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Abstract

Modern kernel-based two-sample tests have shown great success in distinguishing
complex, high-dimensional distributions by learning appropriate kernels (or, as a
special case, classifiers). Previous work, however, has assumed that many samples
are observed from both of the distributions being distinguished. In realistic scenar-
ios with very limited numbers of data samples, it can be challenging to identify
a kernel powerful enough to distinguish complex distributions. We address this
issue by introducing the problem of meta two-sample testing (M2ST), which aims
to exploit (abundant) auxiliary data on related tasks to find an algorithm that can
quickly identify a powerful test on new target tasks. We propose two specific
algorithms for this task: a generic scheme which improves over baselines, and a
more tailored approach which performs even better. We provide both theoretical
justification and empirical evidence that our proposed meta-testing schemes out-
perform learning kernel-based tests directly from scarce observations, and identify
when such schemes will be successful.

1 Introduction

Two-sample tests ask, “given samples from each, are these two populations the same?” For instance,
one might wish to know whether a treatment and control group differ. With very low-dimensional
data and/or strong parametric assumptions, methods such as t-tests or Kolmogorov-Smirnov tests are
widespread. Recent work in statistics and machine learning has sought tests that cover situations not
well-handled by these classic methods [1–18], providing tools useful in machine learning for domain
adaptation, causal discovery, generative modeling, fairness, adversarial learning, and more [19–34].
Perhaps the most powerful known widely-applicable scheme is based on a kernel method known as
the maximum mean discrepancy (MMD) [1] – or, equivalently [35], the energy distance [3] – when
one learns an appropriate kernel for the task at hand [10, 16]. Here, one divides the observed data
into “training” and “testing” splits, identifies a kernel on the training data by maximizing a power
criterion Ĵ , then runs an MMD test on the testing data (as illustrated in Figure 1a). This method
generally works very well when enough data is available for both training and testing.

In real-world scenarios, however, two-sample testing tasks can be challenging if we do not have very
many data observations. For example, in medical imaging, we might face two small datasets of lung
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Figure 1: Comparison among (a) traditional kernel learning [10, 16], (b) meta kernel learning, and (c)
meta multi-kernel learning for kernel two-sample testing, where k̂ or k̂i are the learned kernel.

computed tomography (CT) scans of patients with coronavirus diseases, and wish to know if these
patients are affected in different ways. If they are from different distributions, the virus causing the
disease may have mutated. Here, previous tests are likely to be relatively ineffective; we cannot learn
a powerful kernel to distinguish such complex distributions with only a few observations.

In this paper, we address this issue by considering a problem setting where related testing tasks are
available. We use those related tasks to identify a kernel selection algorithm. Specifically, instead
of using a fixed algorithm A to learn a kernel (“maximize Ĵ among this class of deep kernels”), we
want to learn an algorithm Aθ from auxiliary data (Figure 1b):

arg max
Aθ

E(P,Q)∼τ

[
Ĵ(SteP , S

te
Q ;Aθ(S

tr
P , S

tr
Q ))
]
. (1)

Here P,Q are distributions sampled from a meta-distribution of related tasks τ , which asks us to
distinguish P from Q. The corresponding observed sample sets SP, SQ are split into training (tr) and
testing (te) components. Aθ is a kernel selection algorithm which, given the two training sets (also
called “support sets” in meta-learning parlance), returns a kernel function. Ĵ finally estimates the
power of that kernel using the test set (“query sets”). In analogy with meta-learning [36–42], we call
this learning procedure meta kernel learning (Meta-KL). We can then apply Aθ to select a kernel on
our actual testing task, then finally run an MMD test as before (Figure 1b).

The adaptation performed by Aθ, however, might still be very difficult to achieve with few training
observations; even the best Aθ found by a generic adaptation scheme might over-fit to StrP , S

tr
Q .

For more stable procedures and, in our experiments, more powerful final tests, we propose meta
multi-kernel learning (Meta-MKL). This algorithm independently finds the most powerful kernel
for each related task; at adaptation time, we select a convex combination of those kernels for testing
(Figure 1c), as in standard multiple kernel learning [43] and similarly to ensemble methods in few-shot
classification [44, 45]. Because we are only learning a small number of weights rather than all of the
parameters of a deep network, this adaptation can quickly find a high-quality kernel.

We provide both theoretical and empirical evidence that Meta-MKL is better than generic Meta-KL,
and that both outperform approaches that do not use related task data, in low-data regimes. We find
that learned algorithms can output kernels with high test power using only a few samples, where
“plain” kernel learning techniques entirely fail.

2 Preliminaries

We will now review the setting of learning a kernel for a two-sample test, following [16]. Let
X ⊂ Rd and P, Q be (unknown) Borel probability measures on X , with SP = {xi}mi=1 ∼ Pm and
SQ = {yj}mj=1 ∼ Qm observed i.i.d. samples from these distributions. We operate in a classical
hypothesis testing setup, with the null hypothesis that P = Q.

