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Abstract

Existing work on differentially private linear regression typically assumes that end
users can precisely set data bounds or algorithmic hyperparameters. End users
often struggle to meet these requirements without directly examining the data (and
violating privacy). Recent work has attempted to develop solutions that shift these
burdens from users to algorithms, but they struggle to provide utility as the feature
dimension grows. This work extends these algorithms to higher-dimensional
problems by introducing a differentially private feature selection method based on
Kendall rank correlation. We prove a utility guarantee for the setting where features
are normally distributed and conduct experiments across 25 datasets. We find that
adding this private feature selection step before regression significantly broadens
the applicability of “plug-and-play” private linear regression algorithms at little
additional cost to privacy, computation, or decision-making by the end user.

1 Introduction

Differentially private [10] algorithms employ carefully calibrated randomness to obscure the effect
of any single data point. Doing so typically requires an end user to provide bounds on input data to
ensure the correct scale of noise. However, end users often struggle to provide such bounds without
looking at the data itself [27], thus nullifying the intended privacy guarantee. This has motivated the
development of differentially private algorithms that do not require these choices from users.

To the best of our knowledge, two existing differentially private linear regression algorithms satisfy
this “plug-and-play” requirement: 1) the Tukey mechanism [2], which combines propose-test-release
with an exponential mechanism based on Tukey depth, and 2) Boosted AdaSSP [30], which applies
gradient boosting to the AdaSSP algorithm introduced by Wang [34]. We refer to these methods as,
respectively, Tukey and BAS. Neither algorithm requires data bounds, and both feature essentially one
chosen parameter (the number of modelsm for Tukey, and the number of boosting rounds T for BAS)
which admits simple heuristics without tuning. In contrast, AdaSSP requires a user to provide bounds
on the data’s feature and label norms, and DPSGD requires a user to configure hyperparameters
including learning rate, clipping norms, batch size, and number of epochs. Both algorithms produce
much weaker utility when these parameters are even moderately misconfigured [2].

Tukey obtains strong empirical results when the number of data points n greatly exceeds the feature
dimension d [2], while BAS obtains somewhat weaker utility on a larger class of datasets [30].
Nonetheless, neither algorithm provides generally strong performance on its own. Evaluated over
a collection of 25 linear regression datasets taken from Tang et al. [30], Tukey and BAS obtain
coefficient of determination R2 > 0 on only four (see Section 4); for context, a baseline of R2 = 0 is
achieved by the trivial constant predictor, which simply outputs the mean label. These results suggest
room for improvement for practical private linear regression.
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1.1 Our Contributions

We extend existing work on private linear regression by adding a preprocessing step that applies
private feature selection. At a high level, this strategy circumvents the challenges of large feature
dimension d by restricting attention to k � d carefully selected features. We initiate the study of
private feature selection in the context of “plug-and-play” private linear regression and make two
concrete contributions:

1. We introduce a practical algorithm, DPKendall, for differentially private feature selection
(Section 3). DPKendall uses Kendall rank correlation [20] and only requires the user to
choose the number k of features to select. It satisfies ε-DP and, given n samples with
d-dimensional features, runs in time O(dkn log(n)) (Theorem 3.4). We also provide a
utility guarantee when the features are normally distributed (Theorem 3.8).

2. We conduct experiments across 25 datasets (Section 4), with k fixed at 5 and 10. These
compare Tukey and BAS without feature selection, with SubLasso feature selection [21],
and with DPKendall feature selection. Using (ln(3), 10−5)-DP to cover both private feature
selection and private regression, we find at k = 5 that adding DPKendall yields R2 > 0 on
56% of the datasets. Replacing DPKendall with SubLasso drops the rate to 40% of datasets,
and omitting feature selection entirely drops it further to 16%.

In summary, we suggest that DPKendall significantly expands the applicability and utility of practical
private linear regression.

1.2 Related Work

The focus of this work is practical private feature selection applied to private linear regression. We
therefore refer readers interested in a more general overview of the private linear regression literature
to the discussions of Amin et al. [2] and Tang et al. [30].

Several works have studied private sparse linear regression [21, 31, 17, 29]. However, Jain and
Thakurta [17] and Talwar et al. [29] require an `∞ bound on the input data, and the stability test that
powers the feature selection algorithm of Thakurta and Smith [31] requires the end user to provide
granular details about the optimal Lasso model. These requirements are significant practical obstacles.
An exception is the work of Kifer et al. [21]. Their algorithm first performs feature selection using
subsampling and aggregation of non-private Lasso models. This feature selection method, which
we call SubLasso, only requires the end user to select the number of features k. To the selected
features, Kifer et al. [21] then apply objective perturbation to privately optimize the Lasso objective.
As objective perturbation requires the end user to choose parameter ranges and provides a somewhat
brittle privacy guarantee contingent on the convergence of the optimization, we do not consider it
here. Instead, our experiments combine SubLasso feature selection with the Tukey and BAS private
regression algorithms. An expanded description of SubLasso appears in Section 4.2.

We now turn to the general problem of private feature selection. There is a significant literature
studying private analogues of the general technique of principal component analysis (PCA) [25, 15,
8, 19, 11, 1]. Unfortunately, all of these algorithms assume some variant of a bound on the row norm
of the input data. Stoddard et al. [28] studied private feature selection in the setting where features
and labels are binary, but it is not clear how to extend their methods to the non-binary setting that we
consider in this work. SubLasso is therefore the primary comparison private feature selection method
in this paper. We are not aware of existing work that studies private feature selection in the specific
context of “plug-and-play” private linear regression.

Finally, private rank correlation has previously been studied by Kusner et al. [23]. They derived a
different, normalized sensitivity bound appropriate for their “swap” privacy setting and applied it to
privately determine the causal relationship between two random variables.

2 Preliminaries

Throughout this paper, a database D is a collection of labelled points (x, y) where x ∈ Rd, y ∈ R,
and each user contributes a single point. We use the “add-remove” form of differential privacy.
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Definition 2.1 ([10]). Databases D,D′ from data domain D are neighbors D ∼ D′ if they differ
in the presence or absence of a single record. A randomized mechanismM : D → O is (ε, δ)-
differentially private (DP) if for all D ∼ D′ ∈ D and any S ⊆ O

PM [M(D) ∈ S] ≤ eεPM [M(D′) ∈ S] + δ.

We use basic composition to reason about the privacy guarantee obtained from repeated application of
a private algorithm. More sophisticated notions of composition exist, but for our setting of relatively
few compositions, basic composition is simpler and suffers negligible utility loss.
Lemma 2.2 ([10]). Suppose that for j ∈ [k], algorithm Aj is (εj , δj)-DP. Then running all k
algorithms is (

∑k
j=1 εj ,

∑k
j=1 δj)-DP.

