with the complexity of real-world enterprise
databases (Hong et al., 2025; Lei et al., 2025). To bridge this gap and tackle the challenges of
interacting with complex, real-world databases, researchers have started developing SQL agents (Li
et al., 2025b; Wang et al., 2025b; Li et al., 2025c). Instead of producing a query in one step, an SQL
agent allows an LLM to interact with the database through multiple rounds of reasoning and feedback.
This interactive process resembles how human analysts explore data, making it a more natural and
effective way to handle complex database tasks.

Current methodologies in the broader field of AI agents have explored several distinct avenues. A
prominent strategy is the use of multi-agent systems, where a complex task is decomposed into
specialized sub-tasks, each handled by a dedicated agent (Chang et al., 2024; Huang et al., 2025a;
Hong et al., 2024). A parallel line of work uses test-time scaling methods that generate multiple
candidate queries and then select the best one (Ni et al., 2023; Li et al., 2022). In the specific
domain of Text-to-SQL, these methodologies manifest in two primary forms. One approach relies on
monolithic models, which handle schema comprehension, logical planning, and SQL generation in a
single pass (Pourreza et al., 2025; Li et al., 2024b). Another prominent approach involves multi-agent
frameworks that improve modularity by using API calls to closed-source LLMs, where different
agent roles are defined mainly through prompting (Pourreza et al., 2024; Liu et al., 2025b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

At first glance, SQL agents appear to be a straightforward solution. However, the disparity between
human intuition and current LLM reasoning leads to significant limitations in their practical applica-
tion. These challenges include (i) Compositional reasoning: Agents often struggle to formulate and
maintain a coherent long-term plan required for complex queries. They may fail to correctly combine
multiple SQL clauses—such as joins, subqueries, and aggregations—often getting stuck in a loop
of fixing minor syntax without addressing the flawed high-level logic (Chaturvedi et al., 2025). (ii)
Schema understanding: When faced with a large and noisy schema, an agent’s exploration can be
inefficient. It may repeatedly attempt to query hallucinated columns or fail to identify the correct
join keys, leading to multiple turns of unproductive interactions with the database (Deng et al., 2025).
(iii) Environmental grounding: While interactivity is central to the agent concept, current models
often lack the nuanced ability to fully leverage environmental feedback (Huang et al., 2025b). They
struggle to diagnose specific SQL dialect errors or recover from ambiguous execution outcomes,
limiting their self-correction capabilities (Zhang et al., 2025a). The confluence of these challenges in
compositional reasoning, schema understanding, and environmental grounding presents a significant
cognitive load that is difficult for any single agent to manage effectively. We, therefore, posit that a
multi-stage approach is essential to systematically address these issues.

To overcome these limitations, we introduce MARS-SQL,
Figure 1: Illustration of interactive rea-
soning process in MARS-SQL.

User Question:
Please list the zip code of all the charter schools in Fresno
County Office of Education.

Obeservation: OperationalError: no such table: fprm

DB

Round 1:
<think>I need to retrieve the zip codes …</think>
<SQL>SELECT T1.Zip FROM schools AS T1
INNER JOIN fprm AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1.County = 'Fresno
County Office of Education' AND
T2.`Charter School (Y/N)` = 1;</SQL>

Round 2:
<think>I made a mistake in the table. ..</think>
<SQL>SELECT T1.Zip FROM schools AS T1
INNER JOIN frpm AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T2.`Charter School
(Y/N)` = 1 AND T1.County = 'Fresno'
AND T1.District = 'Fresno County
Office of Education’;</SQL>

DB

Obeservation: [('93726-5309',), ('93628-9602',),
('93706-2611',), ('93726-5208',), ('93706-2819’,)]

Round 3:
<think>Great. ..</think>
<solution>SELECT T1.Zip FROM schools AS
T1 INNER JOIN frpm AS T2 ON T1.CDSCode
= T2.CDSCode WHERE T2.`Charter School
(Y/N)` = 1 AND T1.County = 'Fresno'
AND T1.District = 'Fresno County
Office of Education’;</solution>

a novel framework built on a multi-stage methodology. This
approach has a dual meaning: (1) a multi-agent architec-
ture for principled task decomposition, and (2) a multi-turn
reasoning process for interactive query construction. As
we highlight in Table 1, our approach integrates key ca-
pabilities, such as interactive reasoning and multi-agent
collaboration, that are largely absent in existing open and
closed-source systems. Our multi-agent system divides the
labor across three specialized agents: a Grounding Agent
for reasoning-driven schema identification, a Generation
Agent for Multi-turn Trajectory Generation, and a Valida-
tion Agent for Verification and Selection, allowing each to
excel at its sub-task. The core innovation of our framework
is the Generation Agent’s multi-turn reasoning, which is
trained via an interactive reinforcement learning (RL) pol-
icy. Adopting a ReAct-style Think-Act-Observe loop (Yao
et al., 2022), the agent iteratively builds the query by gen-
erating thoughts, executing partial SQL actions against the
live database, and observing the feedback. As shown in
Figure 1, this interactive process enables dynamic reason-
ing and self-correction based on real-world outcomes. To
further enhance robustness, we generate multiple interac-
tion trajectories at inference time, and the Validation Agent
efficiently selects the optimal solution. This multi-agent workflow proves highly effective, with
MARS-SQL achieving a new state-of-the-art Execution Accuracy of 77.84% on the BIRD develop-
ment set and 89.75% on the Spider test set, surpassing previous leading methods.

Table 1: Feature Comparison of Text-to-SQL Frameworks.
Capability Open-Source Closed-Source MARS-SQL
Multi-Agent Architecture ✗ ✓ ✓
Complex Schema Support ✗ ✓ ✓
Interactive Reasoning ✗ ✗ ✓
Efficient Selection ✗ ✗ ✓

Our main contributions are
summarized as: (1) We in-
troduce MARS-SQL, a novel
multi-agent framework that
tackles complex Text-to-SQL
problems through task decom-
position and specialized agent
training. (2) We propose a
stateful, interactive SQL generation process, structured as a multi-turn reinforcement learning (RL)
policy within a Think–Act–Observe loop, which leverages live database feedback for dynamic reason-
ing and self-correction. (3) We design a complementary agent workflow that combines a Grounder for
schema linking, a Generator for interactive query construction, and a Verifier that reframes candidate
selection as a next-token prediction task, yielding a robust mechanism for identifying the optimal
solution. (4) We demonstrate state-of-the-art performance, with MARS-SQL achieving an execution

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

accuracy of 77.84% on the BIRD development set and 89.75% on the Spider test set, highlighting the
effectiveness of our interactive, multi-agent approach.

2 PRELIMINARIES

Background Formulation. The primary goal of a Text-to-SQL system is to translate a natural
language question into an executable SQL query. We can formally define this task as learning a
mapping from a user question and a group of database schemas to the corresponding SQL query.

Let Q be the natural language question posed by a user. Let S be the database schema, which defines
the structure of the database. The schema S consists of a set of tables T = {t1, t2, . . . , tm}, where
each table ti is composed of a set of columns Ci = {ci,1, ci,2, . . . , ci,k}. The schema also includes
information about data types, primary keys (PKs), and foreign keys (FKs) that define the relationships
between tables. The objective is to generate a SQL query Y such that when it is executed on the
database instance D, it produces the correct answer to the question Q.

Conventionally, the Text-to-SQL problem is treated as a sequence-to-sequence translation task, where
the goal is to learn a function f :

Y = f(Q,S) (1)

This formulation, however, treats the generation as a single, static step and fails to capture the
exploratory and corrective nature required for solving complex analytical queries.

Reformulation as an Interactive Decision Process. As highlighted in the introduction, the static,
one-shot formulation is insufficient for complex reasoning. A human analyst does not simply translate;
they interact, explore, and refine. To model this more robust process, we reformulate Text-to-SQL as
a sequential decision-making task, grounded in the ReAct paradigm (Yao et al., 2023).

Instead of learning a direct mapping to a final query, our goal is to learn an optimal policy, π, that
generates a trajectory of thoughts and actions to solve the problem. A complete interaction trajectory,
τ , is a sequence of multiple rounds:

τ = (h1, α1, ω1, . . . , hM , αM , ωM) (2)

Each turn in the trajectory consists of:

• Thought (ht): An internal reasoning step where the agent analyzes the problem state,
reflects on past observations, and plans the next action.

• Action (αt): An operation chosen by the agent from a predefined action space A. In our
framework, this primarily involves executing SQL queries against the database.

• Observation (ωt): The feedback received from the environment after executing action αt.
This could be a query result, a database error, or other information that guides the agent’s
next thought.

Under this formulation, the objective is to learn an optimal policy π(αt|Q,S, (h<t, α<t, ω<t)) that
maximizes the expected total reward over the trajectory, E[R(τ)]. The reward R(τ) is typically deter-
mined by the final outcome—whether the trajectory successfully produces a correct and executable
SQL query. This interactive, policy-based formulation naturally accommodates the trial-and-error
and self-correction that are essential for tackling complex, real-world database queries.

3 METHODOLOGY

As illustrated in Figure 2, we introduce MARS-SQL, a novel multi-agent framework that treats
Text-to-SQL generation as an interactive, tool-augmented decision-making process. The framework
operates in three stages: Grounding, Generation, and Validation. Initially, a Grounding Agent prunes
the full database schema to only the tables and columns relevant to the user question. Subsequently, a
Generation agent executes a multi-turn rollout, producing multiple distinct interaction trajectories by
actively querying the database. Finally, a Validation Agent scores each trajectory, and the one with
the highest confidence score is selected as the final answer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selected
Schema 𝑆!

1. Grounding Agent: Reasoning-driven Schema Identification

What is the unabbreviated mailing street address of the
school with the highest FRPM count for K-12 students?

Grounding Agent 𝝅𝑮𝒓

<think> … <\think>
CREATE TABLE frpm (CDSCode
integer, `FRPM Count (K-
12)` text) F

Generation Agent 𝝅𝑮𝒆𝒏

2. Generation Agent: Multi-turn Trajectory Generation

Validation Agent 𝝅𝑽

<solution>SELECT
T2.MailStreet FROM
frpm … <\solution>

3. Validation Agent: Verification and Selection

“Is the answer correct (Yes/No)?”

