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Abstract
Glottal Closure Instants (GCIs) correspond to the temporal lo-
cations of significant excitation to the vocal tract occurring dur-
ing the production of voiced speech. GCI detection from speech
signals is a well-studied problem given its importance in speech
processing. Most of the existing approaches for GCI detection
adopt a two-stage approach (i) Transformation of speech signal
into a representative signal where GCIs are localized better, (ii)
extraction of GCIs using the representative signal obtained in
first stage. The former stage is accomplished using signal pro-
cessing techniques based on the principles of speech produc-
tion and the latter with heuristic-algorithms such as dynamic-
programming and peak-picking. These methods are thus task-
specific and rely on the methods used for representative signal
extraction. However in this paper, we formulate the GCI detec-
tion problem from a representation learning perspective where
appropriate representation is implicitly learned from the raw-
speech data samples. Specifically, GCI detection is cast as a su-
pervised multi-task learning problem solved using a deep con-
volutional neural network jointly optimizing a classification and
regression cost. The learning capability is demonstrated with
several experiments on standard datasets. The results compare
well with the state-of- the-art algorithms while performing bet-
ter in the case of presence of real-world non-stationary noise.
Index Terms: GCI detection, epoch extraction, dilated convo-
lutional neural networks, multi-task learning.

1. Introduction
1.1. Background and Previous work

Production of voiced speech is accompanied with sustained os-
cillations of the vocal folds [1] resulting in a quasi-periodic flow
of air-pulses which constitutes the excitation signal to the vo-
cal tract [2]. The instant of significant excitation (within each
period) is termed as Epoch which coincides with instant of clo-
sure of the glottis [3]. The problem of detecting the precise
locations of such Glottal Closure Instants (GCIs) from speech
signal has been studied for decades given its importance in sev-
eral speech processing tasks [4, 5, 6, 7, 8, 9, 10, 11, 12]. Most
of the successful GCI detectors adopt a two-stage approach -
(i) Obtaining an intermediate representation from the speech
signal, which explicitly manifests GCIs as discontinuities, im-
pulses, extremas or as other perceptual events and (ii) detect-
ing precise temporal location of glottal closures using custom-
made algorithms. The former stage is based on the observa-
tion that GCIs are not comprehensible in the raw speech-signal
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domain but exhibit better localization in some other domain
(Figure 1 in [9]). Many algorithms rely on the source-filter
model for speech production [1] and use signal-processing tech-
niques to estimate a correlate of the source-signal, in which
GCIs are better manifested. For instance, [5, 6, 10, 13] choose
either linear-prediction residual or glottal flow derivative as
the representative signal. Other class of algorithms do not
explicitly make any model assumption for speech production
rather indirectly use the properties of excitation signal (such as
its impulsive nature) and estimate appropriate representations
(E.g., zero-frequency filtered signal [7], mean-based signal [8],
wavelet-decompositions [14], singularity exponents [11]). Dur-
ing the second stage, aforementioned algorithms employ several
heuristics to extract (or refine) the GCIs. These include dynamic
programming [5, 6], peak-picking [9, 15] and optimization with
regularity constraints [11]. All these methods perform reason-
ably well albeit they depend largely on their choice of represen-
tative signals.

1.2. Context and Scope

With the recent advances made in the area of data-driven repre-
sentation learning [16], it is possible to operate directly in the
signal space and let the learning machinery obtain the appropri-
ate representations given any task and data. This approach has
found tremendous success in multiple domains with image, text
and audio data [17]. Specifically, convolutional neural networks
(CNN) have found their utility in a range of speech process-
ing tasks such as phoneme recognition [18, 19], feature/front-
end learning for LVCSR [20, 21, 22], voice-activity detection
[23], spoofing detection [24], emotion recognition [25, 26] and
speaker identification [27] . The underlying theme in all these
methods is to directly operate on the raw speech signal and let
the CNN learn the abstract representations for the given task.
All these papers demonstrate that features learned from data us-
ing CNNs lead to superior performance as compared to hand-
crafted feature learning.

