Under review as a conference paper at ICLR 2026

@MARS-SQL: A MULTI-AGENT REINFORCE-
MENT LEARNING FRAMEWORK FOR TEXT-TO-
SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Translating natural language to SQL remains difficult for complex queries. Such
queries often need environmental interaction and self-correction. To address this,
we introduce MARS-SQL, a novel multi-agent framework that combines princi-
pled task decomposition and interactive reinforcement learning (RL). Our system
comprises three specialized agents: a Grounding Agent for schema linking, a Gen-
eration Agent for query generation, and a Validation Agent for final selection. The
core of our framework is the Generation agent, which is trained via a multi-turn
RL policy. Adopting a ReAct-style Think-Act-Observe loop, the agent iteratively
generates thoughts, executes SQL actions against a live database, and revises its
strategy based on execution feedback, enabling dynamic, stateful reasoning and
self-correction. At inference time, we generate multiple interaction trajectories to
explore diverse reasoning paths. The Validation agent, then selects the optimal
trajectory by modeling verification as a next-token prediction task and choosing the
solution with the highest generation probability. This structured workflow pipelines
specialized agents. It combines interactive RL for generation with generative mod-
eling for verification. The approach proves highly effective for robust and accurate
SQL generation. Experiments show that MARS-SQL achieves state-of-the-art
Execution Accuracy of 77.84% on the BIRD dev set and 89.75% on the Spider test
set.

1 INTRODUCTION

Translating natural language questions into executable Structured Query Language (SQL) is an
essential task that allows non-expert users to access structured data (Xie et al., 2025a; Li et al., 2024a;
2023). Recent Large Language Models (LLMs) can generate simple queries for well-organised
academic benchmarks. However, they often struggle with the complexity of real-world enterprise
databases (Hong et al., 2025; Lei et al., 2025). To bridge this gap and tackle the challenges of
interacting with complex, real-world databases, researchers have started developing SQL agents (Li
et al., 2025b; Wang et al., 2025b; Li et al., 2025¢). Instead of producing a query in one step, an SQL
agent allows an LLM to interact with the database through multiple rounds of reasoning and feedback.
This interactive process resembles how human analysts explore data, making it a more natural and
effective way to handle complex database tasks.

Current methodologies in the broader field of Al agents have explored several distinct avenues. A
prominent strategy is the use of multi-agent systems, where a complex task is decomposed into
specialized sub-tasks, each handled by a dedicated agent (Chang et al., 2024; Huang et al., 2025a;
Hong et al., 2024). A parallel line of work uses test-time scaling methods that generate multiple
candidate queries and then select the best one (Ni et al., 2023; Li et al., 2022). In the specific
domain of Text-to-SQL, these methodologies manifest in two primary forms. One approach relies on
monolithic models, which handle schema comprehension, logical planning, and SQL generation in a
single pass (Pourreza et al., 2025; Li et al., 2024b). Another prominent approach involves multi-agent
frameworks that improve modularity by using API calls to closed-source LLMs, where different
agent roles are defined mainly through prompting (Pourreza et al., 2024; Liu et al., 2025b).

Under review as a conference paper at ICLR 2026

At first glance, SQL agents appear to be a straightforward solution. However, the disparity between
human intuition and current LLM reasoning leads to significant limitations in their practical applica-
tion. These challenges include (i) Compositional reasoning: Agents often struggle to formulate and
maintain a coherent long-term plan required for complex queries. They may fail to correctly combine
multiple SQL clauses—such as joins, subqueries, and aggregations—often getting stuck in a loop
of fixing minor syntax without addressing the flawed high-level logic (Chaturvedi et al., 2025). (ii)
Schema understanding: When faced with a large and noisy schema, an agent’s exploration can be
inefficient. It may repeatedly attempt to query hallucinated columns or fail to identify the correct
join keys, leading to multiple turns of unproductive interactions with the database (Deng et al., 2025).
(iii) Environmental grounding: While interactivity is central to the agent concept, current models
often lack the nuanced ability to fully leverage environmental feedback (Huang et al., 2025b). They
struggle to diagnose specific SQL dialect errors or recover from ambiguous execution outcomes,
limiting their self-correction capabilities (Zhang et al., 2025a). The confluence of these challenges in
compositional reasoning, schema understanding, and environmental grounding presents a significant
cognitive load that is difficult for any single agent to manage effectively. We, therefore, posit that a
multi-stage approach is essential to systematically address these issues.

To overcome these limitations, we introduce MARS-SQL,

anovel framework built on a multi-stage methodology. This Figure 1: Illustration of interactive rea-
approach has a dual meaning: (1) a multi-agent architec- soning process in MARS-SQL.

ture for principled task decomposition, and (2) a multi-turn

. . . . [l User Question:
I'eaSO.nlng prO.CeSS fOr lnteraCtIVe query .ConSthtlon' AS & please list the zip code gf all the charter schools in Fresno
we h]gh]lght in Table] , our approach mtegrates key ca- County Office of Education.

pabilities, such as interactive reasoning and multi-agent {Round 1:
U

|
. . o e 2 <think>| need to retrieve the zip codes ...</think> '
collaboration, that are largely absent in existing open and V' <SQL>SELECT T1.Zip FROM schools AS T1!

. . £ 2 = --
closed-source systems. Our multi-agent system divides the {7 ChSode. WHERE T County = "Fregro. " !
labor across three specialized agents: a Grounding Agent : %’““Eﬁaﬁiilcécﬁiofdﬁiﬁf.;""_ QNE/SQD] E

v

for reasoning-driven schema identification, a Generation
Agent for Multi-turn Trajectory Generation, and a Valida-

tion Agent for Verification and Selection, allowing each to ‘- <think>] made a mistake in the table. . <think>
| <SQL>SELECT T1.Zip FROM schools AS T1

i

1

. . . 1

excel at its sub-task. The core innovation of our framework P e ST e S T2 0 T et |
. ode arter Schoo __
is the Generation Agent’s multi-turn reasoning, which is LCY/N) = 1 AND T1.County = 'Fresno" T
trained via an interactive reinforcement learning (RL) pol- .3?212 2?Esbﬁﬁtion”ifs"&?’“”“ |
.
1
v

icy. Adopting a ReAct-style Think-Act-Observe loop (Yao
et al., 2022), the agent iteratively builds the query by gen-
erating thoughts, executing partial SQL actions against the
live database, and observing the feedback. As shown in
Figure 1, this interactive process enables dynamic reason-
ing and self-correction based on real-world outcomes. To
further enhance robustness, we generate multiple interac-
tion trajectories at inference time, and the Validation Agent
efficiently selects the optimal solution. This multi-agent workflow proves highly effective, with
MARS-SQL achieving a new state-of-the-art Execution Accuracy of 77.84% on the BIRD develop-
ment set and 89.75% on the Spider test set, surpassing previous leading methods.

Round 3: DB
<think>Great. ..</think>

<solution>SELECT T1.Zip FROM schools AS

T1 INNER JOIN frpm AS T2 ON T1.CDSCode

= T2.(DSCode WHERE T2. Charter School
(Y/N)" = 1 AND T1.County = 'Fresno'

AND T1.District = 'Fresno County

Office of Education’;</solution>

Our main contributions are

summarized as: (1) We in- Table 1: Feature Comparison of Text-to-SQL Frameworks.
troduce MARS-SQL, a novel "~ capability Open-Source Closed-Source MARS-SQL
multi-agent framework that Multi-Agent Architecture X
tackles complex Text-to-SQL complex Schema Support X
problems through task decom- Interactive Reasoning X
position and specialized agent ~ Efficient Selection X
training. (2) We propose a

stateful, interactive SQL generation process, structured as a multi-turn reinforcement learning (RL)
policy within a Think—Act—Observe loop, which leverages live database feedback for dynamic reason-
ing and self-correction. (3) We design a complementary agent workflow that combines a Grounder for
schema linking, a Generator for interactive query construction, and a Verifier that reframes candidate
selection as a next-token prediction task, yielding a robust mechanism for identifying the optimal
solution. (4) We demonstrate state-of-the-art performance, with MARS-SQL achieving an execution

x X NS
AN N NN

Under review as a conference paper at ICLR 2026

accuracy of 77.84% on the BIRD development set and 89.75% on the Spider test set, highlighting the
effectiveness of our interactive, multi-agent approach.

2 PRELIMINARIES

Background Formulation. The primary goal of a Text-to-SQL system is to translate a natural
language question into an executable SQL query. We can formally define this task as learning a
mapping from a user question and a group of database schemas to the corresponding SQL query.

Let) be the natural language question posed by a user. Let S be the database schema, which defines
the structure of the database. The schema S consists of a set of tables T' = {t1, to, ..., t,, }, where
each table t; is composed of a set of columns C; = {¢;1,¢;2, .- ., ¢;i.r }- The schema also includes
information about data types, primary keys (PKs), and foreign keys (FKs) that define the relationships
between tables. The objective is to generate a SQL query Y such that when it is executed on the
database instance D, it produces the correct answer to the question Q.

Conventionally, the Text-to-SQL problem is treated as a sequence-to-sequence translation task, where
the goal is to learn a function f:

Y =f(Q5) (1)

This formulation, however, treats the generation as a single, static step and fails to capture the
exploratory and corrective nature required for solving complex analytical queries.

Reformulation as an Interactive Decision Process. As highlighted in the introduction, the static,
one-shot formulation is insufficient for complex reasoning. A human analyst does not simply translate;
they interact, explore, and refine. To model this more robust process, we reformulate Text-to-SQL as
a sequential decision-making task, grounded in the ReAct paradigm (Yao et al., 2023).

Instead of learning a direct mapping to a final query, our goal is to learn an optimal policy, 7, that
generates a trajectory of thoughts and actions to solve the problem. A complete interaction trajectory,
T, is a sequence of multiple rounds:

T = (h1,a1,w1, ..., har, g, war) ()

Each turn in the trajectory consists of:

* Thought (h;): An internal reasoning step where the agent analyzes the problem state,
reflects on past observations, and plans the next action.

* Action (ay): An operation chosen by the agent from a predefined action space 4. In our
framework, this primarily involves executing SQL queries against the database.

* Observation (w;): The feedback received from the environment after executing action ;.
This could be a query result, a database error, or other information that guides the agent’s
next thought.

Under this formulation, the objective is to learn an optimal policy m(ay|Q, S, (h<t, ¢, w<y)) that
maximizes the expected total reward over the trajectory, E[R(7)]. The reward R(7) is typically deter-
mined by the final outcome—whether the trajectory successfully produces a correct and executable
SQL query. This interactive, policy-based formulation naturally accommodates the trial-and-error
and self-correction that are essential for tackling complex, real-world database queries.

