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ABSTRACT

Negative sampling is an important yet challenging component in self-supervised
graph representation learning, particularly for recommendation systems where user-
item interactions are modeled as bipartite graphs. Existing methods often rely on
heuristics or human-specified principles to design negative sampling distributions.
This potentially overlooks the usage of an underlying “true” negative distribution,
which we might be able to access as an oracle despite not knowing its exact
form. In this work, we shift the focus from manually designing negative sampling
distributions to a more principled method that approximates and leverages the
underlying true distribution from the ground up. We expand this idea in the analysis
of two scenarios: (1) when the observed graph is an unbiased sample from the true
distribution, and (2) when the observed graph is biased with partially observable
positive edges. The analysis result is the derivation of a sampling strategy as the
numerical approximation of a well-established learning objective. Our theoretical
findings are also empirically validated, and our new sampling methods achieve
state-of-the-art performance on real-world datasets. Our code can be downloaded
at https://anonymous.4open.science/r/NS-Graph-Rec/.

1 INTRODUCTION

Self-supervised graph representation learning has wide applications in modern recommendation
systems. To obtain high-quality embeddings for users and items, the typical method is to model past
user-item interactions as a bipartite graph. Node embeddings are often learned in such a way that the
distance between a user’s embedding and an interacted item’s embedding indicates the likelihood of
an edge between the two objects.

Negative sampling is an important step in this learning paradigm: as shown in Figure 1(a), for a given
anchor node u, a node v− needs to be sampled from a certain distribution q−, so that node pair (u, v−)
can be treated as a “negative edge” in training, together with the observed positive edge (u, v+), for
training the model via binary loss. Negative sampling is important since it generates all negative
samples in the training dataset by certain human-specified rules, which can have huge influence on
learned representations. This also applies to more general graphs outside of the bipartite user-item
graphs in recommendations.

Negative sampling is not only important but also challenging. Existing works have proposed many
heuristics, including random negative sampling (RNS) (Rendle et al., 2012), popularity-based negative
sampling (PNS) (Mikolov et al., 2013), hard negative sampling (HNS) (Ying et al., 2018), GAN-based
negative sampling (GAN-based NS) (Chae et al., 2018), and in-batch negative sampling (in-batch
NS) (Wu et al., 2021), etc. More recent theoretical studies (Yan et al., 2024; Yang et al., 2020b) have
proposed ideal properties of node embeddings that a good negative distribution should encourage,
and then design negative distributions accordingly.

These previous works leave open a critical question: should we consider negative sampling to be a
procedure that is primarily up to human heuristics or design, or can we, instead, build the procedure
from the ground up — by treating it as a rigorous numerical approximation of certain well-established
optimization objective? In this paper, we argue to support the latter, and show a path to achieve it.

We start by formulating and highlighting the concept of the true distribution of negative samples
p−, whose objective existence is independent of human choices. As a motivating example, consider
that we are in an ideal world where we have enough resources and capability to survey the true
opinion of each user u’s potent to like each item v in the entire content pool. This true opinion
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Figure 1: (a) The negative sampling problem aims to find an optimal distribution q− to sample negative node v−

from. (b) Illustrating the key distributions and idea in our analysis: The green curve p−(∣u) is the real negative
distribution for v− w.r.t. anchor node u, which we argue to exist objectively. Our Prop. 4.1 shows that the
optimal q− should be p−(∣u) reweighed by an exponential factor that relies on the model’s output in current
epoch. We observe that q− proposed in previous works, denoted as the gray curve, is mostly heuristics-based and
does not leverage the optimal q−, and thus correlates little on distribution landscape. In comparison, our negative
sampling seeks to learn and approximate q−, denoted as the blue curve, albeit with inevitable deviation. The
bell-shaped curves are only for illustrative purpose and do not reflect any assumption about the distributions.

value can be technically formulated as P (y = 1∣e = (u, v)), where y is the true class label of
the user’s like. The Bayes rule gives us distribution p+ = P (e∣y = 1) ∝ P (y = 1∣e)P (e) and
distribution p− = P (e∣y = 0) ∝ (1 − P (y = 1∣e))P (e), where P (e) is the node pair prior. In the
above formulation, p− is the true negative distribution that we want to emphasize: every graph from a
well-defined domain in practice should have such a p− that objectively exists. We will provide more
rigorous definitions in Section 3.

Of course, the exact form of p− is unknown in most problems, otherwise the classification problem is
already algebraically solvable by reversely deriving P (y = 1∣e) from p−, in which case there is no
need to do sampling and training. However, p− being unknown does not necessarily preclude us from
being able to access (samples from) p− as an oracle (though again in many cases there is distribution
shift in observation, which we will have a dedicated section to address). The reason that we may still
need to generate negative samples from a different distribution than p− is primarily to reduce variance
of learning, i.e. to speed up convergence with fewer samples. Some existing analysis (Mukherjee
et al., 2011) of classical boosting algorithms such as AdaBoost helps further illustrate this point.

The true negative distribution p− guides our principled derivation of a good proposal negative
distribution q−. Illustrated in Figure 1(b), we argue that a good q should be grounded and focused
on leveraging the noted true (albeit unknown) negative distribution p− — including understanding
how p− factors into the expression of a well-established optimization goal, as well as how it can
be approximated or recovered if distorted. In fact, an interesting observation is that most existing
negative sampling methods made this assumption implicitly without fully exploiting its usage. See
Appendix A for more discussion.

Our work. In this work, we analyze how to build towards an optimal sampling strategy, by shifting
the focus from proposing distributions into crafting sampling procedures based on the argument and
the leverage that a true p− exists, which further expands into two cases. In the first case, we assume
that the observed graph is an unbiased sample from the true distribution. q− can then be derived by
drawing its connection to a well-established objective that involves p−. It turns out that the resulted
sampling strategy can be interpreted as a form of adaptive hard negative sampling.

In the second case, we assume that the observed graph is a biased sample from the true distribution,
and that the positive edges may be only partially observable. This case is underexplored in graph
learning’s literature but has wide applications. For example, in recommendations a positive edge
represents a user’s manifested interest in an item logged by the platform; however, the absence of an
edge can either mean the user truly dislikes the item, or that the user just has not been offered the
chance to interact with the item but would have liked it if so. In fact, due to the sparse nature of many
complex systems only a small fraction of positive edges may be observable.

To address the second case, the idea is to first derive an unbiased empirical risk estimator depending
on true distributions, and then convert it into a form that depends only on observed distributions, up
to some calibration. The calibration, which was deemed a bottleneck in more general settings, can be
facilitated by graph topology in a learnable manner. We further validated this new sampling method
on real-world datasets and achieved state-of-the-art results.
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Scope. We primarily consider negative sampling in the context of recommendation and link prediction
tasks, following most existing literature on this topic. See Appendix B for more discussion.
Contributions. We make the following contributions in this work:
• We propose to fundamentally shift the mode of thinking from proposing negative distributions

to principally approximating and utilizing the true distributions in sampling methods for graph
representation learning in both recommendations and beyond.

• We theoretically derive and analyze the forms that the optimal sampling strategy should follow,
under the assumption that the positive edges are sampled unbiasedly from the true distribution, or
that the positive edges are only partially observable.