Now, data driven algorithms have already been employed
on the problem of GCI detection with a significant improve-
ment in localization error and detection accuracy. Several stan-
dard machine learning methods such as extremely randomized
trees, SVM, k-nearest neighbours and multilayer perceptron
over hand engineered features obtained from speech signal have
been used for GCI detection [28]. CNNs are also shown to be
much more proficient in extracting epochs than non-data-driven
methods on pathological acoustic speech acquired from vocally
impaired patients [29]. Motivated by the above observations,
in this paper, we approach the problem of end-to-end GCI de-
tection from a deep-learning perspective. The key difference
in the present formulation as compared to the previous works
which uses CNNs for various speech processing tasks is that,
by-and-large the scope of previous works is classification of an
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utterance or segment of speech into classes (phonemes, emo-
tions, speakers) while in the proposed work the interest is in
detecting a temporal event (GCI) in the signal. This objective is
met by formulating the problem in a novel joint classification-
regression framework wherein a temporal event (GCI in this
case) is simultaneously detected and localized in a frame. Vari-
ous experiments are performed on multiple datasets comparing
with four state-of-the-art algorithms to demonstrate effective-
ness of the proposed method through improved detection and
localization metrics.

2. Methodology
2.1. Problem formulation and Data generation

In this work, the problem of GCI detection is formulated using
a block-processing approach. It is known that GCI is a tempo-
ral event that occurs atmost once in every pitch-period of the
voiced speech that could range between 2 milli-seconds (ms)
to 20 ms [30]. Based on this observation, we define a detec-
tion speech window (wd) as any speech frame of length equal
to 2 ms (minimum possible pitch period). Note that, by defini-
tion, every detection window can have atmost one GCI within
it. Given a wd, the primary task is to detect whether or not there
is GCI within it, which is formulated as a binary classification
problem. Having detected a GCI within a wd, the next step is to
localize the GCI which is cast as a regression task, estimating
the distance between the onset of wd and the location of GCI.
Since a 2 ms window comprises too less input features (32 sam-
ples at 16kHz) for meaningful feature learning via a deep CNN,
a symmetric context of 1.5 ms at either sides of the detection
window is considered to generate the input frame wi. Hence in
summary, every input data-sample (wi) will be of length 5 ms,
with the classification and regression for GCI detection and lo-
calization being carried simultaneously. Finally, all input data-
frames of size wi are generated with a shift of one sample be-
tween successive input frames. In principle, heuristics can be
designed to reject data-frames (with no associated ground-truth
GCI) based on frequency components, amplitude or other sig-
nal attributes. However, we refrain from performing any pre-
processing/filtering on the input speech to solve the problem in
an end to end fashion. Therefore, each possible data-frame is
considered for the purpose of epoch extraction.

2.2. Dilated CNNs and Multi-task learning

Recently, Deep Dilated Convolutional Neural Networks have
been shown to learn useful representations for several speech
processing tasks [31][32]. Since, a dilated convolution is math-
ematically equivalent to regular convolution with a kernel with
zeros inserted in between, stacked dilated convolutions allow
an exponential increase in context with a linear increase in pa-
rameters. The resulting reduction in parameters provides a reg-
ularization effect to the CNN improving its generalization on
test data. The proposed neural architecture comprises of con-
volutional layers that function as feature extractors, so that a
shared representation is obtained for a speech window. Max
pooling is used after every convolutional layer with a kernel
size and stride of 2 while doubling the dilation at every con-
volutional layer to increase the corresponding receptive field at
each layer. Scaled Exponential Linear Units (SELU) [33] acti-
vation functions are used between convolutional layers in order
to normalize the activations. SELU ensures the benefits of ex-
plicit normalization (E.g., batch-normalization [34]) while be-
ing identical implementation-wise during train and test phase,

unlike techniques such as batch normalization.
Since both the classification and regression tasks are to be

performed on the same input frame (wi) the features are jointly
learned which is the core idea behind multitask learning [35].
Thus, an input frame wi is first fed to the CNN to extract the
feature vector that goes into two identical subnetworks perform-
ing classification and regression. A sigmoid activation is used at
the output of the classification branch and a Hard-tanh function
is used for regression (instead of a linear activation to suppress
out-of-window predictions).

