
PlayFusion: Skill Acquisition via Diffusion from
Language-Annotated Play

Anonymous Author(s)
Affiliation
Address
email

Abstract: Learning from unstructured and uncurated data has become the dominant1

paradigm for generative approaches in language and vision. Such unstructured2

and unguided behavior data, commonly known as play, is also easier to collect in3

robotics but much more difficult to learn from due to its inherently multimodal,4

noisy, and suboptimal nature. In this paper, we study this problem of learning5

goal-directed skill policies from unstructured play data which is labeled with6

language in hindsight. Specifically, we leverage advances in diffusion models to7

learn a multi-task diffusion model to extract robotic skills from play data. Using8

a conditional denoising diffusion process in the space of states and actions, we9

can gracefully handle the complexity and multimodality of play data and generate10

diverse and interesting robot behaviors. To make diffusion models more useful11

for skill learning, we encourage robotic agents to acquire a vocabulary of skills by12

introducing discrete bottlenecks into the conditional behavior generation process.13

In our experiments, we demonstrate the effectiveness of our approach across a14

wide variety of environments in both simulation and the real world. Video results15

available at https://play-fusion.github.io.16

Keywords: Diffusion Models, Learning from Play, Language-Driven Robotics17

1 Introduction18

Humans reuse past experience via a broad repertoire of skills learned through experience that allows19

us to quickly solve new tasks and adapt across environments. For example, if one knows how to20

operate and load a dishwasher, many of the skills (e.g., opening the articulated door, adjusting the21

rack, putting objects in) will transfer seamlessly. How to learn such skills for robots and from what22

kind is a long-standing research question. Robotic skill abstraction has been studied as a way to23

transfer knowledge between environments and tasks [1, 2, 3]. It has been common to use primitives24

as actions in the options framework [4, 5], which are often hand-engineered [6, 7, 8, 9, 10, 11] or25

learned via imitation [12, 13, 14]. These allow for much more sample-efficient control but require26

knowledge of the task and need to be tuned for new settings. On the other hand, there have been27

efforts to automatically discover skills using latent variable models [15, 16, 17, 18, 19, 20, 21, 22].28

While they can work in any setting, such models are often extremely data-hungry and have difficulty29

scaling to the real world due to the data quality at hand.30

As a result, real-world paradigms are based on imitation or offline reinforcement learning (RL) but31

both these require several assumptions about the datasets. In imitation learning, human teleoperators32

must perform tasks near-perfectly, reset the robot to some initial state, perform the task near-perfectly33

again, and repeat several times. In offline RL, data is assumed to contain reward labels, which is34

impractical in many real-world setups where reward engineering is cumbersome. In contrast, it is35

much easier to collect uncurated data from human teleoperators if they are instructed only to explore,36

resulting in play data [21, 22, 23]. Learning from play (LfP) has emerged as a viable alternative to37

traditional data collection methods for behavior generation. It offers several advantages: (1) it is38

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://play-fusion.github.io

Language-Annotated Play

use spatula

pour
open

place toast

pick up

open the BBQ
grill

remove bread
from toaster

pick up
the knife

Figure 1: Across multiple real-world and simulated robotic settings, we show that our model can extract
semantically meaningful skills from language-annotated play data. Such data is highly multimodal and offers no
optimality guarantees. Video results of PlayFusion are available at https://play-fusion.github.io.

efficient because large datasets of play can be collected without the need for setting up and executing39

perfect demonstrations, and (2) the data collected is rich and diverse because it contains a broad40

distribution of behavior ranging from completions of complex tasks to random meandering around41

the environment. An important quality of such data is that it is grounded with some semantic goal that42

the ”player” is aiming to achieve. We believe a simple abstraction for this is language instructions,43

which can describe almost any play trajectory.44

A major challenge in learning from play is that the data is highly multimodal, i.e., there are many45

different ways to achieve a specific goal, and given a sample from the play data, there are many46

different goals that could have generated it. One popular way to handle highly multimodal data is47

by modeling the full distribution via generative models. In recent years, there has been remarkable48

progress in large generative models [24, 25, 26, 27], especially in the class of diffusion models [28, 29],49

which have been shown to generate high-resolution images – a property well suited for vision-based50

robotic control. In fact, diffusion models have shown to be effective in capturing complex, continuous51

actions [30, 31, 29, 32, 33] in the context of robotics. However, these diffusion model-based52

approaches have not been empirically shown yet to work on unstructured data. We argue that the53

ability of diffusion models to fully capture complex data paired with their potential for text-driven54

generation can make them good candidates to learn from language-annotated play data.55

One additional consideration is that in reality, humans only deal with a few skills. Almost every task56

manipulation task involves some grasping and some post-grasp movement. We believe that learning57

discrete skills will not only make the whole process more efficient but will also allow interpolation58

between skills and generalizations to new tasks. To address this, we propose PlayFusion, a diffusion59

model which can learn from language-annotated play data via discrete bottlenecks. We maintain the60

multimodal properties of our current system while allowing for a more discrete representation of61

skills. Empirically, we show that our method outperforms state-of-the-art approaches on six different62

environments: three challenging real-world manipulation settings as well as the CALVIN [34], Franka63

Kitchen [22], and Ravens [35, 36] simulation benchmarks.64

2 Related Work65

Goal and Language Conditioned Skill Learning One method of specifying the task is via goal-66

conditioned learning, often by using the actual achieved last state as the goal [37, 38, 39, 40]. There is67

also recent work on using rewards to condition robot behavior [41], but this requires a reward-labeled68

dataset, which makes stronger assumptions than play data. Furthermore, there is a large body of69

work on language-conditioned learning [42, 36, 43, 44, 45, 46, 47], which specifies the task through70

language instructions. Instead of conditioning the policy on fully labeled and curated data, we take71

advantage of unstructured play data which is annotated with language in hindsight.72

2

https://play-fusion.github.io

x x1p(xk-1|xk , g, s)

similarity
score

xk

s: Diffusion Model

g: place the bread
on the sandwich

codebook

...xK ... xk-1xxK-1
robot

execution

+

Figure 2: Overview of how PlayFusion extracts useful skills from language-annotated play by leveraging
discrete bottlenecks in both the language embedding and diffusion model U-Net. We generate robot trajectories
via an iterative denoising process conditioned on language and current state.