3 METHODOLOGY

As illustrated in Figure 2, we introduce MARS-SQL, a novel multi-agent framework that treats
Text-to-SQL generation as an interactive, tool-augmented decision-making process. The framework
operates in three stages: Grounding, Generation, and Validation. Initially, a Grounding Agent prunes
the full database schema to only the tables and columns relevant to the user question. Subsequently, a
Generation agent executes a multi-turn rollout, producing multiple distinct interaction trajectories by
actively querying the database. Finally, a Validation Agent scores each trajectory, and the one with
the highest confidence score is selected as the final answer.

Under review as a conference paper at ICLR 2026

1. Grounding Agent: Reasoning-driven Schema Identification

(P)) . Groundmg Agent G (
Question Q What is the unabbreviated mailing street address of the
school with the highest FRPM count for K-12 students?
<th1nk> .. <\think>
q . (] CREATE TABLE frpm (CDSCode

CREATE TABLE frpm (CDSCode integer, “Academic integer, ‘FRPM Count (K- F

Year " integer & 12) text)

CREATE TABLE satscores (cds text, rtype text,

enrolll2 integer...) .

CREATE TABLE schools (MailStreet text, Observation o Selected

NCESDist text, County text...) Database Schema S’

2. Generation Agent: Multi-turn Trajectory Generation

<solution>SELECT Candidate Solution N
Trajectory N, Ty T1.MailStreet FROM

schools .. <\solution>

Action a (Execution)

<solution>SELECT i X
Trajectory 1, 7, T2.MailStreet FROM Candidate Solution 1

frpm .. <\solution>

H

3. Validation Agent: Verification and Selection Generative Probability
= V(t,): 0.5 ([SELECT T1.MailStreet FROM schools ..] €
2O\ [e — (Yes/No)?”] V(t,): 0.8 [SELECT T2 MatlStreet FROM from .. |V

Validation Agent my, Tfinal

Figure 2: The three-stage workflow of MARS-SQL. (1) Grounding: A Grounding Agent selects the
relevant schema. (2) Generation: A Generator agent produces multiple interaction trajectories using a
Think-Act-Observe loop. (3) Validation: A Verifier agent scores and selects the best trajectory.

3.1 GROUNDING AGENT: REASONING-DRIVEN SCHEMA IDENTIFICATION

The Grounding Agent performs table-level schema linking. Its goal is to learn a policy 7Ground-
For each table ¢; € T(1 < ¢ < F') and the user question (), the agent takes the pair z; = (Q, ;)
as input. It then generates a structured output o; = (d;,C!), where d; € {Y’, N’} is the
relevance decision and C] C C; is the predicted subset of essential columns. The final output

of this stage is the reduced schema S’, containing only the tables and columns deemed relevant:
S/ = {(tz,C;) | 0; has dz = ‘Y’}.

Training Algorithm. We train the agent using Group Relative Policy Optimization (GRPO) (Shao
et al., 2024). For each input x;, the model generates a group of GG candidate outputs {o1, ..., 0q}.
The policy 7y is then updated via the objective:

G

ENE moloy:) oola) |

Jorrol0) = GZ: (01d<og|wz>A”Chp<weo,d<oj|xz>1 R)
3

where A; is the advantage for candidate o;. The agent’s prompt template is in Appendix 14.

Reward Design. The reward function Rg,oung provides a granular score based on the accuracy of
the agent’s prediction. Let the agent’s parsed prediction be P = (d,, Cp), where d,, € {Y’, ‘N’ } is
the relevance decision and C), is the set of predicted columns. Let the ground truth be o* = (d,, Cy).
The reward R, (o, 0*) is defined as:

1.0 if o = o* (perfect match)

max(0.5, }gz}) ifd, =dy = ‘Y’ and Cy C Cp (superset)
RGround(0,0%) = € 0.2 ifd, = Y’ and d4, = ‘N’ (incorrect ‘Y’)

0.1 ifd, =dy =Y and Cy; € C), (missing columns)

0.0 if response format is invalid

This scheme rewards perfect accuracy while providing partial credit for nearly correct answers,
guiding the agent towards effective schema linking.

Under review as a conference paper at ICLR 2026

3.2 GENERATION AGENT: MULTI-TURN TRAJECTORY GENERATION

The Generation Agent is the central component, tasked with producing SQL queries. Its input is
the user question @) and the reduced schema .S’ from the Grounding Agent. Its output is a set of N
candidate interaction trajectories, {71, . .., 7n }, where each trajectory comprises of M rounds of the
Think-Act-Observe process. The correct trajectory is expected to result in the final SQL solution Y;.

MDP Formulation. We model the multi-turn generation process as a Markov Decision Process
(MDP), defined by the tuple (S, A, P, R).

» State Space S: A state s; represents the history of interaction up to round ¢, containing the

sequence of past thoughts, actions, and observations ((h1, a1, w1), ..., (hi—1, @r—1,wi—1)).

+ Action Space A: An action a; = (hy, ;) consists of generating a thought h; and an
executable SQL snippet «;.

* Transition P: P(s;41|s:,a;) is the transition probability, which is determined by the
environment (i.e., the database executing the action «).

* Reward R: The reward function R, (7) provides a sparse signal based on the final
outcome of a complete trajectory 7.
The goal is to learn a policy Tgen (a¢|s:) that maximizes the return J(7gen) = Erng., [Raen(T)].

Training. We train the policy 7ge,, using Group Relative Policy Optimization (GRPO). For an input
(@, S"), we generate a group of G trajectories {1, ..., 7g}, where each trajectory tau; consists of a
sequence of states and actions (sf, a, s%, ...). The GRPO objective for trajectories is defined as:

Joreo(0) = E (Q,8")~D, [ZIG 1 Z‘rﬂo Z‘atl min (%At,chp <M(a*b’7afi<’)) 1—¢€1+ 6) Abﬂ
4)

() s, Toga (at,5151,01, < Toga(a,5158:01 <
where at . is the j-th token of action a! in trajectory 7;, and A; is the advantage for the entire
tra]ectory, computed based on the relative rewards of all trajectories within the group. The reward
signal R, (7) used to compute A; is derived solely from execution outcomes, encouraging the agent
to prioritize both syntactic validity and semantic correctness:

1.0 if final query is valid and execution correct
Rgyen(T) =< 0.0 if valid but incorrect
—1.0 ifinvalid

This coarse but decisive feedback gives the agent freedom to discover effective reasoning strategies
without being constrained to annotated step-level traces.

Interactive Reasoning. The agent is grounded in the ReAct paradigm (Yao et al., 2023), interleaving
reasoning and acting in a Think-Act-Observe loop. This iterative structure transforms SQL generation
from a one-shot translation into a dialogue with the database, enabling robust recovery from errors.

3.3 VALIDATION AGENT: VERIFICATION AND SELECTION

The Validation Agent selects the optimal solution from the multiple candidates generated. Its input
is the set of N candidate trajectories {71,...,7n} and the original question (). Its output is the
single best trajectory, Thn.. We employ a Generative Verifier V, reframing verification as a next-token
prediction task that leverages the base model’s own capabilities.

Training and Inference The Validation Agent is trained via SFT to generate a single token response:
“Yes” for a correct trajectory or “No” for an incorrect one, conditioned on the question and trajectory.
The prompt structure is in Appendix C.1.

At inference time, the agent’s score for a trajectory 7; is the average log probability of the “Yes” token
across M stochastic reasoning rounds :

1 M
V(r) =57 > Plyj = “Yes"|:, Q))
j=1

(9}

Under review as a conference paper at ICLR 2026

The trajectory with the highest confidence score is selected as the final answer:

Thnal = argmax V(7;) 6)
i€{l,..,N}

This method effectively turns the generative model into a high-quality reranker, capable of discerning
the most plausible and accurate reasoning path among many alternatives.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Implementations. Our experimental setup consists of three distinct agents: a Grounding Agent, a
Generation Agent, and a Validation Agent. All models were implemented using PyTorch and trained
on NVIDIA H800 GPUs. The Grounding and Generation Agents were trained using Reinforcement
Learning (RL). The Grounding Agent was developed with the Verl framework (Sheng et al., 2024),
using training data prepared with SQLGlot (Mao, 2023). The Generation Agent utilized a framework
adapted from SkyRL (Liu et al., 2025a). The prompt structures for these agents are detailed in
Appendix IF and Appendix G, with specific training hyperparameters listed in Appendix B.

The Selection Agent was trained via full-parameter Supervised Fine-tuning (SFT) of the Qwen2.5-
Coder-7B-Instruct model (Hui et al., 2024). The dataset for this agent was constructed by generating
multiple trajectories for each question in the BIRD training set using our trained Generation Agent.
Positive and negative examples were then selected based on final execution results. The prompt
format for the Validation Agent is shown in Appendix K, and its training hyperparameters are also
detailed in Appendix B. For the inference phase, we explicitly configure the sampling parameters
to ensure reproducibility. Specifically, we set the number of rollouts for the Generation Agent to
G = 8. Similarly, the Validation Agent employs M = 8 stochastic reasoning rounds for probability
estimation. It is worth noting that while scaling G (e.g., to 16 or 32) can yield marginal performance
improvements, we adopted G = 8 as the standard setting to maintain a balance between accuracy
and computational efficiency.

Benchmark Dataset. All experiments are conducted on the BIRD (Li et al., 2023),Spider 1.0 (Yu
et al., 2019) and Spider-DK (Gan et al., 2021) dataset. We adapt Bird for in-domain evaluation and
use Spider, Spider-DK as an out-of-domain dataset. Details on these datasets are in Appendix C.2

Evaluation Metric. We evaluate model performance using Execution Accuracy (EX), which is the
primary metric for correctness. A predicted SQL query receives a score of 1 if its execution result
is identical to the execution result of the ground-truth query, and O otherwise. The final score is the
percentage of correctly executed queries.

Baseline models. To contextualize the performance of our method, MARS-SQL, we conduct a
comprehensive comparison against a diverse set of models. These are organized into three distinct
categories: Base models, High-performing closed-source systems, and Trained open-source models.
Base Models: This category includes foundational large language models used without task-specific
fine-tuning to establish a performance baseline. We evaluate O3-mini, GPT-40 (OpenAl, 2023),
GPT-5 and Qwen2.5-coder-7B (Hui et al., 2024). These results help gauge the inherent Text-to-SQL
capabilities of modern LLMs before specialized training.

Closed Source Multi agent framework: This category consists of systems that leverage powerful
proprietary models via APIs, representing the upper bound of performance achievable with leading
commercial technology. These methods, such as CHESS (Talaei et al., 2024), OpenSearch-SQL
(Xie et al., 2025b), XiYan-SQL (Liu et al., 2025b), and CHASE-SQL (Pourreza et al., 2024),
typically employ sophisticated frameworks and prompting techniques. This comparison situates our
open-source multi-agent framework performance against industry-leading systems.