Maximum mean discrepancy (MMD). The basic tool we use is a kernel-based distance metric
between distributions called the MMD, defined as follows. (The energy distance [3] is a special case
of the MMD for a particular choice of k [35].)
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Definition 1 (MMD [1]). Let k : X × X → R be the bounded1 kernel of an RKHS Hk (i.e.,
supx,y∈X |k(x, y)| <∞). Letting X,X ′ ∼ P and Y, Y ′ ∼ Q be independent random variables,

MMD(P,Q; k) = sup
f∈Hk,‖f‖Hk≤1

E[f(X)]− E[f(Y )] =
√
E [k(X,X ′) + k(Y, Y ′)− 2k(X,Y )].

If k is characteristic, we have that MMD(P,Q; k) = 0 if and only if P = Q.

We can estimate MMD using the following U -statistic estimator, which is unbiased for MMD2

(denoted by M̂MD
2

u) and has nearly minimal variance among unbiased estimators [1]:

M̂MD
2

u(SP, SQ; k) :=
1

m(m− 1)

∑
i 6=j

H
(k)
ij , (2)

H
(k)
ij := k(xi,xj) + k(yi,yj)− k(xi,yj)− k(yi,xj). (3)

Testing. Under the null hypothesis H0, mM̂MD
2

u converges in distribution as m → ∞ to some
distribution depending on P and k [1, Theorem 12]. We can thus build a test with p-value equal to the

quantile of our test statistic mM̂MD
2

u under this distribution. Although there are several methods to
estimate this null distribution, it is usually considered best [10] to use a permutation test [46, 47]:
under H0, samples from P and Q are interchangeable, and repeatedly re-computing the statistic with
samples randomly shuffled between SP and SQ estimates its null distribution.

Test power. We generally want to find tests likely to reject H0 when indeed it holds that P 6= Q; the
probability of doing so (for a particular P, Q, k and m) is called power. For reasonably large m,
Sutherland et al. [10] and Liu et al. [16] argue that the power is an almost-monotonic function of

J(P,Q; k) :=
MMD2(P,Q; k)

σH1(P,Q; k)
, σ2

H1
(P,Q; k) := 4

(
E
[
H

(k)
ij H

(k)
i`

]
− E

[
H

(k)
ij

]2)
. (4)

Here, σ2
H1

is the asymptotic variance of
√
m M̂MD

2

u under H1; it is defined in terms of an expectation
of (3) with respect to the data samples SP, SQ, for i, j, ` distinct. The criterion (4) depends on the
unknown distributions; we can estimate it from samples with the regularized estimator [16]

Ĵλ(SP, SQ; k) := M̂MD
2

u(SP, SQ; k)
/√

σ̂2
H1

(SP, SQ; k) + λ, (5)

σ̂2
H1

(SP, SQ; k) :=
4

m3

m∑
i=1

 m∑
j=1

H
(k)
ij

2

− 4

m4

 m∑
i=1

m∑
j=1

H
(k)
ij

2

. (6)

Kernel choice. Given two samples SP and SQ, the best kernel is (essentially) the one that maximizes
J in (4). If we pick a kernel to maximize our estimate Ĵ using the same data that we use for
testing, though, we will “overfit,” and reject H0 far too often. Instead, we use data splitting [2, 5,
10]: we partition the samples into two disjoint sets, SP = StrP ∪ SteP , obtain ktr = A(StrP , S

tr
Q ) ≈

arg maxk Ĵλ(StrP , S
tr
Q ; k), then conduct a permutation test based on MMD(SteP , S

te
Q ; ktr). This

process is summarized in Algorithm 2 and illustrated in Figure 1a.

This procedure has been successfully used not only to, e.g., pick the best bandwidth for a simple
Gaussian kernel, but even to learn all the parameters of a kernel like (8) which incorporates a deep
network architecture [10, 16]. As argued by Liu et al. [16], classifier two-sample tests [8, 48]
(which test based on the accuracy of a classifier distinguishing P from Q) are also essentially a
special case of this framework – and more-general deep kernel MMD tests tend to work better.
Although presented here specifically for M̂MDu, an analogous procedure has been used for many
other problems, including other estimates of the MMD and closely-related quantities [2, 5, 49].

When data splitting, the training split must be big enough to identify a good kernel; with too few
training samples mtr, Ĵλ will be a poor estimator, and the kernel will overfit. The testing split,

1For the given expressions to exist and agree, we in fact only need Bochner integrability; this is implied by
boundedness of either the kernel or the distribution, but can also hold more generally.
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however, must also be big enough: for a given P, Q, and k, it becomes much easier to be confident
that MMD(P,Q; k) > 0 as mte grows and the variance in M̂MDu(P,Q; k) accordingly decreases.
When the number of available samples is small, both steps suffer. This work seeks methods where,
by using related testing tasks, we can identify a good kernel with an extremely small mtr; thus we
can reserve most of the available samples for testing, and overall achieve a more powerful test.

Another class of techniques for kernel selection avoiding the need for data splitting is based on
selective inference [15]. At least as studied by Kübler et al. [15], however, it is currently available
only for restricted classes of kernels and with far-less-accurate “streaming” estimates of the MMD,
which for fixed kernels can yield far less powerful tests than M̂MDu [50]. In Section 5.4, we will
demonstrate that in our settings, the data-splitting approach is empirically much more powerful.