• We further validate our theorems and new sampling method on real-world data and observe their
significant improvements over previous methods.

2 RELATED WORK

Self-supervised Learning on Graphs. Self-supervised Learning on Graphs aims to train a graph
encoder using both the original graph and often some stochastically augmented data, with many
applications including recommendations (Shuai et al., 2022), drug discovery (Wang et al., 2021),
anomaly detection (Wang et al., 2024), etc. Fancy data augmentations are less common for industry-
level recommendations due to scalability and efficiency concerns (Yu et al., 2022). In practice,
positive samples are usually directly sampled from the edge set or via random walks (Ying et al.,
2018), and negative samples by fixing an anchor node and then drawing the other from a certain
negative distribution (Yang et al., 2020a).
Negative Sampling. Negative sampling was originally proposed as a component in noise contrastive
estimation (Gutmann & Hyvärinen, 2010; 2012), and was soon applied to language modeling
(Mikolov et al., 2013; Mnih & Teh, 2012) for approximating softmax. It emerged in graph’s context
when node embedding methods (Perozzi et al., 2014) took inspirations from language modeling.
Since then, it has been widely applied in self-supervised graph learning, and in recommendations
(Yang et al., 2020a), and soon became a standalone research topic due to its importance.
Existing works on negative sampling have proposed many heuristics, including random negative
sampling (RNS) (Rendle et al., 2012; Bordes et al., 2013), popularity-based negative sampling (PNS)
(Mikolov et al., 2013; Perozzi et al., 2014), hard negative sampling (HNS) (Ying et al., 2018; Zhang
et al., 2019; Huang et al., 2021), GAN-based negative sampling (GAN-based NS) (Chae et al., 2018;
Wang et al., 2018), and in-batch negative sampling (in-batch NS) (Wu et al., 2021; Chen et al., 2020;
Zhao et al., 2021), etc. More recent theoretical works (Yan et al., 2024; Yang et al., 2020b; Robinson
et al., 2021) proposed properties that a good negative distribution should satisfy, such as monotonicity
and accuracy. Shi et al. (2023) analyzes the relationship between hard negatives and BPR loss.
Some graph embedding models propose their own negative sampling procedures, e.g., GraphSAGE
(Hamilton et al., 2017) and DeepWalk Perozzi et al. (2014) both use PNS; PinSAGE (Ying et al.,
2018) uses a mixture of in-batch NS and HNS customized for large-scale training. In comparison,
some other GNN models did not specify their accompanied negative sampling, such as GCN (Kipf &
Welling, 2016), GAT Veličković et al. (2017), MPNN Gilmer et al. (2017), SGC (Wu et al., 2019).

3 PROBLEM FORMULATION AND DEFINITIONS

3.1 PROBLEM FORMULATION

The standard task of self-supervised learning on a graph is defined as the following. We are given a
graph G = (V,E) where V is the node set, E is the edge set. Denote by xu ∈ Rm the raw features of
node u ∈ V . The goal is to learn a graph encoder f defined as a mapping Rm → Rn, so that f(xu)
can best represent node u and be used in downstream tasks. f is usually parameterized by a neural
network with parameters θ, learned by minimizing the following objective:

J = ∑
(u,v)∈E,

v−1 ,...,v
−
k∼q

−

[L+(u, v) + τ

k

k

∑
i=1

L−(u, v−i )] (1)

where L+(u, v) = g+(f(xu), f(xv)), L−(u, v−) = g−(f(xu), f(xv−)) (2)

which traverses every edge (u, v) in E, picking k negative nodes from the proposal negative
distribution q− for each edge, and collecting the corresponding positive and negative losses.
g+ and g− are simple functions that measure dissimilarity and similarities between the f -encoded
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node embeddings f(xu) and f(xv), respectively. τ is a weighing constant for analysis purpose,
assumed to be 1 by default.

The negative sampling problem asks (as consistent with Yang et al. (2020b); Yan et al. (2024)):

(∗) What’s the best form of q− to use in the above objective J?

3.2 PROBABILISTIC SETUP

First, all probabilities are defined in the sample space {(e, y, s)} which has the following meaning:
(1) Random variable e = (u, v) ∈ V × V is a node pair in the graph. (2) Random variable y ∈ {0,1}
is the class indicator variable for ground truth. y = 1 means that the associated node pair e is a
truly positive edge, and y = 0 otherwise. (3) Random variable s ∈ {0,1} is the observation indicator
variable. s = 1 means the edge is observed, and s = 0 otherwise.

We can define several distributions based on the specified sample space. p+ = P (e∣y = 1) and
p− = P (e∣y = 0) are the true positive distribution and true negative distribution respectively. p̂+ =
P (e∣s = 1) and p̂− = P (e∣s = 0) are the observable positive distribution and the observable negative
distribution respectively. π+ = P (y = 1) and π− = P (y = 0) are the class priors for the ground truth.
p = P (e) is the node pair prior, assumed to be uniform by default, i.e. all node pairs are assigned
equal weight of consideration initially. P (y = 1∣e) represents the link predictor or recommender that
we wish to obtain ultimately.

If the data is unbiasedly sampled then p̂+ = p+, p̂− = p−. We hold this assumption until Section 6
when we address the case of biased observation. Also notice that G can either be viewed as containing
a set of edges E drawn from distribution p̂+, or equivalently as containing a set of negative edges,
V × V /E, drawn from distribution p̂−.

As a convention of notation: since p+ = p+(e) = p+(u, v) = P (e∣y = 1) = P (u, v∣y = 1), p+ is
essentially a joint distribution of nodes u, v, i.e. p+ ∶ V × V → [0,1]. Hence we can define its
corresponding marginal distribution p+(u), and conditional distribution p+(⋅∣u). We further use
(u, v) ∼ p+ to denote that u, v are drawn from the joint distribution, and use u ∼ p+ to denote that u
is drawn from the marginal distribution. Similar conventions apply to p−, p̂+, and p̂−.

The following proposition gives the generalized objective that negative sampling problem optimizes.

Proposition 3.1. J is the empirical estimation of the following expected risk term

R1(f) = Eu∼p+[Ev∼p+(⋅∣u)[L+(u, v)] +Ev−∼q−[L−(u, v−)]] (3)

3.3 DIFFERENCE BETWEEN q−, p−(⋅∣u), AND p̂−(⋅∣u)
It is crucial to distinguish the three negative distributions noted above: q−, p−(⋅∣u), p̂−(⋅∣u), which are
all defined over node set V . q− is the proposal negative distribution whose optimal form we seek to
find, which may or may not depend on the anchor node u though. That is why in the notation we
suppress the dependence of q− on any other entities for the time being. p−(⋅∣u) is the true negative
distribution given anchor node u fixed, which we cannot directly observe if the observations are
biased. p̂−(⋅∣u) is the observed negative distribution, the distribution that our data (i.e. the observed
negative edges) are directly sampled from.

Our ultimate goal in this paper is to construct q− from p̂−(⋅∣u), as introduced in Section 1. Also notice
that although the best form of q− depends on p, it does not have to be exactly the same as p.