Learning from Play Unlike demonstrations, play data is not assumed to be optimal for any specific73

task as it is collected by human teleoperators who are instructed only to explore. Play-LMP and74

MCIL [21, 48] generate behaviors by learning motor primitives from play data using a VAE [49, 50].75

RIL [22] is a hierarchical imitation learning approach and C-BeT [23] generates behaviors using76

a transformer-based policy and leverages action discretization to handle multimodality. LAD [51]77

incorporates diffusion for learning from play, but keeps several components of VAE-based approaches78

for encoding latent plans; we forgo those elements completely.79

Behavior Modeling with Generative Models A promising architecture for behavior modeling80

with generative models is the diffusion probabilistic model [28, 52, 53, 54]. Diffuser [30], Decision81

Diffuser [31], Diffusion-QL [29] and IDQL [32] apply diffusion models to the offline reinforcement82

learning (RL) problem. In real-world robotic applications, Diffusion Policy [33] demonstrated strong83

results in visuomotor policy learning from demonstrations. Different from these works, we learn84

from play data containing semantic labels instead of offline RL datasets or expert demonstrations.85

Some approaches [55, 56] incorporate diffusion in robotics but not for generating low-level actions.86

Discrete control A key challenge in robot learning is the exponentially large, continuous action87

space. Option or skill-based learning is appealing as it can circumvent this problem and allow the agent88

to learn in a structured, countable action space [57, 58, 59, 60]. Learned action discretization [52, 23]89

has allowed approaches to scale to complex tasks. C-BeT [23] applies real-world robotic control90

with transformers [41, 61, 62] to the goal-conditioned setting; [63] train a dynamics model over91

discrete latent states. We leverage the discrete properties of VQ-VAEs and their natural connection to92

language-labeled skills.93

3 Background94

Denoising Diffusion Probabilistic Models (DDPMs) DDPMs [28] model the output generation95

process as a denoising process, which is often referred to as Stochastic Langevin Dynamics. To96

generate the output, the DDPM starts by sampling xK from a Gaussian noise distribution. It then97

performs a series of denoising iterations, totaling K iterations, to generate a sequence of intermediate98

outputs, xk, xk−1, · · · , x0. This iterative process continues until a noise-free output x0 is produced.99

The denoising process is governed by the following equation:100

xk−1 = α(xk − γϵθ(x
k, k) +N(0, σ2I)) (1)

Here, ϵθ represents the noise prediction network with a learnable parameter θ, andN(0, σ2I)) denotes101

the Gaussian noise added at each iteration. This equation is used to generate intermediate outputs102

with gradually decreasing noise levels until a noise-free output is obtained. To train the DDPM,103

the process begins by randomly selecting x0 from the training dataset. For each selected sample, a104

3

denoising iteration k is randomly chosen, and a noise ϵk is sampled with the appropriate variance for105

the selected iteration. The noise prediction network is then trained to predict the noise by minimizing:106

L = ||ϵk − ϵθ(x
0 + ϵk, k)||2 (2)

Discrete Representations We utilize VQ-VAE [64] inspired models in PlayFusion as they can107

provide a way to discretize the skill space. Given an input x, a VQ-VAE trains an encoder E to108

predict latent E(x) = z and maintains a codebook of discrete latent codes e. The VQ layer selects j109

as argmini ||z − ei||, finding the closest code to the embedding, which is used to reconstruct x. The110

training loss is111

LVQVAE = Lrecon(x,D(ej)) + ||z − sg(ej)||2 + ||sg(z)− ej ||2 (3)

where D is the VQ-VAE decoder. The reconstruction loss is augmented with a quantization loss,112

bringing chosen codebook embedding vectors ej toward the encoder outputs in order to train the113

codebook, as well a loss to encourage the encoder to ”commit” to one of the embeddings.114

Learning from Play Data (LfP) In the LfP setting, we are given a dataset {(s, a)} ∈ S×A. There115

are no assumptions about tasks performed in these sequences or the optimality of the data collection116

method. Similar to the formulation of [23], the goal is to learn a policy π = S × S → A where the117

input is the current state st and goal g = sT . In some cases, (including ours), the goals are instead118

described via language annotations.119

4 PlayFusion: Discrete Diffusion for Language-Annotated Play120

Humans do not think about low-level control when performing everyday tasks. Our understanding121

of skills like door opening or picking up objects has already been grounded in countless prior122

experiences, and we can comfortably perform these in new settings. Skills are acquired through our123

prior experiences – successes, failures, and everything in between. PlayFusion focuses on learning124

these skills through language-annotated play data.125

However, learning from play data is still difficult as continuous control skills are not easy to identify126

due to several challenges: (1) data can come from multiple modalities as there are many actions that127

the robot could have taken at any point, (2) we want the model to acquire a vocabulary of meaningful128

skillsm and (3) we want to generalize beyond the training data and have the model transfer skills to129

new settings. To address the challenges, we leverage recent advances in diffusion-model large-scale130

text-to-image generation. Such models [33, 30, 29] can inherently model multimodality via their131

iterative denoising process. To effectively transfer skills to new settings, we propose a modified132

diffusion model with the ability to discretize learned behavior from language-annotated data. Figure133

2 shows an overview of our method.134

4.1 Language Conditioned Play Data135

Our setup consists of language conditioned play data [21] Dplay = {(s(i)t , a
(i)
t)}Ni=1: long sequences136

of robot behavior data containing many kinds of behaviors, collected by human operators instructed137

to perform interesting tasks. In this setting, we assume that there is some optimality to the data,138

i.e. at ∼ F(st, zg), where zg is a latent variable that models the intention of the operator. We139

thus leverage language labels to estimate zg. Given a sequence τ = {si, ai}Ht=k, label τ with an140

instruction l which is passed into a language model [65], glang, referring to it as zl throughout the141

paper. One can also use goal images, but we might not have access to these at test time. While our142

method can use any zg as conditioning, assume that the play data has access to language annotations l.143

Our policy π(at|st, zl) contains a few simple components. We use a ResNet[66]-based visual encoder144

ϕv to encode st (a sequence of images) and an MLP based langauge encoder ϕl to downproject the145

language embedding zl. The policy uses g = [ϕl(zl), ϕv(st)] as conditioning to the action decoder146

fact. Previous approaches [21, 34] use latent variable models to deal with multimodality. We find that147

modelling fact as a diffusion process enables us to circumvent this.148

4

CookingDining TableSink

CALVIN Franka Kitchen Ravens

Figure 3: Simulated (top row) and real-world (bottom row) environments used for our evaluations. In each
real-world setup, the robot is tasked with picking up one of the objects (e.g., plate, cup, carrot, bread, corn) and
relocating it to a specified location (e.g., drying rack, plate, toaster, grill, pot).

