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Abstract

Hybrid action control tasks are common in the real
world, which require controlling some discrete and
continuous actions simultaneously. To solve these
tasks, existing Reinforcement Learning (RL) meth-
ods either directly build a separate policy for each
type of action or simplify the hybrid action space
into a discrete or a continuous action control prob-
lem. However, these methods neglect the challenge
of exploration resulting from the complexity of
the hybrid action space. Thus, it is necessary to
design more sample efficient algorithms. To this
end, we propose a novel Hybrid Control Trans-
former (Hybrid CtrlFormer), to achieve better ex-
ploration and exploitation for the hybrid action
control problems. The core idea is: ① we construct
a hybrid action space tree with the discrete ac-
tions at the higher level and the continuous pa-
rameter space at the lower level. Each parameter
space is split into multiple subregions. ② To sim-
plify the exploration space, a Transformer-based
Monte-Carlo tree search method is designed to ef-
ficiently evaluate and partition the hybrid action
space into good and bad subregions along the tree.
Our method achieves state-of-the-art performance
and sample efficiency in a variety of environments
with discrete-continuous action space.

1 INTRODUCTION

The field of deep reinforcement learning (DRL) has wit-
nessed striking empirical achievements in a variety of
Markov Decision Process (MDP) problems, involving con-
trols with either discrete actions, such as Go [Silver et al.,
2016], or continuous actions, such as robot control [Schul-
man et al., 2015, Lillicrap et al., 2016]. However, many
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real-world scenarios require more complex controls with
discrete-continuous hybrid action spaces, which are usually
modeled as Parameterized Action Markov Decision Pro-
cesses (PAMDP) [Hausknecht and Stone, 2016, Massaroli
et al., 2020]. Typical discrete-continuous hybrid control
tasks include Platform [Masson et al., 2016], Move [Li
et al., 2021] and Robot Soccer [Xiong et al., 2018]. Take
Pac-man as an example (Figure 1 A), the agent has to first
choose a discrete action (i.e., move, catch), and then set
the corresponding continuous parameters for the selected
discrete action (i.e., radian). Compared with the discrete
or continuous action space, the exploration space of hybrid
action control tasks becomes a complex hierarchy. How-
ever, previous DRL methods designed either for discrete
or continuous action spaces cannot be directly applied to
such heterogeneous (discrete-continuous hybrid) control
problems.

To solve the hybrid control problems, three types of meth-
ods have been proposed. The first type of methods simply
convert the heterogeneous action space into a homogeneous
one by either discretizing all continuous actions ([Massaroli
et al., 2020]) or relaxing all discrete actions into contin-
uous ones [Hausknecht and Stone, 2016, Masson et al.,
2016]. However, discretizing all dimensions of the contin-
uous action suffers from the loss of control accuracy and
the scalability issue; while casting all discrete actions into
continuous ones enlarges the original action space, resulting
in additional difficulties in approximation and generaliza-
tion[Li et al., 2021]. The second type of methods directly
build separate policies for the discrete actions and the con-
tinuous ones. For example, Hybrid PPO (HPPO) [Fan et al.,
2019] builds multiple network heads to learn the hybrid pol-
icy. However, building a separate continuous action policy
network for each discrete action will enlarge the model size,
resulting in additional difficulties in optimization.

To improve the learning efficiency, the third type of methods
explicitly incorporate the dependencies between the dis-
crete actions and the continuous parameters into the model
design. Parameterized DQN (PDQN) [Xiong et al., 2018]
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Figure 1: Illustration of the Pac-man game and the landscape of the Q-values. The target of the agent (in yellow) is to eat the
red point without touching the wall or enemy.

proposes a hybrid structure by combining DQN [Silver et al.,
2016] with DDPG [Lillicrap et al., 2016]. Thus, the con-
tinuous action policy is directly affected by the high-level
discrete action policy. However, the dependence of PDQN’s
Q-values on all continuous actions causes a false gradi-
ents issue and can lead to suboptimal action selection. To
address the false gradients issue, [Bester et al., 2019] fur-
ther design a Multi-Pass Q-Network (MP-DQN), making
each discrete action’s Q-value only depends on its corre-
sponding continuous parameters. Further, Fu et al. [2019]
extends PDQN to multi-agent RL settings. Most recently, Li
et al. [2021] propose Hybrid Action Representation (HyAR),
which uses an embedding table and a conditional Variational
Auto-Encoder (VAE) to convert both the discrete and the
continuous actions into a more compact latent space. HyAR
achieves state-of-the-art (SOTA) performance on typical
hybrid control tasks with higher learning efficiency, espe-
cially for high-dimensional action spaces. However, the
embedding table and the VAE have to be periodically re-
trained with the policy updating, which makes HyAR suffer
from training instability. We present a detailed related work
overview in Appendix A.

Apart from the action-dependency modeling, another chal-
lenge affecting learning efficiency is the hard exploration
problem. As shown in Figure 1 B: At the current state, the
agent is blocked by the wall and cannot catch the target
directly. Even if the agent correctly selects the move action,
it’s still hard to acquire the best-moving radian due to the
insufficiently explored continuous action space. How to ef-
ficiently explore and prune the search space has not been
sufficiently studied, especially when the hybrid action space
becomes high-dimensional.