The task is to output the probability of presence of a GCI
yc (0 ≤ yc ≤ 1), as well as its location yr (0 ≤ yr < wd),
within each detection window. Ideally, for a window with a
GCI, true yc = 1 and true yr = d (where d is the distance
between the onset of the window and location of the GCI within
the window) and for a window without a GCI, true yc = 0, and
true yr can be anything and is immaterial (Refer eq.(1)). Since a
single network predicts both the probability of occurrence of the
GCI and location of the GCI, the loss function consists of two
terms, the classification error which is standard cross entropy
loss and the regression error which is the mean squared loss
between the actual and the predicted location of the GCI within
a window. Mathematically,

L =
c1
N

N∑
j=1

(tjclog(y
j
c) + (1− tjc)log(1− yj

c))

+
c2∑N
k=1 t

k
c

N∑
j=1

tjc ∗ (tjr − yj
r)

2 (1)

where tjc is 1 if the jth sample window has a GCI, and is
0 otherwise. tjr is the actual location of the GCI within the jth

window, N is the number of datapoints within a training batch.
c1 and c2 are the weights of the classification and regression loss
respectively, found empirically using grid search. Note that the
regression loss is divided by the number of true GCIs in a batch
(instead of total number of datapoints) to account for the fact
that there are fewer samples for the regression block in every
batch compared to the classification block.

2.3. Inference and Weighted Histogram Clustering (WHC)

Figure 1: Illustration for WHC (a) a segment of speech with
four ground truth GCIs along with the corresponding candidate
GCIs (height represents confidence in detection), (b) weighted
histograms constructed from the candidate GCIs along with the
means of the local-groups (dotted lines) which form the final
predictions.

In the present formulation, every input data-frame/window
contains atmost one GCI. Since one ground truth GCI can be-



long to multiple data-frames, possibly, there can be duplicate
predictions over successive input windows resulting in false de-
tections. Hence, there is a need for multiple predictions to be
merged together into a single predicted GCI. Given a speech
signal and its associated candidate GCIs, the first step is to con-
struct a weighted histogram of the candidate GCIs with a bin
size of B (hyper-parameter). The confidence associated with
each candidate for the presence of GCI is used to calculate the
weight for the histogram. Since occurence of glottal closure is
a quasi-periodic event, the histogram thus obtained will contain
repeating local-groups of contiguous bins with non-zero values
(Fig. 1(b)). The final GCIs are hypothesized to be the means
(measure of central tendency) of local-group thus (dotted lines
in Fig. 1(b)) obtained. These means tend to be at the locations
with large number of high-probability candidate GCIs which is
desirable. The bin-size B is set at 5 samples through-out this
work albeit there is a trade-off between erroneous detections
(higher the B lesser are the false insertions) and resolution of
predicted GCIs (lower the B, better is the localization of de-
tected GCIs). The entire procedure for clustering is illustrated
in Figure 1. The complete algorithm is depicted in Figure 2.
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Figure 2: Proposed Algorithm: Trained CNN outputs a prob-
ability and location for each window. The windows satisfying
probability threshold are considered as GCI candidates. All
candidates are combined and the WHC algorithm gives out the
GCIs.

3. Experiments and Results
3.1. Experimental details

The proposed GCI detection algorithm is evaluated on datasets
containing simultaneous recordings of speech and Electroglot-
tography (EGG) signals. The negative peaks obtained from dif-
ferentiated EGG (dEGG) signals form the ground truth for GCI
locations. In this paper, we use speech signals from the CMU
Arctic [36] dataset for our experiments. Standard performance

metrics namely, Identification Rate (IDR - % of correct detec-
tions, higher the better), Miss Rate (MR - % of missed detec-
tions, lower the better), False Alarm Rate (FAR - % of false
insertions, lower the better) and Identification Accuracy (IDA
- standard deviation of distance between the true and predicted
GCIs, lower the better) are employed for evaluation. (A detailed
description for metrics may be found in Figure 2 of [5]). There
are in total of 3 speakers in the CMU dataset—JMK (Canadian
Male), BDL (US Male), SLT (US Female). The CNN model
is implemented using PyTorch [37] using the ADAMAX op-
timizer [38] with standard parameter settings. Model parame-
ters were initialized as per the scheme outlined in [33]. Detec-
tion experiments were carried out on clean speech as well as
speech corrupted with additive synthetic white noise and real-
world babble noise (background multi-speaker chatter obtained
from [39]) with SNRs ranging from 0 to 25 dB in steps of 5
dB. For a given SNR, both the training and testing are carried
on the corresponding corrupted speech at the same SNR. The
results of the proposed algorithm (CNN) are compared with
four state-of-the-art algorithms, namely, Zero-frequency res-
onator [7], Speech Event Detection using the Residual Exci-
tation And a Mean-based Signal (SEDREAMS) [8], Dynamic
Plosion Index (DPI) [9] and Micro-canonical Multi-scale For-
malism (MMF) [11], by evaluating all four on the same test
dataset as that of CNN. Training and testing is performed on
CMU corpus with speaker-overlap between the training and
test data. Both training and test data contain utterances (non-
overlapping across training and test) from all speakers. We
also compare the results of extremely randomized trees (ERT)
(introduced in [28] for GCI detection) with the proposed algo-
rithm. Since ERT is originally proposed only for clean speech,
the comparison is limited to noise free speech. In all experi-
ments a random subset of 10% of data is considered for training
and rest for testing. Since 90% of the data is used for testing,
no cross-validation is employed.