4.2 Multi-modal Behavior Generation via Diffusion149

With fact, we aim to predict robot actions given the current state, using a DDPM to approximate the150

conditional distribution P (at|st). In our setting, we additionally condition on the goal g. Formally,151

we train the model to generate robot actions at conditioned on goal g and current state st, so we152

modify Equations 1 and 6 to obtain:153

ak−1
t = α(akt − γϵθ(g, st, a

k
t , k) +N(0, σ2I)) (4)

154

L = ||ϵk − ϵθ(g, st, a
0
t + ϵk, k)||2 (5)

We use the notation above for simplicity, but in practice, we predict a sequence of Ta future actions155

at, · · · , at+Ta
instead of only the most immediate action, a technique known as action chunking.156

This is done in some recent works [33, 67] and is shown to improve temporal consistency.157

4.3 Discrete Diffusion for Control158

Moreover, humans often break down tasks into smaller skills, which are often repeatable. In fact,159

most tasks can be achieved with a relatively small set. On the other hand, both the latent goals that we160

learn as well as the action diffusion process are continuous. Making sure learnt skills are discrete can161

not only allow for better performance but also better generalization to new settings. However, naively162

enforcing discretization can lead to suboptimal behavior. We want to ensure that conditioned on a163

latent goal, g, action predictions from fact are both multimodal and yet only represent a few modes.164

Thus, we propose a discrete bottleneck instead.165

For the action generation process to represent a useful skill space, we want to enforce discreteness166

where the actions interact with latent goal. PlayFusion adds a vector quantization bottleneck in167

the diffusion process, specifically in the network ϵθ(x) = ϵθ(g, st, a
0
t + ϵk, k). ϵθ is U-Net which168

fuses the language conditioning into the action denoising. We modify the U-Net architecture with169

a codebook of discrete latent codes eu, a discrete bottleneck for the diffusion model. Given an170

input x the U-Net encoder produces a latent ψϵ(x), which is passed into the decoder to produce171

ϵθ(x) = γϵ(ψϵ(x)). This bottleneck layer selects j as argmini ||ψϵ(x) − ei||, finding the closest172

code to the embedding, which is used to reconstruct x. To account for this, we augment the training173

procedure with the quantization and commitment losses, similar to VQ-VAE.174

Generalization via discrete language conditioning Consider an agent that has learnt skills formed175

from the atomic units A, B, C and C, of the form A + B, B + C and C + D. To truly extend its176

5

capabilities beyond the initial training data, the agent must learn to interpolate and extrapolate from177

these existing skills, being able to perform tasks like A + D that it hasn’t explicitly been trained on.178

Given that the action generation in the diffusion process is already quantized, our hypothesis is that179

a discrete goal space will be synergestic and allow the policy to compose skills better. Thus, we180

maintain a codebook of discrete latent codes el for the language embeddings output by the language181

goal network ϕl(zl), selecting el,j which is closest to ϕl(zl). The full loss function that we use to182

train PlayFusion is as follows:183

LPlayFusion =||ϵk − ϵθ(x
0 + ϵk, k)||2 + β1 ||sg(ψϵ(x)− eu,j)||2︸ ︷︷ ︸

U-Net quantization loss

+β1 ||ψϵ(x)− sg(eu,j)||2︸ ︷︷ ︸
U-Net commitment loss

+ β2 ||sg(ϕl(zl))− el,j ||2︸ ︷︷ ︸
lang. quantization loss

+β2 ||ϕl(zl)− sg(el,j)||2︸ ︷︷ ︸
lang. commitment loss

(6)

where β1 and β2 are coefficients to determine the tradeoff between covering a diversity of possible184

behaviors and encouraging behaviors belonging to similar skills to be brought close to each other.185

Sampling from PlayFusion Given a novel language instruction at test time z′, we obtain the186

quantized encoding ϕl(z′), combining it with the visual encoding to get conditioning g′. We sample187

a set of actions at:t+k ∼ N (0, 1), pass them through the discrete denoising process in Equation 4.188

5 Experiments189

In this section, we investigate PlayFusion and its ability to scale to complex tasks, as well as190

generalization to new settings. We ask the following questions: (1) Can PlayFusion allow for learning191

complex manipulation tasks from language annotated play data? (2) Can our method perform192

efficiently in the real-world setup beyond the simulated environment? (3) How well can PlayFusion193

generalize to out of distribution settings? (4) Can PlayFusion in fact learn discrete skills? (5) How do194

various design choices, such as quantization, language conditioning, etc., affect PlayFusion? We aim195

to answer these through experiments in three different simulation and real world settings.196

Environmental Setup We test our approach across a wide variety of environments in both simula-197

tions as well as the real world. For simulation, we evaluate three benchmarks: (a) CALVIN [34], (b)198

Franka Kitchen [22], and (c) Language-Conditioned Ravens [35, 36]. For the real-world setup, we199

create three different environments: cooking, dining table and sink, shown in Figure 3. More200

details of the environment setup are in the supplementary.201

Baselines We handle task conditioning in the same way for our method as well as all baselines,202

using the same visual and language encoders. We compare our method with the following baselines:203