4 UNBIASED OBSERVATIONS

Roadmap. In this section, we show how the best form of q− can be principally derived in two steps.
First, we introduce another objective R2(f), in addition to the R1(f) defined above. By explaining
R2(f), we will show why it is a well-established objective to optimize for training. Second, once
we’ve established the importance of R2(f), we can show there is only one specific q− that makes
R1(f) equivalent to R2(f), thereby proving the optimality of our design for q−.

What is R2(f)?
Given a graph G = (V,E) with distributions p+ and p− as defined in Section 3, consider the following
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risk term R2(f) that we wish to minimize, associated with encoder f that has parameters θ:

R2(f) = E(u,v)∼p+[− log pf(v∣u)] (4)

pf(v∣u) =
eg(f(xu),f(xv))

eg(f(xu),f(xv)) + τEv−∼p−(⋅∣u)eg(f(xu),f(xv−))
(5)

where pf(v∣u) is the generalized softmax probability of node v given anchor node u, based on f ’s
output. g can be any similarity measurement such e.g. dot product, and at this moment it is to be
distinguished from the g+ and g− in problem formulation. See more discussion in Appendix C.2 for
ensuring pf to be a proper distribution.

The definition of pf(v∣u) above has shown up as a popular objective in many previous works
Robinson et al. (2021); Rusak et al. (2024); Oord et al. (2018); Tian et al. (2020); Chen et al. (2020).
For example, if we set τ = 1, then it is the expectation of the classic noise-contrastive estimation
(NCE) loss in Robinson et al. (2021)’s Eq.(1); if we set τ = ∣V ∣ − 1, it becomes the expectation of the
InfoNCE loss - see Rusak et al. (2024)’s Eq.(1) or the original paper Oord et al. (2018)’s Eq.(4). .

Also, crucially note that the negative distribution in the denominator of Eq.5 is p−, instead of q−.
This is because we desire the probability of each edge to be as large as possible — calibrated against
the probabilities of all other possible negative edges sampled from the true negative distribution p−,
rather than against edges from an arbitrary proposal distribution q−. Using p− for calibration reflects
the competition that positive edges face from the entire set (distribution) of negative edges, which
represents the general objective we seek to optimize.

Why is R2(f) an important objective to optimize?
R2(f) can be further interpreted by writing down its empirical estimator:

R̂2(f) =
1

n
∑

{(ui,vi)}ni=1∼p̂+
[− log pf(v∣u)] =

1

∣E∣ ∑(u,v)∈E
[− log pf(v∣u)] (6)

which has been widely used in contrastive learning literature as explained above. Besides, minimizing
R̂2(f) is equivalent to maximizing the probability of the following random graph model, assuming
uniform node prior P (u). To see this, note that

P (G) = ∏
u,v∈V

P (u, v)p
+(u,v) = ∏

u,v∈V
[pf(v∣u)P (u)]p

+(u,v) = Z ∏
u,v∈V

[pf(v∣u)]1{(u,v)∈E} (7)

where Z = ∏u,v∈V P (u)p
+(u,v) is a constant. Taking log of Eq. 7 gives to −R̂2(f).

What q− can make R1(f) equivalent to R2(f)?
If our ultimate goal is to minimize R2(f), what can we tell about the sampling problem defined in
Section 3? The following proposition shows that there exists a unique choice of q− which ensures
that optimizing the R1(f) in Eq. 4 is identical to optimizing the R2(f) in Eq. 3.
Proposition 4.1. ∇θR1(f) ≡ ∇θR2(f) if and only if the following conditions hold:

• For each u ∈ V fixed, q−(v) ∝ pf(v∣u)p−(v∣u)
• g+ = −g, g− = g

Since ∇θR1(f) ≡ ∇θR2(f) ⇒ arg minθR1(f) ≡ arg minθR2(f), this proposition shows that to
optimize R2(f) the best proposal negative distribution q− to be used in Eq. 1 should take the simple
form of q− ∝ pf(⋅∣u)p−(⋅∣u). To approximate R1(f), g− should be further reweighed by the partition
constant zu = Ev−∼p−(⋅∣u)[pf(v−∣u)], which however does not need to be explicitly estimated as it
cancels off with the zu for normalizing q− in sampling. See Appendix C.3 for further discussion.

How can we interpret the reweight term pf(v∣u) in Proposition 4.1?
To analyze pf(v∣u)’s implications, first notice that the equivalence above is defined between the two
gradients, meaning that the property holds throughout the training of f . In other words, pf(v∣u) is
a changing term during the training, which is calculated based on the output of the model f in the
current training epoch. Also notice that a large pf(v∣u) means that the current model f leans towards
classifying (u, v) as positive. Therefore, using pf(v∣u) to reweigh the observed (true) negative
distribution p− is a precise form of adaptive hard negative sampling. This theoretical result also
intriguingly relates in spirit to some of the previous heuristic-driven sampling methods for adaptive
hard negative sampling Zhang et al. (2013); Robinson et al. (2021); Lai et al. (2024).
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Implementation According to Proposition 4.1, we need to compute two terms, p− and pf , in order to
draw samples from the proposal distribution q−.To efficiently estimate p−, we resort to the relationship
p = p+π+ + p−π− ⇔ p− = (p − p+π+)/π− = (p − p̂+π+)/π−. This allows us to exploit the sparsity
of observed p̂ in practice. Refer to Section 3.2 for more definitions. Here, the positive prior π+ is
a hyperparameter to tune, and π− = 1 − π+. For approximating p̂+, it is typical to use the Monte
Carlo method (Robert, 1999), which averages the delta function over all observed neighboring edges:
P̂ +(⋅∣u) ≃ 1

∣N(u)∣ ∑v∈N(u) δu,v(⋅), where δu,v is the Dirac delta function, and N(u) is the neighbors
of u. To estimate pf , we replace the expectation in its definition of Eq. 5 by sampled average.

5 BIASED OBSERVATIONS
This section presents a sampling method for the bias case where only some positive edges are
observable. Section 5.1 motivates the bias setup. Section 5.2 introduces an empirical estimator and
its corresponding sampling method. Section 5.3 further describes a graph-learning-based method for
estimating a key term in our sampling method.

5.1 FOMULATING THE BIAS

Many of the real-world graphs have this interesting property of observation bias: while the observation
of an edge often signifies a reliably logged interaction, the absence of an edge could either mean that
the edge does not exist in reality, or that the existence of the edge just has not been testified.

For example, in recommendations, the absence of a user-item edge can either mean that the user
truly dislikes the item, or that the user just has not been offered the chance to interact the item – but
would have liked it if so. This also applies to other types of interactions such as social interactions
and protein interactions, and patient-disease diagnosis relations.

To formulate this bias, recall from Section 3 definitions of the random variables: we consider
probabilities in the sample space {(e, y, s)} where e ∈ V × V is a random node pair, y ∈ {0,1} is the
true class variable, and s ∈ {0,1} is the observation indicator variable.

It is important to distinguish the meaning between y and s. As an example in video recommendations,
e = (u, v) represents a user u and a video v that we consider. y = 1 means that u would have liked
v if u is offered the chance to view v. Also refer to the “ideal world” explanation in Section 1.
s = 1 means the fact that u likes v is actually logged by the platform, usually by judging from some
predefined interaction metrics by the platform such as the actual action of clicking on the “like”
button, long video viewing time, positive comment below the video, etc.