In this paper, we propose Hybrid Control Transformer (Hy-
brid CtrlFormer), an efficient search space partition algo-
rithm balancing the exploration and exploitation in the hy-
brid action space. The high-level idea is: (1) we construct
a hybrid action space tree with the discrete actions at the
higher-level and the continuous parameter space at the lower-
level. (2) For each discrete action, we learn a Transformer-
based Q-function to partition the corresponding continuous
parameter space into good and bad subregions (with high

and low Q-values) along the tree, according to which we can
quickly prune the high-dimensional search space and get a
smaller one with better value. (3) Then, Monte Carlo tree
search (MCTS) method is used to select discrete action and
its corresponding continuous action subregion, which ef-
fectively balances exploration and exploitation. (4) A more
fine-grained continuous control policy is trained only within
the selected subregion, where the search space is signifi-
cantly reduced.

Hybrid CtrlFormer can easily learn multi-modal policies
which can potentially help escape from the sub-optimal poli-
cies. As shown in Figure 1 C, the continuous action space
is divided into several subregions (the dividing line is visu-
alized in yellow). Our policy can identify the appropriate
subregion to simplify the action space and search for the
optimal action (approaching the target without touching the
wall or enemy). We evaluate Hybrid CtrlFormer in a variety
of hybrid control tasks. The results demonstrate the superior-
ity of Hybrid CtrlFormer in both the learning efficiency and
the performance compared with existing baselines. Besides,
Hybrid CtrlFormer can be easily extended to multi-agent
settings by integrating it into existing value decomposition
MARL methods [Rashid et al., 2018, Peng et al., 2021].

2 BACKGROUND

Parameterized Action MDP (PAMDP). In this paper, we
focus on the PAMDP [Masson et al., 2016], which has a
discrete-continuous hybrid action space and is an extension
of MDP. PAMDP can be represented as: (S,H,P,R, γ, T ),
where H = {(k, xk)|xk ∈ Xk,∀k ∈ K}, K = {1, · · · ,K}
denotes the discrete action set, Xk is the corresponding con-
tinuous parameter set for each k ∈ K. Each pair of (k, xk)
constitutes a hybrid action. The state transition function and
reward function are defined as P : S ×H×S → [0, 1] and
R : S ×H → R respectively. The agent’s policy is defined
as π : S ×H → [0, 1] and the state-action value function is
denoted as Qπ(s, k, xk).

Self-Attention in Transformer. Self-attention module en-
ables efficient modeling of data by capturing the interrela-
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Figure 2: The overall architecture: learning to Split the Hybrid Action Space into Good and Bad subregions via MCTS.

tionship of input sequences. Assume that we have n query
vectors Q ∈ Rn×dq and each with dimension dq . The atten-
tion function maps queries Q to outputs using nv key-value
pairs K ∈ Rnv×dq and V ∈ Rnv×dq . The whole process can
be written as Attention(Q,K,V) = Atten(QKT )V. The
pairwise dot product QKT reflects how similar each pair of
query and key vectors is. Atten(QKT )V is a weighted sum
of V where a value gains higher dynamic weight when its
corresponding key has a larger dot product with the query. In
this paper, we use a Transformer to measure the importance
of each partitioned subregion.

Monte-Carlo Tree Search. Monte-Carlo Tree Search
[Browne et al., 2012], or MCTS, is a heuristic search al-
gorithm. In our setup, MCTS is used to find the optimal
discrete action in the current state and its corresponding
optimal continuous action subregion. In MCTS, each tree
node X stores a value vX representing its goodness, and
the number nX that it has been visited. They are used to
calculate UCB [Rosin, 2011], i.e.,

vX + c
√
2(lnnp)/nx (1)

where c is a hyper-parameter, and np is the number of visits
of the parent of X . UCB considers both exploitation and
exploration and will be used for node selection. MCTS it-
eratively selects a leaf node of the tree for expansion. Each
iteration can be divided into four steps: selection, expan-
sion, simulation, and back-propagation. Starting from the
root node, selection is to recursively select a node with a
larger UCB until a leaf node, denoted as X . Expansion is
to execute a certain action in the state represented by X
and transfer to the next state, e.g., move forward and arrive
at a new position in path planning. We use the child node
Y of X to represent the next state. Simulation is to obtain

the value vY via random sampling. Back-propagation is to
update the value and the number of visits of Y ’s ancestors.

3 METHOD

Hybrid CtrlFormer uses a Transformer-based Monte-Carlo
tree search method to efficiently evaluate and partition the
hybrid action space into good and bad subregions along the
tree. In this part, we introduce Hybrid CtrlFormer in detail.
To visualize the feasibility of our approach, we provide
pseudo-code for the complete framework and a summary
analysis of the process at the end of this section.

3.1 HYBRID ACTION MONTE CARLO TREE
SEARCH

In the parameterized action space, each discrete action k cor-
responds to a continuous parameter space Xk. As the train-
ing continues, the agent has learned some knowledge about
the candidate actions, thus keeping exploring the whole dis-
crete action space and the whole continuous action space is
inefficient. To reduce the number of samples needed to learn
a good policy, we propose to learn to partition the overall
hybrid action space into good and bad subregions (with high
Q-values and low Q-values). Then, we can easily get a much
smaller but promising action space by discarding the low
potential regions and only keeping the high potential ones.