(a) Learning Motor Primitives from Play (Play-LMP): Play-LMP [21] generates behaviors by learning204

motor primitives from play data using a VAE, which encodes action sequences into latents and then205

decodes them into actions. (b) Conditional Behavior Transformer (C-BeT): C-BeT [23] generates206

behaviors using a transformer-based policy and leverages action discretization to handle multimodality.207

(c) Goal-Conditioned Behavior Cloning (GCBC): GCBC [21, 68] is conditional behavior cloning.208

5.1 Results in Simulation and Real World209

PlayFusion in simulation Table 1 shows success rates for PlayFusion, Play-LMP, C-BeT, and210

GCBC on the simulation benchmarks. On both CALVIN setups, we outperform the baselines by a211

wide margin, which demonstrates the effectiveness of our method in large-scale language-conditioned212

policy learning from complex, multimodal play data. The baselines perform comparatively better213

on the Franka Kitchen environments, where the training datasets are smaller and the data covers a214

more narrow behavior distribution and the benefit of handling multimodality is smaller; however,215

6

Simulation Real World
CALVIN A CALVIN B Kitchen A Kitchen B Ravens Dining Table Cooking Sink

C-BeT [23] 26.3± 0.8 23.4± 0.9 45.6 ± 2.3 24.4 ± 2.3 13.4 20.0 0.0 10.0
Play-LMP [21] 19.9± 1.0 22.0± 0.4 1.9± 1.5 0.0± 0.0 0.2 0.0 0.0 0.0
GCBC [21] 23.2± 2.0 30.4± 1.4 38.0± 3.3 15.5± 4.5 1.6 5.0 0.0 5.0

Ours 45.2 ± 1.2 58.7 ± 0.7 47.5 ± 2.0 27.7 ± 0.9 35.8 45.0 30.0 20.0

Table 1: Success rates for PlayFusion and the baselines on simulation and real-world settings.
PlayFusion consistently outperforms all of the baselines.

PlayFusion still outperforms or matches all baselines. PlayFusion also achieves significantly higher216

success rate than the baselines on Ravens (see appendix for per-task results), which is not as large-217

scale as CALVIN but covers a large portion of the state space due to the diversity of instructions.218

No. of Instructions
Av. Seq Len 1 2 3 4 5

CALVIN A :
C-BeT 0.262 25.2 1.0 0.0 0.0 0.0
Play-LMP 0.175 16.5 1.0 0.0 0.0 0.0
GCBC 0.194 19.4 0.0 0.0 0.0 0.0

CALVIN B :
C-BeT 0.272 27.2 0.0 0.0 0.0 0.0
Play-LMP 0.117 11.7 0.0 0.0 0.0 0.0
GCBC 0.291 27.2 1.9 0.0 0.0 0.0

Ours (A) 0.417 37.1 2.9 1.0 0.0 0.0
Ours (B) 0.611 54.4 6.0 0.0 0.0 0.0

Table 2: Average sequence length on Long Horizon
CALVIN and success rate for the n-th instructions.

Long horizon tasks Using the Long Horizon219

CALVIN evaluation suite, we test the ability220

of agents to stitch together different tasks, with221

transitioning between tasks being particularly222

difficult. One such long horizon chain might be223

”turn on the led” → ”open drawer” → ”push224

the blue block” → ”pick up the blue block”225

→ ”place in slider”. We rollout 128 different226

long horizon chains containing five instructions227

each and record the number of instructions suc-228

cessfully completed. As shown in Table 2, we229

find that PlayFusion significantly outperforms230

the baselines in both CALVIN A and CALVIN231

B. The diffusion process gracefully handles the232

multimodality of not only each individual task233

in the chain but also of the highly varied data234

the agent has seen of transitions between tasks.235

Generalization in the real world Table 1 shows results for PlayFusion and the baselines in our236

real world evaluation setups. These setups are particularly challenging for two reasons: (1) inherent237

challenges with real-world robotics such as noisier data and constantly changing environment238

conditions such as lighting, and (2) they are designed to test skill-level compositional generalization.239

Specifically, the agents are required to compose skills A + B and C + D into A + D; for example,240

they might be trained on ”pick up the carrot and place it in the pan” and ”pick up the bread and put241

it in the toaster” and must generalize to ”pick up the carrot and put it in the toaster”. Our method242

significantly outperforms the baselines in these settings, showcasing the ability of the diffusion model243

in modeling complex distributions and the emergence of learned skills via the discrete bottleneck.244

Video results are at https://play-fusion.github.io.245

5.2 Analysis of Discrete Representations246

Bread
in Pan

Pineapple
in Pan

Carrot
in Oven

Carrot
in Grill

Figure 4: Visualization of the codebook em-
beddings for various real-world skills.

Learning discrete skills Table 3 studies the impact of247

our discrete bottlenecks (for Ravens results, see the ap-248

pendix). The success rate is, on average, worsened with the249

removal of either the U-Net discretization and the language250

embedding discretization. We also qualitatively study251

whether semantically similar skills are actually mapped to252

similar areas of the latent space and should therefore be253

brought together by the discrete bottleneck. In Figure 4,254

we show that skills involving similar locations (e.g., pan)255

or objects (e.g., carrot) are encoded into similar embeddings. In Figure 4, we show the embeddings256

7

https://play-fusion.github.io

of different trajectories. The top two rows share the first skill (which is to remove the lid from the257

pan) and place an object in the pan. The bottom two rows share the second skill (grasping the carrot).258

Embeddings that contain the same skill have a similar pattern, which further indicates that the latent259

skill space being learned is somewhat discretized.260

Methods CALVIN A CALVIN B

Ours 45.2 ± 1.2 58.7 ± 0.7
No U-Net discretiz. 45.3 ± 2.1 55.1± 1.4
No lang discretiz. 40.3± 1.6 54.1± 1.2

Table 3: Effect of discrete bottlenecks.

