
COGNATE: Acceleration of Sparse Tensor Programs
on Emerging Hardware using Transfer Learning

Chamika Sudusinghe 1 Gerasimos Gerogiannis 1 Damitha Lenadora 1

Charles Block 1 Josep Torrellas 1 Charith Mendis 1

Abstract
Sparse tensor programs are essential in deep learn-
ing and graph analytics, driving the need for op-
timized processing. To meet this demand, spe-
cialized hardware accelerators are being devel-
oped. Optimizing these programs for acceler-
ators is challenging for two reasons: program
performance is highly sensitive to variations in
sparse inputs, and early-stage accelerators rely
on expensive simulators. Therefore, ML-based
cost models used for optimizing such programs
on general-purpose hardware are often ineffec-
tive for early-stage accelerators, as they require
large datasets for proper training. To this end,
we introduce COGNATE, a novel framework that
leverages inexpensive data samples from general-
purpose hardware (e.g., CPUs) to train cost mod-
els, followed by few-shot fine-tuning on emerging
hardware. COGNATE exploits the homogeneity
of input features across hardware platforms while
effectively mitigating heterogeneity, enabling cost
model training with just 5% of the data samples
needed by accelerator-specific models to achieve
comparable performance. We conduct extensive
experiments to demonstrate that COGNATE out-
performs existing techniques, achieving average
speedups of 1.47× (up to 5.46×) for SpMM and
1.39× (up to 4.22×) for SDDMM.

1. Introduction
Sparse tensor programs have gained increased significance
with the recent advancements in sparse deep learning and
graph analytics (Beltagy et al., 2020; Ye & Ji, 2021; Child
et al., 2019; Dao et al., 2021) workloads. As a result,
many hand-crafted performance optimization techniques
have been suggested to improve the performance of sparse

1University of Illinois Urbana-Champaign, USA. Correspon-
dence to: Chamika Sudusinghe <chamika2@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

kernels (Kjolstad et al., 2017; Ye et al., 2023; Hong et al.,
2019; Jiang et al., 2020). However, the varying non-zero
distributions in input sparse matrices have made it diffi-
cult to develop performance optimizations for sparse tensor
programs that consistently work well across diverse inputs.

To overcome this challenge, machine learning (ML)-based
program optimization techniques have been introduced to
optimize sparse tensor programs on established hardware
platforms (e.g., CPUs) (Won et al., 2023; Yang et al., 2023).
These techniques adaptively select a program configuration
based on the input sparse matrix features. For example,
WACO (Won et al., 2023) introduces learned cost models to
predict the runtime cost of programs under different sparse
matrices and program configurations. Then, search-based
techniques are used to automatically find the optimal pro-
gram configuration using the cost model’s output. Overall,
these ML-based techniques show superior performance and
adaptability across a diverse range of inputs compared to
manually crafted performance optimization techniques.

Recently, on the hardware front, new domain-specific ma-
chines specifically designed for sparse operations are emerg-
ing (Pal et al., 2018; Hegde et al., 2019; Aananthakrish-
nan et al., 2023; Gerogiannis et al., 2023; Li et al., 2023;
Muñoz-Martı́nez et al., 2023; Jin et al., 2024). These ma-
chines, known as hardware accelerators, offer significant
speedups over established hardware platforms. Similar to
CPUs, sparse accelerators also provide various program
configurations (Gerogiannis et al., 2023; Jin et al., 2024;
Gerogiannis et al., 2024), which must be configured by soft-
ware to achieve the hardware’s full potential. It is important
that this potential is tested during early-stage hardware de-
velopment (i.e. before the actual chip is available) to inform
better hardware design decisions. For example, hardware ar-
chitects face the risk of overprovisioning hardware resources
(e.g., increasing cache size) to address inefficiencies that
could potentially be resolved through improved software
strategies (e.g., adopting a better tiling strategy). Therefore,
it is crucial to automatically select the optimal program con-
figuration during the design space exploration (DSE) phase
of accelerator development.