High Level Idea: As shown in Figure 2 (left), we use a hy-
brid action space tree to show the hierarchy of hybrid action
space. The hierarchically structured action space contains
K discrete actions shown in blue, and each discrete action k
has a continuous parameter space Xk marked with rounded
rectangles in light origin. At state s, ❶ for the discrete ac-
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Figure 3: Difference between our method and others.

tions, we maintain a discrete Q-table Qπd (s, k) to record
their Q-values. For the simplicity of presentation, we omit
the superscript π of all Q-functions in the following. ❷ To
achieve a more controlled exploration over the continuous
parameter space, we split each Xk into W subregions, i.e.,
Xk = {ck1, · · · , ckW }. We denote W = {1, . . . ,W} and
also maintain a discrete Q-table Qr(s, k, w) to record the
Q-value of selecting each region w ∈ W given the selected
discrete action k. With Qr(s, k, w), we could have a gen-
eral idea of how good and bad different subregions are and
reduce the search space by discarding those with observably
low Q-values. ❸ To provide targeted policies based on W
different subregions. The continuous policy of subregion
ckw is defined as: xk,w = µ(s; θkw), where µ is a deter-
ministic policy network with parameter θkw. ❹ In order to
evaluate the Q-values of selecting discrete action k and con-
tinuous parameter xkw, we build a value estimation model
Q(s, k, xkw;ω), where ω indicates the network’s parameter.
❺ For each subregion ckw, we also maintain a set Xkw and
a set Qkw to record all previous selected parameter actions
and their corresponding Q-values respectively. Based on
these functions, we perform MCTS over the hybrid action
tree to get the target discrete and continuous actions while
balancing exploration and exploitation.

The difference between our method and the previous
method is shown in Figure 3. previous methods have to
search the whole discrete and continuous action space simul-
taneously according to the state which results in the explo-
sion of exploration space dimensions. The large search space
makes the policy unable to find the optimal action efficiently.
However, our tree-like hierarchical action space signifi-
cantly reduces the exploration space dimension (denote as
dim), i.e., discretedim×continuousdim → discretedim+
continuous subregionsumber + subregiondim.

3.1.1 The Search Procedures

Our policy searching approach is based on MCTS. Each
search episode includes three stages: selection, sampling
and back-propagation. This searching process is repeated
for Nsim episodes before selecting the final hybrid action.
For any state s, Qd(s, k) and Qr(s, k, w) are initialized
to zeros and Xkw and Qkw are initialized to empty sets,

i.e., Xkw = {} and Qkw = {}, at the beginning of the
search. For each search episode, we sequentially perform
the following 4 steps:

(1) Select a discrete action k̂ w.r.t UCB. As shown
in Figure 2 (left), given the state s, to select a hy-
brid action (k̂, xk̂ŵ) for the current search episode, we
first query the Q-values for all discrete actions: qd =
{Qd(s, 1), . . . , Qd(s,K)}. Then, we follow the UCB rule
[Auer et al., 2002] to select a discrete action k̂ while balanc-
ing the exploration and exploitation:

k̂ = argmax
k∈K

(
Qd(s, k) + c

√
2 lnn(s)

n(s, k)

)
(2)

where n(s) is the visit number of the node s, which is equal
to the number of episodes that have been searched, n(s, k)
is the number of times of selecting action k at node s and c
is a constant to balance the exploration and exploitation.

(2) Select a discrete region ŵ w.r.t UCB. After getting
the selected discrete action k̂, we use it to query the region
Q-table Qr(s, k, w) and get the Q-values for all discrete
regions: qr = {Qr(s, k̂, 1), . . . , Qr(s, k̂,W )}. We also fol-
low the UCB rule to select a region ŵ:

ŵ = arg max
w∈W

(
Qr(s, k̂, w) + c

√
2 lnn(s, k̂)

n(s, k̂, w)

)
(3)

By selecting a discrete action k̂ and a discrete region ŵ ac-
cording to the previous learned knowledge (i.e., the learned
Q-values and visit counts), the search space is significantly
reduced and we only have to pick a continuous parameter
xk̂ŵ within the region ŵ under discrete action k̂.

(3) Sample a continuous parameter action xk̂ŵ. To finally
get the parameter action, we first pick the corresponding
actor µ(s; θk̂ŵ) learned within the region ŵ under action
k̂ and get x0

k̂ŵ
= µ(s; θk̂ŵ). Then we sample a parameter

action locally from a Gaussian distribution centered at x0
k̂ŵ

with a covariance matrix σ2I as the final selected continuous
parameter action, i.e., xk̂ŵ ∼ N

(
x0
k̂ŵ
, σ2I

)
, where σ is a

small constant to control the degree of the local exploration.

(4) Back-propagate the Q-value. After selecting the dis-
crete action k̂ and the continuous parameter xk̂ŵ, we
first compute the estimated Q-value for these newly sam-
pled actions as Vnew = Q(s, k̂, xk̂ŵ;ω). Then, we add
this newly sampled parameter action and its Q-value, to
Xkw and Qkw respectively, i.e., Xkw.append(xk̂ŵ) and
Qkw.append(Vnew). After that, we back-propagate Vnew for
updating: ❶ the visit-count and the Q-value of the se-
lected subregion, i.e., n(s, k̂, ŵ)+ = 1 and Qr(s, k̂, ŵ) =
maxQkw. ❷ the visit-count and the Q-value of the se-
lected discrete action, i.e., n(s, k̂)+ = 1 and Qd(s, k̂) =
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maxwQr(s, k̂, w), and ❸ the visit-count of the current state,
i.e., n(s)+ = 1.