Balancing the discrete bottlenecks In Table 4, we study261

the effects of different β1 and β2 values on CALVIN A262

performance, i.e., the relative weightings for the additional263

terms in the loss function corresponding to the U-Net264

discretization and language embedding discretization. We265

find that β1 = β2 = 0.5 results in the best performance.266

In general, equally weighing the four additional losses267

(two for U-Net and two for language) leads to improved performance over imbalanced weightings.268

β1 = β2 = 0.5 is also better than β1 = β2 = 1, indicating that over-incentivizing discretization can269

be detrimental to diffusion model learning. Further analyses can be found in the appendix.270

5.3 Ablations of Design Choices271

Success Rate
Effect of conditioning:
Global 54.1
Conditional Noise 40.2
Visual Pre-training 38.1

Effect of language model:
all-MiniLM-L6-v2 47.1
all-distilroberta-v1 48.4
all-mpnet-base-v2 48.8
BERT 48.8
CLIP (ResNet50) 35.2
CLIP (ViTB32) 43.9

Loss weights (U-Net & Language) :
0.5 & 0.5 47.1
1 & 1 45.1
0.1 & 1 45.5
1 & 0.1 43.4
0.25 & 0.75 37.7
0.75 & 0.25 43.4

Table 4: Effects of conditioning,
language model, and loss weights.

Effect of language model Although our method is orthogonal to272

the language model used, we test its sensitivity to this. As shown in273

Table 4, we find that common models such as MiniLM [65], Distil-274

roberta [69], MPNet [70], and BERT [71] have similar performance,275

showing that PlayFusion is mostly robust to this design choice. We276

hypothesize that the discrete bottleneck applied to the language em-277

beddings helps to achieve this robustness. CLIP [72] embeddings278

result in much lower success rates, most likely due the fact that279

Internet images may not contain similar ”play data” instructions.280

Effect of conditioning Table 4 studies various different possibil-281

ities for conditioning the diffusion model generations on language282

and vision in CALVIN A. When working with diffusion models there283

are multiple different ways we can approach how to feed it goals,284

images of the scene etc. We found that PlayFusion is mostly robust285

to this, with global conditioning providing benefits for smaller mod-286

els (such as those in the real world). We also attempted to condition287

the diffusion model noise on the goal but found that this negatively288

impacted performance. For the visual conditioning, we studied the289

effect of initializing the image encoder with large-scale pre-trained models [73]), finding that it does290

not help, and PlayFusion can learn the visual encoder end-to-end from scratch.291

For data scaling curves and more analyses on design choices, see the appendix.292

6 Limitations and Discussion293

In this paper, we introduced a novel approach for learning a multi-task robotic control policy using294

a denoising diffusion process on trajectories, conditioned on language instructions. Our method295

exploits the effectiveness of diffusion models in handling multimodality and introduces two discrete296

bottlenecks in the diffusion model in order to incentivize the model to learn semantically meaningful297

skills. PlayFusion does require the collection of teleoperated play data paired with after-the-fact298

language annotations, which still require human effort despite being already less expensive and299

time-consuming to collect than demonstrations. It would be interesting to label the play data with a300

captioning model or other autonomous method. Furthermore, there is room for improvement in our301

performance on our real-world setups. Additionally, our real-world experiments could be expanded302

to even more complex household settings such as study rooms, bed rooms, and living rooms. Overall,303

our approach can significantly enhance the ability of robots to operate autonomously in complex and304

dynamic environments, making them more useful in a wide range of applications.305

8

References306

[1] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal307

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.308

[2] S. Thrun, C. Faloutsos, T. Mitchell, and L. Wasserman. Automated learning and discovery309

state-of-the-art and research topics in a rapidly growing field. Ai Magazine, 20(3):78–78, 1999.310

[3] M. Pickett and A. G. Barto. Policyblocks: An algorithm for creating useful macro-actions in311

reinforcement learning. In ICML, volume 19, pages 506–513, 2002.312

[4] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI, 2017.313

[5] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal314

abstraction in reinforcement learning. Artificial Intelligence, 1999.315

[6] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy search.316

Journal of Machine Learning Research, 2016.317

[7] F. Stulp, E. A. Theodorou, and S. Schaal. Reinforcement learning with sequences of motion318

primitives for robust manipulation. Transactions on Robotics, 2012.319

[8] J. Kober and J. Peters. Learning motor primitives for robotics. In ICRA, 2009.320

[9] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task321

outcome prediction for manipulation. In ICRA, 2011.322

[10] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning via323

parameterized action primitives. NeurIPS, 2021.324

[11] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives325

for diverse manipulation tasks. In ICRA, 2022.326

[12] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned skill priors. In327

Conference on robot learning, pages 188–204. PMLR, 2021.328

[13] S. Bahl, A. Gupta, and D. Pathak. Hierarchical neural dynamic policies. RSS, 2021.329

[14] K. Pertsch, R. Desai, V. Kumar, F. Meier, J. J. Lim, D. Batra, and A. Rai. Cross-domain transfer330

via semantic skill imitation. arXiv preprint arXiv:2212.07407, 2022.331

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: learning skills332

without a reward function. arXiv preprint arXiv:1802.06070, 2018.333

[16] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised334

discovery of skills. arXiv preprint arXiv:1907.01657, 2019.335

[17] J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez, G. Wayne,336

and N. Heess. Catch & carry: reusable neural controllers for vision-guided whole-body tasks.337

ACM Transactions on Graphics (TOG), 39(4):39–1, 2020.338

[18] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference. In339

International Conference on Machine Learning, pages 8624–8633. PMLR, 2020.340

[19] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and341

P. Battaglia. Compile: Compositional imitation learning and execution. In International342

Conference on Machine Learning, pages 3418–3428. PMLR, 2019.343

[20] W. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings. arXiv preprint344

arXiv:1908.09357, 2019.345

9

[21] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning346

latent plans from play. arXiv preprint arXiv:1903.01973, 2019.347

[22] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving348

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,349

2019.350

[23] Z. J. Cui, Y. Wang, N. Muhammad, L. Pinto, et al. From play to policy: Conditional behavior351

generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.352

[24] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.353

Zero-shot text-to-image generation. In International Conference on Machine Learning, pages354