Both SubLasso and DPKendall use a private subroutine for identifying the highest count item(s) from
a collection, known as private top-k. Several algorithms for this problem exist [4, 9, 13]. We use the
pure DP “peeling mechanism” based on Gumbel noise [9], as its analysis is relatively simple, and its
performance is essentially identical to other variants for the relatively small k used in this paper.
Definition 2.3 ([9]). A Gumbel distribution with parameter b is defined over x ∈ R by P [x; b] =
1
b · exp

(
−xb − e

−x/b). Given c = (c1, . . . , cd) ∈ Rd, k ∈ N, and privacy parameter ε,
Peel(c, k,∆∞, ε) adds independent Gumbel

(
2k∆∞
ε

)
noise to each count cj and outputs the or-

dered sequence of indices with the largest noisy counts.
Lemma 2.4 ([9]). Given c = (c1, . . . , cd) ∈ Rd with `∞ sensitivity ∆∞, Peel(c, k,∆∞, ε) is ε-DP.

The primary advantage of Peel over generic noise addition is that, although users may contribute to d
counts, the added noise only scales with k. We note that while Peel requires an `∞ bound, neither
DPKendall nor SubLasso needs user input to set it: regardless of the dataset, DPKendall’s use of
Peel has `∞ = 3 and SubLasso’s use has `∞ = 1 (see Algorithms 1 and 2).

3 Feature Selection Algorithm

This section describes our feature selection algorithm, DPKendall, and formally analyzes its utility.
Section 3.1 introduces and discusses Kendall rank correlation, Section 3.2 describes the full algorithm,
and the utility result appears in Section 3.3.

3.1 Kendall Rank Correlation

The core statistic behind our algorithm is Kendall rank correlation. Informally, Kendall rank correla-
tion measures the strength of a monotonic relationship between two variables.
Definition 3.1 ([20]). Given a collection of data points (X,Y ) = {(X1, Y1), . . . , (Xn, Yn)} and
i < i′, a pair of observations (Xi, Yi), (Xi′ , Yi′) is discordant if (Xi −Xi′)(Yi − Yi′) < 0. Given
data (X,Y ), let dX,Y denote the number of discordant pairs. Then the empirical Kendall rank
correlation is

τ̂(X,Y ) :=
n

2
− 2dX,Y
n− 1

.

For real random variables X and Y , we can also define the population Kendall rank correlation by

τ(X,Y ) = P [(X −X ′)(Y − Y ′) > 0]− P [(X −X ′)(Y − Y ′) < 0] .

Kendall rank correlation is therefore high when an increase in X or Y typically accompanies an
increase in the other, low when an increase in one typically accompanies a decrease in the other,
and close to 0 when a change in one implies little about the other. We typically focus on empirical
Kendall rank correlation, but the population definition will be useful in the proof of our utility result.

Before discussing Kendall rank correlation in the context of privacy, we note two straightforward
properties. First, for simplicity, we use a version of Kendall rank correlation that does not account for
ties. We ensure this in practice by perturbing data by a small amount of continuous random noise.
Second, τ has range [−1, 1], but (this paper’s version of) τ̂ has range [−n/2, n/2]. This scaling does
not affect the qualitative interpretation and ensures that τ̂ has low sensitivity4.

4In particular, without scaling, τ̂ would be ≈ 1
n

-sensitive, but n is private information in add-remove privacy.
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Lemma 3.2. ∆(τ̂) = 3/2.

Proof. At a high level, the proof verifies that the addition or removal of a user changes the first term
of τ̂ by at most 1/2, and the second term by at most 1.

In more detail, consider two neighboring databases (X,Y ) and (X ′, Y ′). Without loss
of generality, we may assume that (X,Y ) = {(X1, Y1), . . . , (Xn, Yn)} and (X ′, Y ′) =
{(X ′1, Y ′1), . . . , (X ′n+1, Y

′
n+1)} where for all i ∈ [n] we have that X ′i = Xi and Y ′i = Yi. First, we

argue that the number of discordant pairs in (X ′, Y ′) cannot be much larger than in (X,Y ). By
definition, we have that dX′,Y ′ − dX,Y =

∑n
j=1 1(Xj−X′n+1)(Yj−Y ′n+1)<0. In particular, this implies

that dX′,Y ′ − dX,Y ∈ [0, n].

We can rewrite the difference in Kendall correlation between (X,Y ) and (X ′, Y ′) as follows:

τ̂(X,Y )− τ̂(X ′, Y ′) =
n

2
− 2dX,Y
n− 1

− n+ 1

2
+

2dX′,Y ′

n

= 2

(
dX′,Y ′

n
− dX,Y
n− 1

)
− 1

2

= 2

(
dX′,Y ′ − dX,Y

n
+
dX,Y
n
− dX,Y
n− 1

)
− 1

2

= 2
dX′,Y ′ − dX,Y

n
+ 2dX,Y

(
1

n
− 1

n− 1

)
− 1

2

= 2
dX′,Y ′ − dX,Y

n
− dX,Y(

n
2

) − 1

2
,

where the final equality follows from the fact that 2( 1
n −

1
n−1 ) = −1/

(
n
2

)
. Using our previous

calculation, the first term is in the range [0, 2] and, since dX,Y ∈ [0,
(
n
2

)
], the second term is in the

range [−1, 0]. It follows that

−3

2
= 0− 1− 1

2
≤ τ̂(X,Y )− τ̂(X ′, Y ′) ≤ 2− 0− 1

2
=

3

2
,

and therefore |τ̂(X,Y )− τ̂(X ′, Y ′)| ≤ 3/2.

To show that the sensitivity is not smaller than 3/2, consider neighboring databases (X,Y ) and
(X ′, Y ′) such that dX,Y = 0 and (X ′, Y ′) contains a new point that is discordant with all points in
(X,Y ). Then dX′,Y ′ = n while dX,Y = 0. Then τ̂(X,Y )− τ̂(X ′, Y ′) = 2− 0− 1/2 = 3/2.

Turning to privacy, Kendall rank correlation has two notable strengths. First, because it is computed
entirely from information about the relative ordering of data, it does not require an end user to provide
data bounds. This makes it a natural complement to private regression methods that also operate
without user-provided data bounds. Second, Kendall rank correlation’s sensitivity is constant, but
its range scales linearly with n. This makes it easy to compute privately. A contrasting example is
Pearson correlation, which requires data bounds to compute covariances and has sensitivity identical
to its range. An extended discussion of alternative notions of correlation appears in Section 6.

Finally, Kendall rank correlation can be computed relatively quickly using a variant of merge sort.
Lemma 3.3 ([22]). Given collection of data points (X,Y ) = {(X1, Y1), . . . , (Xn, Yn)}, τ̂(X,Y )
can be computed in time O(n log(n)).

3.2 DPKendall

Having defined Kendall rank correlation, we now describe our private feature selection algorithm,
DPKendall. Informally, DPKendall balances two desiderata: 1) selecting features that correlate with
the label, and 2) selecting features that do not correlate with previously selected features. Prioritizing
only the former selects for redundant copies of a single informative feature, while prioritizing only
the latter selects for features that are pure noise.