Database

SQL

SQL

Round 1

Round 𝑀-1

Observation ω

Action 𝑎 (Execution)

Round 𝑀

𝑁 Rollouts

Question Q

Candidate Solution 1

Generative Probability

Candidate Solution 𝑁

…
…

V(𝜏!): 0.5

V(𝜏"): 0.8
…

…

SELECT T2.MailStreet FROM frpm …

…

SELECT T1.MailStreet FROM schools …

<solution>SELECT
T1.MailStreet FROM
schools … <\solution>

CREATE TABLE frpm (CDSCode integer, `Academic
Year ` integer, ...)
CREATE TABLE satscores (cds text, rtype text,
enroll12 integer...)
CREATE TABLE schools (MailStreet text,
NCESDist text, County text...)

Trajectory 𝑁, 𝜏&

Trajectory 1, 𝜏'

Think ℎ"

Think ℎ#$"

Think ℎ#

𝜏#$"%&

Figure 2: The three-stage workflow of MARS-SQL. (1) Grounding: A Grounding Agent selects the
relevant schema. (2) Generation: A Generator agent produces multiple interaction trajectories using a
Think-Act-Observe loop. (3) Validation: A Verifier agent scores and selects the best trajectory.

3.1 GROUNDING AGENT: REASONING-DRIVEN SCHEMA IDENTIFICATION

The Grounding Agent performs table-level schema linking. Its goal is to learn a policy πGround.
For each table ti ∈ T (1 ≤ i ≤ F) and the user question Q, the agent takes the pair xi = (Q, ti)
as input. It then generates a structured output oi = (di, C

′
i), where di ∈ {‘Y’, ‘N’} is the

relevance decision and C ′
i ⊆ Ci is the predicted subset of essential columns. The final output

of this stage is the reduced schema S′, containing only the tables and columns deemed relevant:
S′ = {(ti, C ′

i) | oi has di = ‘Y’}.

Training Algorithm. We train the agent using Group Relative Policy Optimization (GRPO) (Shao
et al., 2024). For each input xi, the model generates a group of G candidate outputs {o1, . . . , oG}.
The policy πθ is then updated via the objective:

JGRPO(θ) = E

 1

G

G∑
j=1

min

(
πθ(oj |xi)

πθold(oj |xi)
Aj , clip

(
πθ(oj |xi)

πθold(oj |xi)
, 1− ϵ, 1 + ϵ

)
Aj

)
− βDKL(πθ∥πref)


(3)

where Aj is the advantage for candidate oj . The agent’s prompt template is in Appendix 14.

Reward Design. The reward function RGround provides a granular score based on the accuracy of
the agent’s prediction. Let the agent’s parsed prediction be P = (dp, Cp), where dp ∈ {‘Y’, ‘N’} is
the relevance decision and Cp is the set of predicted columns. Let the ground truth be o∗ = (dg, Cg).
The reward Rg(o, o

∗) is defined as:

RGround(o, o
∗) =



1.0 if o = o∗ (perfect match)
max(0.5,

|Cg|
|Cp|) if dp = dg = ‘Y’ and Cg ⊂ Cp (superset)

0.2 if dp = ‘Y’ and dg = ‘N’ (incorrect ‘Y’)
0.1 if dp = dg = ‘Y’ and Cg ̸⊆ Cp (missing columns)
0.0 if response format is invalid

This scheme rewards perfect accuracy while providing partial credit for nearly correct answers,
guiding the agent towards effective schema linking.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 GENERATION AGENT: MULTI-TURN TRAJECTORY GENERATION

The Generation Agent is the central component, tasked with producing SQL queries. Its input is
the user question Q and the reduced schema S′ from the Grounding Agent. Its output is a set of N
candidate interaction trajectories, {τ1, . . . , τN}, where each trajectory comprises of M rounds of the
Think-Act-Observe process. The correct trajectory is expected to result in the final SQL solution Yi.

MDP Formulation. We model the multi-turn generation process as a Markov Decision Process
(MDP), defined by the tuple (S,A, P,R).

• State Space S: A state st represents the history of interaction up to round t, containing the
sequence of past thoughts, actions, and observations ((h1, α1, ω1), . . . , (ht−1, αt−1, ωt−1)).

• Action Space A: An action at = (ht, αt) consists of generating a thought ht and an
executable SQL snippet αt.

• Transition P : P (st+1|st, at) is the transition probability, which is determined by the
environment (i.e., the database executing the action αt).

• Reward R: The reward function Rgen(τ) provides a sparse signal based on the final
outcome of a complete trajectory τ .

The goal is to learn a policy πGen(at|st) that maximizes the return J(πGen) = Eτ∼πGen
[RGen(T)].

Training. We train the policy πGen using Group Relative Policy Optimization (GRPO). For an input
(Q,S′), we generate a group of G trajectories {τ1, . . . , τG}, where each trajectory taui consists of a
sequence of states and actions (si0, a

i
0, s

i
1, . . .). The GRPO objective for trajectories is defined as:

JGRPO(θ) = E (Q,S′)∼D,

{τi}G
i=1∼πθold

[
1
G

∑G
i=1

∑|τi|−1
t=0

∑|ai
t|

j=1 min
(

πθ(a
i
t,j |s

i
t,a

i
t,<j)

πθold (a
i
t,j |sit,ai

t,<j)
Ai, clip

(
πθ(a

i
t,j |s

i
t,a

i
t,<j)

πθold (a
i
t,j |sit,ai

t,<j)
, 1− ϵ, 1 + ϵ

)
Ai

)]
(4)

where ait,j is the j-th token of action ait in trajectory τi, and Ai is the advantage for the entire
trajectory, computed based on the relative rewards of all trajectories within the group. The reward
signal Rgen(τ) used to compute Ai is derived solely from execution outcomes, encouraging the agent
to prioritize both syntactic validity and semantic correctness:

Rgen(τ) =


1.0 if final query is valid and execution correct
0.0 if valid but incorrect
−1.0 if invalid

This coarse but decisive feedback gives the agent freedom to discover effective reasoning strategies
without being constrained to annotated step-level traces.

Interactive Reasoning. The agent is grounded in the ReAct paradigm (Yao et al., 2023), interleaving
reasoning and acting in a Think-Act-Observe loop. This iterative structure transforms SQL generation
from a one-shot translation into a dialogue with the database, enabling robust recovery from errors.

3.3 VALIDATION AGENT: VERIFICATION AND SELECTION

The Validation Agent selects the optimal solution from the multiple candidates generated. Its input
is the set of N candidate trajectories {τ1, . . . , τN} and the original question Q. Its output is the
single best trajectory, τfinal. We employ a Generative Verifier V , reframing verification as a next-token
prediction task that leverages the base model’s own capabilities.

Training and Inference The Validation Agent is trained via SFT to generate a single token response:
“Yes” for a correct trajectory or “No” for an incorrect one, conditioned on the question and trajectory.
The prompt structure is in Appendix C.1.

At inference time, the agent’s score for a trajectory τi is the average log probability of the “Yes” token
across M stochastic reasoning rounds :

V (τi) =
1

M

M∑
j=1

P (yj = “Yes”|τi, Q) (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The trajectory with the highest confidence score is selected as the final answer:

τfinal = argmax
i∈{1,...,N}

V (τi) (6)

This method effectively turns the generative model into a high-quality reranker, capable of discerning
the most plausible and accurate reasoning path among many alternatives.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Implementations. Our experimental setup consists of three distinct agents: a Grounding Agent, a
Generation Agent, and a Validation Agent. All models were implemented using PyTorch and trained
on NVIDIA H800 GPUs. The Grounding and Generation Agents were trained using Reinforcement
Learning (RL). The Grounding Agent was developed with the Verl framework (Sheng et al., 2024),
using training data prepared with SQLGlot (Mao, 2023). The Generation Agent utilized a framework
adapted from SkyRL (Liu et al., 2025a). The prompt structures for these agents are detailed in
Appendix F and Appendix G, with specific training hyperparameters listed in Appendix B.

The Selection Agent was trained via full-parameter Supervised Fine-tuning (SFT) of the Qwen2.5-
Coder-7B-Instruct model (Hui et al., 2024). The dataset for this agent was constructed by generating
multiple trajectories for each question in the BIRD training set using our trained Generation Agent.
Positive and negative examples were then selected based on final execution results. The prompt
format for the Validation Agent is shown in Appendix K, and its training hyperparameters are also
detailed in Appendix B. For the inference phase, we explicitly configure the sampling parameters
to ensure reproducibility. Specifically, we set the number of rollouts for the Generation Agent to
G = 8. Similarly, the Validation Agent employs M = 8 stochastic reasoning rounds for probability
estimation. It is worth noting that while scaling G (e.g., to 16 or 32) can yield marginal performance
improvements, we adopted G = 8 as the standard setting to maintain a balance between accuracy
and computational efficiency.

Benchmark Dataset. All experiments are conducted on the BIRD (Li et al., 2023),Spider 1.0 (Yu
et al., 2019) and Spider-DK (Gan et al., 2021) dataset. We adapt Bird for in-domain evaluation and
use Spider, Spider-DK as an out-of-domain dataset. Details on these datasets are in Appendix C.2

Evaluation Metric. We evaluate model performance using Execution Accuracy (EX), which is the
primary metric for correctness. A predicted SQL query receives a score of 1 if its execution result
is identical to the execution result of the ground-truth query, and 0 otherwise. The final score is the
percentage of correctly executed queries.