The observation bias that we consider stipulates that s = 1 only when y = 1, or equivalently,
P (s = 0∣y = 0) = 1 by contrapositive. We further define ϕu,v = P (s = 1∣y = 1, e = (u, v)), which
is the probability that edge e gets observed conditioned on itself being a true positive. ϕu,v is also
called propensity score in some literature.

5.2 UNBIASED ESTIMATOR FROM BIASED OBSERVATIONS

In this case, directly applying the sampling method over the observable distributions is problematic,
because both the p+ in the problem definition (Eq.3), and the p− in q− ∝ pf(⋅∣u)p−(⋅∣u), are now
unobservable. If we directly replace them by p̂+ and p̂−, further corrections are needed. In fact, we
will show that in this case not only p̂− needs to be corrected, but so does p̂+. In other words, in
order to approximate R2(f) under biased observation, we need to build two proposal distributions
on top of p̂+ and p̂−: a proposal positive distribution q+, and a proposal negative distribution q−. The
following theorem elaborates this idea.
Theorem 5.1. Assume L+ = −L−, then

R2(f) ≡ Eu∼p̂+[Eu∼q+[β1L
+] +Eu∼q−[β2L

−]] (8)

where
• c = P (s = 1∣y = 1), ϕu,v = P (s = 1∣y = 1, e = (u, v));

• q+(v) ∝ [ϕu,vpf(v∣u) + β1]−1 p̂+(v∣u)

• q−(v) ∝ [ϕu,v pf(v∣u)]−1 p̂−(v∣u)

• β1 = π+c(1−c)
π− , β2 = (1−π

+c)c
π−

(Note that p̂+, p̂−, π+, π− have been defined in Section 3.1; pf(v) has been defined in Eq. 15.)
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Theorem 5.1 directly gives the desired form for the new sampling method that best approximates
R2(f). We would provide pseudocode for the full algorithm at the end of this section. Similar to
the unbiased case, here we also see pf shows up as a reweight to the observed distributions, which
carries rich implications – see previous discussion under Proposition 4.1.

Implementation. To implement this biased case, we first notice that both c and π+ do not depend
on v, and π+c = P (s = 1) is a value that can be directly estimated from the data by 2∣E∣

N(N−1) . π+

remains to be a sampling hyperparameter to tune, and π− = 1 − π+. To efficiently approximate p̂−,
we resort to the relationship p = p+π+c + p−(1 − π+c) ⇔ p̂− = (p − p̂+π+c)/(1 − π+c), which allows
us to exploit the sparsity of p̂ in practice. Refer to Section 3.2 for more definitions. The sampling
complexity remains the same as that in Sec. 4 — also same as uniform negative sampling.

The only unknown relying on v is the propensity score function ϕu,v , discussed in next subsection.

5.3 LEARNING-BASED ESTIMATION OF PROPENSITY SCORES USING GRAPH FEATURES

Here we introduce a learning-based method for approximating the propensity function ϕu,v. We
will first discuss its interpretation, then explain how it can be approximated by a graph encoder
parameterized by a neural network.

Interpretation. ϕu,v = P (s = 1∣y = 1, e = (u, v)) is essentially the observation bias of edge (u, v),
also known as exposure bias in some literature. Here, our key observation is that the existing literature
discussing these biases essentially establishes their strong correlation with various graph-based
features, such as (1) Popularity bias (Zhang et al., 2021), which may be quantified by node degree
du, dv (2) Position bias Chen et al. (2023), which may be quantified by the output of distance function
g on the node pair (u, v). In addition, we also conjecture that the general structural information of
the u, v may also be correlated factors.

Although these bias terms can be easy to identify, conceptualize, and quantify, their relationship with
the propensity score, as encapsulated by ϕ, is very complex and varied from one domain to another.
Therefore, we propose to use a neural network as the universal function approximator for ϕ.

Usage of Graph Features. We define the approximator for ϕ as:
ϕ̂(u, v) = σ(MLP([du;dv; f(u); f(v); g(u, v)])) (9)

where σ is a non-linearity function such as sigmoid; the degree features and the embeddings of u, v
are concatenated as input to the MLP; g(u, v) = g+(f(u), f(v)), see Sec.3.1. The output ϕ̂(u, v)
is directly plugged into Eq. 25 so that ϕ̂ is co-trained with f in an end-to-end fashion. The role of
ϕ̂ in Eq. 25 is very similar to that of the attention mechanism (Veličković et al., 2018): both are a
plugged-in module that learns to reweigh samples (tokens) alongside primary training; the goal of
both modules is to approximate an underlying, physically motivated function.

Regularization. ϕ̂ can be further regulated to align its behavior with the desired properties of ϕ.
Besides the unit-range output enforced by σ, we also consider its first moment and consistency:

• First moment: Eu,v∼p+[ϕu,v] = c ;
• Consistency: g(u, v1) > g(u, v2) ⇔ ϕ(u, v1) > ϕ(u, v2), ∀u, v1, v2 ∈ V .

The first moment constraint restricts the numerical scale of ϕ, i.e. to be centered around c by expecta-
tion - see its proof in Appendix C.5. We softly enforce this by mean-squared loss (ϕ̂(u, v) − c)2. The
consistency constraint is based on the probabilistic gap theory (He et al., 2018; Gerych et al., 2022),
which states the general order-preserving property between the propensity function and the decision
function. We implement it by list-wise ranking loss ListMLE (Xia et al., 2008), computed between the
two length-(k + 1) lists, (g(u, v+), g(u, v−1 ), ..., g(u, v−K)) and (ϕ̂(u, v+), ϕ̂(u, v−1 ), ..., ϕ̂(u, v−K)).
Pseudocode. The full algorithm is presented as Algorithm 1 in Appendix.

Complexity. Despite being an intricate framework, our negative sampling has good time complexity
due to importance sampling i.e. line 9 in Algorithm 1, which essentially reduces per-step complexity
from O(∣V ∣) to O(k). In fact, the only place that our negative sampling introduces time overhead is
at learning the propensity function, compared with the simplest uniform negative sampling. However,
the computational cost of the additional MLP usually just a fraction of the main backbone model to
learn. Our other debiasing steps involves computation of only some extra constants, as can be both
seen from our pseudocode and validated by empirical results in Figure 3.
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6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

Dataset & Tasks. We primarily consider graph-based recommendations framed as link prediction
problem, using three popular benchmarks whose sizes are among the largest in similar works:
MovieLens (Ding et al., 2020), Pinterest (Ding et al., 2020; Geng et al., 2015), and LastFM Wang
et al. (2019). A statistical overview of them can be found in Appendix E.1.
Baselines. We compare with 10 baseline methods covering both classical and state-of-the-art methods:
DNS (Shi et al., 2023), AHNS (Lai et al., 2024), SENSEI Yan et al. (2024), MCNS (Yang et al.,
2020b), NMNR Wang et al. (2018), IRGAN Wang et al. (2017), in-batch negatives with LogQ
correction (Chen et al., 2020), MixGCF (Huang et al., 2021), uniformly random sampling (RNS),
and popularity-based sampling (PNS) using node degrees.