In more detail, DPKendall consists of k applications of Peel to select a feature that is correlated with
the label and relatively uncorrelated with the features already chosen. Thus, letting St denote the set
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of t− 1 features already chosen in round t, each round attempts to compute

max
j 6∈St

|τ̂(Xj , Y )| − 1

t− 1

∑
j′∈St

|τ̂(Xj , Xj′)|

 . (1)

The 1
t−1 scaling ensures that the sensitivity of the overall quantity remains fixed at 3

2 in the first round
and 3 in the remaining rounds. Note that in the first round we take second term to be 0, and only label
correlation is considered.

Algorithm 1 DPKendall(D, k, ε)

1: Input: Examples D = {(Xi, Yi)}ni=1, number of selected features k, privacy parameter ε
2: for j = 1, . . . , d do
3: Compute τ̂Yj = |τ̂(Xj , Y )|
4: Initialize S = ∅
5: Initialize τ̂ = τ̂Y ∈ Rd
6: Initialize τ̂X = 0 ∈ Rd
7: for t = 1, . . . , k do
8: Set ∆∞ = 3

2 + 3
2 · 1t>1

9: Set st = Peel
(
τ̂Y + τ̂X

t−1 , 1,∆∞,
ε
k

)
10: Expand S = S ∪ st
11: Update τ̂Yst = −∞
12: for j 6∈ S do
13: Update τ̂Xj = τ̂Xj − |τ̂(Xj , Xst)|
14: Return S

Pseudocode for DPKendall appears in Algorithm 1. Its runtime and privacy are easy to verify.
Theorem 3.4. DPKendall runs in time O(dkn log(n)) and satisfies ε-DP.

Proof. By Lemma 3.3, each computation of Kendall rank correlation takes time O(n log(n)), so
Line 2’s loop takes time O(dn log(n)), as does each execution of Line 12’s loop. Each call to Peel
requires O(d) samples of Gumbel noise and thus contributes O(dk) time overall. The loop in Line 7
therefore takes time O(dkn log(n)). The privacy guarantee follows from Lemmas 2.4 and 3.2.

For comparison, standard OLS on n samples of data with d features requires timeO(d2n); DPKendall
is asymptotically no slower as long as n ≤ O(2d/k). Since we typically take k � d, DPKendall is
computationally “free” in many realistic data settings.

3.3 Utility Guarantee

The proof of DPKendall’s utility guarantee combines results about population Kendall rank correla-
tion (Lemma 3.5), empirical Kendall rank correlation concentration (Lemma 3.6), and the accuracy
of Peel (Lemma 3.7). The final guarantee (Theorem 3.8) demonstrates that DPKendall selects useful
features even in the presence of redundant features.

We start with the population Kendall rank correlation guarantee. Its proof, and all proofs for uncited
results in this section, appears in Section 7 in the Appendix.
Lemma 3.5. Suppose that X1, . . . , Xk are independent random variables where Xj ∼ N(µj , σ

2
j ).

Let ξ ∼ N(0, σ2
e) be independent noise. Then if the label is generated by Y =

∑k
j=1 βjXj + ξ, for

any j∗ ∈ [k],

τ(Xj∗ , Y ) =
2

π
· arctan

βj∗σj∗√∑
j 6=j∗ β

2
jσ

2
j + σ2

e

.

To interpret this result, recall that τ ∈ [−1, 1] and arctan has domain R, is odd, and has
limx→∞ arctanx = π/2. Lemma 3.5 thus says that if we fix the other σj and σe and take σj∗ →∞,
τ(Xj∗ , Y )→ sign (βj∗) as expected. The next step is to verify that τ̂ concentrates around τ .
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Lemma 3.6 (Lemma 1 [3]). Given n observations each of random variables X and Y , with proba-
bility 1− η,

|τ̂(X,Y )− n

2
· τ(X,Y )| ≤

√
8n ln(2/η).

Finally, we state a basic accuracy result for the Gumbel noise employed by Peel.
Lemma 3.7. Given i.i.d. random variables X1, . . . , Xd ∼ Gumbel (b), with probability 1− η,

max
j∈[d]
|Xj | ≤ b ln

(
2d

η

)
.

We now have the tools necessary for the final result.
Theorem 3.8. Suppose that X1, . . . , Xk are independent random variables where each Xj ∼
N(µj , σ

2
j ). Suppose additionally that of the remaining d − k random variables, for each j ∈ [k],

nj are copies of Xj , where
∑k
j=1 nj ≤ d − k. For each j ∈ [k], let Sj denote the set of indices

consisting of j and the indices of its copies. Then if the label is generated by Y =
∑k
j=1 βjXj + ξ

where ξ ∼ N(0, σ2
e) is independent random noise, if

n = Ω

 k · ln(dk/η)

ε ·minj∗∈[k]

{∣∣∣∣arctan
βj∗σj∗√∑

j 6=j∗ β
2
jσ

2
j +σ2

e

∣∣∣∣}
 ,

then with probability 1−O(η), DPKendall correctly selects exactly one index from each of S1, . . . , Sk.

Proof. The proof reduces to applying the preceding lemmas with appropriate union bounds. Dropping
the constant scaling of η for neatness, with probability 1−O(η):

1. Feature-label correlations are large for informative features and small for uninformative features:
by Lemma 3.5 and Lemma 3.6, each feature in j∗ ∈ ∪j∈[k]Sj has

τ̂(Xj∗ , Y ) ≥ n

π
· arctan

βj∗σj∗√∑
j 6=j∗ β

2
jσ

2
j + σ2

e

−
√

8n ln(d/η))

and any j∗ 6∈ ∪j∈[k]Sj has τ̂(Xj∗ , Y ) ≤
√

8n ln(d/η).

2. Feature-feature correlations are large between copies of a feature and small between independent
features: by Lemma 3.5 and Lemma 3.6, for any j ∈ [k] and j1, j2 ∈ Sj ,

τ̂(Xj1 , Xj2) ≥ n

2
−
√

8n ln(d/η)

and for any j1, j2 such that there exists no Sj containing both, τ̂(Xj1 , Xj2) ≤
√

8n ln(d/η).

3. The at most dk draws of Gumbel noise have absolute value bounded by k
ε ln

(
dk
η

)
.

Combining these results, to ensure that DPKendall’s k calls to Peel produce exactly one index from
each of S1, . . . , Sk, it suffices to have

n · min
j∗∈[k]

{∣∣∣∣∣∣arctan
βj∗σj∗√∑

j 6=j∗ β
2
jσ

2
j + σ2

e

∣∣∣∣∣∣} = Ω
(

[
√
n+ k

ε ] ln(dkη )
)

which rearranges to yield the claim.

4 Experiments

This section collects experimental evaluations of DPKendall and other methods on 25 of the 33
datasets5. Descriptions of the relevant algorithms appear in Section 4.1 and Section 4.2. Section 4.3
discusses the results. Experiment code may be found on Github [14].