Baseline models. To contextualize the performance of our method, MARS-SQL, we conduct a
comprehensive comparison against a diverse set of models. These are organized into three distinct
categories: Base models, High-performing closed-source systems, and Trained open-source models.
Base Models: This category includes foundational large language models used without task-specific
fine-tuning to establish a performance baseline. We evaluate O3-mini, GPT-4o (OpenAI, 2023),
GPT-5 and Qwen2.5-coder-7B (Hui et al., 2024). These results help gauge the inherent Text-to-SQL
capabilities of modern LLMs before specialized training.
Closed Source Multi agent framework: This category consists of systems that leverage powerful
proprietary models via APIs, representing the upper bound of performance achievable with leading
commercial technology. These methods, such as CHESS (Talaei et al., 2024), OpenSearch-SQL
(Xie et al., 2025b), XiYan-SQL (Liu et al., 2025b), and CHASE-SQL (Pourreza et al., 2024),
typically employ sophisticated frameworks and prompting techniques. This comparison situates our
open-source multi-agent framework performance against industry-leading systems.
Open Source Agent Framework: This group comprises leading open-source models specifically
fine-tuned for the Text-to-SQL task, representing the current state-of-the-art in the research community.
These models, including CodeS (Li et al., 2024b), Share (Qu et al., 2025), OmniSQL (Li et al.,
2025a), Arctic-Text2SQL-R1 (Yao et al., 2025), and Reasoning SQL (Pourreza et al., 2025), employ
various advanced training methodologies. Comparing MARS-SQL against these systems directly
assesses its competitiveness and advancements over existing specialized methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main results on the BIRD-dev, Spider-test, and Spider-DK benchmarks. We report Execution
Accuracy (%). ‘Thinking?’ indicates whether the method uses a multi-step reasoning process. Our
model is compared against base models and other advanced open and closed-source methods. Bold
indicates the best result, and underline indicates the second best.
Model Params Thinking? Training set Bird-dev (%) Spider-test (%) Spider-DK (%) Sparc(%)

Base Models

O3-mini - Yes - 61.34 78.82 71.77 67.0
Qwen-2.5-coder 7B No - 54.56 75.87 61.31 64.1
GPT-4o - No - 61.90 77.10 72.9 -
GPT-5 - No - 65.45 78.39 66.92 61.8

Closed-source Multi agentic framework

CHESS - No - 65.00 87.2 -
OpenSearch-SQL+ GPT-4o - No - 69.30 87.1 - -
XiYan-SQL - No - 73.34 89.65 - -
CHASE-SQL + Gemini - Yes - 74.90 87.6 - -

Open Source Agentic Framework

Qwen-2.5-coder+SFT 7B No Bird 61.08 76.38 58.69 -
Qwen-2.5-coder+RL 7B Yes Bird 62.32 77.85 66.54 -
CodeS 7B No Spider 57.17 80.3 72.0 -
Share 8B No Bird 64.14 85.90 75.3 -
OmniSQL 32B No OmniSQL 64.5 87.60 76.1 -
Arctic-Text2SQL-R1 32B Yes Bird+Spider 70.50 88.70 80.6 -
Reasoning SQL 14B Yes Bird 72.29 81.43 73.03 -
MARS-SQL 21B (3x7B) Yes Bird 77.84 89.75 78.13 85.78

4.2 MAIN RESULTS

As presented in Table 2, our method, MARS-SQL, trained solely on the BIRD training set, achieves
state-of-the-art execution accuracy on both the Bird-dev (77.84%) and the Spider-test (89.75%).
Additionally, it obtains the second-highest score on the Spider-DK benchmark with 78.13%.

In-Domain Performance on BIRD-dev. On the in-domain BIRD-dev set, MARS-SQL establishes
a new state-of-the-art with an execution accuracy of 77.84%. This result represents a significant
improvement of 5.55% over the next best open-source competitor, Reasoning SQL (72.29%). More
impressively, our 7B model also outperforms all listed closed-source solutions, including the strong
CHASE-SQL + Gemini (74.90%). This demonstrates the superior effectiveness of our training
methodology on this complex, real-world benchmark.

Out-of-Domain Generalization. The out-of-domain generalization of MARS-SQL is particu-
larly noteworthy, demonstrated by its strong performance on both the Spider-test and Spider-DK
benchmarks. On the broad Spider-test set, it achieves a state-of-the-art score of 89.75%, showcasing
exceptional generalization to unseen schemas and question types. This robustness extends to the
specialized Spider-DK benchmark—which tests for implicit domain knowledge—where MARS-
SQLsecures a competitive second-highest score of 78.13%. Crucially, these results were achieved
without any exposure to the Spider training set. This contrasts with competitors like Arctic-Text2SQL-
R1, which required training on Spider data (from which Spider-DK is derived) to achieve its high
scores. Therefore, our model’s performance highlights that training solely on the diverse BIRD
dataset effectively equips it for broad cross-domain and knowledge-intensive challenges.

4.3 ABLATION STUDIES

Multi-agent frame components analysis. We conduct a systematic ablation study to validate the
contribution of each key component in our MARS-SQLframework, with results presented in Table 3.
The analysis confirms that both the Grounding agent and the Generative Validation Agent are critical;
removing either leads to a significant degradation in performance on all benchmarks. Notably, our
purpose-built validation agent substantially outperforms a strong alternative like Self-Consistency
(77.84% vs. 72.93% on BIRD-dev), highlighting the benefits of a specialized validation agent.
Crucially, the results reveal a powerful synergistic effect, as the final performance gain of the full
model is far greater than the sum of the individual components’ contributions. This indicates that the
Grounder enables the Generator to produce higher-quality trajectories, which our validation agent
can then more accurately select. These findings validate our central hypothesis that each agent in the
MARS-SQLframework is indispensable for achieving state-of-the-art performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on the components of our multi-agent framework. We evaluate the contribu-
tion of each agent (Grounder, Verifier) and training strategy (SFT vs. RL). The final row, MARS-SQL,
represents our full proposed model, demonstrating the synergistic effect of all components.
Configuration Model Size Bird dev (%) Spider test (%) Spider DK (%)

Ablating Core Components

Generator Only (Base) 7B 66.37 80.11 69.91
w/o verifier (Grounding agent+ RL Generator) 7B 68.71 80.72 70.65
w/o Grounder (RL Generator + Verifier) 7B 69.75 89.19 77.01
w/ Self-Consistency (instead of Verifier) 7B 72.93 83.51 73.08

MARS-SQL(Full Framework) 21B (3x7B) 77.84 89.75 78.13

Influence of different max interaction turns. We then study the impact of the maximum interaction

Figure 3: Execution accuracy on Bird-dev of models fine-tuned with different maximum interaction
turns (T), evaluated at inference turn limits of 1, 5, and 10. ‘Greedy’ uses a single generation
trajectory (N = 1) without validation; ‘Selected’ denotes the final trajectory chosen by the Validation
Agent from N = 8 candidates; and ‘Best of N’ represents the oracle upper bound where the question
is considered correct if any of the N candidates matches.

Model Comparison at Inference (T=1)

40

50

60

70

80

90

100

Ex
ec

ut
io

n
A

cc
ur

ac
y

(%
)

Original Trained
(T=1)

Trained
(T=5)

Trained
(T=10)

Model Comparison at Inference (T=5)

40

50

60

70

80

90

100

Original Trained
(T=1)

Trained
(T=5)

Trained
(T=10)

Model Comparison at Inference (T=10)

40

50

60

70

80

90

100

Original Trained
(T=1)

Trained
(T=5)

Trained
(T=10)

Greedy Selected Best of n

Model (Trained w/ Max Turns)

23.33% ↑
13.03% ↑14.4% ↑15.88% ↑

turns (T) during Reinforcement Learning. The results are visualized in Figure 3, with full details
provided in Appendix I. As shown, increasing T from 1 to 10 consistently improves both Greedy and
Best of 8 accuracy. Notably, our model trained with T=10 significantly outperforms models trained
with fewer turns across all inference settings. For instance, at Inference (T=10), it achieves 69.88%
Greedy accuracy, surpassing the T=1 model (67.60%) and the base model (55.76%). Furthermore,

this process enhances single-pass reliabil-
Figure 4: Comparison of different selection strategy.

%
 o

f c
or

re
ct

 s
el

ec
te

d

80%

84%

88%

92%

96%

100%

Bird-dev Spider-test Spider-DK

LLM Verifier (GPT-4.1) Vanilla Verifier (Base Model) Self Consistency Ours

+3.22%
+5.08%

+5.15%

ity by narrowing the gap between Best of
8 (potential) and Greedy (actual) perfor-
mance. This gap shrinks from a substan-
tial 23.33% in the base model to 12.19%
in the T=1 model at Inference (T=1).
Training with a larger T reinforces this
effect, making the model’s greedy output
more aligned with its optimal potential,
thereby improving its dependability.

Selection methods analysis. To validate
the effectiveness of our Generative Vali-
dation Agent, we compare it against several alternative selection strategies, as illustrated in Figure 4.
While common approaches such as Self-Consistency or using a powerful LLM as a Judge (e.g.,
GPT-4.1) provide a reasonable baseline, their performance is both suboptimal and inconsistent across
the different benchmarks. In stark contrast, our fine-tuned Generative Validation Agent consistently
outperforms all other methods by a significant margin. On the challenging Spider-test, it achieves
a correct selection rate of 97.15%, a substantial improvement over the next-best strategy’s 92.09%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Similar significant gains are observed on both BIRD-dev and Spider-DK. This consistent superiority
demonstrates the stability and robustness of our specialized approach. Unlike general-purpose models
or heuristic-based methods, our validation agent reliably identifies the most accurate reasoning
trajectory, making it a critical component for achieving state-of-the-art performance. Full execution
accuracy results for each method are detailed in Appendix M.

5 RELATED WORK

LLMs for Text-to-SQL The rise of Large Language Models (LLMs) has brought notable progress
to Text-to-SQL tasks, moving past traditional sequence-to-sequence approaches. Recent studies
emphasize in-context learning, where strategies such as Chain-of-Thought (CoT) prompting are
used to break down complex queries into intermediate reasoning steps (Tai et al., 2023; Dong et al.,
2023). Frameworks like DIN-SQL (Pourreza & Rafiei, 2023) and DAIL-SQL (Gao et al., 2023) have
systematically explored prompt engineering and multi-stage pipelines that include schema linking,
generation, and refinement to boost performance. Building on these ideas, more recent studies (Wang
et al., 2025a; Deng et al., 2025; Gao et al., 2025; Xie et al., 2025b) move toward structured, multi-step
workflows that better match the complexity of real databases and diverse queries. Our work adopts
this decompositional philosophy but shifts away from static prompting by introducing a dynamic,
learning-based agentic system.

Multi-Agent systems Large Language Models (LLMs) have enabled sophisticated multi-agent
systems by adopting specialized roles via in-context prompting (Wang et al., 2024; Min et al., 2022).
Our focus is on goal-oriented problem-solving frameworks, rather than social simulations (Zhang
et al., 2024; Hua et al., 2024), where tasks are divided among collaborating agents. The complexity of
these collaborations has grown from simple debating (Du et al., 2023) to structured workflows with
the use of tools, such as software development agents ChatDev (Qian et al., 2024), MetaGPT (Hong
et al., 2024) and CollabUIAgent (He et al., 2025). Other notable approaches include the generic
framework AutoGen (Wu et al., 2023) and the dynamic cooperation in AutoAgents (Chen et al.,
2024). Following this established paradigm, we propose a specialized pipeline for Text-to-SQL using
Grounder, Generator, and Verifier agents.