Base Models. The choice of base learning model f is independent from the sampling. We consider
two popular models: (1) a node embedding based model (Rendle et al., 2012), essentially performing
matrix factorization and preceding many classical embedding methods such as deepwalk (Perozzi
et al., 2014), and (2) LightGCN (He et al., 2020), a popular GNN model for recommendation.
Other Configurations. More details about data preprocessing and tuning are in Appendix E.2.

6.2 ANALYSIS OF PERFORMANCE

Table 1 shows that our method consistently outperforms the baselines. Two factors contribute to our
better performance. First, we are the only method whose derivations are provably associated with
the ground-truth negative distribution, while no baseline utilizes ground-truth negative distribution.
Second, no baseline considers observation bias in sampling, resulting in overestimation of an edge’s
likelihood to be negative and deterioration of training data quality. In comparison, our method
carefully mitigates these biases under a learnable framework.

DNS and AHNS are among the strongest baselines. While both baselines proactively probe for hard
negatives, our method does not adopt that as first principle. It just happens so that the best form of
sampling we derived aligns with the hard sampling strategy.
Ablation Study. We conduct various ablations to verify the effectiveness of the several key compo-
nents in our sampling method. The results are reported in Table 2 and analyzed in Appendix E.5. The
performance drop in each ablation demonstrates necessity of the designed component.

6.3 NEGATIVE SAMPLING FOR CONTRASTIVE LEARNING

Our method is not designed for all graph tasks. However, for comprehensiveness of study we also
evaluate it in contrastive-learning-based node classification, using two classic frameworks as base
models: GRACE Zhu et al. (2020) and GCE Zhu et al. (2021). We align with the original works on
metrics used and rounding of reported numbers. Table 3 shows the result.
We see that our method not only performs well in general, but in some cases it even outperforms the
original paper that uses full contrastive loss without any sampling - a phenomenon unobserved on
link-based tasks. We conjecture that our debiasing and hard negative selection help the model learn
more helpful structural information for node classification - see more discussion in Appendix E.4.

6.4 FURTHER ANALYSIS

We further study the numerical behaviors of all sampling methods on MovieLens dataset.
Convergence. Fig. 2 (a) plots the training loss curves for all sampling methods. Our method, despite
also being a hard negative sampling method with a MLP module to train, converges relatively fast —
mainly because it is derived from the ground up to strictly approximate the log-softmax loss R2(f)
in an unbiased manner. In comparison, no heuristics-based method approximates a concrete loss term.
Note that the absolute loss values are not directly comparable since their expressions vary.
Sensitivity to Hyperparameters. We investigate two core hyperparameters: positive class prior π+,
and negative sampling number k. The results are shown in Figs.2(b) - (c). Fig.2(b) shows a sweet
region for π+. Note our theories suggest that we can directly observe (estimate) P (s = 1) from data
in an unbiased manner; this value is ∼ 0.0027 for MovieLens, according to the plot. Since the positive
class prior is π+ = P (y = 1), the ratio P (s = 1)/π+ stands for the observation rate which is always
below 1 in practice due to various biases. The sweet region of π+ indicates that real observation rate
for MovieLens might be ∼ 20% − 35%, though unfortunately it is impossible to directly verify this.
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We further study the effect of negative sampling number k in Figure 2 (c). The result is consistent
with our expectation that the performance quickly plateaus as k increases.
Time Complexity. Fig.3(a) plots the epoch times, placing our method in middle range. Among
the baselines, DNS and PNS run relatively slowly due to expansive search and lack of a localized
sampling algorithm. We also found that most localized sampling methods run faster, whose sampling
only accounts for a small fraction of total time. Fig.3(b) - (d) plot asymptotic times, showing a
desirable near-linear trend which justifies our discussions on our method’s complexity in Sec.5.

Table 1: Performance on real-world datasets measured by Recall@20 (%). Results on NDCG are reported in
Appendix E.3. MovieLens and Pinterest have data splits to simulate biased observation, and LastFM to simulate
unbiased observation. ∗ means the best performance; ∗∗ means statistical significance; underline means the
second best result. Baseline MixGCF is designed for GNN base models only.

Negative Sampling Base Model: Node Embedding (Rendle et al., 2012) Base Model: LightGCN (He et al., 2020)

MovieLens Pinterest LastFM MovieLens Pinterest LastFM

RNS 7.11 ± 0.16 7.50 ± 0.19 5.97 ± 0.13 8.94 ± 0.11 7.98 ± 0.25 6.39 ± 0.10
PNS 8.41 ± 0.10 8.42 ± 0.05 6.64 ± 0.11 7.58 ± 0.05 8.67 ± 0.05 7.10 ± 0.09
LogQ(Chen et al., 2020) 9.97 ± 0.10 8.14 ± 0.09 4.74 ± 0.15 11.55 ± 0.20 11.53 ± 0.05 5.53 ± 0.11
DNS (Shi et al., 2023) 12.42 ± 0.09 8.56 ± 0.06 7.37 ± 0.21 11.89 ± 0.08 10.77 ± 0.13 7.26 ± 0.12
SENSEI Yan et al. (2024) 10.19 ± 0.06 9.01 ± 0.10 5.13 ± 0.25 8.10 ± 0.11 10.78 ± 0.14 5.44 ± 0.21
MCNS Yang et al. (2020a) 8.53 ± 0.08 8.68 ± 0.17 6.65 ± 0.20 7.22 ± 0.05 8.85 ± 0.11 6.88 ± 0.12
AHNS (Lai et al., 2024) 12.08 ± 0.09 10.84 ± 0.09 7.01 ± 0.10 12.73 ± 0.10 11.35 ± 0.09 6.90 ± 0.13
IRGAN (Wang et al., 2017) 10.57 ± 0.12 9.11 ± 0.09 6.86 ± 0.09 10.23 ± 0.25 9.79 ± 0.26 7.13 ± 0.11
NMRN Wang et al. (2018) 8.76 ± 0.19 7.67 ± 0.11 6.87 ± 0.11 10.22 ± 0.05 7.62 ± 0.06 7.12 ± 0.14
MixGCF Huang et al. (2021) - - - 12.60 ± 0.07 10.25 ± 0.08 5.63 ± 0.07
Our Method 12.77 ± 0.13∗∗ 12.59 ± 0.12∗∗ 7.38 ± 0.11∗ 17.41 ± 0.19∗∗ 17.61 ± 0.20∗∗ 7.39 ± 0.12∗∗

Table 2: Ablations of different components of our
method demonstrate their necessity.

Ablation MovieLens Pinterest
(∗) Full method (control group) 12.77 ± 0.13 12.59 ± 0.12
(A) Removing adaptive reweight 7.60 ± 0.15 6.54 ± 0.20
(B) Constant propensity score 10.85 ± 0.19 9.38 ± 0.18
(C) Propensity w/o regularization 10.46 ± 0.40 8.99 ± 0.51
(D) Uninformative class prior 11.19 ± 0.11 9.39 ± 0.15
(E) Sampling for unbiased case 10.35 ± 0.18 8.01 ± 0.15

Table 3: Negative sampling applied to graph contrastive
learning methods.