However, finding the best program configuration for a given

1

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

early-stage hardware accelerator is challenging. This is
because software developers have access only to expen-
sive simulators and, therefore, cannot utilize ML-based cost
model development and auto-tuning techniques commonly
used for established hardware platforms, which rely on large
supervised datasets. Such datasets often include hundreds
of thousands of labeled examples (Won et al., 2023). Unfor-
tunately, the time needed to collect datasets of similar scale
for emerging accelerators relying on simulators is many
orders of magnitude longer than the real execution of the
program on the actual chip. For example, it can take up to
two weeks to collect a single data point using the simulator
of the state-of-the-art SPADE sparse accelerator (Gerogian-
nis et al., 2023). At the same time, the same program would
take less than a second to execute on the real chip once fabri-
cated. Collecting large datasets would require huge clusters
running simulations for months or even years. Therefore, in
order to bring the same benefits of ML-based optimizations
to accelerator platforms at their early stages, we need to
rethink learned cost model construction techniques that are
data-frugal and highly sample-efficient.

Emerging
Hardware Dataset

Fine-tune on Target

+

General-Purpose
Hardware Dataset

Runtimes

Program
Configs

Train on Source Runtime Execution

Simulator of a Dedicated
Sparse Accelerator

Predicted
Best Config

Sparse
Matrix

Sparse Matrices

Runtimes

Program
Configs

Sparse Matrices

Target
Cost Model

Source
Cost Model

Sparse
Matrix

Figure 1: Transfer learning pipeline of COGNATE.

5 100 1000
of Matrices

1.0

1.1

1.2

1.3

1.4

1.5

Ge
om

ea
n

Sp
ee

du
p WACO+FM

WACO+FA
Ours (Top-1)

Optimal: 1.55
Baseline: 1.0

Figure 2: Performance
of existing systems for
SpMM on SPADE; WacoNet
with feature augmentation
(WACO+FA), and feature
mapping (WACO+FM).

Inspired by the suc-
cess of transfer learn-
ing in other domains
(Weiss et al., 2016;
Zhuang et al., 2020), re-
searchers have proposed
many techniques to re-
duce data requirements
for training cost mod-
els (Sasaki et al., 2022;
Zheng et al., 2021).
These techniques lever-
age knowledge trans-
ferred from cost models
learned on one hardware
platform (source) to an-
other (target) using the
ubiquitous pre-train and fine-tune paradigm (Krizhevsky
et al., 2012). Such techniques have shown to reduce the
data requirement for the target platform. Therefore, using
such techniques to transfer learn cost models from general-
purpose hardware to emerging accelerators can reduce the
data requirements from expensive simulations (Figure 1).
However, we notice that most prior works have achieved ef-

fective knowledge transfer only between hardware platforms
of the same type (e.g. CPU-to-CPU, GPU-to-GPU) (Sasaki
et al., 2022; Won et al., 2023; Zheng et al., 2021). Trans-
ferring between hardware of different types (e.g. CPU-to-
accelerator) poses unique challenges:

Heterogeneous program configuration spaces. The pro-
gram configurations for emerging sparse accelerators, which
serve as the input feature space for cost models, can dif-
fer significantly from those of general-purpose hardware.
For example, emerging sparse accelerators have software-
managed buffers instead of hardware-managed caches and
specialized, rather than general-purpose, pipelines. This
causes a disparity in program configuration spaces for
general-purpose hardware and emerging accelerators, mak-
ing it challenging to naively apply transfer learning. Exist-
ing heterogeneous transfer learning techniques (Liang et al.,
2019), such as feature augmentation (Daumé III, 2009; Duan
et al., 2012), can be a viable approach. However, these tech-
niques often produce feature representations that are too
sparse for the cost model to effectively learn, specifically
when accommodating a diverse set of program configura-
tion across different hardware platforms. Figure 2 shows the
results of applying popular heterogeneous transfer learning
techniques – feature augmentation (FA) and feature map-
ping (FM) – to a learned cost model, WACO (Won et al.,
2023). Even when using data samples from 1000 matrices
for fine-tuning on the SPADE accelerator, the best configura-
tions found under WACO+FA and WACO+FM are far from
optimal. Therefore, we need better techniques to handle the
heterogeneity of program configurations across hardware.