3 Meta Two-Sample Testing

To handle cases with low numbers of available data samples, we consider a problem setting where
related testing tasks are available. We use those tasks in a framework inspired by meta-learning [e.g.
36], where we use those related tasks to identify a kernel selection algorithm, as in (1). Specifically,
we define a task as a pair T = (P,Q) of distributions over X we would like to distinguish, and
assume a meta-distribution τ over the space of tasks T .
Definition 2 (M2ST). Assume we are assigned (unobserved) training tasks T = {T i = (Pi,Qi)}Ni=1

drawn from a task distribution τ , and observe meta-samples S = {(SiP, SiQ)}Ni=1 with SiP ∼ (Pi)ni
and SiQ ∼ (Qi)ni . Our goal is to use these meta-samples to find a kernel learning algorithm Aθ,
such that for a target task (P′,Q′) ∼ τ with samples SP′ ∼ (P′)n′ and SQ′ ∼ (Q′)n′ , the learning
algorithm returns a kernel Aθ(SP′ , SQ′) which will achieve high test power on (P′,Q′).

We measure the performance of Aθ based on the expected test power criterion for a target task:

J (Aθ, τ) = E(P,Q)∼τ

[
EStrP ∼Pm,StrQ ∼Qm

[
J(P,Q;Aθ(S

tr
P , S

tr
Q ))
]]
. (7)

If τ were in some sense “uniform over all conceivable tasks,” then a no-free-lunch property would
cause M2ST to be hopeless. Instead, our assumption is that tasks from τ are “related” enough that
we can make progress at improving (7).

By assuming the existence of a meta-distribution τ over tasks, it is promising to learn a general rule
across different tasks [36]. Furthermore, we can quickly adapt to a solution to a specific task based
on the learned rule [36], which is the reason why researchers have been focusing on meta-learning for
several years. Specifically, in the meta two-sample testing, we hope to find “what differences between
distributions generally look like” on the meta-tasks, and then at test time, use our very limited data to
search for differences in that more constrained set of options. Because the space of candidate rules is
more limited, we can (hopefully) find a good rule with a much smaller number of data points. For
example, if we have meta-tasks which (like the target task) are determined only by a difference in
means, then we want to learn a general rule that distinguishes between two samples by means. For a
new task (i.e., new two samples), we hope to identify dimensions where two samples have different
means, using only a few data points.

We will propose two approaches to finding an Aθ. Neither is specific to any particular kernel
parameterization, but for the sake of concreteness, we follow Liu et al. [16] in choosing the form

kω(x, y) = [(1− ε)κ(φ(x), φ(y)) + ε] q(x, y), (8)
where φ is a deep neural network which extracts features from the samples, and κ is a simple kernel
(e.g., a Gaussian) on those features, while q is a simple characteristic kernel (e.g. Gaussian) on the
input space; ε ∈ (0, 1] ensures that every kernel of the form kω is characteristic. Here, ω represents
all parameters in the kernel:2 most parameters come from deep neural network φ, but κ and q may
have a few more parameters (e.g. length scales), and we can also learn ε.

Meta-KL. We first propose Algorithm 1 as a standard approach to optimizing (7), à la MAML [36]:
Aθ takes a small, fixed number of gradient ascent steps in Ĵλ for the parameters of kω, starting

2We use kω when discussing issues relating to the parameters ω. When no ambiguity arises, we use k and
kω interchangeably for deep neural network parameterized kernels. If we write only k, then ω still means the
parameters of k by default.
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Algorithm 1 Meta Kernel Learning (Meta-KL)
Input: Meta-samples S = {(SPi , SQi)}Ni=1; kernel architecture (8) and parameters ω0; regularization λ
1. Initialize algorithm parameters: θ := [ωstart]← [ω0]
2. Define a parameterized learning algorithm Aθ(SP, SQ) as:

ω ← ωstart; for t = 1, . . . , nsteps do ω ← ω + η∇ωĴλ(SP, SQ; kω); end for; return kω
for T = 1, 2, . . . , Tmax do

3: Sample I as a set of indices in {1, 2, . . . , N} of size nbatch

for i ∈ I do
4: Split data as SPi = StrPi ∪ S

te
Pi and SQi = StrQi ∪ S

te
Qi ;

5: Apply the learning algorithm: ki ← Aθ(S
tr
Pi , S

tr
Qi)

end for
6: Update θ ← θ + β∇θ

∑
i∈I Ĵλ(S

te
Pi , S

te
Qi ; ki); # update θ, i.e. start, to maximize J (Aθ, τ)

end for
7: return Aθ

MMD MMD

M
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a-
U
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es

A Batch of Meta-Samples

MMD

Input Output Meta-Updates

Figure 2: Illustration of Algorithm 1.