Open Source Agent Framework: This group comprises leading open-source models specifically
fine-tuned for the Text-to-SQL task, representing the current state-of-the-art in the research community.
These models, including CodeS (Li et al., 2024b), Share (Qu et al., 2025), OmniSQL (Li et al.,
2025a), Arctic-Text2SQL-R1 (Yao et al., 2025), and Reasoning SQL (Pourreza et al., 2025), employ
various advanced training methodologies. Comparing MARS-SQL against these systems directly
assesses its competitiveness and advancements over existing specialized methods.

Under review as a conference paper at ICLR 2026

Table 2: Main results on the BIRD-dev, Spider-test, and Spider-DK benchmarks. We report Execution
Accuracy (%). ‘Thinking?’ indicates whether the method uses a multi-step reasoning process. Our
model is compared against base models and other advanced open and closed-source methods. Bold
indicates the best result, and underline indicates the second best.

Model Params Thinking? Training set Bird-dev (%) Spider-test (%) Spider-DK (%) Sparc(%)
Base Models
O3-mini - Yes - 61.34 78.82 71.77 67.0
Qwen-2.5-coder 7B No - 54.56 75.87 61.31 64.1
GPT-40 - No - 61.90 77.10 72.9 -
GPT-5 - No - 65.45 78.39 66.92 61.8
Closed-source Multi agentic framework
CHESS - No - 65.00 87.2 -
OpenSearch-SQL+ GPT-40 - No - 69.30 87.1 -
XiYan-SQL - No - 73.34 89.65 -
CHASE-SQL + Gemini - Yes - 74.90 87.6 -
Open Source Agentic Framework
Qwen-2.5-coder+SFT 7B No Bird 61.08 76.38 58.69
Qwen-2.5-coder+RL 7B Yes Bird 62.32 77.85 66.54
CodeS 7B No Spider 57.17 80.3 72.0
Share 8B No Bird 64.14 85.90 75.3
OmniSQL 32B No OmniSQL 64.5 87.60 76.1
Arctic-Text2SQL-R1 32B Yes Bird+Spider 70.50 88.70 80.6
Reasoning SQL 14B Yes Bird 72.29 81.43 73.03 -
MARS-SQL 21B (3x7B) Yes Bird 77.84 89.75 78.13 85.78

4.2 MAIN RESULTS

As presented in Table 2, our method, MARS-SQL, trained solely on the BIRD training set, achieves
state-of-the-art execution accuracy on both the Bird-dev (77.84%) and the Spider-test (89.75%).
Additionally, it obtains the second-highest score on the Spider-DK benchmark with 78.13%.

In-Domain Performance on BIRD-dev. On the in-domain BIRD-dev set, MARS-SQL establishes
a new state-of-the-art with an execution accuracy of 77.84%. This result represents a significant
improvement of 5.55% over the next best open-source competitor, Reasoning SQL (72.29%). More
impressively, our 7B model also outperforms all listed closed-source solutions, including the strong
CHASE-SQL + Gemini (74.90%). This demonstrates the superior effectiveness of our training
methodology on this complex, real-world benchmark.

Out-of-Domain Generalization. The out-of-domain generalization of MARS-SQL is particu-
larly noteworthy, demonstrated by its strong performance on both the Spider-test and Spider-DK
benchmarks. On the broad Spider-test set, it achieves a state-of-the-art score of 89.75%, showcasing
exceptional generalization to unseen schemas and question types. This robustness extends to the
specialized Spider-DK benchmark—which tests for implicit domain knowledge—where MARS-
SQLsecures a competitive second-highest score of 78.13%. Crucially, these results were achieved
without any exposure to the Spider training set. This contrasts with competitors like Arctic-Text2SQL-
R1, which required training on Spider data (from which Spider-DK is derived) to achieve its high
scores. Therefore, our model’s performance highlights that training solely on the diverse BIRD
dataset effectively equips it for broad cross-domain and knowledge-intensive challenges.

4.3 ABLATION STUDIES

Multi-agent frame components analysis. We conduct a systematic ablation study to validate the
contribution of each key component in our MARS-SQLframework, with results presented in Table 3.
The analysis confirms that both the Grounding agent and the Generative Validation Agent are critical;
removing either leads to a significant degradation in performance on all benchmarks. Notably, our
purpose-built validation agent substantially outperforms a strong alternative like Self-Consistency
(77.84% vs. 72.93% on BIRD-dev), highlighting the benefits of a specialized validation agent.
Crucially, the results reveal a powerful synergistic effect, as the final performance gain of the full
model is far greater than the sum of the individual components’ contributions. This indicates that the
Grounder enables the Generator to produce higher-quality trajectories, which our validation agent
can then more accurately select. These findings validate our central hypothesis that each agent in the
MARS-SQL framework is indispensable for achieving state-of-the-art performance.

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on the components of our multi-agent framework. We evaluate the contribu-
tion of each agent (Grounder, Verifier) and training strategy (SFT vs. RL). The final row, MARS-SQL,
represents our full proposed model, demonstrating the synergistic effect of all components.

Configuration Model Size Bird dev (%) Spider test (%) Spider DK (%)
Ablating Core Components

Generator Only (Base) 7B 66.37 80.11 69.91

w/o verifier (Grounding agent+ RL Generator) 7B 68.71 80.72 70.65

w/o Grounder (RL Generator + Verifier) 7B 69.75 89.19 77.01

w/ Self-Consistency (instead of Verifier) 7B 72.93 83.51 73.08

MARS-SQL(Full Framework) 21B (3x7B) 77.84 89.75 78.13

Influence of different max interaction turns. We then study the impact of the maximum interaction

Figure 3: Execution accuracy on Bird-dev of models fine-tuned with different maximum interaction
turns (T), evaluated at inference turn limits of 1, 5, and 10. ‘Greedy’ uses a single generation
trajectory (N = 1) without validation; ‘Selected’ denotes the final trajectory chosen by the Validation
Agent from N = 8 candidates; and ‘Best of N’ represents the oracle upper bound where the question
is considered correct if any of the N candidates matches.

Model Comparison at Inference (T=1) Model Comparison at Inference (T=5) Model Comparison at Inference (T=10)
0 100 100

©
S

90 90

————a

30 .—’_./" %
48% 1 / 14.4% 1

S48% 50 70

SEERER
60 / 60

%
S

=
S

o
k=)

Execution Accuracy (%)
=3

50 50 50

40 40 40
Original Trained Trained Trained Original Trained Trained Trained Original Trained Trained Trained
(T=1) (T=5) (T=10) (T=1) (T=5) (T=10) (T=1) (T=5) (T=10)

Model (Trained w/ Max Turns)

—@— Greedy —A— Selected —l— Bestof n

turns (T) during Reinforcement Learning. The results are visualized in Figure 3, with full details
provided in Appendix I. As shown, increasing T from 1 to 10 consistently improves both Greedy and
Best of 8 accuracy. Notably, our model trained with T=10 significantly outperforms models trained
with fewer turns across all inference settings. For instance, at Inference (T=10), it achieves 69.88%
Greedy accuracy, surpassing the T=1 model (67.60%) and the base model (55.76%). Furthermore,

this process enhances single-pass reliabil-

ity by narrowing the gap between Best of Figure 4: Comparison of different selection strategy.
8 (potential) and Greedy (actual) perfor-
mance. This gap shrinks from a substan-
tial 23.33% in the base model to 12.19%
in the T=1 model at Inference (T=1).
Training with a larger T reinforces this
effect, making the model’s greedy output
more aligned with its optimal potential, s
thereby improving its dependability. Bird-dev Spider-test Spider-DK

[- LLM Verifier (GPT-4.1) [Vanilla Verifier (Base Model) [Self Consistency [Ours]

100%

96%

92%

88%

% of correct selected

84%

Selection methods analysis. To validate
the effectiveness of our Generative Vali-
dation Agent, we compare it against several alternative selection strategies, as illustrated in Figure 4.
While common approaches such as Self-Consistency or using a powerful LLM as a Judge (e.g.,
GPT-4.1) provide a reasonable baseline, their performance is both suboptimal and inconsistent across
the different benchmarks. In stark contrast, our fine-tuned Generative Validation Agent consistently
outperforms all other methods by a significant margin. On the challenging Spider-test, it achieves
a correct selection rate of 97.15%, a substantial improvement over the next-best strategy’s 92.09%.

Under review as a conference paper at ICLR 2026

Similar significant gains are observed on both BIRD-dev and Spider-DK. This consistent superiority
demonstrates the stability and robustness of our specialized approach. Unlike general-purpose models
or heuristic-based methods, our validation agent reliably identifies the most accurate reasoning
trajectory, making it a critical component for achieving state-of-the-art performance. Full execution
accuracy results for each method are detailed in Appendix M.

5 RELATED WORK

LLMs for Text-to-SQL The rise of Large Language Models (LLMs) has brought notable progress
to Text-to-SQL tasks, moving past traditional sequence-to-sequence approaches. Recent studies
emphasize in-context learning, where strategies such as Chain-of-Thought (CoT) prompting are
used to break down complex queries into intermediate reasoning steps (Tai et al., 2023; Dong et al.,
2023). Frameworks like DIN-SQL (Pourreza & Rafiei, 2023) and DAIL-SQL (Gao et al., 2023) have
systematically explored prompt engineering and multi-stage pipelines that include schema linking,
generation, and refinement to boost performance. Building on these ideas, more recent studies (Wang
et al., 2025a; Deng et al., 2025; Gao et al., 2025; Xie et al., 2025b) move toward structured, multi-step
workflows that better match the complexity of real databases and diverse queries. Our work adopts
this decompositional philosophy but shifts away from static prompting by introducing a dynamic,
learning-based agentic system.

Multi-Agent systems Large Language Models (LLMs) have enabled sophisticated multi-agent
systems by adopting specialized roles via in-context prompting (Wang et al., 2024; Min et al., 2022).
Our focus is on goal-oriented problem-solving frameworks, rather than social simulations (Zhang
etal., 2024; Hua et al., 2024), where tasks are divided among collaborating agents. The complexity of
these collaborations has grown from simple debating (Du et al., 2023) to structured workflows with
the use of tools, such as software development agents ChatDev (Qian et al., 2024), MetaGPT (Hong
et al., 2024) and CollabUIAgent (He et al., 2025). Other notable approaches include the generic
framework AutoGen (Wu et al., 2023) and the dynamic cooperation in AutoAgents (Chen et al.,
2024). Following this established paradigm, we propose a specialized pipeline for Text-to-SQL using
Grounder, Generator, and Verifier agents.