5We omit the datasets with OpenML task IDs 361080-361084 as they are restricted versions of other included
datasets. We also exclude 361090 and 361097 as non-private OLS obtained R2 � 0 on both. Details for the
remaining datasets appear in Figure 3 in the Appendix.
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4.1 Feature Selection Baseline

Our experiments use SubLasso [21] as a baseline “plug-and-play” private feature selection method.
At a high level, the algorithm randomly partitions its data into m subsets, computes a non-private
Lasso regression model on each, and then privately aggregates these models to select k significant
features. The private aggregation process is simple; for each subset’s learned model, choose the k
features with largest absolute coefficient, then apply private top-k to compute the k features most
selected by the m models. Kifer et al. [21] introduced and analyzed SubLasso; we collect its relevant
properties in Lemma 4.1. Pseudocode appears in Algorithm 2.

Algorithm 2 SubLasso(D, k,m, ε)

1: Input: Examples D = {(Xi, Yi)}ni=1, number of selected features k, number of models m,
privacy parameter ε

2: Randomly partition D into m equal-size subsets S1, . . . , Sm
3: for i = 1, . . . ,m do
4: Compute Lasso model θi on Si
5: Compute set Ci of the k indices of θi with largest absolute value
6: Compute binary vector vi ∈ {0, 1}d where vi,j = 1j∈Ci

7: Compute V ∈ Rd =
∑n
i=1 vi

8: Return Peel(V, k, 1, ε)

Lemma 4.1. SubLasso is ε-DP and runs in time O(d2n).

Proof. The privacy guarantee is immediate from that of Peel (Lemma 2.4). Solving Lasso on n/m
data points with d-dimensional features takes time O(d

2n
m ) [12]. Multiplying through by m produces

the final result, since Peel only takes time O(dk).

Finally, we briefly discuss the role of the intercept feature in SubLasso. As with all algorithms in
our experiments, we add an intercept feature (with a constant value of 1) to each vector of features.
Each Lasso model is trained on data with this intercept. However, the intercept is removed before the
private voting step, k features are chosen from the remaining features, and the intercept is added back
afterward. This ensures that privacy is not wasted on the intercept feature, which we always include.

4.2 Comparison Algorithms

We evaluate seven algorithms:

1. NonDP is a non-private baseline running generic ordinary least-squares regression.
2. BAS runs Boosted AdaSSP [30] without feature selection. We imitate the parameter settings

used by Tang et al. [30] and set feature and gradient clipping norms to 1 and the number of
boosting rounds to 100 throughout.

3. Tukey runs the Tukey mechanism [2] without feature selection. We introduce and use
a tighter version of the propose-test-release (PTR) check given by Amin et al. [2]. This
reduces the number of models needed for PTR to pass. The proof appears in Section 9 in the
Appendix and may be of independent interest. To privately choose the number of models m
used by the Tukey mechanism, we first privately estimate a 1−η probability lower bound on
the number of points n using the Laplace CDF, ñ = n+ Lap

(
1
ε′

)
− ln(1/2η)

ε′ , and then set
the number of models to m = bñ/dc. Tukey spends 5% of its ε privacy budget estimating
m and the remainder on the Tukey mechanism.

4. L-BAS runs spends 5% of its ε privacy budget choosing m = bñ/kc for SubLasso, 5% of ε
running SubLasso, and then spends the remainder to run BAS on the selected features.

5. L-Tukey spends 5% of its ε privacy budget choosing m = bñ/kc for SubLasso, 5% running
SubLasso, and the remainder running Tukey on the selected features using the same m.

6. K-BAS spends 5% of its ε privacy budget running DPKendall and then spends the remainder
running BAS on the selected features.

7. K-Tukey spends 5% of its ε privacy budget choosing m = bñ/kc, 5% running DPKendall,
and then spends the remainder running the Tukey mechanism on the selected features.
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Figure 1: Plots of rank data for each private method.
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Figure 2: Plots of the number of datasets with positive R2 for each private method.

4.3 Results

All experiments use (ln(3), 10−5)-DP. Where applicable, 5% of the privacy budget is spent on private
feature selection, 5% on choosing the number of models, and the remainder is spent on private
regression. Throughout, we use η = 10−4 as the failure probability for the lower bound used to
choose the number of models. For each algorithm and dataset, we run 10 trials using random 90-10
train-test splits and record the resulting test R2 values. Tables of the results at k = 5 and k = 10
appear in Section 10 in the Appendix. A condensed presentation appears below. At a high level, we
summarize the results in terms of relative and absolute performance.

4.3.1 Relative Performance

First, for each dataset and method, we compute the median R2 of the final model across the 10 trials
and then rank the methods, with the best method receiving a rank of 1. Figure 1 plots the number of
times each method is ranked first or second.

At k = 5 (left), K-Tukey performs best by a significant margin: it ranks first on 48% of datasets,
twice the fraction of any other method. It also ranks first or second on the largest fraction of datasets
(68%). In some contrast, L-BAS obtains the top ranking on 24% of datasets, whereas K-BAS only
does so on 8%; nonetheless, the two have nearly the same number of total first or second rankings.
At k = 10 (right), no clear winner emerges among the feature selecting methods, as L-BAS, K-BAS,
and K-Tukey are all first or second on around half the datasets6, though the methods using SubLasso
have a higher share of datasets ranked first.

6Note that k = 10 only uses 21 datasets. This is because 4 of the 25 datasets used for k = 5 have d < 10.
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4.3.2 Absolute Performance

Second, we count the number of datasets on which the method achieves a positive median R2

(Figure 2), recalling that R2 = 0 is achieved by the trivial model that always predicts the mean
label. The k = 5 (left) setting again demonstrates clear trends: K-Tukey attains R2 > 0 on 56%
of datasets, L-Tukey does so on 40%, K-BAS does so on 28%, and L-BAS on 20%. DPKendall
therefore consistently demonstrates stronger performance than SubLasso. As in the rank data, at
k = 10 the picture is less clear. However, K-Tukey is still best by some margin, with the remaining
feature selecting methods all performing roughly equally well.

4.4 Discussion

A few trends are apparent from Section 4.3. First, DPKendall generally achieves stronger final utility
than SubLasso, particularly for the Tukey mechanism; the effect is similar but smaller for k = 10;
and feature selection generally improves the performance of private linear regression.

Comparing Feature Selection Algorithms. A possible reason for DPKendall’s improvement over
SubLasso is that, while SubLasso takes advantage of the stability properties that Lasso exhibits in
certain data regimes [21], this stability does not always hold in practice. Another possible explanation
is that the feature coefficients passed to Peel scale with O(n) for DPKendall and m = O(nd ) or
m = O(nk ) for SubLasso. Both algorithm’s invocations of Peel add noise scaling with O(kε ), so
DPKendall’s larger scale makes it more robust to privacy-preserving noise. Finally, we emphasize
that DPKendall achieves this even though its O(dkn log(n)) runtime is asymptotically smaller than
the O(d2n) runtime of SubLasso in most settings.