3.1.2 Select a Target Hybrid Action

When we finish the Nsim search episodes, we will obtain
the visit count distribution β(k|s) of the discrete actions,
i.e.,

β(k|s) = n(s, k)

n(s)
(4)

and the visit count distribution β̂(w|s, k) of the discrete
subregions under action k, i.e.,

β̂(w|s, k) = n(s, k, w)

n(s, k)
(5)

Then, we sample a discrete action according to β(k|s), i.e.,
k̂ ∼ β(k|s) as the final discrete action and sample a sub-
region according to β̂(w|s, k̂), i.e., ŵ ∼ β̂(w|s, k̂) as the
final subregion. Next, we select the best parameter action
previously sampled in subregion ŵ under discrete action k̂
as the final parameter action, i.e.,

x̂k̂,ŵ = arg max
x∈Xk̂,ŵ

Qk̂,ŵ(x) (6)

3.1.3 Better Initialization for Qd(s, k) and Qr(s, k, w)

According to the original method in 3.1.1, bothQd(s, k) and
Qr(s, k, w) are initialized to zeros, which do not contain
much information. To give a better Q-value initialization,
we jointly compute all Q-values of all discrete actions and
subregions in a batch mode as:

Qr(s, k, w) = Q(s, k, µ(s; θkw);ω), ∀k ∈ K,∀w ∈ W
(7)

For each subregion w under discrete action k, we use the
corresponding continuous policy’s output, i.e., µ(s; θkw), as
the initialized parameter action. Then,Qd(s, k) is initialized
as Qd(s, k) = maxwQr(s, k, w).

3.2 HYBRID CTRLFORMER

The remaining question is how to efficiently implement the
continuous policy networks µ(s; θkw),∀k ∈ K,∀w ∈ W
and the Q-value estimation network Q(s, k, xkw;ω). The
straightforward way to implement the continuous policy
networks is using a set of individual MLPs for each k and
w to perform independent evaluations. However, this will
greatly increase the parameters of the framework and reduce
the training efficiency [Li et al., 2021].

To reduce the parameter number while ensuring the rep-
resentational ability of the dependencies of action spaces,
we apply the Causal Transformer in our case to model the

dynamic relationships between different discrete actions
and subregions. Transformer offers the advantage of seri-
ally processing dependencies among states, discrete actions,
and continuous action subregions, akin to natural language
processing [Radford and Narasimhan, 2018]. Experimental
results validates the effectiveness of this design.

state 𝑠𝑠 discrete action 𝑘𝑘 sub-region 𝑤𝑤

Causal Transformer

𝑒𝑒(𝑠𝑠, 𝑘𝑘,𝑤𝑤)
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Figure 4: Hybrid Control Transformer

3.2.1 Architecture

The architecture of our Hybrid CtrlFormer is shown in Fig-
ure 4. The input to the Transformer contains the 3 tokens
along a search episode (one for each modality): the current
state s, one of the discrete action k, and one of the subregion
w under action k. To obtain token embeddings, we learn a
linear layer for each modality, which projects the raw input
to the embedding dimension. Both the discrete action and
the subregion are converted to the one-hot format before in-
putting them into the model. The tokens are then processed
by the Causal Transformer model, which uses causal masks
to ensure that each token can only see its previous tokens.

After that, we get the Transformer’s outputs, which represent
the embedding vectors for the corresponding input tokens.
We only pick the last embedding vector corresponding to
the subregion w and denote it as e(s, k, w). As e(s, k, w)
contains all the 3 input tokens information, we can feed
it into a shared policy network to get the continuous actor
for each k and each w, i.e., µ(s, k, w) = µ(e(s, k, w); θ),
where θ is the network’s parameter. We denote the out-
put of the actor as xkw. Next, we feed both e(s, k, w) and
xkw into a Q-network to get the estimated Q-value for the
discrete action k and the continuous parameter xkw, i.e.,
Q(s, k, xkw) = Q(e(s, k, w), xkw;ω), where ω is the net-
work’s parameter.

3.2.2 Training the Models

The optimization loss function of Q(e(s, k, w), xkw;ω) and
µ(e(s, k, w); θ) are very similar to that of DDPG [Lillicrap
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et al., 2016]. We update Q(e(s, k, w), xkw;ω) by minimiz-
ing the following loss:

LQ(ω) = 1

2
[Q(e(s, k, w), xkw)− y]

2 (8)

where

y = r + γ max
k∈K,w∈W

Q(e(s′, k, w), µ(e(s′, k, w); θ−);ω−)

and s′denotes the next state, γ is the discount factor and
θ− and ω− are the parameters of the target networks. We
update the actor by minimizing the following loss:

Lµ(θ) = −Q(e(s, k, w), µ(e(s, k, w); θ);ω) (9)

Algorithm 1 Hybrid Action Monte Carlo Tree Search

Parameters: qd = {Qd(s, 1), ..., Qd(s, k)}
n(s) = {n(s, 1), ..., n(s, k)}
qr = {Qr(s, k̂, 1), . . . , Qr(s, k̂,W )}
n(s,K,w) = {n(s, 1, 1), n(s, 1, 2), ..., n(s, k, w)}
The buffer that stores the history selection Xkw,Qkw
Sample times per round Nsim and exploration weight c

Process:
Traverse k × w continuous action subregions. Update
n(s), n(s,K,w).
estimate qr by Transformer style critic. qr(s, k, w) =
Q(e(s, k, w), xkw;ω).
qd is initialized as Qd(s, k) = maxwQr(s, k, w)
while t < Nsim do

Select k̂ by UCB ▷ Eq 2
Select ŵ by UCB ▷ Eq 3
Sample continuous action by actor: xk̂,ŵ =

µ(e(s, k, w); θ)

Vnew = Q(s, k̂, xk̂ŵ;ω)
Xkw.append(xk̂ŵ), Qkw.append(Vnew)
Back-propagate

end while
Obtain β(k|s) ▷ Eq 4
Get β̂(w|s, k) ▷ Eq 5
Sample k̂, ŵ ▷ Eq 6
Training the Transformer style critic ▷ Eq 8
Training the actor ▷ Eq 9

3.3 PROCESS ANALYSIS OF HYBRID
CTRLFORMER

Hybrid CtrlFormer Combine Transformer and MCTS rea-
sonably. Firstly, MCTS is used to filter the subregion of con-
tinuous action to simplify the exploration space. Since there
naturally exists hierarchical dependencies during the action

selection process [Li et al., 2021], we use a Transformer-
style critic to model dependencies and generate the Q-values
of each region (as Transformer is suitable for modeling se-
quence dependence). We regard the embedded states, ac-
tions, continuous action. Algorithm 1 shows the complete
process of Hybrid CtrlFormer.