Reinforcement Learning Reinforcement Learning (RL) is increasingly used to enhance the complex
reasoning capabilities of LLMs, especially when combined with chain-of-thought prompting (Wei
et al., 2023; OpenAI, 2024). This approach has proven highly effective, achieving state-of-the-art
results in fields like mathematics and code generation (Qin et al., 2023; Zhao et al., 2024). Typical
approaches fine-tune models with policy gradient methods such as PPO or GRPO, rewarding logical
soundness or correct outcomes (Shao et al., 2024; DeepSeek-AI et al., 2025). While PPO is a common
choice, GRPO offers advantages by being less prone to high variance and more memory-efficient, as
it does not require loading an additional critic model. In parallel, interactive reasoning paradigms
like ReAct (Yao et al., 2022) leverage prompting-based Think–Act–Observe loops to enable tool
use and self-correction, but without explicit policy training. While Text-to-SQL requires similarly
complex reasoning, explicit RL for this domain remains underexplored. Our work addresses this gap
by training the Generator agent’s policy with execution-based rewards, enabling robust, stateful query
generation and dynamic self-correction.

Test-Time Scaling To enhance performance without the cost of retraining, many researchers have
focused on inference-time techniques. Self-consistency, for instance, has become a popular method
where multiple reasoning paths are sampled and the final answer is chosen by majority vote (Wang
et al., 2023). This concept has been further refined by verification and reranking methods, which
employ an external mechanism or model to score and select the best candidate from a pool of
outputs (Zheng et al., 2023; Gu et al., 2025). Our approach builds on the recent innovation of
Generative Verifiers (Zhang et al., 2025b). Instead of a voting process or a separate classifier, our
Validation Agent reframes selection as a next-token prediction problem. It assesses each potential
solution trajectory by calculating the probability of the model generating a “Yes” token, ultimately
selecting the trajectory with the highest confidence score.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work, we present MARS-SQL, a multi-agent framework that addresses the limitations of static,
single-pass Text-to-SQL methods. By decomposing the task into schema grounding, interactive query
generation, and final verification, our framework achieves robust performance through specialized
agents. The core of our system is the Generator agent, which uniquely leverages reinforcement
learning within a ReAct-style Think–Act–Observe loop to enable dynamic reasoning and self-
correction. MARS-SQL established new state-of-the-art execution accuracies on BIRD (77.84%)
and Spider (89.75%), demonstrating strong cross-domain generalization by achieving its Spider result
without any training on the Spider dataset. Ablation studies further demonstrate that each agent
plays a distinct role, and their combination delivers substantial gains over any single component.
These findings highlight the promise of moving from static, one-shot generation toward interactive,
multi-agent problem solving as a foundation for building more reliable data-centric AI systems.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are committed to making our code and models publicly
available upon publication. All experiments were conducted on publicly accessible and widely used
benchmarks: BIRD (Li et al., 2023), Spider (Yu et al., 2019), and Spider-DK (Gan et al., 2021). The
primary evaluation metric is Execution Accuracy (EX), a standard in the Text-to-SQL field. Key
details regarding our implementation, including the multi-agent framework architecture, prompt
structures for each agent, and training hyperparameters, are described in the main body of the paper
and further detailed in the Appendix. Our methodology, including the use of Group Relative Policy
Optimization (GRPO) and the specific design of our reward functions, is explicitly formulated to
facilitate replication by future research.

ETHICS STATEMENT

The primary goal of this research is to develop more robust and reliable Text-to-SQL systems,
aiming to democratize data access for non-expert users and reduce barriers to data-driven insights.
Our work relies exclusively on publicly available datasets (BIRD and Spider) that are standard
academic benchmarks and do not contain personally identifiable information or sensitive user data.
We acknowledge that any Text-to-SQL system, including ours, carries an inherent risk of generating
incorrect or unintended queries, which could lead to flawed analysis if deployed without human
oversight. However, our framework’s emphasis on dynamic self-correction and robust verification
is a direct attempt to mitigate these risks and improve the reliability of AI agents interacting with
databases. We believe the potential benefits of making complex data more accessible outweigh the
risks, and we encourage the deployment of such systems in a manner that includes human-in-the-loop
validation for critical applications.

REFERENCES

Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG: Multi-
Agent Filtering Retrieval-Augmented Generation, December 2024. URL http://arxiv.org/
abs/2501.00332. arXiv:2501.00332 [cs].

Saumya Chaturvedi, Aman Chadha, and Laurent Bindschaedler. SQL-of-Thought: Multi-agentic
Text-to-SQL with Guided Error Correction, August 2025. URL http://arxiv.org/abs/
2509.00581. arXiv:2509.00581 [cs].

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and
Yemin Shi. AutoAgents: A Framework for Automatic Agent Generation, April 2024. URL
http://arxiv.org/abs/2309.17288. arXiv:2309.17288 [cs].

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Ruoyu Zhang. Deepseek-
r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

10

http://arxiv.org/abs/2501.00332
http://arxiv.org/abs/2501.00332
http://arxiv.org/abs/2509.00581
http://arxiv.org/abs/2509.00581
http://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta,
and Hao Zhang. RefoRCE: A text-to-SQL agent with self-refinement, format restriction, and
column exploration. In ICLR 2025 Workshop: VerifAI: AI Verification in the Wild, 2025. URL
https://openreview.net/forum?id=OuFIfDBwQd.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. C3: Zero-shot text-to-sql with chatgpt, 2023. URL https://arxiv.org/abs/2307.
07306.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-domain
text-to-sql generalization, 2021. URL https://arxiv.org/abs/2109.05157.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation, 2023. URL https:
//arxiv.org/abs/2308.15363.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of xiyan-sql: A multi-generator
ensemble framework for text-to-sql, 2025. URL https://arxiv.org/abs/2411.08599.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A Survey on LLM-as-a-Judge, March 2025. URL http://arxiv.org/
abs/2411.15594. arXiv:2411.15594 [cs].

Lin Gui, Cristina Gârbacea, and Victor Veitch. BoNBoN Alignment for Large Language Models
and the Sweetness of Best-of-n Sampling, November 2024. URL http://arxiv.org/abs/
2406.00832. arXiv:2406.00832 [cs].

Zhitao He, Zijun Liu, Peng Li, Yi R. Fung, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Advancing
Language Multi-Agent Learning with Credit Re-Assignment for Interactive Environment Gener-
alization, August 2025. URL http://arxiv.org/abs/2502.14496. arXiv:2502.14496
[cs].

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta Programming for A Multi-Agent
Collaborative Framework, November 2024. URL http://arxiv.org/abs/2308.00352.
arXiv:2308.00352 [cs].

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql, 2025. URL
https://arxiv.org/abs/2406.08426.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill,
and Yongfeng Zhang. War and Peace (WarAgent): Large Language Model-based Multi-Agent
Simulation of World Wars, January 2024. URL http://arxiv.org/abs/2311.17227.
arXiv:2311.17227 [cs].

Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
Michael R. Lyu, and Maarten Sap. On the Resilience of LLM-Based Multi-Agent Collab-
oration with Faulty Agents, May 2025a. URL http://arxiv.org/abs/2408.00989.
arXiv:2408.00989 [cs].

Yuchen Huang, Sijia Li, Zhiyuan Fan, Minghao LIU, Wei Liu, and Yi R. Fung. Scaling environments
for LLM agents: Fundamentals, approaches, and future directions. In Workshop on Scaling Environ-
ments for Agents, 2025b. URL https://openreview.net/forum?id=9axZcDTiJm.

11

https://openreview.net/forum?id=OuFIfDBwQd
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2406.00832
http://arxiv.org/abs/2406.00832
http://arxiv.org/abs/2502.14496
http://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2406.08426
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2408.00989
https://openreview.net/forum?id=9axZcDTiJm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report, November 2024. URL
http://arxiv.org/abs/2409.12186. arXiv:2409.12186 [cs].

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
text-to-sql workflows, 2025. URL https://arxiv.org/abs/2411.07763.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The Dawn of Natural Language
to SQL: Are We Fully Ready? Proceedings of the VLDB Endowment, 17(11):3318–3331, July
2024a. ISSN 2150-8097. doi: 10.14778/3681954.3682003. URL http://arxiv.org/abs/
2406.01265. arXiv:2406.01265 [cs].

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. CodeS: Towards Building Open-source Language Models for Text-
to-SQL, February 2024b. URL http://arxiv.org/abs/2402.16347. arXiv:2402.16347
[cs].

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. OmniSQL: Synthesizing
High-quality Text-to-SQL Data at Scale, July 2025a. URL http://arxiv.org/abs/2503.
02240. arXiv:2503.02240 [cs].

Jiahui Li, Tongwang Wu, Yuren Mao, Yunjun Gao, Yajie Feng, and Huaizhong Liu. SQL-Factory: A
Multi-Agent Framework for High-Quality and Large-Scale SQL Generation, September 2025b.
URL http://arxiv.org/abs/2504.14837. arXiv:2504.14837 [cs].

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL https:
//arxiv.org/abs/2305.03111.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, Ziwei Tang, Yuanshuai Li, Florensia Widjaja, Xintong Zhu, Feige Zhou,
Yongfeng Huang, Yannis Papakonstantinou, Fatma Ozcan, Chenhao Ma, and Reynold Cheng.
SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications,
July 2025c. URL http://arxiv.org/abs/2506.18951. arXiv:2506.18951 [cs].

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level Code
Generation with AlphaCode. Science, 378(6624):1092–1097, December 2022. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.abq1158. URL http://arxiv.org/abs/2203.07814.
arXiv:2203.07814 [cs].

Shu Liu, Sumanth Hegde, Shiyi Cao, Alan Zhu, Dacheng Li, Tyler Griggs, Eric Tang, Akshay Malik,
Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei Zaharia, Joseph E. Gonzalez, and
Ion Stoica. Skyrl-sql: Matching gpt-4o and o4-mini on text2sql with multi-turn rl, 2025a.

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao,
Yu Li, Bolin Ding, and Jingren Zhou. XiYan-SQL: A Novel Multi-Generator Framework For
Text-to-SQL, July 2025b. URL http://arxiv.org/abs/2507.04701. arXiv:2507.04701
[cs].

Toby Mao. Sqlglot. https://github.com/tobymao/sqlglot, 2023. Accessed: 2024-06-
09.

12

http://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2411.07763
http://arxiv.org/abs/2406.01265
http://arxiv.org/abs/2406.01265
http://arxiv.org/abs/2402.16347
http://arxiv.org/abs/2503.02240
http://arxiv.org/abs/2503.02240
http://arxiv.org/abs/2504.14837
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2506.18951
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2507.04701
https://github.com/tobymao/sqlglot

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?,
October 2022. URL http://arxiv.org/abs/2202.12837. arXiv:2202.12837 [cs].