Reinforcement Learning Reinforcement Learning (RL) is increasingly used to enhance the complex
reasoning capabilities of LLMs, especially when combined with chain-of-thought prompting (Wei
et al., 2023; OpenAl, 2024). This approach has proven highly effective, achieving state-of-the-art
results in fields like mathematics and code generation (Qin et al., 2023; Zhao et al., 2024). Typical
approaches fine-tune models with policy gradient methods such as PPO or GRPO, rewarding logical
soundness or correct outcomes (Shao et al., 2024; DeepSeek-Al et al., 2025). While PPO is a common
choice, GRPO offers advantages by being less prone to high variance and more memory-efficient, as
it does not require loading an additional critic model. In parallel, interactive reasoning paradigms
like ReAct (Yao et al., 2022) leverage prompting-based Think—Act—Observe loops to enable tool
use and self-correction, but without explicit policy training. While Text-to-SQL requires similarly
complex reasoning, explicit RL for this domain remains underexplored. Our work addresses this gap
by training the Generator agent’s policy with execution-based rewards, enabling robust, stateful query
generation and dynamic self-correction.

Test-Time Scaling To enhance performance without the cost of retraining, many researchers have
focused on inference-time techniques. Self-consistency, for instance, has become a popular method
where multiple reasoning paths are sampled and the final answer is chosen by majority vote (Wang
et al., 2023). This concept has been further refined by verification and reranking methods, which
employ an external mechanism or model to score and select the best candidate from a pool of
outputs (Zheng et al., 2023; Gu et al., 2025). Our approach builds on the recent innovation of
Generative Verifiers (Zhang et al., 2025b). Instead of a voting process or a separate classifier, our
Validation Agent reframes selection as a next-token prediction problem. It assesses each potential
solution trajectory by calculating the probability of the model generating a “Yes” token, ultimately
selecting the trajectory with the highest confidence score.

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work, we present MARS-SQL, a multi-agent framework that addresses the limitations of static,
single-pass Text-to-SQL methods. By decomposing the task into schema grounding, interactive query
generation, and final verification, our framework achieves robust performance through specialized
agents. The core of our system is the Generator agent, which uniquely leverages reinforcement
learning within a ReAct-style Think—Act—Observe loop to enable dynamic reasoning and self-
correction. MARS-SQL established new state-of-the-art execution accuracies on BIRD (77.84%)
and Spider (89.75%), demonstrating strong cross-domain generalization by achieving its Spider result
without any training on the Spider dataset. Ablation studies further demonstrate that each agent
plays a distinct role, and their combination delivers substantial gains over any single component.
These findings highlight the promise of moving from static, one-shot generation toward interactive,
multi-agent problem solving as a foundation for building more reliable data-centric Al systems.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are committed to making our code and models publicly
available upon publication. All experiments were conducted on publicly accessible and widely used
benchmarks: BIRD (Li et al., 2023), Spider (Yu et al., 2019), and Spider-DK (Gan et al., 2021). The
primary evaluation metric is Execution Accuracy (EX), a standard in the Text-to-SQL field. Key
details regarding our implementation, including the multi-agent framework architecture, prompt
structures for each agent, and training hyperparameters, are described in the main body of the paper
and further detailed in the Appendix. Our methodology, including the use of Group Relative Policy
Optimization (GRPO) and the specific design of our reward functions, is explicitly formulated to
facilitate replication by future research.

ETHICS STATEMENT

The primary goal of this research is to develop more robust and reliable Text-to-SQL systems,
aiming to democratize data access for non-expert users and reduce barriers to data-driven insights.
Our work relies exclusively on publicly available datasets (BIRD and Spider) that are standard
academic benchmarks and do not contain personally identifiable information or sensitive user data.
We acknowledge that any Text-to-SQL system, including ours, carries an inherent risk of generating
incorrect or unintended queries, which could lead to flawed analysis if deployed without human
oversight. However, our framework’s emphasis on dynamic self-correction and robust verification
is a direct attempt to mitigate these risks and improve the reliability of Al agents interacting with
databases. We believe the potential benefits of making complex data more accessible outweigh the
risks, and we encourage the deployment of such systems in a manner that includes human-in-the-loop
validation for critical applications.

REFERENCES

Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG: Multi-
Agent Filtering Retrieval-Augmented Generation, December 2024. URL http://arxiv.org/
abs/2501.00332. arXiv:2501.00332 [cs].

Saumya Chaturvedi, Aman Chadha, and Laurent Bindschaedler. SQL-of-Thought: Multi-agentic
Text-to-SQL with Guided Error Correction, August 2025. URL http://arxiv.org/abs/
2509.00581. arXiv:2509.00581 [cs].

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Borje F. Karlsson, Jie Fu, and
Yemin Shi. AutoAgents: A Framework for Automatic Agent Generation, April 2024. URL
http://arxiv.org/abs/2309.17288. arXiv:2309.17288 [cs].

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Ruoyu Zhang. Deepseek-
rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

10

http://arxiv.org/abs/2501.00332
http://arxiv.org/abs/2501.00332
http://arxiv.org/abs/2509.00581
http://arxiv.org/abs/2509.00581
http://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Minghang Deng, Ashwin Ramachandran, Canwen Xu, Lanxiang Hu, Zhewei Yao, Anupam Datta,
and Hao Zhang. RefoRCE: A text-to-SQL agent with self-refinement, format restriction, and
column exploration. In ICLR 2025 Workshop: VerifAl: Al Verification in the Wild, 2025. URL
https://openreview.net/forum?id=0uFIfDBwQd.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. C3: Zero-shot text-to-sql with chatgpt, 2023. URL https://arxiv.org/abs/2307.
07306.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-domain
text-to-sql generalization, 2021. URL https://arxiv.org/abs/2109.05157.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation, 2023. URL https:
//arxiv.org/abs/2308.15363.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of xiyan-sql: A multi-generator
ensemble framework for text-to-sql, 2025. URL https://arxiv.org/abs/2411.08599.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A Survey on LLM-as-a-Judge, March 2025. URL http://arxiv.org/
abs/2411.15594. arXiv:2411.15594 [cs].

Lin Gui, Cristina Garbacea, and Victor Veitch. BoNBoN Alignment for Large Language Models
and the Sweetness of Best-of-n Sampling, November 2024. URL http://arxiv.org/abs/
2406.00832. arXiv:2406.00832 [cs].

Zhitao He, Zijun Liu, Peng Li, Yi R. Fung, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Advancing
Language Multi-Agent Learning with Credit Re-Assignment for Interactive Environment Gener-
alization, August 2025. URL http://arxiv.org/abs/2502.14496. arXiv:2502.14496
[cs].

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jiirgen Schmidhuber. MetaGPT: Meta Programming for A Multi-Agent
Collaborative Framework, November 2024. URL http://arxiv.org/abs/2308.00352.
arXiv:2308.00352 [cs].

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql, 2025. URL
https://arxiv.org/abs/2406.08426.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill,
and Yongfeng Zhang. War and Peace (WarAgent): Large Language Model-based Multi-Agent
Simulation of World Wars, January 2024. URL http://arxiv.org/abs/2311.17227.
arXiv:2311.17227 [cs].

Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
Michael R. Lyu, and Maarten Sap. On the Resilience of LLM-Based Multi-Agent Collab-
oration with Faulty Agents, May 2025a. URL http://arxiv.org/abs/2408.00989.
arXiv:2408.00989 [cs].

Yuchen Huang, Sijia Li, Zhiyuan Fan, Minghao LIU, Wei Liu, and Yi R. Fung. Scaling environments

for LLM agents: Fundamentals, approaches, and future directions. In Workshop on Scaling Environ-
ments for Agents, 2025b. URL https://openreview.net/forum?id=9axzcDTiJm.

11

https://openreview.net/forum?id=OuFIfDBwQd
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2411.15594
http://arxiv.org/abs/2406.00832
http://arxiv.org/abs/2406.00832
http://arxiv.org/abs/2502.14496
http://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2406.08426
http://arxiv.org/abs/2311.17227
http://arxiv.org/abs/2408.00989
https://openreview.net/forum?id=9axZcDTiJm

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report, November 2024. URL
http://arxiv.org/abs/2409.12186. arXiv:2409.12186 [cs].

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoging Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
text-to-sql workflows, 2025. URL https://arxiv.org/abs/2411.07763.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The Dawn of Natural Language
to SQL: Are We Fully Ready? Proceedings of the VLDB Endowment, 17(11):3318-3331, July
2024a. ISSN 2150-8097. doi: 10.14778/3681954.3682003. URL http://arxiv.org/abs/
2406.01265. arXiv:2406.01265 [cs].

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. CodeS: Towards Building Open-source Language Models for Text-
to-SQL, February 2024b. URL http://arxiv.org/abs/2402.16347. arXiv:2402.16347
[cs].

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. OmniSQL: Synthesizing
High-quality Text-to-SQL Data at Scale, July 2025a. URL http://arxiv.org/abs/2503.
02240. arXiv:2503.02240 [cs].

Jiahui Li, Tongwang Wu, Yuren Mao, Yunjun Gao, Yajie Feng, and Huaizhong Liu. SQL-Factory: A
Multi-Agent Framework for High-Quality and Large-Scale SQL Generation, September 2025b.
URL http://arxiv.org/abs/2504.14837. arXiv:2504.14837 [cs].

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL https:
//arxiv.org/abs/2305.03111.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, Ziwei Tang, Yuanshuai Li, Florensia Widjaja, Xintong Zhu, Feige Zhou,
Yongfeng Huang, Yannis Papakonstantinou, Fatma Ozcan, Chenhao Ma, and Reynold Cheng.
SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications,
July 2025c. URL http://arxiv.org/abs/2506.18951. arXiv:2506.18951 [cs].

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level Code
Generation with AlphaCode. Science, 378(6624):1092-1097, December 2022. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.abql158. URL http://arxiv.org/abs/2203.07814.
arXiv:2203.07814 [cs].

Shu Liu, Sumanth Hegde, Shiyi Cao, Alan Zhu, Dacheng Li, Tyler Griggs, Eric Tang, Akshay Malik,
Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei Zaharia, Joseph E. Gonzalez, and
Ion Stoica. Skyrl-sql: Matching gpt-4o and o4-mini on text2sql with multi-turn rl, 2025a.

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao,
Yu Li, Bolin Ding, and Jingren Zhou. XiYan-SQL: A Novel Multi-Generator Framework For
Text-to-SQL, July 2025b. URL http://arxiv.org/abs/2507.04701. arXiv:2507.04701
[cs].

Toby Mao. Sqlglot. https://github.com/tobymao/sglglot, 2023. Accessed: 2024-06-
09.

12

http://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2411.07763
http://arxiv.org/abs/2406.01265
http://arxiv.org/abs/2406.01265
http://arxiv.org/abs/2402.16347
http://arxiv.org/abs/2503.02240
http://arxiv.org/abs/2503.02240
http://arxiv.org/abs/2504.14837
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2506.18951
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2507.04701
https://github.com/tobymao/sqlglot

Under review as a conference paper at ICLR 2026

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?,
October 2022. URL http://arxiv.org/abs/2202.12837. arXiv:2202.12837 [cs].

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I. Wang, and Xi Victoria
Lin. LEVER: Learning to Verify Language-to-Code Generation with Execution, September 2023.
URL http://arxiv.org/abs/2302.08468. arXiv:2302.08468 [cs].