3.2. Results and Discussion

Table 1 describes the results of six algorithms on the CMU
ARCTIC on clean speech. It can be seen that CNN has the high-
est detection rate (99.3 % and 95.5 %) on both the datasets. The
IDA of the CNN method is also the least for both the datasets.

Metrics IDR(%) MR(%) FAR(%) IDA(ms)
DCNN 99.3 0.3 0.4 0.2
ZFR 96.24 2.7 1.0 0.47

SEDREAMS 92.6 7.4 0.4 0.8
DPI 98.9 0.4 0.3 0.4

MMF 96.0 2.1 1.7 0.5
ERT 93.57 2.16 4.26 0.28

Table 1: Results on clean speech from CMU Arctic (BDL, JMK,
SLT averaged) on six GCI detectors.

A similar trend is observed even with noisy speech as can
be observed in Figure 3. It is seen that CNN and ZFR are very
robust to noise with the IDR being above 90% even at 0 dB bab-
ble noise. Further, the IDA of the CNN algorithm is consistently
lowest for all cases considered.

It is noteworthy that in all these experiments, the model
parameters (detection probability threshold: 0.5 and bin-size:
5) were kept the same in-spite of which the models general-
ize well across datasets, recording settings, speakers and noise-
levels. However, in practical settings, one can tweak the model
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Figure 3: Comparison of five algorithms for different noise levels. It can be seen that the proposed algorithm (CNN) is comparable to
the best of the state-of-the-art methods for all cases considered.
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Figure 4: Visualizing shared representation (extracted from
CNN) with the help of t-SNE using (a) classification labels. (b)
regression values corresponding to color gradient.

hyper-parameters to best suit the data. Given that the proposed
method operates on raw speech and fully data-driven, the afore-
mentioned performance is significant. All the results confirm
the learning abilities of the proposed architecture. The perfor-
mance of DCNN might be ascribed to the following factors: (i)
problem formulation that enforces presence of multiple detec-
tions per GCI leading to robustness, (ii) a multi-task approach
to learn a shared feature representation, (iii) use of weighted
histogram for clustering.

We also visualize the representations learnt by the shared
convolutional layers using t-Distributed Stochastic Neighbor
Embedding (t-SNE) [40] technique for dimensionality reduc-
tion. It can be seen that the data-points are easily segregated on
the basis of class (i.e. whether a given window contains a GCI)
as shown in Figure 4a showing that the learnt representation
is conducive for high classification accuracy. Simultaneously,
we can also observe in Figure 4b that the positive samples cor-
responding to windows containing GCIs follow a well defined
manifold according to different positions of the GCI within a
window. Hence, these representations provide a justification for
using a multi-task learning paradigm which learns efficient rep-
resentations suitable for multiple downstream tasks (i.e. classi-
fication and regression).

4. Conclusion

In this paper, a data-driven method for GCI detection from raw-
speech using a multi-task supervised learning approach is pro-
posed. A CNN is employed for learning a shared representa-
tion for two tasks simultaneously followed by a distribution es-
timation method for inference and clustering. Several experi-
ments were conducted to compare the performance with state-
of-the-art algorithms on data-sets comprising multiple speakers
to demonstrate the efficacy of the proposed approach. Given the
representation and generalization abilities of the proposed ap-
proach, we believe that a similar methodology could be adopted
for detecting multiple landmarks occurring in speech and gen-
eral time-series data, which could provide directions for future
work.
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