Method GRACE Zhu et al. (2020) GCE Zhu et al. (2021)
Cora CiteSeer Wiki-CS Amazon-Photo

Full (control) 83.3 ± 0.4 72.1 ± 0.5 78.30 ± 0.00 92.49 ± 0.09
RNS 82.6 ± 1.0 70.4 ± 1.0 76.82 ± 0.03 90.46 ± 0.14
PNS 82.1 ± 0.8 71.3 ± 0.5 77.03 ± 0.05 not converged
DNS 81.3 ± 0.3 70.8 ± 0.6 77.78 ± 0.03∗ 92.91 ± 0.10∗
AHNS 82.9 ± 0.4 71.0 ± 0.5 77.24 ± 0.07 90.98 ± 0.14
Our Method 83.6± 0.6 71.6± 0.8 77.41± 0.04 91.94± 0.15

Figure 2: Numerical behaviors of sampling methods: (a) convergence curves of training losses; (b) model
performance affected by positive class prior π+; (d) model performance affected by the negative sampling
number k. The experiments are done on MovieLens.

Figure 3: Investigating time complexity of our method: (a) Epoch times compared with other baselines on
MovieLens; (b)-(d) Asymptotic time consumption tests on all datasets.

7 CONCLUSION

In this paper, we introduce a new paradigm for designing negative sampling for graph-based recom-
mendations. The main novelty is that the derivation is based on first principles and leverages graph
topology for learning-based debiasing of biased observations. Experiments show advantages over
existing approaches, validating our theories and offering possibilities for better sampling algorithms.
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ETHICS STATEMENT

This work does not raise specific ethical concerns. Our study focuses on negative sampling strategies
in graph-based recommendation and link prediction, and does not involve human subjects, sensitive
personal data, or applications with immediate societal risks. We do not foresee any direct ethical
implications, nor do we address topics such as fairness, bias, or privacy beyond the standard scope of
recommendation research. All experiments are conducted on publicly available benchmark datasets,
and our results are reported in aggregate without identifying any individual users or entities.

REPRODUCIBILITY STATEMENT

This work makes sveral efforts to ensure reproducibility. Our code and dataset can be downloaded at
https://anonymous.4open.science/r/NS-Graph-Rec/. Pseudocode is provided as
Algorithm 1. Implementations and configuration details have been discussed in both main text and
Appendix E.2.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
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Appendix

A IMPLICIT DATA ASSUMPTIONS OF EXISTING METHODS

Should we consider negative sampling strategies to be primarily a matter of human design, or does a
ground-truth distribution of negative samples p− exist objectively and independently of our choices
(and further that its exact form in the real world cannot be easily articulated by “principles” due to
nature’s complexity)?

For this question, an interesting observation is that many of the existing methods have implicitly
taken taken an ambiguous or mixed stance.

To see this, notice that many previous works for negative sampling have left positive sampling
untouched. This essentially respects the existence of a ground-truth positive distribution in nature,
from which the observed data (positive edges) get sampled unbiasedly. However, respecting the
observed ground-truth positive distribution is equivalent to respecting its corresponding ground-truth
negative distribution (by simply taking complement). This is because any graph in nature can be
simultaneously viewed as a collection of positive edges sampled from the positive distribution, or a
collection of negative edges sampled from the negative distribution. However, in the meantime those
existing methods are proposing new negative distributions.

This seeming self-contradiction can only be explained when we consider the existing methods to have
respected the existence of p−, but in meantime be proposing a negative distribution different from
their respected ground-truth for other good learning properties such as potentially faster empirical
convergence. However, this advantage is at the compromise of unbiased estimation, and often does
not have theoretical guarantee.

B FURTHER CLARIFICATION ON THE SCOPE OF THIS WORK

We do not propose the negative sampling method as a general strategy for all graph tasks. In fact,
none of the existing literature on negative sampling motivates their design as a one-fit-for-all general
strategy. It is also unlikely that there exists an optimal sampling strategy for all graph tasks which
have different downstream objectives to optimize for. Like most of the existing works on negative
sampling, our problem formulation in Section 3.1 targets the problem of recommendation and link
prediction.

C PROOFS AND THEORETICAL DISCUSSION

C.1 PROOF OF PROPOSITION 3.1

J = ∑
(u,v)∈E, v−1 ,...,v

−
k
∼q−(v)

[L+(u, v) + τ

k

k

∑
i=1

L−(u, v−i )] (10)

≃ E(u,v)∼p+[L+(u, v) + τEv−∼q−(v)L
−(u, v−)] (11)

= Eu∼p+[Ev∼p+(⋅∣u)[L+(u, v) +Ev−∼q−(v)L
−(u, v−)]] (12)

= Eu∼p+[Ev∼p+(⋅∣u)L
+(u, v) +Ev∼p+(⋅∣u)[Ev−∼q−(v)[L−(u, v−)]] (13)

= Eu∼p+[Ev∼p+(⋅∣u)L
+(u, v) +Ev−∼q−(v)L

−(u, v−)] (14)

C.2 GENERALIZED SOFTMAX

The full form of the generalized softmax is: for a selected edge (u, v),

pf(v∣u) =
eg(f(xu),f(xv)) + τp−(v∣u)eg(f(xu),f(xv))

eg(f(xu),f(xv)) + τEv−∼p−(⋅∣u)eg(f(xu),f(xv−))
(15)

pf(v′∣u) =
τp−(v′∣u)eg(f(xu),f(xv′))

eg(f(xu),f(xv′)) + τEv−∼p−(⋅∣u)eg(f(xu),f(xv−))
, for all v′ ≠ v (16)
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This ensures that the probability distribution under the generalized softmax term in Eq. 5 is proper,
because the denominator is not symmetric for all v ∈ V , i.e. the selected edge (u, v) is treated
differently than all other edge (u, v′) where v′ ≠ v. In practice since the support of p−(⋅∣u) usually
does not encompass the positive node v in the selected positive edge (u, v), i.e. p−(v∣u) = 0, Eq. 15
degrades into Eq. 5.

C.3 PROOF OF PROPOSITION 4.1

Denote g(f(xu), f(xv)) by guv

∇θR2(f) = ∇θ E(u,v)∼p+[− log
eguv

eguv + τEv−∼p−(⋅∣u)eguv−
] (17)

= E(u,v)∼p+[−∇θguv +∇θ log(eguv + τEv−∼p−(⋅∣u)e
guv− )] (18)

= E(u,v)∼p+[−∇θguv +
eguv∇θguv + τEv−∼p−(⋅∣u)e

guv−∇θguv−

eguv + τEv−∼p−(⋅∣u)eguv−
] (19)

= E(u,v)∼p+[−∇θguv +
eguv∇θguv

eguv + τEv−∼p−(⋅∣u)eguv−
+
τEv−∼p−(⋅∣u)e

guv−∇θguv−

eguv + τEv−∼p−(⋅∣u)eguv−
] (20)

= E(u,v)∼p+[−∇θguv +Ev−∼p−(⋅∣u)[pf(v−∣u)∇θguv−]] (21)

= Eu∼p+[Ev∼p+(⋅∣u)[∇θ(−guv)] +Ev−∼p−(⋅∣u)[pf(v−∣u)∇θguv−]] (22)

Notice that the first summation term is exactly positive sampling, and the second summation term
is exactly negative sampling. Substitute g+ = −guv = −g(f(xu), f(xv)), g− = zug(f(xu), f(xv))
into the equation above:

∇θ R2(f) = Eu∼p+[Ev∼p+(⋅∣u)[∇θL
+(u, v)] +Ev−∼p−(⋅∣u)[

1

zu
pf(v−∣u)∇θL

−(u, v−)]]] (23)

where the partition zu = Ev∼p−(⋅∣u)[pf(v∣u)]. Meanwhile, from the definition of R1(f) in Eq. 4:

∇θ R1(f) = Eu∼p+[Ev∼p+(⋅∣u)[∇θL
+(u, v)] +Ev−∼q−[∇θL

−(u, v−)]] (24)

Therefore,

∇θR1(f) ≡ ∇θR2(f) if and only if ∀u, v ∈ V, q = τpf(v∣u)p−(v∣u)/zu ∝ pf(v∣u)p−(v∣u).