OpenAl. Gpt-4 technical report, 2023.
OpenAl Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction, 2023. URL https://arxiv.org/abs/2304.11015.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql, 2024. URL https://arxiv.org/
abs/2410.01943.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
Amin Saberi, and Sercan ”O Arik. Reasoning-SQL: Reinforcement Learning with SQL Tailored
Partial Rewards for Reasoning-Enhanced Text-to-SQL, April 2025. URL http://arxiv.org/
abs/2503.23157. arXiv:2503.23157 [cs].

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative Agents for Software Development, June 2024. URL http://arxiv.org/
abs/2307.07924. arXiv:2307.07924 [cs].

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models
to Master 16000+ Real-world APIs, October 2023. URL http://arxiv.org/abs/2307.
16789. arXiv:2307.16789 [cs].

Ge Qu, Jinyang Li, Bowen Qin, Xiaolong Li, Nan Huo, Chenhao Ma, and Reynold Cheng. Share: An
slm-based hierarchical action correction assistant for text-to-sql, 2025. URL https://arxiv.
org/abs/2506.00391.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024. URL http://arxiv.org/
abs/2402.03300. arXiv:2402.03300 [cs].

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain-of-thought
style prompting for text-to-sql, 2023. URL https://arxiv.org/abs/2305.14215.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: Contextual Harnessing for Efficient SQL Synthesis, November 2024. URL http:
//arxiv.org/abs/2405.16755. arXiv:2405.16755 [cs].

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen
Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative framework for
text-to-sql, 2025a. URL https://arxiv.org/abs/2312.11242.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai, Zhao Yan, Qian-
Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A Multi-Agent Collaborative
Framework for Text-to-SQL, March 2025b. URL http://arxiv.org/abs/2312.11242.
arXiv:2312.11242 [cs].

13

http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
http://arxiv.org/abs/2503.23157
http://arxiv.org/abs/2503.23157
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2506.00391
https://arxiv.org/abs/2506.00391
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2405.16755
http://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2312.11242

Under review as a conference paper at ICLR 2026

Xintao Wang, Yunze Xiao, Jen-tse Huang, Siyu Yuan, Rui Xu, Haoran Guo, Quan Tu, Yaying Fei,
Ziang Leng, Wei Wang, Jiangjie Chen, Cheng Li, and Yanghua Xiao. InCharacter: Evaluating
Personality Fidelity in Role-Playing Agents through Psychological Interviews, June 2024. URL
http://arxiv.org/abs/2310.17976. arXiv:2310.17976 [cs].

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models, March 2023. URL http://arxiv.org/abs/2203.11171. arXiv:2203.11171
[cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023. URL
https://arxiv.org/abs/2308.08155.

Wenxuan Xie, Yaxun Dai, and Wenhao Jiang. Sde-sql: Enhancing text-to-sql generation in large
language models via self-driven exploration with sql probes, 2025a. URL https://arxiv.
org/abs/2506.07245.

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. Opensearch-sql: Enhancing text-to-sql
with dynamic few-shot and consistency alignment, 2025b. URL https://arxiv.org/abs/
2502.14913.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Zhewei Yao, Guoheng Sun, Lukasz Borchmann, Zheyu Shen, Minghang Deng, Bohan Zhai, Hao
Zhang, Ang Li, and Yuxiong He. Arctic-Text2SQL-R1: Simple Rewards, Strong Reasoning in
Text-to-SQL, May 2025. URL http://arxiv.org/abs/2505.20315. arXiv:2505.20315
[cs].

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019.
URL https://arxiv.org/abs/1809.08887.

Jipeng Zhang, Haolin Yang, Kehao Miao, Ruiyuan Zhang, Renjie Pi, Jiahui Gao, and Xiaofang Zhou.
Exesql: Self-taught text-to-sql models with execution-driven bootstrapping for sql dialects, 2025a.
URL https://arxiv.org/abs/2505.17231.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative Verifiers: Reward Modeling as Next-Token Prediction, February 2025b. URL http:
//arxiv.org/abs/2408.15240. arXiv:2408.15240 [cs].

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan O Arik. Chain
of Agents: Large Language Models Collaborating on Long-Context Tasks, June 2024. URL
http://arxiv.org/abs/2406.02818. arXiv:2406.02818 [cs].

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
Luo, and Kaifu Zhang. Marco-ol: Towards Open Reasoning Models for Open-Ended Solutions,
November 2024. URL http://arxiv.org/abs/2411.14405. arXiv:2411.14405 [cs].

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, December 2023. URL http:
//arxiv.org/abs/2306.05685. arXiv:2306.05685 [cs].

14

http://arxiv.org/abs/2310.17976
http://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2506.07245
https://arxiv.org/abs/2506.07245
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2505.20315
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2505.17231
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2406.02818
http://arxiv.org/abs/2411.14405
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in a limited, assistive capacity for specific tasks in
this project. For manuscript preparation, the authors supplied their own draft to an LLM, which then
provided suggestions to improve grammar, enhance clarity, and ensure an academic tone. The LLM
was also used to generate a list of potential titles for inspiration, though the final title was conceived
and refined by the authors and not taken directly from any single output. In the implementation phase,
an LLM served as a coding assistant by offering code completions and debugging support. However,
all final code, experimental design, and validation were implemented and verified exclusively by the
authors. It is important to emphasize that LLMs were NOT used for core scientific contributions,
such as generating research ideas, designing experiments, or conducting the literature review. All
conceptual work and experimental design originated solely with the authors.

B TRAINING DETAILS

This section provides the detailed hyperparameters used for training our three agents. All agents were
trained on NVIDIA H800 GPUs.

B.1 GROUNDING AGENT

The Grounding Agent was trained using Reinforcement Learning baesd on Qwen2.5-Coder-7B-
Instruct. Its primary role is to identify the correct database schema entities relevant to the user’s
question. The training was conducted using the Verl framework (Sheng et al., 2024). The hyperpa-
rameters for the RL training and data generation phases are detailed in Table 4.

Training Steps and Convergence: We trained the Grounding Agent for 600 steps with a batch size
of 64. During training, we observed clear stability and convergence patterns in the reward curves;
the reward consistently increased and then plateaued, indicating that the policy was successfully
optimized.

B.2 GENERATION AGENT

The Generation Agent was also trained using Reinforcement Learning based on Qwen2.5-Coder-
7B-Instruct, leveraging a training framework adapted from SkyRL (Liu et al., 2025a). This agent is
responsible for generating the SQL query trajectories. Its training and data generation hyperparameters
are identical to those of the Grounding Agent, as shown in Table 4.

Training Steps and Convergence: This agent was trained for 160 steps with a batch size of 64.
Similar to the Grounding Agent, the reward curve demonstrated stable convergence within this
efficient training phase.

Table 4: Hyperparameters for Grounding and SQL Agent RL Training.

Parameter Value

Training Parameters

Learning Rate 1 x 107
Batch Size 128

Trajectory Rollout Parameters

Temperature 0.6
Top-p 0.95

B.3 VALIDATION AGENT
The Validation Agent was trained via Supervised Fine-tuning (SFT) to select the best SQL query

from the candidates generated by the SQL Agent. We performed a full-parameter fine-tuning of the
Qwen?2.5-Coder-7B-Instruct model (Hui et al., 2024) using the Llama Factory framework.

15

Under review as a conference paper at ICLR 2026

The SFT training hyperparameters are listed in Table 5, and the parameters for generating its training
dataset are in Table 6.

Table 5: Hyperparameters for Verify Agent SFT.

Parameter Value

Base Model Qwen2.5-Coder-7B-Instruct
Epochs 3

Learning Rate Scheduler ~ Cosine

Initial Learning Rate 1x107°

Effective Batch Size 4

Per-device Batch Size 1
Gradient Accumulation 2 steps
Precision bflé6
Optimization DeepSpeed ZeRO Stage 3

Table 6: Hyperparameters for Verify Agent Dataset Generation.

Parameter Value
Candidates per Question 16
Temperature 0.7
Top-p 0.9
Top-k 50

C DATASET

C.1 TRAINING DATASET

Our training data is derived from the Bird benchmark, which comprises 9,428 question-SQL pairs. To
ensure high quality, we first filtered this dataset by removing samples flagged as incorrect (Pourreza
etal.,, 2025; Li et al., 2024b) by both Gemini-2.5-pro and GPT-40, resulting in a clean set of 8,036
training examples. From this set, we constructed the fine-tuning data for the grounding task. For each
of the 8,036 question-database pairs, we generated a distinct training instance for every table within
that database. This process resulted in a large-scale dataset of 90,102 individual data points. For
each point, the ground truth—whether a table is relevant and which of its columns are used—was
programmatically extracted from the gold SQL query using the SQLGlot parser.

We constructed a specialized dataset for training the Verifier via Supervised Fine-Tuning (SFT). First,
for each question in our filtered BIRD training set, we used both our fine-tuned Generator agent and
the initial base model to perform inference, generating a diverse pool of 16 candidate trajectories
per question. This ensures the Verifier is exposed to a wide range of reasoning paths, both correct
and flawed. From this pool, we curated a preference dataset by selecting one positive example (a
trajectory leading to a correct execution result) and one negative example (a trajectory leading to
an incorrect result) for each question. We mix the order of correct and incorrect trajectories in each
pair at random to prevent order bias during training. Since the number of cases containing both
correct and incorrect trajectories is limited, some questions yield only flawed trajectories. In such
cases, we add the ground truth SQL query in the prompt as a suggestion to help the model generate
proper trajectories. We applied best-of-N and worst-of-N (Gui et al., 2024) strategies to select both
positive and negative examples. This process yielded a final dataset of approximately 16,000 training
instances. Each instance is a triplet containing the user’s question, the full interaction trajectory
(including all [Think], [SQL], and [Observation] steps), and the final execution result.

C.2 EVALUATION DATASET

BIRD is a large-scale, realistic benchmark designed to evaluate modern Text-to-SQL systems. It
features complex databases (33.4 GB across 95 databases), questions from 37 professional domains,

16

Under review as a conference paper at ICLR 2026

and imperfect real-world data values requiring robust handling. BIRD uniquely emphasizes the
generation of both correct and efficient SQL queries, making it an ideal testbed for our framework.
Our primary evaluations are performed on its development set, which contains 1,534 examples.

Spider 1.0 is a comprehensive, cross-domain benchmark containing 10,181 questions and 5,693
unique complex SQL queries across 200 multi-table databases. It serves as a standard for evaluating
cross-domain Text-to-SQL performance. For our evaluation, we use the official test set, which
includes 2,147 examples.

Spider-DK, an extension of Spider, is designed specifically to test a model’s ability to handle queries
requiring implicit domain knowledge. It comprises samples from the Spider development set that were
manually modified to depend on real-world information for correct interpretation. This benchmark
simulates scenarios where user queries rely on specific domain context. We evaluate our model on
the Spider-DK test set, which contains 535 examples.