Choosing k. Next, we examine the decrease in performance from k = 5 to k = 10. Conceptually,
past a certain point adding marginally less informative features to a private model may worsen utility
due to the privacy cost of considering these features. Moving from k = 5 to k = 10 may cross this
threshold for many of our datasets; note from Figure 4 and Figure 5 in the Appendix that, of the 21
datasets used for k = 10, 86% witness their highest private R2 in the k = 5 setting7. Moreover, from
k = 5 to k = 10 the total number of positive R2 datasets across methods declines by more than 50%,
from 41 to 19, with all methods achieving positive R2 less frequently at k = 10 than k = 5. We
therefore suggest k = 5 as the more relevant setting, and a good choice in practice.

The Effect of Private Feature Selection. Much work aims to circumvent generic lower bounds for
privately answering queries by taking advantage of instance-specific structure [6, 16, 33, 5]. Similar
works exist for private optimization, either by explicitly incorporating problem information [35, 18]
or showing that problem-agnostic algorithms can, under certain conditions, take advantage of problem
structure organically [24]. We suggest that this paper makes a similar contribution: feature selection
reduces the need for algorithms like Boosted AdaSSP and the Tukey mechanism to “waste” privacy
on computations over irrelevant features. This enables them to apply less obscuring noise to the
signal contained in the selected features. The result is the significant increase in utility shown here.

5 Conclusion

We briefly discuss DPKendall’s limitations. First, it requires an end user to choose the number of
features k to select; we suggest k = 5 as a reasonable first cut. Second, DPKendall’s use of Kendall
rank correlation may struggle when ties are intrinsic to the data’s structure, e.g., when the data is
categorical, as a monotonic relationship between feature and label becomes less applicable. Finally,
Kendall rank correlation may fail to distinguish between linear and nonlinear monotonic feature-label
relationships, even though the former is more likely to be useful for linear regression. Unfortunately, it
is not obvious how to incorporate relationships more sophisticated than simple monotonicity without
sacrificing rank correlation’s low sensitivity. Answering these questions may be an interesting avenue
for future work.

Nonetheless, the results of this paper demonstrate that DPKendall expands the applicability of plug-
and-play private linear regression algorithms while providing more utility in less time than the current
state of the art. We therefore suggest that DPKendall presents a step forward for practical private
linear regression.

7The exceptions are datasets 361075, 361091, and 361103.
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6 Alternative Notions of Correlation

6.1 Pearson

The Pearson correlation between some feature X and the label Y is defined by

r(X,Y ) :=
Cov (X,Y )√

Var (X)Var (Y )
. (2)

Evaluated on a sample of n points, this becomes

r(X,Y ) :=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

.

where X̄ and Ȳ are sample means.

Lemma 6.1. r ∈ [−1, 1].

Proof. This is immediate from Cauchy-Schwarz.

Note that a value of −1 is perfect anticorrelation and a value of 1 is perfect correlation. A downside
of Pearson correlation is that it is not robust. In particular, its sensitivity is the same as its range.

Lemma 6.2. Pearson correlation has `1-sensitivity ∆(r) = 2.

Proof. Consider neighboring databases D = {(−1,−1), (1, 1)} and D′ =
{(−1,−1), (1, 1), (−c, c)}. r(D) = 1, but

r(D′) =
(−1 + c

3 )(−1− c
3 ) + (1 + c

3 )(1− c
3 ) + (− 2c

3 ·
2c
3 )√

(−1 + c
3 )2 + (1 + c

3 )2 + (− 2c
3 )2
√

(−1− c
3 )2 + (1− c

3 )2 + ( 2c
3 )2

≈
−( 2c

3 )2

( 2c
3 )2

= −1

where the approximation is increasingly accurate as c grows.

6.2 Spearman

Spearman rank correlation is Pearson correlation applied to rank variables.

Definition 6.3. Given data points X1, . . . , Xn ∈ R, the corresponding rank variables
R(X1), . . . , R(Xn) are defined by settingR(Xi) to the position ofXi whenX1, . . . , Xn are sorted in
descending order. Given data (X,Y ), the Spearman rank correlation is ρ(X,Y ) := r(R(X), R(Y )).

For example, given database D = {(0, 1), (1, 0), (2, 3)}, its Spearman rank correlation is

ρ(D) := r({(3, 2), (2, 3), (1, 1)}).

A useful privacy property of rank is that it does not depend on data scale. Moreover, if there are no
ties then Spearman rank correlation admits a simple closed form.

Lemma 6.4. ρ(X,Y ) = 1− 6
∑n

i=1(R(Xi)−R(Yi))
2

n(n2−1) .

If we consider adding a “perfectly unsorted” data point with rank variables (1, n+ 1) to a perfectly
sorted database with rank variables {(1, 1), (2, 2), . . . , (n, n)}, ρ changes from 1 to 1 − 6(n+n2)

n(n2−1) .
The sensitivity’s dependence on n complicates its usage with add-remove privacy. Nonetheless, both
Spearman and Kendall correlation’s use of rank makes them relatively easy to compute privately, and
as the two methods are often used interchangeably in practice, we opt for Kendall rank correlation for
simplicity.
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7 Deferred Proofs From Section 3.3

We first restate and prove Lemma 3.5.
Lemma 3.5. Suppose that X1, . . . , Xk are independent random variables where Xj ∼ N(µj , σ

2
j ).

Let ξ ∼ N(0, σ2
e) be independent noise. Then if the label is generated by Y =

∑k
j=1 βjXj + ξ, for

any j∗ ∈ [k],

τ(Xj∗ , Y ) =
2

π
· arctan

βj∗σj∗√∑
j 6=j∗ β

2
jσ

2
j + σ2

e

.

Proof. Recall from Definition 3.1 the population formulation of τ ,

τ(X,Y ) = P [(X −X ′)(Y − Y ′) > 0]− P [(X −X ′)(Y − Y ′) < 0] (3)

where X and X ′ are i.i.d., as are Y and Y ′. In our case, we can define Z =
∑
j 6=j∗ βjXj + ξ and

rewrite the first term of Equation 3 for our setting as∫ ∞
0

fXj∗−X′j∗ (t) · [1− FZ−Z′(−βj∗t)]dt+

∫ 0

−∞
fXj∗−X′j∗ (t) · FZ−Z′(−βj∗t)dt. (4)

where fA and FA denote densities and cumulative distribution functions of random variable A,
respectively. Since the relevant distributions are all Gaussian,Xj∗−X ′j∗ ∼ N(0, 2σ2

j∗) and Z−Z ′ ∼
N(0, 2[

∑
j 6=j∗ β

2
jσ

2
j + σ2

e ]). For neatness, shorthand σ2 = 2σ2
j∗ and σ2

−1 = 2[
∑
j 6=j∗ β

2
jσ

2
j + σ2

e ].
Then if we let φ denote the PDF of a standard Gaussian and Φ the CDF of a standard Gaussian,
Equation 4 becomes∫ ∞

0

1

σ
φ(t/σ) · [1− Φ(−βj∗t/σ−1)]dt+

∫ 0

−∞

1

σ
φ(t/σ)Φ(−βj∗t/σ−1)dt

=
1

σ

[∫ ∞
0

φ(t/σ)Φ(βj∗t/σ−1)dt+

∫ 0

−∞
φ(−t/σ)Φ(−βj∗t/σ−1)dt

]
=

2

σ

∫ ∞
0

φ(t/σ)Φ(βj∗t/σ−1)dt.