8821–8831. PMLR, 2021.355

[25] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image356

generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.357

[26] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis358

with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision359

and Pattern Recognition, pages 10684–10695, 2022.360

[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,361

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural362

information processing systems, 33:1877–1901, 2020.363

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural364

Information Processing Systems, 33:6840–6851, 2020.365

[29] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline366

reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.367

[30] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior368

synthesis. arXiv preprint arXiv:2205.09991, 2022.369

[31] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative370

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.371

[32] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-learning372

as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.373

[33] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:374

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.375

[34] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-376

conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and377

Automation Letters, 7(3):7327–7334, 2022.378

[35] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,379

D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for380

robotic manipulation. CoRL, 2020.381

[36] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-382

tion. In Conference on Robot Learning, pages 894–906. PMLR, 2022.383

[37] L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.384

[38] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,385

O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information386

processing systems, 30, 2017.387

10

[39] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to reach388

goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.389

[40] A. Goyal, A. Friesen, A. Banino, T. Weber, N. R. Ke, A. P. Badia, A. Guez, M. Mirza, P. C.390

Humphreys, K. Konyushova, et al. Retrieval-augmented reinforcement learning. In International391

Conference on Machine Learning, pages 7740–7765. PMLR, 2022.392

[41] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and393

I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances394

in neural information processing systems, 34:15084–15097, 2021.395

[42] C. Lynch and P. Sermanet. Grounding language in play. arXiv preprint arXiv:2005.07648, 40:396

105, 2020.397

[43] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:398

Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,399

pages 991–1002. PMLR, 2022.400

[44] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,401

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic402

affordances. arXiv preprint arXiv:2204.01691, 2022.403

[45] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot404

behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,405

pages 1303–1315. PMLR, 2022.406

[46] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation407

learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205–11212,408

2022.409

[47] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic410

manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.411

[48] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.412

arXiv preprint arXiv:2005.07648, 2020.413

[49] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,414

2013.415

[50] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate416

inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.417

[51] E. Zhang, Y. Lu, W. Wang, and A. Zhang. Lad: Language augmented diffusion for reinforcement418

learning. arXiv preprint arXiv:2210.15629, 2022.419

[52] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k420

modes with one stone. Advances in neural information processing systems, 35:22955–22968,421

2022.422

[53] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent423

dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.424

[54] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent425

imagination. arXiv preprint arXiv:1912.01603, 2019.426

[55] Y. Dai, M. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.427

Learning universal policies via text-guided video generation. arXiv preprint arXiv:2302.00111,428

2023.429

11

[56] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-guided 304430

creation of physically-valid structures using unseen objects. arXiv preprint arXiv:2211.04604,431

305:2, 2022.432

[57] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,433

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and434

D. Hassabis. Mastering the game of go without human knowledge. Nature, 2017.435

[58] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,436

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural437

networks and tree search. nature, 529(7587):484, 2016.438

[59] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,439

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,440

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through441

deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015.442

[60] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An443

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,444

jun 2013.445

[61] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling446

problem. Advances in neural information processing systems, 34:1273–1286, 2021.447

[62] P. Wu, A. Majumdar, K. Stone, Y. Lin, I. Mordatch, P. Abbeel, and A. Rajeswaran. Masked448

trajectory models for prediction, representation, and control. arXiv preprint arXiv:2305.02968,449

2023.450

[63] S. Ozair, Y. Li, A. Razavi, I. Antonoglou, A. Van Den Oord, and O. Vinyals. Vector quantized451

models for planning. In International Conference on Machine Learning, pages 8302–8313.452

PMLR, 2021.453

[64] A. van den Oord, O. Vinyals, et al. Neural discrete representation learning. In NeurIPS, pages454

6309–6318, 2017.455

[65] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.456

arXiv preprint arXiv:1908.10084, 2019.457

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,458

abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.459

[67] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation460

with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.461

[68] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel. Goal-conditioned imitation learning. arXiv462

preprint arXiv:1906.05838, 2019.463

[69] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,464

and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint465

arXiv:1907.11692, 2019.466

[70] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mpnet: Masked and permuted pre-training for467

language understanding. Advances in Neural Information Processing Systems, 33:16857–16867,468

2020.469

[71] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional470

transformers for language understanding. 2018.471

12

http://arxiv.org/abs/1512.03385

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,472

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.473

In International conference on machine learning, pages 8748–8763. PMLR, 2021.474

[73] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation475

for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.476

[74] Calvin. https://github.com/mees/calvin/.477

[75] Relay policy learning environments. https://github.com/google-research/478

relay-policy-learning/.479

[76] Cliport. https://github.com/cliport/cliport.480

[77] From play to policy: Conditional behavior generation from uncurated robot data. https:481

//github.com/jeffacce/play-to-policy.482

13

https://github.com/mees/calvin/
https://github.com/google-research/relay-policy-learning/
https://github.com/google-research/relay-policy-learning/
https://github.com/google-research/relay-policy-learning/
https://github.com/cliport/cliport
https://github.com/jeffacce/play-to-policy
https://github.com/jeffacce/play-to-policy
https://github.com/jeffacce/play-to-policy

A Website483

Video results are available at https://play-fusion.github.io.484

B Experimental Setup485

We evaluate our method on three simulated environments. Below, we provide their details.486

CALVIN [34]. The CALVIN benchmark tests a robotic agent’s ability to follow language instruc-487

tions. CALVIN contains four manipulation environments, each of which include a desk with a488

sliding door and a drawer that can be opened and closed, as well as a 7-DOF Franka Emika Panda489

robot arm with a parallel gripper. The four environments differ from each other in both their spatial490

composition (e.g., positions of drawers, doors, and objects) and visual features. The training data for491

each environment contains around 200K trajectories, from which we sample a sequence of transitions492

for each element of the minibatch. A portion of the dataset contains language annotations; we use493

this subset to train our language-conditioned model. Each transition consists of the RGB image494

observation, proprioceptive state information, and the 7-dimensional action. The agent is evaluated495

on its success rate in completing 34 tasks, which include variations of rotation, sliding, open/close,496

and lifting. These are specified by language instructions that are unseen during training in order497

to test the generalization ability of the agent. We evaluate on two setups: (1) CALVIN A, where498

the model is trained and tested on the same environment (called D→D in the benchmark) and (2)499