Algorithm 2 Testing with a Kernel Learner
1: Input: Two samples: SP, SQ; algorithm Aθ
2: Split data as SP = StrP ∪SteP and SQ = StrQ ∪SteQ ;
3: Learn a kernel k = Aθ(S

tr
P , S

tr
Q );

4: Compute est ← M̂MD
2

u(S
te
P , S

te
Q ; k);

for i = 1, 2, . . . , nperm do
5: Shuffle SteP ∪ SteQ into X and Y

6: Compute permi ← M̂MD
2

u(X,Y ; k);
end for
7: Output: p-value 1

nperm

∑nperm

i=1 1(permi ≥ est);

Algorithm 3 Meta Multi-Kernel Learning (Meta-MKL)
Input: Meta-samples S = {(SPi , SQi)}Ni=1; kernel architecture as in (8)
for i = 1, 2, . . . , N do

1: Optimize ωi ← ̂argmaxωĴλ(SPi , SQi ; ki) with some approximate optimization algorithm;
end for
2: Define K := {

∑N
i=1 βiki : β ∈ RN≥0,

∑
i βi = 1}; # convex combinations of kernels

3: return the algorithm A(SP, SQ) = ̂argmaxk∈KĴλ (SP, SQ; k);

from a learned initialization point ωstart ∈ θ (lines 1-2). We differentiate through Aθ, and perform
stochastic gradient ascent to find a good value of θ based on the meta-training sets (lines 3-6, also
illustrated in Figure 2). Once we have learned a kernel selection procedure, we can again apply it to a
testing task with Algorithm 2.

As we will see in the experiments, this approach does indeed use the meta-tasks to improve perfor-
mance on target tasks. Differently from usual meta-learning settings, as in e.g. classification [36],
however, here it is conceivable that there is a single good kernel that works for all tasks from τ ;
improving on this single baseline kernel, rather than simply overfitting to the very few target points,
may be quite difficult. Thus, in practice, the amount of adaptation that Aθ actually performs in its
gradient ascent can be somewhat limited.

Meta-MKL. As an alternative approach, we also consider a different strategy for Aθ which may be
able to adapt with many fewer data samples, albeit in a possibly weaker class of candidate kernels.
Here, to select an Aθ, we simply find the best kernel independently for each of the meta-training
tasks. Then Aθ chooses the best convex combination of these kernels, as in classical multiple kernel
learning [43] and similarly to ensemble methods in few-shot classification [45]. At adaptation time,
we only attempt to learn N weights, rather than adapting all of the parameters of a deep network; but,
if the meta-training tasks contained some similar tasks to the target task, then we should be able to
find a powerful test. This procedure is detailed in Algorithm 3 and illustrated in Figure 1c.
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4 Theoretical analysis

We now analyze and compare the theoretical performance of direct optimizing the regularized test
power from small sample size with our proposed meta-training procedures. To study our learning
objective of approximate test power, we first state the following relevant technical assumptions, [16].

(A) The kernels kω are uniformly bounded as follows. For the kernels we use in practice, ν = 1.

sup
ω∈Ω

sup
x∈X

kω(x, x) ≤ ν.

(B) The possible kernel parameters ω lie in a Banach space of dimension D. Furthermore, the
set of possible kernel parameters Ω is bounded by RΩ: Ω ⊆ {ω | ‖ω‖ ≤ RΩ}.

(C) The kernel parameterization is Lipschitz: for all x, y ∈ X and ω, ω′ ∈ Ω,

|kω(x, y)− kω′(x, y)| ≤ Lk‖ω − ω′‖.

See Proposition 9 of Liu et al. [16] for bounds on these constants when using e.g. kernels of the form
(8), in terms of the network architecture.

We will use σ2
ω to refer to σ2

H1
(P,Q; kω) of (4), and analogously for σ̂2

ω , for the sake of brevity.
Proposition 3 (Direct training with approximate test power, Theorem 6 of [16]). Under Assump-
tions (A) to (C), suppose ν ≥ 1 is constant, and let Ω̄s ⊆ Ω be the set of ω for which σ2

ω ≥ s2. Take
the regularized estimate σ̂2

ω,λ = σ̂2
ω + λ with λ = m−1/3. Then, with probability at least 1− δ,

sup
ω∈Ω̄s

∣∣∣Ĵλ(SP, SQ; kω)−J(P,Q; kω)
∣∣∣ ≤ ξm = O

(
1

s2m1/3

[
1

s
+

√
D log(RΩm) + log

1

δ
+ Lk

])
.

Then, letting k̂ ∈ arg max Ĵλ(SP, SQ; k̂), we have 0 ≤ supk∈K J(P,Q; k)− J(P,Q; k̂) ≤ 2ξm.

Since m is small in our settings, and s may also be small for deep kernel classes as noted by Liu et al.
[16], this bound may not give satisfying results.

The key mechanism that drives meta-testing to work, intuitively, is training kernels on related tasks.
How do we quantify the relatedness between different testing tasks?
Definition 4 (γ-relatedness). Let (P,Q) and (P′,Q′) be the underlying distributions for two different
two-sample testing tasks. We say the two tasks are γ-related w.r.t. learning objective J if

sup
k∈K
|J(P,Q; k)− J(P′,Q′; k)| = γ. (9)

The relatedness measure is a (strong) assumption that two tasks are similar, because all kernels
perform similarly on the two tasks, in terms of the approximate test power objective. It also implies
the two problems are of similar difficulty, since for small γ, the ability of our MMD test statistics to
distinguish the distributions (with optimal kernels) are similar.
Definition 5 (Adaptation with Meta-MKL). Given a set of kernels {k1, . . . , kN}, the Meta-MKL
adaptation is the kernel k̂ =

∑N
i=1 β̂iki, where β̂ = arg maxβ Ĵλne(S

tr
P , S

tr
Q ;
∑
i βiki).