We can similarly analyze the second term of Equation 3 to get∫ ∞
0

fXj∗−X′j∗ (t) · FZ−Z′(−βj∗t)dt+

∫ 0

−∞
fXj∗−X′j∗ (t) · [1− FZ−Z′(−βj∗t)]dt

=

∫ ∞
0

1

σ
φ(t/σ)Φ(−βj∗t/σ−1)dt+

∫ 0

−∞

1

σ
φ(t/σ)Φ(βj∗t/σ−1)dt

=
2

σ

∫ 0

−∞
φ(t/σ)Φ(βj∗t/σ−1)dt.

Using both results, we get

τ(X1, Y ) =
2

σ

[∫ ∞
0

φ(t/σ)Φ(βj∗t/σ−1)dt−
∫ 0

−∞
φ(t/σ)Φ(βj∗t/σ−1)dt

]
=

2

σ

[∫ ∞
0

φ(t/σ)Φ(βj∗t/σ−1)dt−
∫ ∞

0

φ(t/σ)[1− Φ(βj∗t/σ−1)]dt

]
=

4

σ

∫ ∞
0

φ(t/σ)Φ(βj∗t/σ−1)dt− 1

=
4

σ
· σ

2π

(
π

2
+ arctan

βj∗σ

σ−1

)
− 1

=
2

π
· arctan

βj∗σ

σ−1
.

where the third equality uses
∫∞

0
φ(t/σ)dt = σ

2 and the fourth equality comes from Equation 1,010.4
of Owen [26]. Substituting in the values of σ and σ−1 yields the claim.
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Next is Lemma 3.7.

Lemma 3.7. Given i.i.d. random variables X1, . . . , Xd ∼ Gumbel (b), with probability 1− η,

max
j∈[d]
|Xj | ≤ b ln

(
2d

η

)
.

Proof. Recall from Definition 2.3 that Gumbel (b) has density f(x) = 1
b · exp

(
−xb − e

−x/b). Then
f(x)
f(−x) = exp

(
−xb − e

−x/b − x
b + ex/b

)
. For z ≥ 0, by ez =

∑∞
n=0

zn

n! ,

2z + e−z ≤ 2z + 1− z +
z2

2
= 1 + z +

z2

2
≤ ez

so since b ≥ 0, f(x) ≥ f(−x) for x ≥ 0. Letting F (z) = exp(− exp(−z/b)) denote the CDF for
Gumbel (b), it follows that for z ≥ 0, 1− F (z) ≥ F (−z). Thus the probability that maxj∈[d] |Xj |
exceeds t is upper bounded by 2d(1− F (t)). The claim then follows from rearranging the inequality

2d(1− F (t)) ≤ η

1− η

2d
≤ F (t)

1− η

2d
≤ exp(− exp(−t/b))

ln
(

1− η

2d

)
≤ − exp(−t/b)

−b ln
(
− ln

(
1− η

2d

))
≤ t

b ln

(
1

− ln(1− η/[2d])

)
≤ t

and using − ln(1− x) =
∑∞
i=1 x

i/i ≥ x.

8 Datasets

A summary of the datasets used in our experiments appears in Figure 3.

We briefly discuss the role of the intercept in these datasets. Throughout, we explicitly add an
intercept feature (constant 1) to each vector. Where feature selection is applied, we explicitly remove
the intercept feature during feature selection and then add it back to the k selected features afterward.
The resulting regression problem therefore has dimension k+ 1. We do this to avoid spending privacy
budget selecting the intercept feature.

9 Modified PTR Lemma

This section describes a simple tightening of Lemma 3.6 from Amin et al. [2] (which is itself a
small modification of Lemma 3.8 from Brown et al. [7]). Tukey uses the result as its propose-test-
release (PTR) check, so tightening it makes the check easier to pass. Proving the result will require
introducing details of the Tukey algorithm. The following exposition aims to keep this document both
self-contained and brief; the interested reader should consult the expanded treatment given by Amin
et al. [2] for further details.

Tukey depth was introduced by Tukey [32]. Amin et al. [2] used an approximation for efficiency.
Roughly, Tukey depth is a notion of depth for a collection of points in space. (Exact) Tukey depth is
evaluated over all possible directions in Rd, while approximate Tukey depth is evaluated only over
axis-aligned directions.

Definition 9.1 ([32, 2]). A halfspace hv is defined by a vector v ∈ Rd, hv = {y ∈ Rd | 〈v, y〉 ≥ 0}.
Let E = {e1, ..., ed} be the canonical basis for Rd and let D ⊂ Rd. The approximate Tukey depth of
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OpenML Task ID n d bn/dc bn/5c bn/10c
361072 8192 22 372 1638 819
361073 15000 27 555 3000 1500
361074 16599 17 976 3319 1659
361075 7797 614 12 1559 779
361076 6497 12 541 1299 649
361077 13750 34 404 2750 1375
361078 20640 9 2293 4128 2064
361079 22784 17 1340 4556 2278
361085 10081 7 1440 2016 1008
361087 13932 14 995 2786 1393
361088 21263 80 265 4252 2126
361089 20640 9 2293 4128 2064
361091 515345 91 5663 103069 51534
361092 8885 83 107 1777 888
361093 4052 13 311 810 405
361094 8641 6 1440 1728 864
361095 166821 24 6950 33364 16682
361096 53940 27 1997 10788 5394
361098 10692 18 594 2138 1069
361099 17379 21 827 3475 1737
361100 39644 74 535 7928 3964
361101 581835 32 18182 116367 58183
361102 21613 20 1080 4322 2161
361103 394299 27 14603 78859 39429
361104 241600 16 15100 48320 24160

Figure 3: Parameters of the 25 datasets used in our experiments.

a point y ∈ Rd with respect to D, denoted T̃D(y), is the minimum number of points in D in any of
the 2d halfspaces determined by E containing y,

T̃D(y) = min
v∈±E s.t. y∈hv

∑
x∈D

1x∈hv
.

At a high level, Lemma 3.6 from Amin et al. [2] is a statement about the volumes of regions of
different depths. The next step is to formally define these volumes.

Definition 9.2 ([2]). Given database D, define Si,D = {y ∈ Rd | T̃D(y) ≥ i} to be the set of
points with approximate Tukey depth at least i in D and Vi,D = vol(Si,D) to be the volume of
that set. When D is clear from context, we write Si and Vi for brevity. We also use wD(Vd,D) :=∫
Sd,D

exp(ε · T̃D(y))dy to denote the weight assigned to Vd,D by an exponential mechanism whose

score function is T̃D.