Furthermore, to prove that Hybrid CtrlFormer can solve
multi-agent tasks, Appendix C features a theoretical proof
and practical example of how Hybrid CtrlFormer can be
combined with the value decomposition framework (main-
stream framework of multi-agent reinforcement learning).
Additionally, experimental verification of its effectiveness
can be found in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Benchmarks. Figure 10 visualizes the evaluation bench-
marks. Hard Goal [Hausknecht and Stone, 2016], Catch
Point [Xiong et al., 2018], Move [Li et al., 2021], Platform
[Masson et al., 2016], and Chase. Hard Goal and Chase
are harder than other games. Both games require the agent
to select an action from a large hybrid action space, and
Chase has a complex dynamic state transition due to the
target moving fast to run away. Appendix B contains the
settings for each environment.

Baselines. In single-agent tasks, 5 SOTA approaches are
selected as baselines: PADDPG [Hausknecht and Stone,
2016], PDQN [Xiong et al., 2018], HPPO [Fan et al., 2019],
HHQN [Fu et al., 2019] and HyAR [Li et al., 2021].

In multi-agent tasks, five baselines are selected, Multi-
agent Hybrid CtrlFormer outperforms other methods in
almost MA benchmarks. Please refer to Appendix D for
experimental results and analysis.

4.2 PERFORMANCE EVALUATION

To counteract the implementation bias, we directly use the
official code published in their original paper. Hybrid Ctrl-
Fomer samples 32 times per step. Continuous action space
segmentation and hyperparameter settings can be found in
appendix E. The summarized comparisons of the average
win rates are presented in Table 1, while the learning curves
of each algorithm are plotted in Figure 5 to provide a di-
rect reflection of their learning performances. Overall, our
findings indicate that Hybrid CtrlFormer achieves better re-
sults and lower variances than baselines in almost all bench-
marks. In simple tasks, the experimental results of Hybrid
CtrlFormer show obvious advantages over PDQN, HHQN,
HPPO, and PADDPG. Moreover, our method performs bet-
ter than HyAR in most scenarios. However, the simplicity of
these single-agent tasks, along with their limited exploration
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The curve and shade denote the mean and a standard deviation over 5 runs.

Figure 5: Left part shows the results of all methods in simple tasks. Right part compares the best baseline (HyAR-TD3) and
Hybrid CtrlFormer in hard benchmarks. The x− and y− axis denote the environment steps and reward.

Figure 6: Hybrid action space benchmarks.

space, means that even suboptimal exploration techniques
can attain high scores. For instance, while HyAR does not
perform as well as our method, it also yields acceptable
results across four simple tasks. To demonstrate the effec-
tive exploration of Hybrid CtrlFormer in complex hybrid
action spaces, we add two more challenging tasks (Chase
and Hard Goal). Our method outperforms HyAR in the fi-
nal performance of both tasks. Specifically, in Hard Goal,
HyAR converges faster in the early stage but eventually falls
into a sub-optimal policy, while our method achieves bet-
ter performance by efficiently exploring in the early stage
to avoid such sub-optimal policies. To further prove the
ability of our method, four multi-agent scenarios with lo-
cal observation are added, in which Hybrid CtrlFormer has
outstanding performance (Appendix D).

5 ABLATION STUDY

5.1 THE INFLUENCE OF SEGMENTING
SUBREGIONS

All algorithms are tested in the same environment (i.e.
MOVE) with identical hyperparameters. The continuous ac-
tion space of environment is [−1, 1] which is evenly divided
into 1, 4and 8 subregions. 4 sub-regions setting: [-1, -0.5),
[-0.5, 0), [0,0.5), [0.5, 1]. 8 sub-regions setting: [- 1, -0.75),
[-0.75, -0.5), [-0.5, -0.25), [-0.25, 0), [0,0.25), [0.25, 0.5),
[0.5, 0.75), [0.75, 1.0], when it has only one sub-region, it is
equivalent to removing the sub-region partitioning mecha-
nism. The experimental results (left of figure 7) demonstrate
that relying on a single, complex exploration space results
in policy learning failure. However, as the density of the
region division increases, the policy achieves higher scores
in the same environment. This provides that the subregion
partition module is effective in mitigating the convergence
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LEVEL ENV HPPO PADDPG PDQN HHQN HyAR Hybrid CtrlFormer

Simple

Catch Point 0.69± 0.09 0.82± 0.06 0.77± 0.07 0.31± 0.06 0.85± 0.06 0.98± 0.03

Platform 0.80± 0.02 0.36± 0.06 0.93± 0.05 0.46± 0.25 0.98± 0.01 0.96± 0.03

Move (n=4) 0.19± 0.12 0.13± 0.01 0.69± 0.07 0.39± 0.14 0.88± 0.04 0.94± 0.02

Move (n=8) 0.14± 0.11 0.16± 0.06 0.14± 0.08 0.09± 0.08 0.89± 0.09 0.97± 0.04

Hard Chase (n=8) 0.12± 0.03 0.08± 0.01 0.14± 0.12 0.13± 0.02 0.43± 0.13 0.81± 0.08

Hard Goal 0.08± 0.06 0.17± 0.04 0.07± 0.03 0.15± 0.03 0.30± 0.18 0.58± 0.13

Table 1: Comparisons of the baselines regarding the average win rate at the end of the training process with the corresponding
standard deviation over 5 runs. Lightgreen indicates the second-best results and darkgreen denotes the best performances.