This adaptation step uses the same learning objective, Ĵλ, as directly training a deep kernel in
Proposition 3 (though with a potentially different regularization parameter, λne).

To analyze the Meta-MKL scheme, we will make the following assumption, which Proposition 26 in
Liu et al. [16] shows implies Assumptions (A) to (C) with ν = KRB

√
N and Lk = K

√
N .

(D) Let {ki}Ni=1 be a set of base kernels, each satisfying supx∈X ki(x, x) ≤ K for some finite
constant K. Define the parameterized kernel k as

kβ(x, y) =

N∑
i=1

βiki(x, y) (10)

where β ∈ RN , and let B be the set of parameters β such that kβ is positive semi-definite
(guaranteed if each βi ≥ 0) and ‖β‖ ≤ RB for some RB <∞.
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Theorem 6 (Performance of Meta-MKL). Suppose we have N meta-training tasks {(Pi,Qi)}i∈[N ],
with corresponding optimal kernels k∗i ∈ arg maxk∈K J(Pi,Qi; k), and use n samples to learn
kernels k̂i ∈ arg maxk∈K Ĵλ(SPi , SQi ; k) in the setting of Proposition 3. Let (P,Q) be a test task,
with optimal kernel k∗ ∈ arg maxk∈K J(P,Q; k), from which we observe m samples SP, SQ. Call
the Meta-MKL adapted kernel k̂β̂ =

∑
i β̂ik̂i, as in (10), with β̂ found subject to Assumption (D).

Let (Pj ,Qj) be a meta-task which is γ-related to (P,Q). Then, with probability at least 1− 2δ,

J(P,Q; k∗)− J(P,Q; k̂β) ≤ 2(γ + ξjn + ξm)

where ξjn is the bound of Proposition 3 for learning a kernel on (Pj ,Qj), and ξm is the equivalent
bound for multiple kernel learning on (P,Q), which has D = N , RΩ = RB , and Lk = K

√
N .

The ξjn term depends on the meta-training sample size n� m. With enough (relevant) meta-training
tasks (as N grows), γ is expected to go to 0. So, the overall uniform convergence bound is likely to
be dominated by the term ξm, giving an overall m−1/3 rate: the same as Proposition 3 obtains for
directly training a deep kernel only on (P,Q). This is roughly to be expected; similar optimization
objectives are applied for both learning and adaptation, which are limited by sample size m. However,
the other components of ξm are likely much smaller than the corresponding parts of ξjn where the
kernels are defined by a deep network: the variance must be lower-bounded over a much larger set of
kernels, D will be the number of parameters in the network rather than the number of meta-tasks,
and the bound on Lk from Proposition 23 of Liu et al. [16] is exponential in the depth of the network.
Altogether, we expect MKL adaptation to be much more efficient than direct training.

We also expect that Theorem 6 is actually quite loose. The proof (in Appendix A) decomposes the
loss relative to k̂j , picking just a single related kernel; it does not attempt to analyze how combining
multiple kernels can improve the test power, because doing so in general seems difficult. Given this
limitation, however, we also prove in Appendix A a bound on the adaptation scheme which explicitly
only picks the single best kernel from the meta-tasks (Theorem 10), which is of a similar form to
Theorem 6 but with the ξm term replaced with one even better.

5 Experiments

Following Liu et al. [16], we compare the following baseline tests with our methods: 1) MMD-D:
MMD with a deep kernel whose parameters are optimized; 2) MMD-O: MMD with a Gaussian kernel
whose lengthscale is optimized; 3) Mean embedding (ME) test [5, 51]; 4) Smooth characteristic
functions (SCF) test [5, 51], and 5) Classifier two-sample tests, including C2ST-S [8] and C2ST-L
as described in Liu et al. [16]. None of these methods use related tasks at all, so we additionally
consider an aggregated kernel learning (AGT-KL) method, which optimizes a deep kernel of the
form (8) by maximizing the value of Ĵλ averaged over all the related tasks in the meta-training set S.

For synthetic datasets, we take a single sample set for StrP and StrQ , and learn parameters once for each
method on that training set. We then evaluate its rejection rate (power or Type-I error, depending on
if P = Q) using 100 new sample sets SteP , SteQ . For real datasets, we train on a subset of the available
data, then evaluate on 100 random subsets, disjoint from the training set, of the remaining data. We
repeat this full process 20 times for synthetic datasets or 10 times for real datasets, and report the
mean rejection rate of each test and the standard error of the mean rejection rate. Implementation
details are in Appendix B.1; the code is available at github.com/fengliu90/MetaTesting.

5.1 Results on Synthetic Data

We use a bimodal Gaussian mixture dataset proposed by [16], known as high-dimensional Gaussian
mixtures (HDGM): P and Q subtly differ in the covariance of a single dimension pair. Here we
consider only d = 2, since with very few samples the problem is already extremely difficult.
Specifically,

P =
1

2
N
([

0
0

]
,

[
1 0
0 1

])
+

1

2
N
([

0.5
0.5

]
,

[
1 0
0 1

])
,

Q(∆h) =
1

2
N
([

0
0

]
,

[
1 −∆h

−∆h 1

])
+

1

2
N
([

0.5
0.5

]
,

[
1 ∆h

∆h 1

])
.
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(a) Test power when mtr = 50.
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(b) Test power when mtr = 100.
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(c) Test power when mtr = 150.