Amin et al. [2] define a family of mechanisms A1, A2, . . . , where At runs the exponential mechanism
to choose a point of approximately maximal Tukey depth, but restricted to the domain of points with
Tukey depth at least t. Since this domain is a data-dependent quantity, they use the PTR framework
to select a safe depth t. We briefly recall the definitions of “safe” and “unsafe” databases given
by Brown et al. [7], together with the key PTR result from Amin et al. [2].
Definition 9.3 (Definitions 2.1 and 3.1 [7]). Two distributions P,Q over domain W are (ε, δ)-
indistinguishable, denoted P ≈ε,δ Q, if for any measurable subset W ⊂ W ,

Pw∼P [w ∈W ] ≤ eεPw∼Q [w ∈W ] + δ and Pw∼Q [w ∈W ] ≤ eεPw∼P [w ∈W ] + δ.

Database D is (ε, δ, t)-safe if for all neighboring D′ ∼ D, we have At(D) ≈ε,δ At(D′). Let
Safe(ε,δ,t) be the set of safe databases, and let Unsafe(ε,δ,t) be its complement.

We can now restate Lemma 3.6 from Amin et al. [2]. Informally, it states that if the volume of an
“outer” region of Tukey depth is not much larger than the volume of an “inner” region, the difference
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in depth between the two is a lower bound on the distance to an unsafe database. For the purpose of
this paper, Tukey applies this result by finding such a k, adding noise for privacy, and checking that
the resulting distance to unsafety is large enough that subsequent steps will be privacy-safe.
Lemma 9.4. Define M(D) to be a mechanism that receives as input database D and computes the
largest k ∈ {0, . . . , t− 1} such that there exists g > 0 where

Vt−k−1,D

Vt+k+g+1,D
· e−εg/2 ≤ δ

or outputs −1 if the inequality does not hold for any such k. Then for arbitrary D

1. M is 1-sensitive, and

2. for all z ∈ Unsafe(ε,4eεδ,t), dH(D, z) > M(D).

We provide a drop-in replacement for Lemma 9.4 that slightly weakens the requirement placed on k.
Lemma 9.5. Define M(D) to be a mechanism that receives as input database D and computes the
largest k ∈ {0, . . . , t− 1} such that

Vt−k−1,D

wD(Vt+k−1,D)
· eε(t+k+1) ≤ δ

or outputs −1 if the inequality does not hold for any such k. Then for arbitrary D

1. M is 1-sensitive, and

2. for all z ∈ Unsafe(ε,4eεδ,t), dH(D, z) > M(D).

The new result therefore replaces the denominator Vt+k+g+1,D ·eεg/2 with denominator wD(Vt+k−1,D)

eε(t+k+1) .
Every point in Vt+k−1,D of depth at least t + k + g + 1 has score at least t + k + g + 1, so
wD(Vt+k−1,D)

eε(t+k+1) ≥ Vt+k+g+1,D · eεg, so Vt+k+g+1,D · eεg/2 ≤ wD(Vt+k+g+1,D)

eε(t+k+1) and the check for the
new result is no harder to pass. To see that it may be easier, note that only the new result takes
advantage of the higher scores of deeper points in Vt+k−1,D.

Proof of Lemma 9.5. First we prove item 1. Let D and D′ be any neighboring databases and suppose
WLOG that D′ = D ∪ {x}. We want to show that |M(D)−M(D′)| ≤ 1.

First we prove relationships between the points with approximate Tukey depth at least p and p− 1 in
datasets D and D′. From the definition of approximate Tukey depth, together with the fact that D′

contains one additional point, for any point y, we are guaranteed that T̃D(y) ≤ T̃D′(y) ≤ T̃D(y) + 1.
Recall that Sp,D is the set of points with approximate Tukey depth at least p in D. This implies that
Sp+1,D ⊂ Sp,D. Next, since for every point y we have T̃D′(y) ≥ T̃D(y), we have that Sp,D ⊂ Sp,D′ .
Finally, since T̃D(y) ≥ T̃D′(y)− 1, we have that Sp,D′ ⊂ Sp−1,D. Taken together, we have

Sp+1,D ⊂ Sp,D ⊂ Sp,D′ ⊂ Sp−1,D.

It follows that
Vp+1,D ≤ Vp,D ≤ Vp,D′ ≤ Vp−1,D. (5)

Next, since the unnormalized exponential mechanism density y 7→ exp(yT̂D(y)) is non-negative,
we have that wD(Vp+1,D) =

∫
Sp+1,D

exp(εT̃D(y)) dy ≤
∫
Sp,D

exp(εT̃D(y)) dy = wD(Vp,D).

Using the fact that T̃D(y) ≤ T̃D′(y), we have that wD(Vp,D) =
∫
Sp,D

exp(εT̃D(y)) dy ≤∫
Sp,D′

exp(εT̃D′(y)) dy = wD′(Vp,D′). Finally, using the fact that T̃D′(y) ≤ T̃D(y) + 1, we have

wD′(Vp,D′) =
∫
Sp,D′

exp(εT̃D′(y)) dy ≤
∫
Sp−1,D

exp(εT̃D(y) + ε) dy = eεwD(Vp−1,D). Together,
this gives

wD(Vp+1,D) ≤ wD(Vp,D) ≤ wD′(Vp,D′) ≤ wD(Vp−1,D) · eε. (6)

Now suppose there exists k∗D′ ≥ 0 such that
Vt−k∗

D′
−1,D′

wD′ (Vt+k∗
D′

+2,D′ )
· eε(t+k∗D′+1) ≤ δ. Then by Equa-

tion 5, Vt−k∗
D′−1,D′ ≥ Vt−k∗

D′ ,D
, and by Equation 6 wD′(Vt+k∗

D′+2,D′) ≤ wD(Vt+k∗
D′+1,D) · eε, so
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Vt−k∗
D′

,D

wD(Vt+k∗
D′

+1,D) · e
ε(t+k∗

D′ ) ≤ δ and then k∗D ≥ k∗D′ − 1. Similarly, if there exists k∗D ≥ 0 such that
Vt−k∗

D
−1,D

wD(Vt+k∗
D

+2,D)
· eε(t+k∗D+1) ≤ δ, then by Equation 5 Vt−k∗D−1,D ≥ Vt−k∗D,D′ , and by Equation 6

wD(Vt+k∗D+2,D) ≤ wD′(Vt+k∗D+2,D′), so
Vt−k∗

D
,D′ )

wD′ (Vt+k∗x+2,D′ )
· eε(t+k∗D′ ) ≤ δ, and k∗D′ ≥ k∗D−1. Thus

if k∗D ≥ 0 or k∗D′ ≥ 0, |k∗D − k∗D′ | ≤ 1. The result then follows since k∗ ≥ −1.

As in Lemma 9.4, item 2 is a consequence of Lemma 3.8 from Brown et al. [7] and the fact that
k∗ = −1 is a trivial lower bound on distance. The only change made to the proof of Lemma 3.8
of Brown et al. [7] is, in its notation, to replace its denominator lower bound with

wz(Vt−1,z) ≥ wx(Vt+k−1,x) · e−kε

This uses the fact that x and z differ in at most the addition or removal of k data points. Thus
Vt+k−1,x ≤ Vt−1,z , and no point’s score increases by more than k from Vt−1,z to Vt+k−1,x. Since
their numerator upper bound is Vt−k−1,x ·eε(t+1) (note that the 2 is dropped here because approximate
Tukey depth is monotonic; see Section 7.3 of [2] for details), the result follows.