C.4 PROOF OF THEOREM 5.1

Define p = P (e) to be the node pair prior. We first have the following propositions.

Proposition C.1. p+ = c
ϕu,v

p̂+.

Proof. p̂+ = P (e∣s = 1) = P (e∣y = 1)P (s = 1∣y = 1, e)/P (s = 1∣y = 1) = p+ ϕ(e)
c

.

Proposition C.2. p− = 1
π− (p − π

+p+).

Proof. p = P (e) = P (e∣y = 1)P (y = 1) + P (e∣y = 0)P (y = 0) = π+p+ + π−p−.

Proposition C.3. p = π+cp̂+ + (1 − π+c)p̂−.

Proof. P (s = 1) = P (s = 1, y = 1) = P (s = 1∣y = 1)P (y = 1) = π+c, so p = P (e) = P (e∣s =
1)P (s = 1) + P (e∣s = 0)P (s = 0) = π+cp̂+ + (1 − π+c)p̂−.
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Based on the above propositions, we have

R(f, u) = Ev∼p+[L+] +Ev∼p−[pf(v)L−] (25)

= Ev∼p+[L+] +Ev∼( 1
π− (p−π

+p+))[pf(v)L−] (26)

= Ev∼p+[L+ −
π+

π−
pf(v)L−] +Ev∼p[

1

π−
pf(v)L−] (27)

= Ev∼ c
ϕu,v

p̂+[(L+ −
π+

π−
pf(v)L−)] +Ev∼(π+cp̂++(1−π+c)p̂−)[

1

π−
pf(v)L−] (28)

= Ev∼p̂+[
c

ϕu,v
L+] −Ev∼p̂+[

π+c

π−ϕu,v
pf(v)L−] +Ev∼p̂+[

π+c2

π−ϕu,v
pf(v)L−] +Ev∼p̂−[

(1 − π+c)c
π−ϕu,v

pf(v)L−]

(29)

= Ev∼p̂+[
c

ϕu,v
L+] +Ev∼p̂+[

π+c(1 − c)
π−ϕu,v

pf(v)(−L−)] +Ev∼p̂−[
(1 − π+c)c
π−ϕu,v

pf(v)L−] (30)

Substitute definitions of β1, β2, q
+, q− into Eq. 5.1, we will see it exactly equals R2(f) in Theorem

5.1.

C.5 PROOF OF THE FIRST-MOMENT CONSTRAINT IN SECTION 5.3

Eu,v∼p+[ϕu,v] = Eu,v∼p+[P (s = 1∣y = 1, e = (u, v)] = ∑u,v∈V [P (e = (u, v)∣y = 1)P (s = 1∣y =
1, e = (u, v)] = ∑u,v∈V [P (s = 1, e = (u, v)∣y = 1)] = ∑e[P (s = 1, e = (u, v)∣y = 1)] = P (s = 1∣y =
1)x = c

C.6 PROOF OF THE CONSISTENCY CONSTRAINT IN SECTION 5.3

The probabilistic gap theory (He et al., 2018; Gerych et al., 2022) essentially states that ϕ(e) =
h(P (y = 1∣e)−P (y = 0∣e)), h′(t) > 0. Therefore, ϕ(e) = h(2g(e)−1) and dϕ

dg
∣t=e = 2h′(g(e)) > 0.

Equivalently, ϕ(e1) > ϕ(e1) ⇔ g(e1) > g(e1).

D PSEUDOCODE

Pseudocode for the full algorithm can be found in Algorithm 1.

E EXPERIMENT

E.1 DATASET

The sources for the datasets used in this paper are:

• MovieLens (Harper & Konstan, 2015):
https://grouplens.org/datasets/MovieLens/100k/.

• Pinterest (Geng et al., 2015):
https://github.com/edervishaj/pinterest-recsys-dataset?tab=
readme-ov-file

• LastFM: (Wang et al., 2019):
https://github.com/xiangwang1223/knowledge_graph_attention_
network

All datasets are public, and have been in included in the submitted codes.

E.2 DATA SPLIT & CONFIGURATIONS

Data Split. Special care is needed when splitting the edge set into training, validation and testing.
The most ideal setup should ensure that Etrain,Eval ∼ p̂+ and Etest ∼ p+.

16

https://grouplens.org/datasets/MovieLens/100k/
https://github.com/edervishaj/pinterest-recsys-dataset?tab=readme-ov-file
https://github.com/edervishaj/pinterest-recsys-dataset?tab=readme-ov-file
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/xiangwang1223/knowledge_graph_attention_network


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1: Proposed Debiased Negative Sampling
Input :graph G = (V,E), where observed positive edges E = {(u, v)}; graph encoder f with

parameters θ to train; number of negative samples k; positive class prior π+; number of
training epochs T ; similarity function g.

1 Compute constants and node prior π− ← 1 − π+, c← 2∣E∣
∣V ∣(∣V ∣−1)π+ , p(v) ← 1

∣V ∣ ,∀v ∈ V
2 Initialize propensity score function ϕ as an MLP with parameters θϕ
3 for t = 1,2,⋯, T do
4 Initialize loss L = 0
5 for each (u, v) pair do
6 Retrieve u’s adjacency list N(u) ← {v′∣(u, v′) ∈ E}
7 Compute positive distribution p̂+(v′) ← 1

∣N(u)∣ ∑v′′∈N(u) δv′′ , ∀v′ ∈ V
8 Compute negative distribution p̂−(v′) ← (p(v′) − p̂+(v′)π+c)/(1 − π+c), ∀v′ ∈ V
9 Sample negative nodes v−1 , ..., v

−
k ∼ p̂− via importance sampling

10 Compute learnable propensity score ϕu,v by Eq. (11)
11 for each v− ∈ {v−1 , ..., v−k} do
12 Compute generalized softmax probability pf(v−) by Eq. (5)
13 Compute propensity score ϕu,v− and its regularization penalty LR by Eq. (11)
14 Compute loss terms

L+v ← g(f(u), f(v));L−v ← −g(f(u), f(v));L−v− ← −g(f(u), f(v−))
15 Aggregate reweighed loss terms

L ← L+ [ c
ϕu,v

L+v +
π+c(1−c)
π−ϕu,v

pf(v)(−L−v)] + [
(1−π+c)c
π−ϕu,v−

pf(v−)L−v−] +LR

16 Update parameters θ, θϕ by descending the gradients ∇θ,θϕL

Table 4: Statistics of the datasets.