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I. Wang, and Xi Victoria
Lin. LEVER: Learning to Verify Language-to-Code Generation with Execution, September 2023.
URL http://arxiv.org/abs/2302.08468. arXiv:2302.08468 [cs].

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction, 2023. URL https://arxiv.org/abs/2304.11015.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql, 2024. URL https://arxiv.org/
abs/2410.01943.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
Amin Saberi, and Sercan ”O Arik. Reasoning-SQL: Reinforcement Learning with SQL Tailored
Partial Rewards for Reasoning-Enhanced Text-to-SQL, April 2025. URL http://arxiv.org/
abs/2503.23157. arXiv:2503.23157 [cs].

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative Agents for Software Development, June 2024. URL http://arxiv.org/
abs/2307.07924. arXiv:2307.07924 [cs].

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models
to Master 16000+ Real-world APIs, October 2023. URL http://arxiv.org/abs/2307.
16789. arXiv:2307.16789 [cs].

Ge Qu, Jinyang Li, Bowen Qin, Xiaolong Li, Nan Huo, Chenhao Ma, and Reynold Cheng. Share: An
slm-based hierarchical action correction assistant for text-to-sql, 2025. URL https://arxiv.
org/abs/2506.00391.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024. URL http://arxiv.org/
abs/2402.03300. arXiv:2402.03300 [cs].

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain-of-thought
style prompting for text-to-sql, 2023. URL https://arxiv.org/abs/2305.14215.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: Contextual Harnessing for Efficient SQL Synthesis, November 2024. URL http:
//arxiv.org/abs/2405.16755. arXiv:2405.16755 [cs].

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen
Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative framework for
text-to-sql, 2025a. URL https://arxiv.org/abs/2312.11242.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai, Zhao Yan, Qian-
Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A Multi-Agent Collaborative
Framework for Text-to-SQL, March 2025b. URL http://arxiv.org/abs/2312.11242.
arXiv:2312.11242 [cs].

13

http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
http://arxiv.org/abs/2503.23157
http://arxiv.org/abs/2503.23157
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2506.00391
https://arxiv.org/abs/2506.00391
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2405.16755
http://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2312.11242

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xintao Wang, Yunze Xiao, Jen-tse Huang, Siyu Yuan, Rui Xu, Haoran Guo, Quan Tu, Yaying Fei,
Ziang Leng, Wei Wang, Jiangjie Chen, Cheng Li, and Yanghua Xiao. InCharacter: Evaluating
Personality Fidelity in Role-Playing Agents through Psychological Interviews, June 2024. URL
http://arxiv.org/abs/2310.17976. arXiv:2310.17976 [cs].

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models, March 2023. URL http://arxiv.org/abs/2203.11171. arXiv:2203.11171
[cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023. URL
https://arxiv.org/abs/2308.08155.

Wenxuan Xie, Yaxun Dai, and Wenhao Jiang. Sde-sql: Enhancing text-to-sql generation in large
language models via self-driven exploration with sql probes, 2025a. URL https://arxiv.
org/abs/2506.07245.

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. Opensearch-sql: Enhancing text-to-sql
with dynamic few-shot and consistency alignment, 2025b. URL https://arxiv.org/abs/
2502.14913.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Zhewei Yao, Guoheng Sun, Lukasz Borchmann, Zheyu Shen, Minghang Deng, Bohan Zhai, Hao
Zhang, Ang Li, and Yuxiong He. Arctic-Text2SQL-R1: Simple Rewards, Strong Reasoning in
Text-to-SQL, May 2025. URL http://arxiv.org/abs/2505.20315. arXiv:2505.20315
[cs].

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019.
URL https://arxiv.org/abs/1809.08887.

Jipeng Zhang, Haolin Yang, Kehao Miao, Ruiyuan Zhang, Renjie Pi, Jiahui Gao, and Xiaofang Zhou.
Exesql: Self-taught text-to-sql models with execution-driven bootstrapping for sql dialects, 2025a.
URL https://arxiv.org/abs/2505.17231.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative Verifiers: Reward Modeling as Next-Token Prediction, February 2025b. URL http:
//arxiv.org/abs/2408.15240. arXiv:2408.15240 [cs].

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö Arik. Chain
of Agents: Large Language Models Collaborating on Long-Context Tasks, June 2024. URL
http://arxiv.org/abs/2406.02818. arXiv:2406.02818 [cs].

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
Luo, and Kaifu Zhang. Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions,
November 2024. URL http://arxiv.org/abs/2411.14405. arXiv:2411.14405 [cs].

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, December 2023. URL http:
//arxiv.org/abs/2306.05685. arXiv:2306.05685 [cs].

14

http://arxiv.org/abs/2310.17976
http://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2506.07245
https://arxiv.org/abs/2506.07245
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2505.20315
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2505.17231
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2406.02818
http://arxiv.org/abs/2411.14405
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in a limited, assistive capacity for specific tasks in
this project. For manuscript preparation, the authors supplied their own draft to an LLM, which then
provided suggestions to improve grammar, enhance clarity, and ensure an academic tone. The LLM
was also used to generate a list of potential titles for inspiration, though the final title was conceived
and refined by the authors and not taken directly from any single output. In the implementation phase,
an LLM served as a coding assistant by offering code completions and debugging support. However,
all final code, experimental design, and validation were implemented and verified exclusively by the
authors. It is important to emphasize that LLMs were NOT used for core scientific contributions,
such as generating research ideas, designing experiments, or conducting the literature review. All
conceptual work and experimental design originated solely with the authors.

B TRAINING DETAILS

This section provides the detailed hyperparameters used for training our three agents. All agents were
trained on NVIDIA H800 GPUs.

B.1 GROUNDING AGENT

The Grounding Agent was trained using Reinforcement Learning baesd on Qwen2.5-Coder-7B-
Instruct. Its primary role is to identify the correct database schema entities relevant to the user’s
question. The training was conducted using the Verl framework (Sheng et al., 2024). The hyperpa-
rameters for the RL training and data generation phases are detailed in Table 4.

Training Steps and Convergence: We trained the Grounding Agent for 600 steps with a batch size
of 64. During training, we observed clear stability and convergence patterns in the reward curves;
the reward consistently increased and then plateaued, indicating that the policy was successfully
optimized.

B.2 GENERATION AGENT

The Generation Agent was also trained using Reinforcement Learning based on Qwen2.5-Coder-
7B-Instruct, leveraging a training framework adapted from SkyRL (Liu et al., 2025a). This agent is
responsible for generating the SQL query trajectories. Its training and data generation hyperparameters
are identical to those of the Grounding Agent, as shown in Table 4.

Training Steps and Convergence: This agent was trained for 160 steps with a batch size of 64.
Similar to the Grounding Agent, the reward curve demonstrated stable convergence within this
efficient training phase.

Table 4: Hyperparameters for Grounding and SQL Agent RL Training.
Parameter Value
Training Parameters

Learning Rate 1× 10−6

Batch Size 128

Trajectory Rollout Parameters

Temperature 0.6
Top-p 0.95

B.3 VALIDATION AGENT

The Validation Agent was trained via Supervised Fine-tuning (SFT) to select the best SQL query
from the candidates generated by the SQL Agent. We performed a full-parameter fine-tuning of the
Qwen2.5-Coder-7B-Instruct model (Hui et al., 2024) using the Llama Factory framework.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The SFT training hyperparameters are listed in Table 5, and the parameters for generating its training
dataset are in Table 6.

Table 5: Hyperparameters for Verify Agent SFT.
Parameter Value
Base Model Qwen2.5-Coder-7B-Instruct
Epochs 3
Learning Rate Scheduler Cosine
Initial Learning Rate 1× 10−5

Effective Batch Size 4
Per-device Batch Size 1
Gradient Accumulation 2 steps

Precision bf16
Optimization DeepSpeed ZeRO Stage 3

Table 6: Hyperparameters for Verify Agent Dataset Generation.
Parameter Value
Candidates per Question 16
Temperature 0.7
Top-p 0.9
Top-k 50

C DATASET

C.1 TRAINING DATASET

Our training data is derived from the Bird benchmark, which comprises 9,428 question-SQL pairs. To
ensure high quality, we first filtered this dataset by removing samples flagged as incorrect (Pourreza
et al., 2025; Li et al., 2024b) by both Gemini-2.5-pro and GPT-4o, resulting in a clean set of 8,036
training examples. From this set, we constructed the fine-tuning data for the grounding task. For each
of the 8,036 question-database pairs, we generated a distinct training instance for every table within
that database. This process resulted in a large-scale dataset of 90,102 individual data points. For
each point, the ground truth—whether a table is relevant and which of its columns are used—was
programmatically extracted from the gold SQL query using the SQLGlot parser.

We constructed a specialized dataset for training the Verifier via Supervised Fine-Tuning (SFT). First,
for each question in our filtered BIRD training set, we used both our fine-tuned Generator agent and
the initial base model to perform inference, generating a diverse pool of 16 candidate trajectories
per question. This ensures the Verifier is exposed to a wide range of reasoning paths, both correct
and flawed. From this pool, we curated a preference dataset by selecting one positive example (a
trajectory leading to a correct execution result) and one negative example (a trajectory leading to
an incorrect result) for each question. We mix the order of correct and incorrect trajectories in each
pair at random to prevent order bias during training. Since the number of cases containing both
correct and incorrect trajectories is limited, some questions yield only flawed trajectories. In such
cases, we add the ground truth SQL query in the prompt as a suggestion to help the model generate
proper trajectories. We applied best-of-N and worst-of-N (Gui et al., 2024) strategies to select both
positive and negative examples. This process yielded a final dataset of approximately 16,000 training
instances. Each instance is a triplet containing the user’s question, the full interaction trajectory
(including all [Think], [SQL], and [Observation] steps), and the final execution result.

C.2 EVALUATION DATASET

BIRD is a large-scale, realistic benchmark designed to evaluate modern Text-to-SQL systems. It
features complex databases (33.4 GB across 95 databases), questions from 37 professional domains,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and imperfect real-world data values requiring robust handling. BIRD uniquely emphasizes the
generation of both correct and efficient SQL queries, making it an ideal testbed for our framework.
Our primary evaluations are performed on its development set, which contains 1,534 examples.

Spider 1.0 is a comprehensive, cross-domain benchmark containing 10,181 questions and 5,693
unique complex SQL queries across 200 multi-table databases. It serves as a standard for evaluating
cross-domain Text-to-SQL performance. For our evaluation, we use the official test set, which
includes 2,147 examples.