Figure 7: Learning curves of two ablation studies. The left
part methods are all Transformer based. The curve and shade
denote the mean and a standard deviation over 5 runs.

difficulties caused by the complexity of the action space.

5.2 EFFECTIVENESS ANALYSIS OF
TRANSFORMER

We investigated whether a Transformer-style sequence
model can effectively capture hybrid action space dependen-
cies and generate accurate Q-values. Thus, we replace the
Transformer-based Q-network with a standard MLP (consis-
tent with the approach taken in HPPO) while ensuring that
the network depth remained constant. The results (right part
of Figure 7) demonstrate that the Transformer-style model
outperforms the MLP in capturing action space dependen-
cies, thus validating its effectiveness in this context. Besides,
the model computational efficiency analysis in Appendix G
proves that Hybrid CtrlFormer does not make the model
redundant although Transformer is employed.

5.3 WHETHER MCTS IS NECESSARY

To demonstrate the importance of MCTS in evaluating dense
subregions, Hybrid CtrlFormer is reduced to a rigid rule as
the baseline (i.e., regions with the highest Q-values for each
sampling), we conducted experiments in two scenarios. The
results, as presented in Figure 8, show that the MCTS-based
approach significantly outperforms the baseline approach.
This finding underscores the effectiveness of MCTS in bal-
ancing exploration and exploitation, thereby enhancing the
efficiency of the learning process.

Figure 8: Necessity study of MCTS. The curve and shade
denote the mean and a standard deviation over 5 runs.

Figure 9: Effect of sampling steps on MCTS. The curve and
shade denote the mean and a standard deviation over 5 runs.

5.4 THE EFFECT OF MCTS SAMPLING TIMES

To investigate the impact of sampling steps on MCTS, we
conducted experiments in two distinct scenarios (Figure 9).
While keeping all other modules constant, we varied the
sampling times to 16, 32, and 48, respectively. Although
both n = 16 and n = 32 have advantages and disadvantages
in different environments, they are both lower than n = 48.
Our findings indicate that a higher number of sampling steps
(e.g., 48) can enable MCTS to more accurately evaluate each
action subregion based on current state information.

6 CONCLUSION

This paper proposes Hybrid CtrlFormer, a Transformer
based deep RL method that can achieve efficient explo-
ration in hybrid action space. Hybrid CtrlFormer sequen-
tial partitions the continuous action space into several sub-
regions, then use a Transformer-based Monte-Carlo tree
search method to efficiently evaluate and partition the hy-

8



brid action space into good and bad regions along the tree.
Finally, Our experiments demonstrate the superiority of Hy-
brid CtrlFormer regarding performance, efficiency of explo-
ration and robustness in most single-agent and multi-agent
hybrid action environments, especially in complex tasks.
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A RELATED WORKS

Three types of methods have been proposed for Parameterized Markov Decision Processes(PAMDP). The methods of the
first type convert the heterogeneous action space into a homogeneous one by either discretizing continuous action space
([Massaroli et al., 2020]) or transferring discrete actions into continuous space[Hausknecht and Stone, 2016]. By doing this,
conventional RL algorithms can be straightly applied in this setting. However, discretizing all dimensions of the continuous
action suffers from the loss of control accuracy and the scalability issue (due to the exponentially exploring number of
discretized actions); while casting all discrete actions into continuous ones enlarges the original action space, resulting in
additional difficulties in approximation and generalization[Li et al., 2021].

In order to avoid the problems caused by direct homogeneous motion space. The methods of the second type directly
build separate policies for the discrete actions and the continuous ones. Hybrid PPO (HPPO) [Fan et al., 2019] builds
multiple network heads (one for discrete actions and the others for the continuous parameters of each discrete action) to
learn the hybrid policy. A similar idea is also adopted in Action Branching PPO. However, building a separate continuous
policy network for each discrete action will significantly enlarge the model size, resulting in additional difficulties in
optimization. Besides, both these two types of methods neglect the natural dependence between each discrete action and the
corresponding continuous parameters, thus their learning processes are inefficient especially when the hybrid action space
becomes high-dimensional.

To improve the sample efficiency, The methods of the third type explicitly incorporate such dependencies into the model
design. Parameterized DQN (PDQN) [Xiong et al., 2018] proposes a hybrid structure by combining DQN [Silver et al.,
2016] with DDPG [Lillicrap et al., 2016], where the Q-network of DQN directly takes the actor’s outputs of DDPG (i.e.,
the continuous parameters for all discrete actions) as additional inputs. However, the dependence of PDQN’s Q-values
on all parameters actions causes a false gradients issue and can lead to suboptimal action selection. To address the false
gradients issue. False gradients means that due to the serial training of discrete action strategies and all continuous action
strategies, the gradient of discrete action policy affects the training of unrelated continuous action modules, making the
overall strategy suboptimal. Bester et al. [2019] further design a Multi-Pass Q-Network (MP-DQN), making each discrete
action’s Q-value only depends on its corresponding continuous parameters. Similar ideas also have been applied to Soft
Actor Critic (SAC) based methods [Delalleau et al., 2019] and PPO based methods [Ma et al., 2021]. And [Fu et al., 2019]
further extends PDQN to multi-agent RL settings. Most recently, Li et al. [2021] propose Hybrid Action Representation
(HyAR), which uses an embedding table and a conditional Variational Auto-Encoder (VAE) to convert both the discrete
and the continuous actions into a more compact latent space. Then, the policy is trained in the latent action space via Twin
Delayed Deep Deterministic policy gradient (TD3) algorithm [Fujimoto et al., 2018]. HyAR achieves state-of-the-art (SOTA)
performance on typical hybrid control tasks with higher sample efficiency, especially for high-dimensional action spaces.
However, the embedding table and the VAE have to be periodically re-trained with the policy updating. Thus, HyAR is
unstable and difficult to train due to the co-evolution of the latent action embedding and the RL policy. Apart from the
action-dependency modeling, another challenge affecting learning efficiency is the hard exploration problem. As far
as we know, this problem has not been discussed in the previous work, and our work is devoted to solving this problem so as
to further improve the learning efficiency of hybrid action space control tasks.
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B EXPERIMENTAL DETAILS