CALVIN B, where the model is trained on three of the four environments and tested on the fourth500

(called ABC→D in the benchmark).501

Franka Kitchen [22]. Franka Kitchen is a simulated kitchen environment with a Franka Panda502

robot. It contains seven possible tasks: opening a sliding cabinet, opening a hinge cabinet, sliding503

a kettle, turning on a switch, turning on the bottom burner, turning on the top burner, and opening504

a microwave door. The dataset contains 566 VR demonstrations of humans performing four of the505

seven tasks in sequence. Each transition consists of the RGB image observation, proprioceptive state506

information, and the 9-dimensional action. We split each of these demonstrations into their four tasks507

and annotate them with diverse natural language to create a language-annotated play dataset. In our508

experiments, we evaluate agents on two setups within this environment, which we denote as Kitchen509

A and Kitchen B. In Kitchen A, we evaluate an agent’s language generalization ability at test-time510

by prompting it with unseen instructions asking it to perform one of the seven tasks. This requires511

the model to identify the desired task and successfully execute it. Kitchen B is a more challenging512

evaluation setting, where the agent must perform two of the desired seven tasks in sequence given an513

unseen language instruction. In this setting, the agent must exhibit long-horizon reasoning capabilities514

and perform temporally consistent actions, in addition to the language generalization required in515

Kitchen A.516

Language-Conditioned Ravens [35, 36]. Ravens is a tabletop manipulation environment with a517

Franka Panda arm. We evaluate on three tasks in the Ravens benchmark: putting blocks in bowls,518

stacking blocks to form a pyramid, and packing blocks into boxes. The dataset consists of 1000519

demonstrations collected by an expert policy. Although the dataset proposed in [36] contains language520

instructions denoting which color block to move and the desired final location, they are not diverse521

like human natural language annotations would be. In order to study our model’s performance on a522

play-like language-annotated dataset, we instead annotate the demonstrations with diverse natural523

language. At test-time, we prompt the agent with an unseen language instruction, similar to our other524

setups.525

B.1 Real World Setup526

We create multiple play environments in the real world as well. We use a 7-DOF Franka Emika527

Panda robot arm with a parallel gripper, operating in joint action space. We have three different528

14

https://play-fusion.github.io

environments cooking, dining table and sink. All of these tasks are multi-step, i.e., in each the529

robot has to at least grab one object and put it in another, i.e. grab a carrot and put it inside the oven.530

In cooking, we test how the robot can handle articulated objects. It has to first open the oven, grill or531

pot, and then place an object properly inside. All of these objects have different articulations. Each532

of the placed objects (bread, carrot, knife, steak, spoon, etc.) have unique and different ways of being533

interacted with. In the sink, we test very precise manipulation skills, where the robot has to place534

objects in the narrow dish rack or hang objects (like mugs). In all of these settings, we test unseen535

goals (a combination of objects) that has never been seen before, as well as an instruction that has536

never been seen before. We provide more details in the Appendix.537

B.2 Additional Analysis on Discretization Bottleneck538

Discretization ablation in Ravens. Table 5 studies the impact of our discrete bottlenecks on the539

Ravens benchmark. The success rate is, on average, worsened with the removal of either the U-Net540

discretization and the language embedding discretization.541

Discretizing a portion of the latent. It is possible to quantize only a portion of the U-Net latent542

representation. Table 6 shows results of discretizing only a portion (25% or 50%) of the latent. We543

find that discretizing 25% of the latent resulted in better performance. Discretizing the entire latent544

still works well, but discretizing a portion is a great way to balance encouraging skill learning and545

accurate denoising.546

Table 5: Effect of discrete bottlenecks on Ravens tasks.

Methods put-block-in-bowl stack-block-pyramid packing-box-pairs

Ours 63.6 ± 2.5 20.0 ± 0.0 24.0 ± 1.8
No U-Net discretization 65.5 ± 3.3 5.0± 2.3 18.5± 0.0
No lang discretization 4.1± 0.6 3.3± 2.7 7.5± 2.5

Table 6: Effect of discretizing different fractions of the U-Net representation.

Methods Success Rate

Discretize 100% of latent 45.2± 1.2
Discretize 50% of latent 44.8± 0.1
Discretize 25% of latent 48.7 ± 0.8

B.3 Data Scaling Curves547

Figure 5 shows data scaling curves.548

Effect of discrete bottlenecks. Our method scales well with more data and performs very well even549

at 100K trajectories, which is half the size of the CALVIN A training dataset. The removal of the550

language discretization results in lower success rates across almost all dataset sizes. The removal of551

U-Net discretization is not as critical and can actually improve performance for very small datasets,552

but is on average harmful for larger datasets.553

Comparison to baselines. Our method scales well with more data while C-BeT, Play-LMP, and554

GCBC perform poorly for all dataset sizes.555

B.4 Dataset Details556

Real-world experiments. For each environment we collected 250 episodes. This translates to around557

15 hours of data collection. We augmented the dataset by adding 3 or 4 variations for each language558

15

Figure 5: Data scaling curves. Left: effect of discrete bottlenecks. Right: comparison to baselines.

instruction (making the training dataset 750-1K episodes). The episodes were not broken into smaller559

annotated instructions.560

Simulation experiments. We directly use the language-annotated dataset from CALVIN [34] and561

data generation script from CLIPort [36]. For Kitchen experiments, we used the dataset from Relay562

Policy Learning [22] and performed some processing and annotation to create language-annotated563

datasets. We provide some information in Table 7, but note that some of the numbers are estimates564

due to data processing procedures and refer the reader to the papers [34, 36, 22] for full details.565

Table 7: Dataset details for simulation experiments.

How was play data
collected?

Hours Eps.
length

No. of lang. anno-
tated eps.

Is a single eps. broken into
smaller instructions?

CALVIN
A

Teleoperators are in-
structed only to ex-
plore. Processing into
episodes and annotat-
ing with language are
done after-the-fact.