Figure 3: Test power on synthetic datasets for α = 0.05. Average test power when increasing the
number of testing samples mte while only using the 50 (a), 100 (b) and 150 (c) training samples per
mode (i.e., mtr = 50, 100, 150). Shaded regions show standard errors for the mean.

In this paper, our target task is T = (P,Q(0.7)) and meta-samples are drawn from the N = 100
meta tasks T = {T i := (P,Q(0.3 + 0.1× i/N))}Ni=1; note that the target task is well outside the
scope of training tasks. To evaluate all tests given limited data, we set the number of training samples
(StrP , StrQ ) to 50, 100, 150 per mode, and the number of testing samples (SteP , SteQ ) from 50 to 250.

Figure 3 illustrates test powers of all tests. Meta-MKL and Meta-KL are the clear winners, with
both tests much better when mte is over 100 per mode. It is clear that previous kernel-learning
based tests perform poorly due to limited training samples. Comparing Meta-MKL with Meta-KL,
apparently, we can obtain much higher power when we consider using multiple trained kernels.
Although AGT-KL performs better than baselines, it cannot adapt to the target task very well: it only
cares about “in-task” samples, rather than learning to adapt to new distributions. In Appendix B.2, we
report the test power of our tests when increasing the number of tasks N from 20 to 150. The results
show that that increasing the number of meta tasks will help improve the test power on the target task.

5.2 Distinguishing CIFAR-10 or -100 from CIFAR-10.1

We distinguish the standard datasets of CIFAR-10 and CIFAR-100 [52] from the attempted replication
CIFAR-10.1 [53], similar to Liu et al. [16]. Because only a relatively small number of CIFAR-
10.1 samples are available, it is of interest to see whether by meta-training only on CIFAR-10’s
training set (as described in Appendix B), we can find a good test to distinguish CIFAR-10.1, with
mtr ∈ {100, 200}. Testing samples (i.e., SteP and SteQ ) are from test sets of each dataset. We
report test powers of all tests with 200, 500, 900 testing samples in Table 1 (CIFAR-10 compared to
CIFAR-10.1) and Table 2 (CIFAR-100 compared to CIFAR-10.1). Since Liu et al. [16] have shown
that CIFAR-10 and CIFAR-10.1 come from different distributions, higher test power is better in
both tables. The results demonstrate that our methods have much higher test power than baselines,
which is strong evidence that leveraging samples from related tasks can boost test power significantly.
Interestingly, C2ST tests almost entirely fail in this setting (as also seen by Recht et al. [53, Appendix
B.2.8]); it is hard to learn useful information with only a few data points. In Appendix B.3, we also
report results when meta-samples are generated by the training set of CIFAR-100 dataset.

5.3 Analysis of Closeness between Meta Training and Testing

This subsection studies how closeness between related tasks and the target task affects test powers of
our tests. Given the target task T in synthetic datasets, we define tasks T with closeness C as

T (C) = {T i := (P,Q((0.6− C) + 0.1× i/N))}Ni=1. (11)

It is clear that T (0) will contain our target task T (i.e., the closeness is zero). We also estimate the
γ-relatedness between the target task and T (C), where C ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and the results
show that γ grows roughly linearly with C. Specifically, for C = 0.1, 0.2, 0.3, 0.4, 0.5, the estimate
γ̂ is 0.035, 0.067, 0.076, 0.104, 0.134, respectively. (Details can be found in Appendix B.4.)
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Table 1: Test power of tests on CIFAR-10 vs CIFAR-10.1 given very limited training data (α = 0.05,
mtr = 100, 200). The mte represents number of samples when testing. Bold represents the highest
mean per column.

Methods
mtr = 100 mtr = 200

mte = 200 mte = 500 mte = 900 mte = 200 mte = 500 mte = 900

ME 0.084±0.009 0.096±0.016 0.160±0.035 0.104±0.013 0.202±0.020 0.326±0.039
SCF 0.047±0.013 0.037±0.011 0.047±0.015 0.026±0.009 0.018±0.006 0.026±0.012

C2ST-S 0.059±0.009 0.062±0.007 0.059±0.007 0.052±0.011 0.054±0.011 0.057±0.008
C2ST-L 0.064±0.009 0.064±0.006 0.063±0.007 0.075±0.014 0.066±0.011 0.067±0.008
MMD-O 0.091±0.011 0.141±0.009 0.279±0.018 0.084±0.007 0.160±0.011 0.319±0.020
MMD-D 0.104±0.007 0.222±0.020 0.418±0.046 0.117±0.013 0.226±0.021 0.444±0.037

AGT-KL 0.170±0.032 0.457±0.052 0.765±0.045 0.152±0.023 0.463±0.060 0.778±0.050
Meta-KL 0.245±0.010 0.671±0.026 0.959±0.013 0.226±0.015 0.668±0.032 0.972±0.006

Meta-MKL 0.277±0.016 0.728±0.020 0.973±0.008 0.255±0.020 0.724±0.026 0.993±0.003

Table 2: Test power of tests on CIFAR-100 vs CIFAR-10.1 given very limited training data (α = 0.05,
mtr = 100, 200). The mte represents number of samples when testing. Bold represents the highest
mean per column.