Our codes are implemented with Python 3.7 and Torch 1.7.1 experiments were run on a single NVIDIA GeForce GTX
2080Ti GPU. Each single training trial ranges from 4 hours to 10 hours, depending on the algorithms and environments.

(a) Chase (b) Platform (c) Hard Goal (e) Move

(e) Chase (f) Chase 3v1 (g) Chase 6v2 (g) Chase 9v3

Figure 10: Benchmarks

The multi-agent hybrid control tasks (Figure 10 (f) 3v1,(g) 9v3, require cooperation among agents to achieve goals. The
action space of the agent is the same as single agent Chase, but multiple agents need to cooperate to catch all the targets.
And need to bypass roadblocks. Both environments are divided into easy and hard tasks, with the harder tasks having targets
that move faster and are smaller and harder to capture.

Single agent Environments. We conduct our experiments on several hybrid action environments and a detailed experiment
description is below.

• Platform: The agent needs to reach the final goal while avoiding the enemy or falling into the gap. The agent needs to
select the discrete action (run, hop, leap) and determine the corresponding continuous action (horizontal displacement)
simultaneously to complete the task. The horizon of an episode is 20.

• Hard Goal: Three types of hybrid actions are available to the agent including kick-to (x, y), shoot-goal (h). The
shot-goal action and split into ten parameterized actions by dividing the goal line equidistantly. The continuous action
parameters of each shot action will be mapped to a region in the goal line. The horizon of an episode is 50.

• Catch Point: The agent should catch the target point (orange) in limited opportunity (10 chances). There are two hybrid
actions move and catch. Move is parameterized by a continuous action value which is a directional variable and catch
is to try to catch the target point. The horizon of an episode is 20.

• Chase (designed by us): The agent needs to control n equally spaced actuators to reach the target area (orange). The
agent can choose whether each actuator should be on or off. Thus, the size of the action set is exponential in the number
of actuators that is 2n. Each actuator controls the moving distance in its own direction. n controls the scale of the action
space. As n increases, the dimension of the action will increase. The horizon of an episode is 25.

• Multi-agent Chase (designed by us): The action space of the agent is the same as Chase, but multiple agents need to
cooperate to catch all the targets. And need to bypass roadblocks.

C MULTI-AGENT HYBRID CTRLFORMER

Hybrid CtrlFormer is an actor-critic framework and can be easily combined with existing value-based or actor-critic
based multi-agent algorithms. The most straightforward way to introduce Hybrid CtrlFormer into multi-agent RL is using
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Figure 11: Multi-agent Hybrid CtrlFormer

independent Q-learning (IQL) [Tan, 1993]. However, this simple approach suffers from the non-stationarity issue caused by
the changing policies of the learning agents, and thus the learning process is unstable. Recently, a great deal of work has
shown that using centralised training can naturally handle the non-stationary problem [Yang et al., 2020, Wang et al., 2020].
Inspired by FACMAC [Peng et al., 2021], we utilize the value decomposition mechanism to coordinate the policy update
over hybrid action spaces among agents.

The overall architecture of MA Hybrid CtrlFormer is shown in Figure 11. In MA-Hybrid CtrlFormer, each agent’s continuous
policy is µi(e(s, k, w); θ) and each agent’s Q-network is Qi(e(s, k, w), xkw;ω) and all agents share the same parameters (θ
and ω) to facilitate training. All agents share a centralised critic Qtot which can be factored as:

Qtot(τ ,u, s;ψ) = hψ(s, {Qi(e(s, k, w), xkw), i ∈ {1, . . . , N}}) (10)

where τ denotes local action observation histories and s means the global state, u denotes all agents’ hybrid actions,
{Qi(e(s, k, w), xkw), i ∈ {1, . . . , N}} are the individual Q-values of all agents (N is the agent number), and hψ is a
non-linear monotonic function parameterized as a mixing network with parameters ψ, as in QMIX [Rashid et al., 2018]. The
centralised but factored critic is trained by minimizing the following loss:

L(ψ;ω) = ED
[(
ytot −Qtot(τ ,u, s;ψ)

2
]

(11)

where ytot = r+γQtot(τ
′,µ′, s′, ψ−)), and µ′ represents the target hybrid actions generated by all agents’ target individual

Q-networks and target individual actors. The individual continuous policy is optimized according to the following loss:

Lµ(θ) = −Qtot(s, {Qi(e(s, k, w), µ(e(s, k, w); θ);ω), . . . }) (12)

D MULTI-AGENT EXPERIMENTS

In multi-agent tasks, five SOTA approaches are selected as baselines: Independent PDQN [Xiong et al., 2018], MAPDQN
[Fu et al., 2019], Independent HPPO [Fan et al., 2019], Independent HyAR [Li et al., 2021] and CTDE-HyAR [Li et al.,
2021]. Hybrid CtrlFormer contains one layer transformer( with one MLP, and a unique attention mechanism). Thus the
network depth of algorithms is the same. PDQN, HHQN, HyAR, and Hybrid CtrlFormer are all implemented based on the
same architecture DDPG. CTDE-HyAR is based on FACMAC [Peng et al., 2021].