10 Extended Experiment Results

Task ID NonDP BAS Tukey L-BAS L-Tukey K-BAS K-Tukey
361072 7.3e-01 7.8e-01 −∞ -2.7e-02 1.0e-01 2.1e-01 1.0e-01
361073 4.6e-01 -3.4e+00 −∞ -4.6e-01 -2.3e-02 -4.8e-01 -4.3e-01
361074 8.0e-01 -4.5e+04 -6.6e+02 -8.2e+02 -1.7e+02 -5.6e+05 3.1e-01
361075 6.2e-01 -3.6e+02 −∞ 3.2e-03 2.2e-02 5.2e-03 7.1e-02
361076 2.8e-01 -3.4e+00 −∞ -5.6e-01 -2.5e-01 -4.3e+00 8.5e-02
361077 8.2e-01 -2.1e+08 −∞ -1.0e+07 3.7e-01 -1.9e+08 6.6e-01
361078 6.5e-01 -1.1e+03 -6.4e+00 -7.4e-01 -1.2e+00 -6.1e+02 -9.5e-01
361079 2.6e-01 -5.4e+00 -1.0e+01 -1.3e+01 -2.e+00 -9.4e+00 -6.8e-01
361085 3.3e-01 -2.e+01 3.3e-01 -1.7e+01 2.8e-01 -1.3e+01 3.7e-01
361087 7.2e-01 -3.1e+03 -8.8e+04 -4.7e+00 -1.9e+02 -2.8e+00 6.6e-01
361088 7.3e-01 5.4e-02 −∞ 1.4e-01 3.e-01 2.1e-01 3.6e-01
361089 6.2e-01 -3.e+00 -1.5e+01 -1.3e+00 -5.9e+00 -5.9e+04 -2.6e-01
361091 2.4e-01 -3.0e+04 -1.9e+00 -3.0e+04 3.8e-02 -3.1e+04 4.9e-02
361092 2.0e-02 -4.7e+05 −∞ -4.1e+04 -1.4e+08 -1.3e+05 -9.3e+08
361093 4.3e-01 -5.6e-02 −∞ -4.6e-02 −∞ -4.9e-02 −∞
361094 8.3e-01 4.2e-01 -3.8e+05 -1.0e+00 -4.2e+05 -2.4e+00 -3.0e+05
361095 2.2e-01 -1.0e+00 -1.2e+09 -8.0e-01 2.e-01 1.5e-01 2.1e-01
361096 9.7e-01 -9.1e+02 -1.e+08 -4.9e+00 9.1e-01 7.1e-01 8.8e-01
361098 8.6e-01 -2.9e+01 −∞ -3.9e+00 -3.1e+00 -2.2e-01 -5.6e+00
361099 4.0e-01 -4.4e-01 -4.8e+10 -4.8e-01 -9.8e-03 -4.2e-01 3.2e-01
361100 1.2e-01 -6.3e+01 −∞ -1.1e+00 -2.8e-02 -4.6e-01 -1.7e-01
361101 3.3e-01 -9.3e+01 -5.9e+08 3.6e-01 2.e-01 3.0e-01 2.1e-01
361102 7.6e-01 -4.1e+02 -1.4e+15 6.8e-02 -2.6e-01 -4.0e+00 -5.3e+00
361103 5.3e-01 4.3e-01 -6.3e+07 5.e-01 4.9e-01 3.3e-01 4.8e-01
361104 6.8e-01 -3.7e+03 -6.4e+07 -1.5e+02 -2.6e+05 -8.3e-01 -2.9e+01

Figure 4: R2 values for k = 5. Each entry is the median test value from 10 trials. The top two private
values for each dataset are bolded.
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Task ID NonDP BAS Tukey L-BAS L-Tukey K-BAS K-Tukey
361072 7.4e-01 5.3e-01 −∞ 3.5e-01 1.8e-01 7.3e-01 8.2e-02
361073 4.6e-01 -8.2e-01 −∞ -4.4e-01 -1.7e+00 -4.8e-01 -1.6e+01
361074 8.1e-01 -2.3e+06 -1.3e+03 -5.6e+06 -3.4e+02 -7.2e+04 -1.4e+02
361075 6.2e-01 -1.7e+02 −∞ 7.5e-02 -9.7e-01 3.1e-02 -2.8e+00
361076 2.8e-01 -2.4e+02 -8.2e+04 -2.7e+01 -3.5e+03 -2.4e+01 -1.4e+03
361077 7.9e-01 -1.1e+08 −∞ -1.4e+07 -3.1e+01 -2.1e+08 -1.7e+02
361079 2.4e-01 -1.8e+00 -3.7e+01 -1.2e+01 -8.1e-01 -4.1e+00 -1.5e+00
361087 7.1e-01 -3.7e+01 -1.5e+04 -7.2e+00 -4.8e+03 -8.5e+01 -2.e+01
361088 7.3e-01 -1.9e+00 −∞ 1.2e-01 9.2e-02 1.2e-01 7.1e-02
361091 2.4e-01 -3.0e+04 -3.4e+00 -3.0e+04 6.8e-02 -3.1e+04 5.7e-02
361092 4.0e-02 -2.4e+06 −∞ -8.7e+05 -7.6e+09 -7.5e+05 -3.7e+10
361093 4.3e-01 -3.2e-02 −∞ -5.e-01 −∞ -1.1e-01 −∞
361095 2.2e-01 -1.9e+01 -1.2e+09 -8.6e-01 -2.4e+07 -1.4e+00 2.1e-01
361096 9.8e-01 -3.7e+02 -1.0e+08 -3.4e+03 -1.8e+00 -1.0e+03 4.2e-01
361098 8.6e-01 -1.8e+02 −∞ -4.1e-01 -1.3e+07 -9.5e-01 -5.8e-01
361099 4.0e-01 -4.3e-01 -2.3e+10 -4.9e-01 -2.4e+09 -4.8e-01 -2.5e+08
361100 1.2e-01 -9.2e+01 −∞ -1.6e+00 -8.2e-02 -3.5e+00 -5.2e-01
361101 3.4e-01 -3.3e+03 -1.7e+08 -8.1e-01 -1.4e+02 -9.5e-01 -4.7e+05
361102 7.5e-01 -9.5e+02 -1.7e+15 -1.3e+00 -1.5e+15 -2.5e+01 -1.4e+05
361103 5.4e-01 -2.6e+00 -1.2e+08 4.9e-01 5.1e-01 3.5e-01 4.9e-01
361104 6.8e-01 -9.e+02 -1.0e+08 -2.9e+03 -3.5e+07 -1.4e+03 -6.6e+05

Figure 5: This figure records the same information as Figure 4, but for k = 10.
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