D TRAINING EFFICIENCY AND RESOURCE ANALYSIS

To address concerns regarding the computational resources required for our multi-agent framework,
we provide a detailed breakdown of the training time and a comparative analysis of data efficiency.
All experiments were conducted on a node equipped with 4 x NVIDIA H800 GPUs.

D.1 COMPUTATIONAL COST BREAKDOWN

Contrary to the perception that training multiple agents is prohibitively resource-intensive, our
framework is designed for rapid convergence. As detailed in Table 7, the entire specialized training
pipeline—including the SFT for the Validation Agent and GRPO-based Reinforcement Learning for
both the Grounding and Generation Agents—completes in approximately 13 hours. This represents
a modest one-time computational cost, especially considering the significant performance gains
achieved.

Table 7: One-Time Training Cost breakdown on 4 x NVIDIA H800 GPUs.

Agent Method Training Steps Batch Size Est. Training Time
Validation Agent SFT ~10k 4 lh
Grounding Agent ~ GRPO 600 64 4h
Generation Agent GRPO 160 64 8h

Total ~13h

D.2 DATA EFFICIENCY AND COMPARATIVE ANALYSIS

The efficiency of MARS-SQL stems from its ability to learn diverse reasoning and self-correction
behaviors through interaction and self-play, rather than relying on massive-scale supervised datasets.

Table 8 compares our framework against standard single-agent SFT approaches. While standard
SFT on the BIRD training set (12k examples) takes only 2 hours, it yields a significantly lower
execution accuracy (EX) of 61.08%. Scaling up SFT, as seen in methods like OminiSQL (utilizing
2.5M examples), requires approximately 20 days of training yet only reaches 64.50% EX.

In contrast, MARS-SQL achieves a state-of-the-art EX of 77.84% using only 35k LLM-labeled
examples and 13 hours of training. To match this performance level using a single-agent SFT-only
paradigm, we conservatively estimate—based on scaling laws—that it would require approximately
15 million synthetic examples and 3—4 months of training time on the same hardware. Thus, our
multi-agent RL framework offers orders of magnitude better data and compute efficiency.

E INFERENCE EFFICIENCY AND PRACTICALITY ANALYSIS

In this section, we provide a comprehensive analysis of the efficiency and practicality of the MARS-
SQL framework. We focus on the cost-benefit trade-offs and demonstrate that the proposed multi-

17

Under review as a conference paper at ICLR 2026

Table 8: Cost and efficiency analysis compared with single-agent SFT baselines on Bird-Dev.

Method Annotation Source Data Size Training Time (wall) Dev EX (%)
Original (Baseline) — — — 54.56
SFT on BIRD-train Human 12,000 ~2h 61.08
Large SFT (e.g., OminiSQL) LLM + Human 2,500,000 ~20 days 64.50
MARS-SQL (Ours) LLM 35,000 ~13 h 77.84

agent system provides a flexible and effective solution compared to counterpart methods. Our analysis
covers three key aspects: (1) performance comparison under a normalized time budget, (2) adjustable
cost—accuracy trade-offs, and (3) potential system-level optimizations.

E.1 BASELINE TIME AND TOKEN COST ANALYSIS

We first present the latency breakdown for our standard SOTA-performing configuration (N, = 8
trajectories, IV, = 8 validation samples). As shown in Table 9, the average end-to-end latency is
22.12 seconds per query to achieve 77.84% accuracy.

Table 9: Average End-to-End Latency Analysis of MARS-SQL on the BIRD dev set (Hardware: 1x
A6000, num_cpus=32). Times represent the average latency to generate one SQL query.

Stage Avg. Time (s) Description

1. Grounding Agent 0.78s 1 call per query

2. Generation Agent 18.77s Generating N, = 8 trajectories

3. Validation Agent 2.58s Validating N, = 8 trajectories (/N, = 8 samples each)
Ref: SQL Exec Time (2.37s) Avg. time to execute the ground truth SQL

Total (End-to-End) 22.12s Sum of all stages

The token consumption is analyzed in Table 10. The Generation Agent, utilizing a multi-turn
“Think-Act-Observe” loop, accounts for the majority of the token usage.

Table 10: Average Token Cost Analysis per Query.

Stage Avg. Tokens Description

1. Grounding Agent 875 Prompt + Schema + Question + Output

2. Generation Agent 9,200 Ny = 8% (Prompt + Schema + Question + Traj.)
3. Validation Agent 3,250 Ny =8 x N, = 8x (Prompt + Trajectory)
Total (Avg.) 13,325 Sum of all components

E.2 PERFORMANCE COMPARISON UNDER NORMALIZED TIME BUDGET

To verify the effectiveness of our multi-agent design, we benchmark MARS-SQL against both a
supervised fine-tuning (SFT) model and a closed-source model under an equal time budget (= 22s).

* MARS-SQL: Uses the standard setting (N, = 8, V,, = 8).

* SFT Model (Qwen—-SFT): Uses the 22s budget to generate 16 independent samples and
selects the most self-consistent one.

* Closed-Source Model (GPT-5): Uses the 22s budget to make 4 API calls and selects the
most self-consistent one.

As shown in Table 11, baselines fail to match the performance of MARS-SQL even when granted an

equivalent time budget. This indicates that the superior accuracy of MARS-SQL (77.84%) stems
from its structured multi-agent reasoning workflow rather than merely increased inference time.

18

Under review as a conference paper at ICLR 2026

Table 11: Accuracy Comparison with Normalized Time Budget (~ 22s).

Method Configuration Avg. Latency Exe. Acc. (%)
Owen-SFT (Self-Consistency) SFT + 16 Samples ~ 22.0s 64.2%
GPT-5 (Self-Consistency) 4 API calls ~ 22.0s 69.3%
MARS-SQL (Ours) Multi-Agent RL 22.12s 77.84%

E.3 ADIJUSTABLE COST-ACCURACY TRADE-OFFS
The latency reported in Table 9 represents a performance-oriented configuration. MARS-SQL allows

for flexible deployment by adjusting the number of generation trajectories (N,) and validation
samples (IV,). Table 12 illustrates these trade-offs.

Table 12: Tunable Cost-Accuracy Curve for MARS-SQL.

Mode Params (N,, N,) Latency Acc. (%) Characteristic

Fast (L1 3.1s 68.71% High speed, outperforms SFT
Balanced 4,4) 11.5s 74.90% Balanced cost-benefit
SOTA (Ours) 8, 8) 22.1s 77.84 % Maximum accuracy
Over-Sampling (16, 8) 42.8s 77.84% Diminishing returns

Users can select a “Fast” setting to achieve a ~3-second response that still surpasses the greedy SFT
baseline, or invest more computational resources for maximum performance.

E.4 SYSTEM-LEVEL OPTIMIZATION

The latency metrics presented above assume a sequential, single-query execution, serving as a
conservative upper bound. In practical multi-user deployments, MARS-SQL can achieve higher
throughput through system-level optimizations:

1. Pipeline Parallelism: The Grounder, Generator, and Validator agents can process different
queries in parallel, creating a pipeline for incoming requests.

2. Batched Validation: The N, x N, validation calls are embarrassingly parallel and can be
fused into batched requests to reduce amortized costs.

Table 13: Sequential vs. System-Optimized Deployment (Conceptual Comparison).

Deployment Execution Pattern Est. Latency Est. Throughput
Sequential) =~ 22.1s ~ 2.7 queries/min
(No optimization) Grounder — Generator — Verifier

(End-to-End)
System-Optimized o o ~ 12-15s ~ 4-5 queries/min
(Pipeline + Batch) Pipelined stages; Batched validation

Table 13 estimates that with these optimizations, the effective per-query latency can be reduced by
approximately 40-60%, significantly improving throughput on a single GPU node.

F TABLE LEVEL GROUNDING

Table 14 details the prompt for our RL-trained Schema Grounding Agent, which elicit a step-by-step
reasoning process during inference. It instructs the agent to analyze a given table’s schema in the
context of the user’s question and any external knowledge. The agent is required to first articulate
its analysis within ‘<think>’ tags, followed by a final, parsable decision in ‘<answer>" tags. This
output must specify the table’s relevance (‘Y’/‘N’) and, if applicable, a Python list of useful columns.

19

Under review as a conference paper at ICLR 2026

Prompt for Table-level Schema Linking

User:

You are doing table level schema linking. Given a table with schema information and the task, you
should think step by step and decide whether this table is related to the task.

Your thought process should be enclosed in <think></think> tags, and your final decision in
<answer></answer> tags.

For the answer, first state ‘Y’ for relevant or ‘N’ for not relevant. If relevant, also provide a Python
list of the column names you believe are most useful.

Example of a final answer format:

<answer>

Y

["player_name", "team-name", "matches_played"]

</answer>

or

<answer>
N
</answer>

Here is the information for the current task:

#i## Table Information:
{table_info}

User Question:

{rask}

#i## External Knowledge (if any):
{external}

Assistant:

Let me solve this step by step.
<think>

Table 14: The prompt used to guide the agent in the table-level schema linking task. It includes the
role description, task instructions, output format examples, and the prefix for the agent’s response.

This structured format ensures a transparent and predictable output format crucial for our framework.

Table 15 presents recall and precision statistics for our schema grounding agent, comparing our
RL-based approach against the base model and a version trained with Supervised Fine-Tuning (SFT).
The results clearly demonstrate the superiority of our method, which achieves exceptionally high
recall and precision across all benchmarks. On the complex in-domain BIRD-dev set, our primary
concern is recall. Our agent achieves a recall of 97.78%, with only 48 examples failing to identify
all required schema components, which we consider a highly effective result. Simultaneously, it
maintains a high precision of 90.74%, indicating that the selections are not only comprehensive but
also accurate. This strong performance extends to the out-of-domain Spider-test and Spider-DK
benchmarks, underscoring the robustness of our RL-trained grounding agent.

G MULTI-TURN GENERATION

Evolution of Interaction Turns: To understand the impact of RL training on the agent’s reasoning
efficiency, we analyzed the evolution of rollout lengths during the training process. In our setting,
each “Think—Act—Observe” cycle corresponds to one database interaction turn, making the average
number of interaction turns a proxy for rollout length.

20

Under review as a conference paper at ICLR 2026

Table 15: Recall and precision statistics after grounding for Bird-dev, Spider-test and Spider-DK.
Recall measures the percentage of instances where all required columns were identified. Precision
measures the ratio of required columns to all selected columns, indicating the selection’s accuracy.

Grounding Model Bird dev Spider test Spider DK

Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)
Qwen 7B (Base) 68.59 53.45 87.48 69.22 84.25 66.54
Qwen 7B + SFT 74.97 67.01 90.39 78.16 88.60 72.71
Qwen 7B + RL (Ours) 97.78 90.74 98.97 93.62 98.13 91.59

Grounding Agent (Single-turn): The rollout length (token count) exhibited a mild U-shaped pattern.
Initially, the output became more concise, followed by a slight lengthening to include only essential
schema information. This reflects a refinement of the policy towards precise schema selection rather
than reasoning from scratch.