2.5 64 5K (instructions
are repeated to cre-
ate 200K training
episodes)

No. Training trajectories
are length-16 sub-episodes
of the length-64 episodes. In-
structions are repeated for all
sub-episodes to create a total
of 200K language-annotated
training trajectories. (How-
ever, the length-64 window
was sampled from a long
stream of play data).

CALVIN
B

Same as CALVIN A,
but for three different
environments.

7.5 64 15K (instructions
are repeated to cre-
ate 600K training
episodes)

No. Same as CALVIN A,
but for three different envi-
ronments, for a total of 600K
training trajectories.

Kitchen
A

Teleoperators are in-
structed to perform 4
out of 7 possible tasks
for each episode.

1.5 200 566 (split to cre-
ate 2.2K training
episodes)

Yes. We split each episode
into the four training trajec-
tories and label each of them
with language.

Kitchen
B

Same as Kitchen A. 1.5 200 566 (split to cre-
ate 1.6K training
episodes)

Yes. We split each episode
into three training trajecto-
ries (one for each pair of con-
secutive tasks) and label each
of them with language.

Ravens Data is generated by
rolling out an expert
policy.

3 Up to 20 1000 Depends on the task. If it
is sequential then the instruc-
tion changes throughout the
episode and if it is single-
step then there is one instruc-
tion for the episode.

16

4 8 16 32
Action Horizon

0

10

20

30

40

50

60

Su
cc

es
s R

ate

PlayFusion

512 1024 2048 4096
Codebook Size

0

10

20

30

40

50

60

Su
cc

es
s

PlayFusion

Figure 6: Effect of model design choices.

B.5 Model Design Choices566

Figure 6 studies the impact of action horizon and codebook size in CALVIN A. PlayFusion is mostly567

robust to the action horizon Ta. We empirically found ta of around 20% of the overall horizon worked568

the best. We find that PlayFusion is relatively robust to the discrete latent codebook sizes.569

Note that asymptotically, increasing the codebook size would remove the discrete bottleneck, in570

principle. To study whether this happens in practice, we further increased the codebook size and show571

CALVIN A results in Table 8. As expected, performance drops when codebook size gets very large.572

Table 9 shows the effect of number of diffusion timesteps in CALVIN A. We found that using 25573

timesteps works slightly better but our method is generally robust to this hyperparameter.574

Table 8: Effect of further increasing the codebook size.

Codebook Size Success Rate

2048 45.2 ± 1.2
8192 46.0 ± 1.2
16384 41.1± 0.1

Table 9: Effect of diffusion timesteps.

Timesteps Success Rate

50 45.2± 1.2
100 39.9± 1.3
25 47.4 ± 0.8

B.6 Generalization to Unseen Skills575

We performed an experiment where we removed one skill from the CALVIN training data. Specif-576

ically, we removed lift-red-block-slider from the training data and tested the model’s ability to577

interpolate between (1) lifting other blocks from the slider (e.g., lift-blue-block-slider, lift-pink-block-578

slider) and (2) lifting red blocks in other scenarios (e.g., lift-red-block-drawer, lift-red-block-table).579

We also repeated this experiment for lift-blue-block-table. We find that the removal of the discrete580

bottlenecks results in generally worse performance in this challenging setup (see Table 10). Al-581

though confidence intervals do overlap a bit, we find that our method is on average the best for both582

lift-red-block-slider and lift-blue-block-table.583

17

Table 10: Performance on unseen skills.

Models lift-red-block-slider lift-blue-block-table

Ours 20.0± 8.1 16.6± 7.2
No U-Net discretization 10.0± 4.6 3.3± 2.7
No lang discretization 13.3± 2.7 13.3± 5.4

B.7 Ravens Experiments584

Table 11 shows per-task success rates for Ravens.

Table 11: Per-task success rates for Ravens.

put-block-in-bowl stack-block-pyramid packing-box-pairs

C-BeT 17.2± 1.1 15.0± 2.3 8.1± 1.5
Play-LMP 0.0± 0.0 0.0± 0.0 0.8± 0.2
GCBC 0.0± 0.0 3.3± 2.7 1.7± 0.7

Ours 63.6 ± 2.5 20.0 ± 0.0 24.0 ± 1.8

585

B.8 Implementation Details586

Table 12 shows the main hyperparameters of our model in our simulation and real world experiments.587

We build off of the implementation of MCIL from CALVIN [74]. For Franka Kitchen and Ravens588

dataset and environment processing, we use implementations from [75] and [76], respectively. For589

implementations of the baselines, we modify [77] for C-BeT and [74] for Play-LMP and GCBC.590

Where possible, we use the same hyperparameters for PlayFusion and the baselines.591

Table 12: Hyperparameters of PlayFusion in our simulation and real-world experiments.

Hyperparameter CALVIN Franka Kitchen Ravens Real World

Batch size 32 32 128 12
Codebook size 2048 2048 2048 2048
U-Net discretiz. wgt 0.5 0.5 0.5 0.5
Lang. discretiz. wgt 0.5 0.5 0.5 0.5
Action horizon Ta 16 64 2 32
Context length To 2 1 1 1
Language features 384 384 384 384
Learning rate 1e-4 2.5e-4 2.5e-4 2.5e-4
Diffusion timsteps 50 50 50 50
Beta scheduler squaredcos cap v2 squaredcos cap v2 squaredcos cap v2 squaredcos cap v2
Timestep embed dim 256 256 128 256

18

	1 Introduction
	2 Related Work
	3 Background
	4 PlayFusion: Discrete Diffusion for Language-Annotated Play
	4.1 Language Conditioned Play Data
	4.2 Multi-modal Behavior Generation via Diffusion
	4.3 Discrete Diffusion for Control

	5 Experiments
	5.1 Results in Simulation and Real World
	5.2 Analysis of Discrete Representations
	5.3 Ablations of Design Choices

	6 Limitations and Discussion
	A Website
	B Experimental Setup
	B.1 Real World Setup
	B.2 Additional Analysis on Discretization Bottleneck
	B.3 Data Scaling Curves
	B.4 Dataset Details
	B.5 Model Design Choices
	B.6 Generalization to Unseen Skills
	B.7 Ravens Experiments
	B.8 Implementation Details