The experimental results are shown in Figure 12, in which the total average reward curves are smoothed for visual clarity.
The results show that MA Hybrid CtrlFormer, denoted as MAHT in the figure, significantly outperforms all baselines in
all six scenarios. Cooperative tasks cause the environment to be unstable [Rashid et al., 2018] (the environment can be
changed by the actions of other agents), which makes the state information more complex. This phenomenon reinforces the
need for exploration efficiency. Moreover, the performance of our method is stable in the large-scale agent scenarios, which
proves that MA Hybrid CtrlFormer can not only realize effective exploration but also overcome the factors of environmental
instability to achieve efficient coordination between agents by combining the value decomposition method.
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Simple Chase 3v1 Hard Chase 3v1 Hard Chase 9v3 Simple Chase 9v3 

Figure 12: Comparisons of algorithms in multi-agent environments. y−axis denotes the average reward. The curve and
shade denote the mean and a standard deviation over 5 runs. We abbreviate Multi-agent Hybrid CtrlFomer to MAHT.

Hyperparameter HPPO PADDPG PDQN HHQN HyAR-DDPG Hybrid CtrlFormer

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−4

Target Actor Update Rate N 1e−3 1e−3 1e−3 1e−3 5e−3

Target Critic Update Rate N 1e−2 1e−2 1e−2 1e−2 5e−3

Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 2: Comparisons of the baselines regarding the average win rate at the end of the training process with the corresponding
standard deviation over 5 runs. Values in bold indicate the second-best results in each environment. And Red Values denote
the best performances.

E HYPERPARAMETERS

For all of our experiments, we use the raw state and reward from the environment without any normalization or scaling.
Additionally, no regularization is applied to the actor and critic models in any of the algorithms. To encourage exploration,
an exploration noise sampled from N(0, 0.1) is added to all baseline methods when selecting actions. In the case of Hybrid
CtrlFormer, the continuous action space of each environment is uniformly divided into 8 sub-regions in sequential order.
Concretely, the continuous action space of the environment is [−1, 1], and the 8 sub-regions are defined as follows: [-1,
-0.75), [-0.75, -0.5), [-0.5, -0.25), [-0.25, 0), [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1.0]. The c parameter of the MCTS
is 1/

√
2.0, which is the optimal setting that has been tested extensively and is the general default setting for MCTS. The

number of single agent training episodes is 6000 to ensure that all algorithms converge. The episode number for MARL
frameworks is 10000.The discount factor used is 0.99, and we employ the Adam optimizer for all algorithms. Table 2
summarizes the common hyperparameters used in all of our experiments.

F NETWORK STRUCTURE

PADDPG and PDQN are implemented with reference to https://github.com/cycraig/MP-DQN. For a fair
comparison, all the baseline methods have the same network structure (except for the specific components of each algorithm)
as our HyAR-TD3 implementation. For PDQN, PADDPG, HPPO paper does not provide open-source code and thus we
implemented it by ourselves according to the guidance provided in their paper. For HPPO, the discrete actor and continuous
actor do not share parameters (better than sharing parameters in our experiments). We use a two-layer feed-forward neural
network of 256 and 256 hidden units with ReLU activation (except for the output layer) for the actor network for all
algorithms. For PADDPG, PDQN and HHQN, the critic denotes the Q-network. For HPPO, the critic denotes the V network.
Some algorithms (PADDPG, HHQN) output two heads at the last layer of the actor network, one for discrete action and
another for continuous action parameters. For HyAR-DDPG, we use the author’s open-source code. In order to prove that
the Hybrid CtrlFormer framework is not redundant and will not cause training difficulties due to the division of continuous
motion space, the structure details are shown in Tab 3.

14

https://github.com/cycraig/MP-DQN


Model Component Layer(Name) Structure

Critic
Fully Connected (state dim, 128)

Activation ReLU
Fully Connected (128, 1)

Transformer

Fully Connected (state dim, 128)
Activation ReLU

self-attention (128, 128), ReLU
Fully Connected (128, subregion number)

Actor Fully Connected (128, 1)

Table 3: Network structures for the Hybrid CtrlFormer including, the discrete action Q network, one layer transformer, and
the actor-critic architecture

Benchmarks HPPO PADDPG PDQN HHQN HyAR-DDPG Hybrid CtrlFormer

Platform 2h4m57s 2h24m33s 2h56m06s 2h26m17s 3h11m41s 2h48m51s
Chase 20h34m08s 20h28m14s 22h06m36s 22h27m12s 23h20m06s 22h12m35s
Goal 7h12m23s 7h15m57s 7h46m05s 8h03m02s 8h53m26s 8h41m29s

Table 4: The convergence rate of Hybrid CtrlFormer is in the middle among all methods.

G MODEL SCALE AND PERFORMANCE ANALYSIS

Despite utilizing both Transformer and MCTS, Hybrid CtrlFormer does not increase the network depth, and the computational
demand remains at the same order of magnitude as previous methods. We conducted experiments to test the convergence
time of all methods (with Hybrid CtrlFormer sampling 32 times per step) in multiple scenarios on a single NVIDIA GeForce
GTX 2080Ti GPU (see Tab 4). The results demonstrate that the combination of multiple modules has a limited effect on the
time performance of our method, and its convergence speed remains at the same order of magnitude as previous work.
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