Generation Agent (Multi-turn): A distinct trend was observed where the average number of
interaction turns consistently decreased and stabilized at a lower level. This indicates that the agent
learned to solve problems more directly and recognized when to terminate the search efficiently. This
efficiency gain is quantitatively supported by the evaluation on the BIRD-dev set (with a maximum
of 5 turns), as shown in Table 16. The RL-trained agent significantly reduces the average turns across
all difficulty levels compared to the base model.

Table 16: Comparison of Average Interaction Turns on BIRD-dev (Max Turns = 5) before and after

RL training.
Model Avg. Turns (Challenging) Avg. Turns (Moderate) Avg. Turns (Simple)
Before RL (Base Model) 2.90 2.67 2.27
After RL (Generation Agent) 1.82 1.71 145

Furthermore, analyzing the specific distribution of turns reveals that the agent learns an adaptive
and non-wasteful strategy. As presented in Table 17, while the agent retains the capacity to use
multiple turns for complex reasoning, it solves the vast majority of problems (1,116 cases) in a single
interaction. Crucially, for the “long-tail” of more difficult queries, the agent robustly applies deeper
reasoning, utilizing up to 5 or more turns to arrive at the correct solution. This distribution confirms
that the agent is not bound by arbitrary limits but instead dynamically decides the necessary reasoning
depth for each specific query.

Table 17: Distribution of Interaction Turns Used by the Generation Agent on BIRD-dev.
of Interaction Turns # of Examples

1 1,116
2 174
3 105
4 88
5+ 51

Table 18 details the comprehensive prompt structure used to guide the agent’s multi-turn generation
process. The prompt establishes the agent’s persona as a data science expert and provides all necessary
context, including the database schema, external knowledge, and the user’s question. It strictly
enforces an output format that requires the agent to vocalize its reasoning within <think> blocks
before executing a query in a <sql> block. The database returns feedback in an <observation>
block, which the agent uses for subsequent reasoning turns, ultimately providing the final answer
in a <solution> block. This iterative structure is designed to facilitate a dynamic, step-by-step
problem-solving process.

Figure 5 provides a concrete example of the agent’s interactive and self-correcting workflow. The
agent initially generates a query with a typographical error in a table name *fprm’. Upon receiving an
’OperationalError’ from the database , it correctly identifies the mistake in its next thought process,

21

Under review as a conference paper at ICLR 2026

corrects the table name to ’frpm’, and re-executes the query. The second attempt returns an empty
result , prompting the agent to re-evaluate its filtering logic. It deduces that it incorrectly used a
district name as a county name and refines the "'WHERE’ clause accordingly. This final attempt
successfully retrieves the correct data, leading the agent to output the validated query as its final
solution.

Q: Please list the zip code of all the charter schools in Fresno County Office of Education.

<think>I need to retrieve the zip codes of all charter schools located in the Fresno County Office of

Education. This involves checking both the ‘schools’ and ‘fprm" tables. I will join these tables based on the

‘CDSCode’ column and filter by the county and charter status.</think> === ——=———-——

SQL Agent <SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN fprm AS T2 ON T1.CDSCode = T2.CDSCode]
WHERE T1.County = 'Fresno County Office of Education' AND T2. Charter School (Y/N)' = 1;</SQL> M

]
--- Obeservation: OperationalError: no such table: fprm ¥

<think>I made a mistake in the table name. The error indicates that the table fprm does not exist. Database

should correct it to frpm and re-execute the query.</think>

<SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode = |- =ceeceeu-=-
T2.CDSCode WHERE T1.County = 'Fresno County Office of Education' AND T2.Charter School 1
(Y/N) = 1;</SQL> A

L]
. &
L ettt it Obeservation: Empty DataFrame\nColumns: [] §|

<think>The query executed successfully this time but returned an empty result. This is unexpected. I Database
need to re-examine my filtering logic. The condition T1.County = 'Fresno County Office of

Education' is likely the problem. 'Fresno County Office of Education' sounds more like a district

name than a county name. The schools table probably has separate columns for County and District.

The county should be 'Fresno', and the district should be 'Fresno County Office of Education'. I will f=-=-====-=---
adjust the WHERE clause to filter on both columns correctly.</think>

<SQL>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode =

T2.CDSCode WHERE T2."Charter School (Y/N)' =1 AND T1.County = 'Fresno' AND T1.District =

SQL Agent

1
1
1
i
\4

'Fresno County Office of Education’;</SQL> u
]
———————————————— Obeservation: [('93726-5309',), ('93628-9602',), ('93706-2611',), ('93726-5208',), ('93706-2819",)] gl

<think>Great, the query has now returned a list of zip codes. This result correctly identifies the Database
charter schools within the specified district, fulfilling the original request. | will directly provide

the final SQL query solution based on the available schema and conditions.</think>

<solution>SELECT T1.Zip FROM schools AS T1 INNER JOIN frpom AS T2 ON T1.CDSCode =

SQL Agent T2.CDSCode WHERE T2.Charter School (Y/N) =1 AND T1.County = 'Fresno' AND T1.District =

'Fresno County Office of Education’;</solution>

Figure 5: Example of interactive process in the generation

H QUALITATIVE ANALYSIS: REASONING BEYOND VALID EXECUTION

A core feature of our Generation Agent is its learned policy to evaluate the semantic content and
plausibility of execution results, rather than merely checking for syntax errors. This allows the agent
to continue reasoning even when the database returns a non-empty, non-error result. Below, we
present two real-world case studies from the BIRD-dev set illustrating this capability.

H.1 SCENARIO 1: COMPLEX PROBLEM DECOMPOSITION

In complex queries, a successful execution often represents only an intermediate step in a larger plan.
The agent effectively decomposes the problem, using the observation from the first step to inform the
subsequent logic.

Question: Consider the average difference between K-12 enrollment and 15-17 enrollment of schools
that are locally funded, list the names and DOC type of schools which has a difference above this
average.

Turn 1 (Think): To solve this problem, I need to follow these steps: 1) Calculate the average
difference between K-12 enrollment and 15-17 enrollment for all schools. 2) Filter the schools based
on the funding type. 3) Calculate the difference for filtered schools. 4) Identify schools above the
average.

22

Under review as a conference paper at ICLR 2026

Turn 1 (SQL):

SELECT AVG ("Enrollment_ (K-12)" - "Enrollment (Ages_5-17)") FROM frpm;

Turn 1 (Observation): 16.261833

Turn 2 (Think): (The agent recognizes this is an intermediate value, not the final answer.) The
average difference is approximately 16.26. Now, I will filter the schools based on the funding type
(locally funded) and calculate the difference for these schools against this average.

Turn 2 (SQL):

SELECT T2.School, T2.DOC FROM frpm AS Tl JOIN schools AS T2 ON T1l.CDSCode
= T2.CDSCode WHERE T2.FundingType = 'Locally_funded' AND (T1."
Enrollment (K-12)" - Tl."Enrollment_ (Ages_5-17)") > 14.92;

Tarn 2 (Observation): [("Circle of Independent Learning’, ’'547),

("Learning Community Charter’, '007)]

Turn 3 (Think): The query executed successfully and returned non-empty results. I will now combine
the logic into a single nested query for the final answer.

Turn 3 (Final Solution):

SELECT T2.School, T2.DOC FROM frpm AS Tl INNER JOIN schools AS T2 ON T1.

CDSCode = T2.CDSCode WHERE T2.FundingType = 'Locally, funded' AND (T1.
"Enrollment_ (K-12)" - Tl."Enrollment_ (Ages_5-17)") > (SELECT AVG(T3."
Enrollment (K-12)" - T3."Enrollment_ (Ages_5-17)") FROM frpm AS T3
INNER JOIN schools AS T4 ON T3.CDSCode = T4.CDSCode WHERE T4.
FundingType = 'Locally, funded')

H.2 SCENARIO 2: DATA PLAUSIBILITY AND SANITY CHECKING

The agent also learns to perform “sanity checks.” If a syntactically correct query returns implausible
data (e.g., placeholder values), the agent triggers a self-correction loop to verify and refine the query
before finalizing the answer.

Question: Which cities have the top 5 lowest enrollment number for students in grades 1 through 12?
Turn 1 (Think): I need to find the cities with the top 5 lowest enrollment numbers. I will join the
tables and order by enrollment ascending.

Turn 1 (SQL):

SELECT T2.City, Tl."Enrollment_(K-12)" FROM frpm AS Tl INNER JOIN schools
AS T2 ON T1.CDSCode = T2.CDSCode ORDER BY Tl."Enrollment (K-12)" ASC
LIMIT 5;

Turn 1 (Observation): [("Markleeville’, 1.0), (’"Oakland’, 1.0),
("Palermo’, 1.0)]

Turn 2 (Think): (The agent detects a potential data anomaly.) The result shows enrollment numbers
are very low (1.0), which might indicate an error in the data or the need to filter out non-enrollment
entries. Let’s check the data to ensure accuracy.

Turn 2 (SQL):

SELECT CDSCode FROM frpm WHERE "Enrollment (K-12)" != 1.0 LIMIT 10;

Turn 2 (Observation): [(01100170130419"), (’01100170112607")...]

Turn 3 (Think): The check confirms that there are legitimate records with other values, and *1.0’
likely represents missing or placeholder data. I need to filter these out to get accurate city names.

23

Under review as a conference paper at ICLR 2026

Turn 3 (SQL):

SELECT T2.City FROM frpm AS Tl INNER JOIN schools AS T2 ON T1l.CDSCode =
T2.CDSCode WHERE T1."Enrollment_ (K-12)" != 1.0 ORDER BY T1."
Enrollment (K-12)" ASC LIMIT 5;

Turn 3 (Observation): [("Bishop’), (’Kingsburg’), (’Oakland’),
(Ywilliams’”), (’Compton’)]

Turn 4 (Think): Now, the cities with the lowest enrollment numbers are identified and the data looks
plausible. I can provide the final SQL query.

Turn 4 (Final Solution):

SELECT T2.City FROM frpm AS Tl INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T1."Enrollment (K-12)" != 1.0 ORDER BY T1."
Enrollment (K-12)" ASC LIMIT 5;

I INTERACTION TURNS IMPACT

Table 19 presents an ablation study on the impact of the maximum number of interaction turns
(T) allowed during training and inference. The study compares the performance of the base model
against versions fine-tuned with maximum turn limits of T=1, T=5, and T=10. For each training
configuration, we report three execution accuracy metrics on the BIRD-dev benchmark: Greedy
(a single output), Best of 8 (the highest score among 8 candidates), and Selected (the score after
reranking). The results indicate that increasing the number of turns during fine-tuning consistently
improves performance. For example, the model trained with T=10 achieves the highest Greedy
(69.88%) and Best of 8 (83.89%) accuracy when inferring with 10 turns, demonstrating the value of a
larger interaction budget for complex reasoning.