Spider-DK, an extension of Spider, is designed specifically to test a model’s ability to handle queries
requiring implicit domain knowledge. It comprises samples from the Spider development set that were
manually modified to depend on real-world information for correct interpretation. This benchmark
simulates scenarios where user queries rely on specific domain context. We evaluate our model on
the Spider-DK test set, which contains 535 examples.

D TRAINING EFFICIENCY AND RESOURCE ANALYSIS

To address concerns regarding the computational resources required for our multi-agent framework,
we provide a detailed breakdown of the training time and a comparative analysis of data efficiency.
All experiments were conducted on a node equipped with 4 × NVIDIA H800 GPUs.

D.1 COMPUTATIONAL COST BREAKDOWN

Contrary to the perception that training multiple agents is prohibitively resource-intensive, our
framework is designed for rapid convergence. As detailed in Table 7, the entire specialized training
pipeline—including the SFT for the Validation Agent and GRPO-based Reinforcement Learning for
both the Grounding and Generation Agents—completes in approximately 13 hours. This represents
a modest one-time computational cost, especially considering the significant performance gains
achieved.

Table 7: One-Time Training Cost breakdown on 4 × NVIDIA H800 GPUs.
Agent Method Training Steps Batch Size Est. Training Time
Validation Agent SFT ∼10k 4 1 h
Grounding Agent GRPO 600 64 4 h
Generation Agent GRPO 160 64 8 h

Total ∼13 h

D.2 DATA EFFICIENCY AND COMPARATIVE ANALYSIS

The efficiency of MARS-SQL stems from its ability to learn diverse reasoning and self-correction
behaviors through interaction and self-play, rather than relying on massive-scale supervised datasets.

Table 8 compares our framework against standard single-agent SFT approaches. While standard
SFT on the BIRD training set (12k examples) takes only 2 hours, it yields a significantly lower
execution accuracy (EX) of 61.08%. Scaling up SFT, as seen in methods like OminiSQL (utilizing
2.5M examples), requires approximately 20 days of training yet only reaches 64.50% EX.

In contrast, MARS-SQL achieves a state-of-the-art EX of 77.84% using only 35k LLM-labeled
examples and 13 hours of training. To match this performance level using a single-agent SFT-only
paradigm, we conservatively estimate—based on scaling laws—that it would require approximately
15 million synthetic examples and 3–4 months of training time on the same hardware. Thus, our
multi-agent RL framework offers orders of magnitude better data and compute efficiency.

E INFERENCE EFFICIENCY AND PRACTICALITY ANALYSIS

In this section, we provide a comprehensive analysis of the efficiency and practicality of the MARS-
SQL framework. We focus on the cost-benefit trade-offs and demonstrate that the proposed multi-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Cost and efficiency analysis compared with single-agent SFT baselines on Bird-Dev.
Method Annotation Source Data Size Training Time (wall) Dev EX (%)
Original (Baseline) — — — 54.56
SFT on BIRD-train Human 12,000 ∼2 h 61.08
Large SFT (e.g., OminiSQL) LLM + Human 2,500,000 ∼20 days 64.50

MARS-SQL (Ours) LLM 35,000 ∼13 h 77.84

agent system provides a flexible and effective solution compared to counterpart methods. Our analysis
covers three key aspects: (1) performance comparison under a normalized time budget, (2) adjustable
cost–accuracy trade-offs, and (3) potential system-level optimizations.

E.1 BASELINE TIME AND TOKEN COST ANALYSIS

We first present the latency breakdown for our standard SOTA-performing configuration (Ng = 8
trajectories, Nv = 8 validation samples). As shown in Table 9, the average end-to-end latency is
22.12 seconds per query to achieve 77.84% accuracy.

Table 9: Average End-to-End Latency Analysis of MARS-SQL on the BIRD dev set (Hardware: 1x
A6000, num cpus=32). Times represent the average latency to generate one SQL query.

Stage Avg. Time (s) Description

1. Grounding Agent 0.78s 1 call per query
2. Generation Agent 18.77s Generating Ng = 8 trajectories
3. Validation Agent 2.58s Validating Ng = 8 trajectories (Nv = 8 samples each)
Ref: SQL Exec Time (2.37s) Avg. time to execute the ground truth SQL

Total (End-to-End) 22.12s Sum of all stages

The token consumption is analyzed in Table 10. The Generation Agent, utilizing a multi-turn
“Think-Act-Observe” loop, accounts for the majority of the token usage.

Table 10: Average Token Cost Analysis per Query.
Stage Avg. Tokens Description

1. Grounding Agent 875 Prompt + Schema + Question + Output
2. Generation Agent 9,200 Ng = 8× (Prompt + Schema + Question + Traj.)
3. Validation Agent 3,250 Ng = 8×Nv = 8× (Prompt + Trajectory)

Total (Avg.) 13,325 Sum of all components

E.2 PERFORMANCE COMPARISON UNDER NORMALIZED TIME BUDGET

To verify the effectiveness of our multi-agent design, we benchmark MARS-SQL against both a
supervised fine-tuning (SFT) model and a closed-source model under an equal time budget (≈ 22s).

• MARS-SQL: Uses the standard setting (Ng = 8, Nv = 8).

• SFT Model (Qwen-SFT): Uses the 22s budget to generate 16 independent samples and
selects the most self-consistent one.

• Closed-Source Model (GPT-5): Uses the 22s budget to make 4 API calls and selects the
most self-consistent one.

As shown in Table 11, baselines fail to match the performance of MARS-SQL even when granted an
equivalent time budget. This indicates that the superior accuracy of MARS-SQL (77.84%) stems
from its structured multi-agent reasoning workflow rather than merely increased inference time.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Accuracy Comparison with Normalized Time Budget (≈ 22s).
Method Configuration Avg. Latency Exe. Acc. (%)
Qwen-SFT (Self-Consistency) SFT + 16 Samples ≈ 22.0s 64.2%
GPT-5 (Self-Consistency) 4 API calls ≈ 22.0s 69.3%
MARS-SQL (Ours) Multi-Agent RL 22.12s 77.84%

E.3 ADJUSTABLE COST–ACCURACY TRADE-OFFS

The latency reported in Table 9 represents a performance-oriented configuration. MARS-SQL allows
for flexible deployment by adjusting the number of generation trajectories (Ng) and validation
samples (Nv). Table 12 illustrates these trade-offs.

Table 12: Tunable Cost-Accuracy Curve for MARS-SQL.
Mode Params (Ng, Nv) Latency Acc. (%) Characteristic
Fast (1, 1) 3.1s 68.71% High speed, outperforms SFT
Balanced (4, 4) 11.5s 74.90% Balanced cost-benefit
SOTA (Ours) (8, 8) 22.1s 77.84% Maximum accuracy
Over-Sampling (16, 8) 42.8s 77.84% Diminishing returns

Users can select a “Fast” setting to achieve a ≈3-second response that still surpasses the greedy SFT
baseline, or invest more computational resources for maximum performance.

E.4 SYSTEM-LEVEL OPTIMIZATION

The latency metrics presented above assume a sequential, single-query execution, serving as a
conservative upper bound. In practical multi-user deployments, MARS-SQL can achieve higher
throughput through system-level optimizations:

1. Pipeline Parallelism: The Grounder, Generator, and Validator agents can process different
queries in parallel, creating a pipeline for incoming requests.

2. Batched Validation: The Ng ×Nv validation calls are embarrassingly parallel and can be
fused into batched requests to reduce amortized costs.

Table 13: Sequential vs. System-Optimized Deployment (Conceptual Comparison).
Deployment Execution Pattern Est. Latency Est. Throughput

Sequential
(No optimization) Grounder → Generator → Verifier

(End-to-End)

≈ 22.1s ≈ 2.7 queries/min

System-Optimized
(Pipeline + Batch) Pipelined stages; Batched validation

≈ 12–15s ≈ 4–5 queries/min

Table 13 estimates that with these optimizations, the effective per-query latency can be reduced by
approximately 40–60%, significantly improving throughput on a single GPU node.

F TABLE LEVEL GROUNDING

Table 14 details the prompt for our RL-trained Schema Grounding Agent, which elicit a step-by-step
reasoning process during inference. It instructs the agent to analyze a given table’s schema in the
context of the user’s question and any external knowledge. The agent is required to first articulate
its analysis within ‘<think>’ tags, followed by a final, parsable decision in ‘<answer>’ tags. This
output must specify the table’s relevance (‘Y’/‘N’) and, if applicable, a Python list of useful columns.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt for Table-level Schema Linking

User:

You are doing table level schema linking. Given a table with schema information and the task, you
should think step by step and decide whether this table is related to the task.
Your thought process should be enclosed in <think></think> tags, and your final decision in
<answer></answer> tags.
For the answer, first state ‘Y’ for relevant or ‘N’ for not relevant. If relevant, also provide a Python
list of the column names you believe are most useful.
Example of a final answer format:
<answer>
Y
["player name", "team name", "matches played"]
</answer>

or

<answer>
N
</answer>

Here is the information for the current task:

Table Information:
{table info}
User Question:
{task}
External Knowledge (if any):
{external}

Assistant:

Let me solve this step by step.
<think>

Table 14: The prompt used to guide the agent in the table-level schema linking task. It includes the
role description, task instructions, output format examples, and the prefix for the agent’s response.

This structured format ensures a transparent and predictable output format crucial for our framework.

Table 15 presents recall and precision statistics for our schema grounding agent, comparing our
RL-based approach against the base model and a version trained with Supervised Fine-Tuning (SFT).
The results clearly demonstrate the superiority of our method, which achieves exceptionally high
recall and precision across all benchmarks. On the complex in-domain BIRD-dev set, our primary
concern is recall. Our agent achieves a recall of 97.78%, with only 48 examples failing to identify
all required schema components, which we consider a highly effective result. Simultaneously, it
maintains a high precision of 90.74%, indicating that the selections are not only comprehensive but
also accurate. This strong performance extends to the out-of-domain Spider-test and Spider-DK
benchmarks, underscoring the robustness of our RL-trained grounding agent.

G MULTI-TURN GENERATION

Evolution of Interaction Turns: To understand the impact of RL training on the agent’s reasoning
efficiency, we analyzed the evolution of rollout lengths during the training process. In our setting,
each “Think–Act–Observe” cycle corresponds to one database interaction turn, making the average
number of interaction turns a proxy for rollout length.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Recall and precision statistics after grounding for Bird-dev, Spider-test and Spider-DK.
Recall measures the percentage of instances where all required columns were identified. Precision
measures the ratio of required columns to all selected columns, indicating the selection’s accuracy.
Grounding Model Bird dev Spider test Spider DK

Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)

Qwen 7B (Base) 68.59 53.45 87.48 69.22 84.25 66.54
Qwen 7B + SFT 74.97 67.01 90.39 78.16 88.60 72.71
Qwen 7B + RL (Ours) 97.78 90.74 98.97 93.62 98.13 91.59

Grounding Agent (Single-turn): The rollout length (token count) exhibited a mild U-shaped pattern.
Initially, the output became more concise, followed by a slight lengthening to include only essential
schema information. This reflects a refinement of the policy towards precise schema selection rather
than reasoning from scratch.