Methods
mtr = 100 mtr = 200

mte = 200 mte = 500 mte = 900 mte = 200 mte = 500 mte = 900

ME 0.211±0.020 0.459±0.045 0.751±0.054 0.236±0.033 0.512±0.076 0.744±0.090
SCF 0.076±0.027 0.132±0.050 0.240±0.095 0.136±0.036 0.245±0.066 0.416±0.114

C2ST-S 0.064±0.007 0.063±0.010 0.067±0.008 0.324±0.034 0.237±0.030 0.215±0.023
C2ST-L 0.089±0.010 0.077±0.010 0.075±0.010 0.378±0.042 0.273±0.032 0.262±0.023
MMD-O 0.214±0.012 0.624±0.013 0.970±0.005 0.199±0.016 0.614±0.017 0.965±0.006
MMD-D 0.244±0.011 0.644±0.030 0.970±0.010 0.223±0.016 0.627±0.031 0.975±0.006

AGT-KL 0.596±0.044 0.979±0.010 1.000±0.000 0.635±0.038 0.994±0.002 1.000±0.000
Meta-KL 0.771±0.018 0.999±0.001 1.000±0.000 0.806±0.017 1.000±0.000 1.000±0.000

Meta-MKL 0.820±0.015 1.000±0.000 1.000±0.000 0.838±0.017 1.000±0.000 1.000±0.000
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(a) Closeness is 0.1.
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(b) Closeness is 0.2.
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(c) Closeness is 0.3.
Figure 4: Test power when changing closeness between related tasks and the target task (α = 0.05).
Average test power when closeness is 0.1 (a), 0.2 (b) and 0.3 (c), where only using the 50 training
samples per mode (i.e., mtr = 50). Shaded regions show standard errors for the mean.

In Figure 4, we illustrate the test power of our tests when setting closeness C to 0.1, 0.2 and 0.3,
respectively. It can be seen that Meta-MKL and Meta-KL outperforms AGT-KL all the figures,
meaning that Meta-MKL and Meta-KL actually learn algorithms that can quickly adapt to new tasks.
Another phenomenon is that the gap between test powers of meta based KL and AGT-KL will get
smaller if the closeness is smaller, which is expected since AGT-KL has seen closer related tasks.

5.4 Ablation Study

In previous sections, we mainly compare with previous kernel-learning tests and have shown that the
test power can be improved significantly by our proposed tests. We now show that each component
in our tests is effective to improve the test power.

First, we show that MKL can help improve the test power, and the data splitting used in Meta-MKL
is much better than using the recent test of Kübler et al. [15]. The comparison has been made in
synthetic datasets studied in Section 5.1 and the results can be found in Table 3. Meta-MKL-A is a
test that takes all βi = 1/N in Algorithm 3, so that kernels are weighted equally. AGT-MKL uses
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Table 3: The test power of various tests on the synthetic dataset, where for data-splitting methods we
use only 10 samples to select kernels and 200 to test. Meta-MKL-A, AGT-MKL-A and Meta-MKLSI
use 210 test samples. Bold represents the highest mean.

Tests Meta-MKL Meta-MKL-A Meta-KL AGT-MKL AGT-MKL-A AGT-KL Meta-MKLSI

Power 0.792±0.014 0.780±0.012 0.509±0.046 0.364±0.016 0.358±0.021 0.253±0.025 0.058±0.008

Table 4: The test power of various tests on the CIFAR-10 vs CIFAR-10.1 task (mtr = 100). Bold
represents the highest mean per row.

Tests Meta-MKL Meta-KL AGT-KL MMD-D w/ AC MMD-D MMD-O

mte = 200 0.277±0.016 0.245±0.010 0.170±0.032 0.134±0.010 0.104±0.007 0.091±0.011
mte = 500 0.728±0.020 0.671±0.026 0.457±0.052 0.325±0.028 0.222±0.020 0.141±0.009
mte = 900 0.973±0.008 0.959±0.013 0.765±0.045 0.745±0.049 0.418±0.046 0.279±0.018

multiple kernels in AGT-KL (learning weights like Meta-MKL), and AGT-MKL-A does not learn the
weights but just assigns weights 1/N directly to all base kernels. Meta-MKLSI is a kernel two-sample
test using the selective inference technique of Kübler et al. [15] rather than data splitting in its Aθ.

From Table 3, we can see that introducing the multiple kernel learning (MKL) scheme substantially
improves test power, as it combines useful features learned from base kernels covering different
aspects of the problems. Moreover, learning with approximate test power with data-splitting in the
meta-setting also outperforms the non-splitting testing procedure MetaMKLSI, since MetaMKLSI
requires a linear estimator of MMD. The result also indicates that leveraging related tasks is also
important to improve the test power, even though we only need a small set of training samples.