J IMPACT OF MULTIPLE CANDIDATE GENERATIONS

To evaluate the impact of generating multiple candidate trajectories, we conduct a "Best-of-N”
analysis, where N is the number of parallel rollouts. As shown in Table 20, increasing the number
of candidates provides a substantial performance boost. This demonstrates that the exploratory
nature of our Generator agent is effective at covering the solution space, with the upper-bound
performance (Pass@N) increasing consistently with more samples. The final accuracy, after applying
our Generative Validation Agent, also benefits from a larger pool of high-quality candidates to select
from.

K VALIDATION AGENT

Our Generative Validation Agent is guided by the prompt detailed in Table 2 1. The prompt instructs
the agent to act as an expert SQL data analyst, with the objective of evaluating the logical correctness
of a proposed SQL solution for a given problem. Unlike our previous approach, this prompt no longer
constrains the agent to reason about a sampled or truncated database. Instead, it assumes the agent
evaluates the query’s validity against the full database schema and context. The prompt structure
provides the agent with the user’s question, the candidate SQL solution, and a dedicated field for any
relevant "External Knowledge” that might be necessary for a correct evaluation. The output format
remains strict, requiring the agent to begin its response with a definitive ”Yes” or "No” before any
subsequent reasoning.

L LLM AS A JUDGE PROMPT

The prompt in Table 22 is used for our baseline selection method LLM as a judge. This prompt is
designed to guide the model in identifying the optimal SQL query from a set of generated candidates.

24

Under review as a conference paper at ICLR 2026

The agent is explicitly instructed to consider each candidate’s associated reasoning, the SQL query
itself, and most crucially, its execution observation on the database. This emphasis on execution
results is paramount, as it allows the agent to distinguish between syntactically correct queries and
those that truly provide the correct and complete answer to the user’s question, even if a query
might appear correct but yields erroneous or empty results. After presenting the user’s question
and the formatted candidate solutions (each including reasoning, SQL, and execution output), the
prompt concludes with strict instructions for the agent to output only the index number of the single
best candidate. In cases of ties, the candidate with the lowest index is to be chosen, ensuring a
deterministic selection process.

M SELECTION METHOD COMPARISON

We compare our proposed Generative Verifier against several strong baselines for trajectory selection,
with the results detailed in Table 23. The initial Pass@8 accuracy of our Generator agent’s output
establishes the theoretical upper bound for any selection method, as it represents the percentage of
questions for which at least one of the eight generated trajectories is correct.

25

Under review as a conference paper at ICLR 2026

Prompt Format for SQL Reasoning

Prompt Description:

You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to answer
the question within limited turns. You should breakdown the problem, draft your reasoning process,
and generate the solution.

Database Engine:

SQLite

Database Schema:

{db_details}

This schema describes the database’s structure, including tables, columns, primary keys, foreign
keys, and any relevant relationships or constraints.

External Knowledge:

{external knowledge}

Question:

{question}

Important Instructions:

- Make sure you only output the information that is asked in the question. If the question asks for a
specific column, make sure to only include that column in the SELECT clause, nothing more.

- The generated query should return all of the information asked in the question without any missing
or extra information.

- Before generating the final SQL query, please think how to write the query. It should include
detailed considerations such as analysing questions, summarizing relevant findings, brainstorming
new ideas, verifying the accuracy of the current steps, refining any errors, thinking of how to call
SQL tools, and revisiting previous steps.

Output Format (STRICTLY ENFORCED):

- Conduct thinking inside <think>...</think> blocks every time you get new observation
or information. Start with <think>...</think> blocks in your responses as shown in the
following example.

- You can use SQL tool written within a single <SQL>your SQL</SQL> block to explore or
verify. You can’t use the format ***SQL ; \n‘‘"‘, you must use the format <SQL>your
SQL</SQL> to get the output. <SQL>your SQL</SQL> block should follow closely be-
hind <think>...</think> block. SQL tool output will be shown as dataframe inside
<observation>...</observation>. Based on this observation, you can think again and
refine.

- The returned dataframe will be truncated in 50 rows if observation is too long.

- If you find no further exploration is needed or have only 1 turn left, you MUST directly provide the
final SQL query solution inside <solution>...</solution>.

- All your responses should be in the <think>...</think>, <sgl>...</sqgl>,
<observation>...</observation>, <solution>...</solution> blocks.

Example:

Question: how many pigs are in the farm?

Database Schema:

Table: animals

- id (INTEGER, PRIMARY KEY)

- species (TEXT)

- age (INTEGER)

- name (TEXT)

Output:

<think>I am querying how many pigs are in the farm. I will begin
by checking if the ’"animals’ table exists and contains entries
with species = ’'pig’.</think>

<SQL>SELECT COUNT (*) FROM animals WHERE species = ’'pig’;</SQL>
<observation>

</observation>

<think>The result indicates that there are 12 pigs in the farm.
Since the question asks for how many pigs, I can now output the
final SQL as the solution.</think>

<solution>SELECT COUNT (*) FROM animals WHERE species =
"pig’;</solution> 2%

Table 18: Prompt example for SQL reasoning without memory.

Under review as a conference paper at ICLR 2026

Table 19: Ablation study on the maximum number of interaction turns (7). We compare the original
model against models fine-tuned with different turn limits. For each setting, we report Greedy
accuracy (from a single output), Best of 8 accuracy, and Selected accuracy (after reranking 8
candidates) with grounding agent. All scores are execution accuracy (%) on the BIRD-dev benchmark.

Model
(Trained w/ Max Turns) Inference (T=1) Inference (T=5) Inference (T=10)
Greedy(%) Best of 8(%) Select(%) Greedy(%) Bestof 8(%) Select(%) Greedy(%) Bestof 8(%) Select(%)
Original Model (Base) 5443 77.76 69.69 55.41 77.82 70.34 55.76 77.56 70.07
Trained (T=1) 66.41 78.6 72.06 66.95 78.76 72.75 67.60 80.63 74.19
Trained (T=5) 67.60 82.19 75.29 69.30 83.7 77.84 68.25 82 76.40
Trained (T=10) 67.73 83.61 76.86 69.36 83.95 77.12 69.88 83.89 71.57

Table 20: Impact of “Best-of-N" selection on the BIRD-dev benchmark. Greedy (Best of 1) is the
execution accuracy of the final selected trajectory. Best of N represents the upper-bound performance
(Pass@N), indicating the percentage of times at least one correct trajectory was found among N
candidates. Inference parameters: temperature=0.8, top_k=50, top_p=0.7, max_iterations=5.

Selection Strategy Execution Accuracy (%)

Greedy (Best of 1) 69.30
Best of 2 74.04
Best of 4 79.71
Best of 8 83.76
Best of 16 86.31
Best of 32 87.54

Prompt for Generative Validation Agent

User:

Task Background:

You are an expert SQL data analyst. Your task is to verify if a proposed solution correctly answers a
user’s question.

Problem:

{question}

External Knowledge:
{external_knowledge}

Proposed Solution:
{solution_text}

Your Task:

Based on all the information, is the SQL query in the solution logically correct for answering the
question?
You must answer with ”Yes” or ”"No” first, before any other text.

Is the answer correct (Yes/No)?

Table 21: The prompt used for the Generative Verifier. The agent is framed as a SQL expert and
is provided with the problem, the proposed SQL query, and any relevant external knowledge. It
evaluates the logical correctness of the query and must provide a final ”Yes” or "No” judgment.

27

Under review as a conference paper at ICLR 2026

Prompt for Selection Agent (LLM as a Judge)

User:

Task Background:

You are an expert SQL data analyst. Your task is to select the BEST SQL query that correctly
answers a user’s question.

You are given several candidates. For each candidate, you will see its reasoning, the SQL query
itself, and importantly, the result of executing that query on the database. A query might look
correct but return an error or empty/wrong data. You must use the execution observation to make
your final decision.

Here is the user’s question:

{question}

Evaluate the following candidates based on ALL available information. Does the “Execution
Observation” for a candidate actually answer the user’s question?

{formatted_candidates}

Final Analysis:

Considering the reasoning, the SQL code, and especially the execution results, which single
candidate provides the most correct and complete answer to the user’s question?

Instructions for your response:

* Respond with ONLY the index number of the single best candidate.

* If multiple candidates produce correct results, select the one with the LOWEST index
number.

* Do not include any other words, symbols, or explanations.

Best candidate index:

Table 22: The prompt used for the Selection Agent, operating as an LLM judge. It guides the model
to select the best SQL query from multiple candidates by evaluating their reasoning, SQL code, and
critically, their execution observations. Strict output instructions ensure a direct index selection.

Table 23: Ablation study of different selection strategies. The first row, Pass@8, shows the baseline
execution accuracy (%) of the eight candidate trajectories from our Generator agent before any
selection. Subsequent rows report the final accuracy after applying each method to select the best
trajectory. Self-Consistency picks the most frequent result, LLM as a Judge uses GPT-40/Qwen for
selection, and Ours uses our fine-tuned 7B Generative Verifier.

Method Model Size Bird dev (%) Spider test (%) Spider DK (%)
Pass@8 (Generator Output) - 83.76 90.68 82.06
LLM as a Judge (GPT-4.1) Unkonwn 75.15 83.47 71.40
LLM as a Judge (Qwen) 7B 70.47 79.60 70.09
Self-Consistency - 72.93 83.51 73.08
Ours (Generative Verifier) 7B 77.84 89.75 78.13

28

	Introduction
	Preliminaries
	Methodology
	Grounding Agent: Reasoning-driven Schema Identification
	Generation Agent: Multi-turn Trajectory Generation
	Validation Agent: Verification and Selection

	Experiment
	Experiment Setup
	Main Results
	Ablation Studies

	Related Work
	Conclusion
	The Use of Large Language Models
	Training Details
	Grounding Agent
	Generation Agent
	Validation Agent

	Dataset
	Training Dataset
	Evaluation Dataset

	Training Efficiency and Resource Analysis
	Computational Cost Breakdown
	Data Efficiency and Comparative Analysis

	Inference Efficiency and Practicality Analysis
	Baseline Time and Token Cost Analysis
	Performance Comparison Under Normalized Time Budget
	Adjustable Cost–Accuracy Trade-offs
	System-Level Optimization

	Table Level Grounding
	Comment F.1

	Multi-turn Generation
	Qualitative Analysis: Reasoning Beyond Valid Execution
	Scenario 1: Complex Problem Decomposition
	Scenario 2: Data Plausibility and Sanity Checking

	Interaction turns impact
	Impact of Multiple Candidate Generations
	Validation Agent
	LLM as a judge prompt
	Selection method comparison

	Comment G.1
	Comment K.1
	Comment L.1