Generation Agent (Multi-turn): A distinct trend was observed where the average number of
interaction turns consistently decreased and stabilized at a lower level. This indicates that the agent
learned to solve problems more directly and recognized when to terminate the search efficiently. This
efficiency gain is quantitatively supported by the evaluation on the BIRD-dev set (with a maximum
of 5 turns), as shown in Table 16. The RL-trained agent significantly reduces the average turns across
all difficulty levels compared to the base model.

Table 16: Comparison of Average Interaction Turns on BIRD-dev (Max Turns = 5) before and after
RL training.

Model Avg. Turns (Challenging) Avg. Turns (Moderate) Avg. Turns (Simple)
Before RL (Base Model) 2.90 2.67 2.27
After RL (Generation Agent) 1.82 1.71 1.45

Furthermore, analyzing the specific distribution of turns reveals that the agent learns an adaptive
and non-wasteful strategy. As presented in Table 17, while the agent retains the capacity to use
multiple turns for complex reasoning, it solves the vast majority of problems (1,116 cases) in a single
interaction. Crucially, for the ”long-tail” of more difficult queries, the agent robustly applies deeper
reasoning, utilizing up to 5 or more turns to arrive at the correct solution. This distribution confirms
that the agent is not bound by arbitrary limits but instead dynamically decides the necessary reasoning
depth for each specific query.

Table 17: Distribution of Interaction Turns Used by the Generation Agent on BIRD-dev.
of Interaction Turns # of Examples

1 1,116
2 174
3 105
4 88

5+ 51

Table 18 details the comprehensive prompt structure used to guide the agent’s multi-turn generation
process. The prompt establishes the agent’s persona as a data science expert and provides all necessary
context, including the database schema, external knowledge, and the user’s question. It strictly
enforces an output format that requires the agent to vocalize its reasoning within <think> blocks
before executing a query in a <sql> block. The database returns feedback in an <observation>
block, which the agent uses for subsequent reasoning turns, ultimately providing the final answer
in a <solution> block. This iterative structure is designed to facilitate a dynamic, step-by-step
problem-solving process.

Figure 5 provides a concrete example of the agent’s interactive and self-correcting workflow. The
agent initially generates a query with a typographical error in a table name ’fprm’. Upon receiving an
’OperationalError’ from the database , it correctly identifies the mistake in its next thought process,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

corrects the table name to ’frpm’, and re-executes the query. The second attempt returns an empty
result , prompting the agent to re-evaluate its filtering logic. It deduces that it incorrectly used a
district name as a county name and refines the ’WHERE’ clause accordingly. This final attempt
successfully retrieves the correct data, leading the agent to output the validated query as its final
solution.

Q: Please list the zip code of all the charter schools in Fresno County Office of Education.

<think>I need to retrieve the zip codes of all charter schools located in the Fresno County Office of
Education. This involves checking both the `schools` and `fprm` tables. I will join these tables based on the
`CDSCode` column and filter by the county and charter status.</think>
<SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN fprm AS T2 ON T1.CDSCode = T2.CDSCode
WHERE T1.County = 'Fresno County Office of Education' AND T2.`Charter School (Y/N)` = 1;</SQL>

Obeservation: OperationalError: no such table: fprm

<think>The query executed successfully this time but returned an empty result. This is unexpected. I
need to re-examine my filtering logic. The condition T1.County = 'Fresno County Office of
Education' is likely the problem. 'Fresno County Office of Education' sounds more like a district
name than a county name. The schools table probably has separate columns for County and District.
The county should be 'Fresno', and the district should be 'Fresno County Office of Education'. I will
adjust the WHERE clause to filter on both columns correctly.</think>
<SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T2.`Charter School (Y/N)` = 1 AND T1.County = 'Fresno' AND T1.District =
'Fresno County Office of Education’;</SQL>

Obeservation: [('93726-5309',), ('93628-9602',), ('93706-2611',), ('93726-5208',), ('93706-2819’,)]

<think>I made a mistake in the table name. The error indicates that the table fprm does not exist. I
should correct it to frpm and re-execute the query.</think>
<SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1.County = 'Fresno County Office of Education' AND T2.Charter School
(Y/N) = 1;</SQL>

Obeservation: Empty DataFrame\nColumns: []

<think>Great, the query has now returned a list of zip codes. This result correctly identifies the
charter schools within the specified district, fulfilling the original request. I will directly provide
the final SQL query solution based on the available schema and conditions.</think>
<solution>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T2.Charter School (Y/N) = 1 AND T1.County = 'Fresno' AND T1.District =
'Fresno County Office of Education’;</solution>

SQL Agent

SQL Agent

SQL Agent

SQL Agent

Database

Database

Database

Figure 5: Example of interactive process in the generation

H QUALITATIVE ANALYSIS: REASONING BEYOND VALID EXECUTION

A core feature of our Generation Agent is its learned policy to evaluate the semantic content and
plausibility of execution results, rather than merely checking for syntax errors. This allows the agent
to continue reasoning even when the database returns a non-empty, non-error result. Below, we
present two real-world case studies from the BIRD-dev set illustrating this capability.

H.1 SCENARIO 1: COMPLEX PROBLEM DECOMPOSITION

In complex queries, a successful execution often represents only an intermediate step in a larger plan.
The agent effectively decomposes the problem, using the observation from the first step to inform the
subsequent logic.

Question: Consider the average difference between K-12 enrollment and 15-17 enrollment of schools
that are locally funded, list the names and DOC type of schools which has a difference above this
average.

Turn 1 (Think): To solve this problem, I need to follow these steps: 1) Calculate the average
difference between K-12 enrollment and 15-17 enrollment for all schools. 2) Filter the schools based
on the funding type. 3) Calculate the difference for filtered schools. 4) Identify schools above the
average.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Turn 1 (SQL):

SELECT AVG("Enrollment (K-12)" - "Enrollment (Ages 5-17)") FROM frpm;

Turn 1 (Observation): 16.261833

Turn 2 (Think): (The agent recognizes this is an intermediate value, not the final answer.) The
average difference is approximately 16.26. Now, I will filter the schools based on the funding type
(locally funded) and calculate the difference for these schools against this average.

Turn 2 (SQL):

SELECT T2.School, T2.DOC FROM frpm AS T1 JOIN schools AS T2 ON T1.CDSCode
= T2.CDSCode WHERE T2.FundingType = 'Locally funded' AND (T1."

Enrollment (K-12)" - T1."Enrollment (Ages 5-17)") > 14.92;

Turn 2 (Observation): [(’Circle of Independent Learning’, ’54’),
(’Learning Community Charter’, ’00’)]

Turn 3 (Think): The query executed successfully and returned non-empty results. I will now combine
the logic into a single nested query for the final answer.

Turn 3 (Final Solution):

SELECT T2.School, T2.DOC FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.
CDSCode = T2.CDSCode WHERE T2.FundingType = 'Locally funded' AND (T1.
"Enrollment (K-12)" - T1."Enrollment (Ages 5-17)") > (SELECT AVG(T3."
Enrollment (K-12)" - T3."Enrollment (Ages 5-17)") FROM frpm AS T3
INNER JOIN schools AS T4 ON T3.CDSCode = T4.CDSCode WHERE T4.
FundingType = 'Locally funded')

H.2 SCENARIO 2: DATA PLAUSIBILITY AND SANITY CHECKING

The agent also learns to perform “sanity checks.” If a syntactically correct query returns implausible
data (e.g., placeholder values), the agent triggers a self-correction loop to verify and refine the query
before finalizing the answer.

Question: Which cities have the top 5 lowest enrollment number for students in grades 1 through 12?

Turn 1 (Think): I need to find the cities with the top 5 lowest enrollment numbers. I will join the
tables and order by enrollment ascending.

Turn 1 (SQL):

SELECT T2.City, T1."Enrollment (K-12)" FROM frpm AS T1 INNER JOIN schools
AS T2 ON T1.CDSCode = T2.CDSCode ORDER BY T1."Enrollment (K-12)" ASC
LIMIT 5;

Turn 1 (Observation): [(’Markleeville’, 1.0), (’Oakland’, 1.0),
(’Palermo’, 1.0)]

Turn 2 (Think): (The agent detects a potential data anomaly.) The result shows enrollment numbers
are very low (1.0), which might indicate an error in the data or the need to filter out non-enrollment
entries. Let’s check the data to ensure accuracy.

Turn 2 (SQL):

SELECT CDSCode FROM frpm WHERE "Enrollment (K-12)" != 1.0 LIMIT 10;

Turn 2 (Observation): [(’01100170130419’), (’01100170112607’)...]

Turn 3 (Think): The check confirms that there are legitimate records with other values, and ’1.0’
likely represents missing or placeholder data. I need to filter these out to get accurate city names.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Turn 3 (SQL):

SELECT T2.City FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1."Enrollment (K-12)" != 1.0 ORDER BY T1."
Enrollment (K-12)" ASC LIMIT 5;

Turn 3 (Observation): [(’Bishop’), (’Kingsburg’), (’Oakland’),
(’Williams’), (’Compton’)]

Turn 4 (Think): Now, the cities with the lowest enrollment numbers are identified and the data looks
plausible. I can provide the final SQL query.

Turn 4 (Final Solution):

SELECT T2.City FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1."Enrollment (K-12)" != 1.0 ORDER BY T1."
Enrollment (K-12)" ASC LIMIT 5;

I INTERACTION TURNS IMPACT

Table 19 presents an ablation study on the impact of the maximum number of interaction turns
(T) allowed during training and inference. The study compares the performance of the base model
against versions fine-tuned with maximum turn limits of T=1, T=5, and T=10. For each training
configuration, we report three execution accuracy metrics on the BIRD-dev benchmark: Greedy
(a single output), Best of 8 (the highest score among 8 candidates), and Selected (the score after
reranking). The results indicate that increasing the number of turns during fine-tuning consistently
improves performance. For example, the model trained with T=10 achieves the highest Greedy
(69.88%) and Best of 8 (83.89%) accuracy when inferring with 10 turns, demonstrating the value of a
larger interaction budget for complex reasoning.