Then, we show that the labels used for constructing meta-samples are useful in the CIFAR datasets.
We consider another test here: MMD-D with all CIFAR-10 (MMD-D w/ AC), which runs the MMD-D
test using the same sample from CIFAR-10 as did the meta-learning over all tasks together. Compared
to Meta-MKL, Meta-KL and AGT-KL, MMD-D w/ AC does not use the label information contained
in the CIFAR-10 dataset. The test power of MMD-D w/ AC is shown in Table 4. We can see that
the test power of MMD-D w/ AC clearly outperforms MMD-D/MMD-O since MMD-D w/ AC sees
more CIFAR-10 data in the training process. It is also clear that our methods still perform much
better than MMD-D w/ AC. This result shows that the improvement of our tests does not solely come
from seeing more data from CIFAR-10. Instead, the assigned labels for the meta-tasks indeed help.

6 Conclusions

This paper proposes kernel-based non-parametric testing procedures to tackle practical two-sample
problems where the sample size is small. By meta-training on related tasks, our work opens a
new paradigm of applying learning-to-learn schemes for testing problems, and the potential of very
accurate tests in some small-data regimes using our proposed algorithms.

It is worth noting, however, that statistical tests are perhaps particularly ripe for mis-application, e.g. by
over-interpreting small marginal differences between sample populations of people to claim “inherent”
differences between large groups. Future work focusing on reliable notions of interpretability in
these types of tests is critical. Meta-testing procedures, although they yield much better tests in
our domains, may also introduce issues of their own: any rejection of the null hypothesis will be
statistically valid, but they favor identifying differences similar to those seen before, and so may
worsen gaps in performance between “well-represented” differences and rarer ones.

Acknowledgments and Disclosure of Funding

FL and JL are supported by the Australian Research Council (ARC) under FL190100149. WX is
supported by the Gatsby Charitable Foundation and EPSRC grant under EP/T018445/1. DJS is
supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC)
and the Canada CIFAR AI Chairs Program. FL would also like to thank Dr. Yanbin Liu and Dr. Yiliao
Song for productive discussions.

10



References
[1] Arthur Gretton, Karsten M Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.

Smola. “A kernel two-sample test.” Journal of Machine Learning Research 13 (2012), pp. 723–
773.

[2] Arthur Gretton, Bharath Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, and Massimil-
iano Pontil. “Optimal kernel choice for large-scale two-sample tests.” NeurIPS. 2012.

[3] Gábor J. Székely and Maria L. Rizzo. “Energy statistics: A class of statistics based on dis-
tances.” Journal of Statistical Planning and Inference 143.8 (2013), pp. 1249–1272.

[4] Ruth Heller and Yair Heller. “Multivariate tests of association based on univariate tests.”
NeurIPS. 2016. arXiv: 1603.03418.

[5] Wittawat Jitkrittum, Zoltan Szabo, Kacper Chwialkowski, and Arthur Gretton. “Interpretable
distribution features with maximum testing power.” NeurIPS. 2016. arXiv: 1605.06796.

[6] Hao Chen and Jerome H. Friedman. “A new graph-based two-sample test for multivariate and
object data.” Journal of the American Statistical Association 112.517 (2017), pp. 397–409.
arXiv: 1307.6294.

[7] Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, and Ulrike von Luxburg.
“Two-sample tests for large random graphs using network statistics.” COLT. 2017. arXiv:
1705.06168.

[8] David Lopez-Paz and Maxime Oquab. “Revisiting Classifier Two-Sample Tests.” ICLR. 2017.
arXiv: 1610.06545.

[9] Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. “On Wasserstein Two-Sample
Testing and Related Families of Nonparametric Tests.” Entropy 19.2 (Jan. 2017), p. 47. arXiv:
1509.02237.

[10] Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas,
Alex Smola, and Arthur Gretton. “Generative Models and Model Criticism via Optimized
Maximum Mean Discrepancy.” ICLR. 2017. arXiv: 1611.04488.

[11] Rui Gao, Liyan Xie, Yao Xie, and Huan Xu. “Robust Hypothesis Testing Using Wasserstein
Uncertainty Sets.” NeurIPS. 2018. arXiv: 1805.10611.

[12] Debarghya Ghoshdastidar and Ulrike von Luxburg. “Practical Methods for Graph Two-Sample
Testing.” NeurIPS. 2018. arXiv: 1811.12752.

[13] Shang Li and Xiaodong Wang. “Fully Distributed Sequential Hypothesis Testing: Algorithms
and Asymptotic Analyses.” IEEE Transactions on Information Theory 64.4 (2018), pp. 2742–
2758.

[14] Matthias Kirchler, Shahryar Khorasani, Marius Kloft, and Christoph Lippert. “Two-sample
Testing Using Deep Learning.” AISTATS. 2020. arXiv: 1910.06239.

[15] Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, and Krikamol Muandet. “Learning
Kernel Tests Without Data Splitting.” NeurIPS. 2020. arXiv: 2006.02286.

[16] Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J. Sutherland.
“Learning Deep Kernels for Non-Parametric Two-Sample Tests.” ICML. 2020. arXiv: 2002.
09116.

[17] Xiuyuan Cheng and Yao Xie. “Neural Tangent Kernel Maximum Mean Discrepancy.” 2021.
arXiv: 2106.03227.

[18] Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, and Krikamol Muandet. “An
Optimal Witness Function for Two-Sample Testing.” 2021. arXiv: 2102.05573.

[19] Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Behrnhard
Schölkopf. “Domain adaptation with conditional transferable components.” ICML. 2016.
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