Dataset Training Edges Validation Edges Testing Edges Users Items

MovieLens (Ding et al., 2020) 563,112 6,028 6,028 6,028 3,533
Pinterest (Ding et al., 2020) 1,355,844 55,186 55,186 55,186 9,916
LastFM (Wang et al., 2019) 1,198,808 256,887 256,888 23,566 28,126

For the unbiased scenario, we preprocess LastFM dataset to create data splits that simulate the
case, which further requires p+ = p̂+. Therefore the data split is done completely at random, i.e.
70%,15%,15% for training, validation, and testing, respectively.

For the biased scenario, we use MovieLens and Pinterest datasets. Since we have no direct access to
p+. we split the edges in temporal order by following the commonly used “leave-one-out” strategy as
in He et al. (2017); Rendle et al. (2012): leaving the most recent and the second most recent edge for
each node as testing and validation set, respectively. We believe that using temporal splits is one of
the most natural ways to introduce realistic bias to the test.

Configurations. The configurations for base models are to be fixed. In this paper, we use Adam
optimizer, learning rate 1e − 4, L2 regularization 1e − 5, hidden embedding size 64, mini-batch size
1024, with early stopping. The GNN model used is a two-layered LightGCN. For our sampling
method, we set τ = k = 8; we further tune the class prior π+ ranged from 1.5 times to 20 times of
the directly observable P (S = 1); we set g− as the dot product and g+ = −g−. For hyperparameters
related to the baseline sampling methods, we follow their reported settings for tuning. All experiments
are run on an Nvidia V100 GPU.

E.3 PERFORMANCE BY NDCG

See Table 5.
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Table 5: Performance of different sampling methods on real-world datasets, measured by NDCG@20 (%). ∗

means the best performance; ∗∗ means the best performance with significance; underline means the second best
result.

Negative Sampling Node Embedding (Rendle et al., 2012) LightGCN (He et al., 2020)

MovieLens Pinterest LastFM MovieLens Pinterest LastFM

RNS 2.82 ± 0.10 3.01 ± 0.16 2.59 ± 0.18 4.00 ± 0.12 2.97 ± 0.20 2.98 ± 0.11
PNS 3.57 ± 0.11 3.35 ± 0.06 3.02 ± 0.14 3.21 ± 0.04 3.70 ± 0.04 1.59 ± 0.07
DNS (Shi et al., 2023) 4.78 ± 0.07 4.44 ± 0.07 3.58 ± 0.16 4.92 ± 0.05 4.90 ± 0.09 3.33 ± 0.08
SENSEI Yan et al. (2024) 4.01 ± 0.06 4.20 ± 0.08 2.60 ± 0.23 3.54 ± 0.10 4.88 ± 0.11 2.04 ± 0.19
MCNS Yang et al. (2020a) 4.08 ± 0.06 4.22 ± 0.09 3.02 ± 0.12 3.17 ± 0.05 3.75 ± 0.08 2.73 ± 0.08
AHNS (Lai et al., 2024) 4.35 ± 0.06 4.66 ± 0.08 3.38 ± 0.10 5.90 ± 0.08 5.92 ± 0.08 3.38 ± 0.10
IRGAN (Wang et al., 2017) 4.12 ± 0.10 3.39 ± 0.10 3.27 ± 0.08 4.75 ± 0.16 4.04 ± 0.18 3.02 ± 0.08
NMRN Wang et al. (2018) 3.93 ± 0.11 2.76 ± 0.12 3.22 ± 0.08 4.50 ± 0.06 3.11 ± 0.05 3.14 ± 0.10

Our Method 5.01 ± 0.09∗∗ 5.06 ± 0.09∗∗ 3.70 ± 0.12∗ 7.21 ± 0.13∗∗ 7.28 ± 0.11∗∗ 3.52 ± 0.10∗∗

E.4 MORE DISCUSSION ON RESULTS FOR CONTRASTIVE LEARNING

First, we note that the method that uses all possible negatives essentially assumes that the best negative
distribution to use is a uniform distribution over all observed negatives. However, according to our
paper’s analysis, this uniform distribution is most likely not the ground-truth negative distribution
(i.e. the motivated in our paper), nor could it be the optimal negative distribution to sample from for
training the model.

In comparison, our method is sampling from a carefully learned negative distribution, although
it has a very low sampling number (k=8) that is incomparable to the full dataset. Therefore, we
conjecture that our win benefits from that our learned negative distribution is closer to the optimal
negative distribution, compared with the uniform distribution implicitly assumed by the method
using full negatives. This closeness in distribution compensates for the disadvantage of using a lower
sampling number. We thank the reviewer for give us an opportunity to elaborate on this interesting
phenomenon.

E.5 ABLATION STUDIES

To further understand the contribution of each component, we conduct ablation studies on MovieLens
and Pinterest datasets. Table 6 summarizes the different ablations and their results, and we have the
following analysis.

Table 6: Ablations of different components of our method, tested on MovieLens and Pinterest. The metric is
Recall@20 (%).

Ablation MovieLens Pinterest

(A) Removing adaptive reweight 7.60 ± 0.15 6.54 ± 0.20
(B) Constant propensity score 10.85 ± 0.19 9.38 ± 0.18
(C) Propensity w/o regularization 10.46 ± 0.40 8.99 ± 0.51
(D) Uninformative class prior 11.19 ± 0.11 9.39 ± 0.15
(E) Sampling for unbiased case 10.35 ± 0.18 8.01 ± 0.15
(∗) Full method (no ablation) 12.77 ± 0.13 12.59 ± 0.12

In ablation (A), we remove the adaptive reweighing component pf(v) which essentially functions as
a filter for hard negatives. This results in most significant performance drop compared to all methods,
which demonstrates its importance and supports our theoretical derivation in Proposition 4.1.

Ablations (B) and (C) study the propensity score estimation function ϕu,v. In (B), we replace ϕu,v

by its expectation over all possible (u, v)’s, which is the constant c defined in Theorem 5.1. In (C),
we remove its regularization in training, essentially removing the constraints that regulate ϕu,v to
be numerically appropriate. Both ablations are shown to affect performance. we also observe (C)’s
gap to be larger, which seems to suggest that a numerically well-behaved but inaccurate ϕu,v is more
helpful than a numerically ill-behaved but presumably more accurate ϕu,v in debiasing.
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Ablation (D) extends the sensitivity analysis in Section 6.4 by setting the hyperparameter of positive
class prior π+ to be 0.5. Again this ablation leads to performance drop, which helps support our
theoretical derivations.

Finally, Ablation (E) examines the case where we over-simplify the data assumption — by applying
our base sampling method derived for unbiased observations to address the biased case. The
performance drop implies the importance of considering observation bias in negative sampling.

F THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) are minimally used in preparing this manuscript and should not be
considered a substantial contributor. LLMs have only been used to adjust tables and figures layout,
and to ensure grammatical correctness.
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