J IMPACT OF MULTIPLE CANDIDATE GENERATIONS

To evaluate the impact of generating multiple candidate trajectories, we conduct a ”Best-of-N”
analysis, where N is the number of parallel rollouts. As shown in Table 20, increasing the number
of candidates provides a substantial performance boost. This demonstrates that the exploratory
nature of our Generator agent is effective at covering the solution space, with the upper-bound
performance (Pass@N) increasing consistently with more samples. The final accuracy, after applying
our Generative Validation Agent, also benefits from a larger pool of high-quality candidates to select
from.

K VALIDATION AGENT

Our Generative Validation Agent is guided by the prompt detailed in Table 21. The prompt instructs
the agent to act as an expert SQL data analyst, with the objective of evaluating the logical correctness
of a proposed SQL solution for a given problem. Unlike our previous approach, this prompt no longer
constrains the agent to reason about a sampled or truncated database. Instead, it assumes the agent
evaluates the query’s validity against the full database schema and context. The prompt structure
provides the agent with the user’s question, the candidate SQL solution, and a dedicated field for any
relevant ”External Knowledge” that might be necessary for a correct evaluation. The output format
remains strict, requiring the agent to begin its response with a definitive ”Yes” or ”No” before any
subsequent reasoning.

L LLM AS A JUDGE PROMPT

The prompt in Table 22 is used for our baseline selection method LLM as a judge. This prompt is
designed to guide the model in identifying the optimal SQL query from a set of generated candidates.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The agent is explicitly instructed to consider each candidate’s associated reasoning, the SQL query
itself, and most crucially, its execution observation on the database. This emphasis on execution
results is paramount, as it allows the agent to distinguish between syntactically correct queries and
those that truly provide the correct and complete answer to the user’s question, even if a query
might appear correct but yields erroneous or empty results. After presenting the user’s question
and the formatted candidate solutions (each including reasoning, SQL, and execution output), the
prompt concludes with strict instructions for the agent to output only the index number of the single
best candidate. In cases of ties, the candidate with the lowest index is to be chosen, ensuring a
deterministic selection process.

M SELECTION METHOD COMPARISON

We compare our proposed Generative Verifier against several strong baselines for trajectory selection,
with the results detailed in Table 23. The initial Pass@8 accuracy of our Generator agent’s output
establishes the theoretical upper bound for any selection method, as it represents the percentage of
questions for which at least one of the eight generated trajectories is correct.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt Format for SQL Reasoning

Prompt Description:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to answer
the question within limited turns. You should breakdown the problem, draft your reasoning process,
and generate the solution.
Database Engine:
SQLite
Database Schema:
{db details}
This schema describes the database’s structure, including tables, columns, primary keys, foreign
keys, and any relevant relationships or constraints.
External Knowledge:
{external knowledge}
Question:
{question}
Important Instructions:
- Make sure you only output the information that is asked in the question. If the question asks for a
specific column, make sure to only include that column in the SELECT clause, nothing more.
- The generated query should return all of the information asked in the question without any missing
or extra information.
- Before generating the final SQL query, please think how to write the query. It should include
detailed considerations such as analysing questions, summarizing relevant findings, brainstorming
new ideas, verifying the accuracy of the current steps, refining any errors, thinking of how to call
SQL tools, and revisiting previous steps.
Output Format (STRICTLY ENFORCED):
- Conduct thinking inside <think>...</think> blocks every time you get new observation
or information. Start with <think>...</think> blocks in your responses as shown in the
following example.
- You can use SQL tool written within a single <SQL>your SQL</SQL> block to explore or
verify. You can’t use the format ‘‘‘SQL ; \n‘‘‘, you must use the format <SQL>your
SQL</SQL> to get the output. <SQL>your SQL</SQL> block should follow closely be-
hind <think>...</think> block. SQL tool output will be shown as dataframe inside
<observation>...</observation>. Based on this observation, you can think again and
refine.
- The returned dataframe will be truncated in 50 rows if observation is too long.
- If you find no further exploration is needed or have only 1 turn left, you MUST directly provide the
final SQL query solution inside <solution>...</solution>.
- All your responses should be in the <think>...</think>, <sql>...</sql>,
<observation>...</observation>, <solution>...</solution> blocks.

Example:
Question: how many pigs are in the farm?
Database Schema:
Table: animals
- id (INTEGER, PRIMARY KEY)
- species (TEXT)
- age (INTEGER)
- name (TEXT)
Output:
<think>I am querying how many pigs are in the farm. I will begin
by checking if the ’animals’ table exists and contains entries
with species = ’pig’.</think>
<SQL>SELECT COUNT(*) FROM animals WHERE species = ’pig’;</SQL>
<observation>
+----------+
| COUNT(*) |
+----------+
| 12 |
+----------+
</observation>
<think>The result indicates that there are 12 pigs in the farm.
Since the question asks for how many pigs, I can now output the
final SQL as the solution.</think>
<solution>SELECT COUNT(*) FROM animals WHERE species =
’pig’;</solution>

Table 18: Prompt example for SQL reasoning without memory.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 19: Ablation study on the maximum number of interaction turns (T). We compare the original
model against models fine-tuned with different turn limits. For each setting, we report Greedy
accuracy (from a single output), Best of 8 accuracy, and Selected accuracy (after reranking 8
candidates) with grounding agent. All scores are execution accuracy (%) on the BIRD-dev benchmark.

Model
(Trained w/ Max Turns) Inference (T=1) Inference (T=5) Inference (T=10)

Greedy(%) Best of 8(%) Select(%) Greedy(%) Best of 8(%) Select(%) Greedy(%) Best of 8(%) Select(%)

Original Model (Base) 54.43 77.76 69.69 55.41 77.82 70.34 55.76 77.56 70.07
Trained (T=1) 66.41 78.6 72.06 66.95 78.76 72.75 67.60 80.63 74.19
Trained (T=5) 67.60 82.19 75.29 69.30 83.7 77.84 68.25 82 76.40
Trained (T=10) 67.73 83.61 76.86 69.36 83.95 77.12 69.88 83.89 77.57

Table 20: Impact of ”Best-of-N” selection on the BIRD-dev benchmark. Greedy (Best of 1) is the
execution accuracy of the final selected trajectory. Best of N represents the upper-bound performance
(Pass@N), indicating the percentage of times at least one correct trajectory was found among N
candidates. Inference parameters: temperature=0.8, top k=50, top p=0.7, max iterations=5.

Selection Strategy Execution Accuracy (%)
Greedy (Best of 1) 69.30
Best of 2 74.04
Best of 4 79.71
Best of 8 83.76
Best of 16 86.31
Best of 32 87.54

Prompt for Generative Validation Agent

User:

Task Background:
You are an expert SQL data analyst. Your task is to verify if a proposed solution correctly answers a
user’s question.
Problem:
{question}

External Knowledge:
{external knowledge}

Proposed Solution:
{solution text}

Your Task:
Based on all the information, is the SQL query in the solution logically correct for answering the
question?
You must answer with ”Yes” or ”No” first, before any other text.

Is the answer correct (Yes/No)?

Table 21: The prompt used for the Generative Verifier. The agent is framed as a SQL expert and
is provided with the problem, the proposed SQL query, and any relevant external knowledge. It
evaluates the logical correctness of the query and must provide a final ”Yes” or ”No” judgment.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt for Selection Agent (LLM as a Judge)

User:

Task Background:
You are an expert SQL data analyst. Your task is to select the BEST SQL query that correctly
answers a user’s question.
You are given several candidates. For each candidate, you will see its reasoning, the SQL query
itself, and importantly, the result of executing that query on the database. A query might look
correct but return an error or empty/wrong data. You must use the execution observation to make
your final decision.
Here is the user’s question:
{question}

Evaluate the following candidates based on ALL available information. Does the ”Execution
Observation” for a candidate actually answer the user’s question?
—
{formatted candidates}
—

Final Analysis:
Considering the reasoning, the SQL code, and especially the execution results, which single
candidate provides the most correct and complete answer to the user’s question?
Instructions for your response:

• Respond with ONLY the index number of the single best candidate.

• If multiple candidates produce correct results, select the one with the LOWEST index
number.

• Do not include any other words, symbols, or explanations.

Best candidate index:

Table 22: The prompt used for the Selection Agent, operating as an LLM judge. It guides the model
to select the best SQL query from multiple candidates by evaluating their reasoning, SQL code, and
critically, their execution observations. Strict output instructions ensure a direct index selection.

Table 23: Ablation study of different selection strategies. The first row, Pass@8, shows the baseline
execution accuracy (%) of the eight candidate trajectories from our Generator agent before any
selection. Subsequent rows report the final accuracy after applying each method to select the best
trajectory. Self-Consistency picks the most frequent result, LLM as a Judge uses GPT-4o/Qwen for
selection, and Ours uses our fine-tuned 7B Generative Verifier.
Method Model Size Bird dev (%) Spider test (%) Spider DK (%)
Pass@8 (Generator Output) - 83.76 90.68 82.06

LLM as a Judge (GPT-4.1) Unkonwn 75.15 83.47 71.40
LLM as a Judge (Qwen) 7B 70.47 79.60 70.09
Self-Consistency - 72.93 83.51 73.08
Ours (Generative Verifier) 7B 77.84 89.75 78.13

28

	Introduction
	Preliminaries
	Methodology
	Grounding Agent: Reasoning-driven Schema Identification
	Generation Agent: Multi-turn Trajectory Generation
	Validation Agent: Verification and Selection

	Experiment
	Experiment Setup
	Main Results
	Ablation Studies

	Related Work
	Conclusion
	The Use of Large Language Models
	Training Details
	Grounding Agent
	Generation Agent
	Validation Agent

	Dataset
	Training Dataset
	Evaluation Dataset

	Training Efficiency and Resource Analysis
	Computational Cost Breakdown
	Data Efficiency and Comparative Analysis

	Inference Efficiency and Practicality Analysis
	Baseline Time and Token Cost Analysis
	Performance Comparison Under Normalized Time Budget
	Adjustable Cost–Accuracy Trade-offs
	System-Level Optimization

	Table Level Grounding
	Comment F.1

	Multi-turn Generation
	Qualitative Analysis: Reasoning Beyond Valid Execution
	Scenario 1: Complex Problem Decomposition
	Scenario 2: Data Plausibility and Sanity Checking

	Interaction turns impact
	Impact of Multiple Candidate Generations
	Validation Agent
	LLM as a judge prompt
	Selection method comparison

	Comment G.1
	Comment K.1
	Comment L.1