High sample efficiency requirement. Existing transfer
learning solutions for learned cost models operating in ho-
mogeneous feature spaces typically require at least 25% of
the original dataset used in a non-transfer learning setup to
achieve competitive performance on the target hardware plat-
form (Sasaki et al., 2022). The target dataset requirement for
these solutions can further increase due to the heterogeneous
input feature spaces between general-purpose hardware and
emerging accelerators. This makes it infeasible to adopt ex-
isting solutions in their current form for accelerators in early
design stages. Therefore, we need data-frugal techniques.

COGNATE. In this paper, we present COGNATE, a novel
framework for developing learned cost models that enable
effective knowledge transfer (Figure 1) overcoming these
challenges. COGNATE uses WACO’s cost model architec-
ture (Won et al., 2023) as the base model (WacoNet) but
incorporates key changes to make it amenable for transfer
learning. This enables the discovery of better program con-
figurations that are closer to the optimal (Figure 2), while
requiring significantly less fine-tuning data samples.

COGNATE is centered around two key principles intro-
duced in (Neyshabur et al., 2020): feature reuse and the

2

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

capture of low-level statistical information. We observe that,
even though the program configurations between general-
purpose hardware and accelerators are heterogeneous, there
are certain feature spaces that can be mapped due to their
similarities. Motivated by this observation, we propose an
approximate mapping of comparable code optimizations,
effectively segregating the feature space generated by pro-
gram configuration into homogeneous and heterogeneous
components. This allows feature reuse across the source
and target platforms. The heterogeneous components repre-
sent non-mappable hardware specific parameters that can be
disparate across different platforms. Such components can
introduce challenges during transfer learning due to negative
transfer. To separately encode the heterogeneous feature
spaces, we introduce a novel latent space representation
of the heterogeneous input feature space using an auto-
encoder. This novel formulation of the feature space allows
us to effectively reuse features while minimizing the impact
of negative transfer. Further, we observe that certain layers
of WacoNet do not contribute heavily to the final prediction
and this over-parameterization can hinder transferability
due to over-fitting. To mitigate this, COGNATE modifies
WacoNet by reducing the number of layers and extracting
features at various depths and scales, effectively allowing
the model to capture low-level statistical information.

We evaluate COGNATE on two widely used sparse opera-
tions, Sparse Matrix-Matrix Multiplication (SpMM) and
Sampled Dense-Dense Matrix Multiplication (SDDMM).
Starting with a CPU as the source hardware platform, we
transfer program program configurations to the the state-of-
the art SPADE (Gerogiannis et al., 2023) emerging sparse
accelerator. SPADE’s open ISA and vast set of possible pro-
gram configurations make it an ideal target platform for our
evaluation. Further, to demonstrate the generalizability of
COGNATE, we evaluate our techniques for a second target
accelerator – an NVIDIA A100 GPU.

Our results show that COGNATE outperforms existing
transfer learning techniques by 28.44%, achieving an aver-
age speedup of 1.47× (up to 5.46×) for SpMM and 1.39×
(up to 4.22×) for SDDMM on SPADE. On the A100 GPU, it
attains an average speedup of 1.17× (up to 1.61×) for SpMM
and 1.15× (up to 1.49×) for SDDMM.

In summary, this paper makes the following contributions.

• We introduce techniques to segregate and encode the ho-
mogeneous (approximate mapping of comparable code
optimizations) and heterogeneous (latent representa-
tion using an auto-encoder) components of program
configurations across different hardware platforms.

• We introduce COGNATE, a novel data-frugal framework
for developing learned cost models that are amenable to
few-shot fine-tuning across different hardware platforms,
leveraging the above techniques.

• We evaluate and show that COGNATE produces highly
accurate transfer learned cost models for emerging sparse
accelerators with minimal data collection overhead. Fur-
thermore, we perform extensive experiments and ablation
studies to demonstrate its benefits and generalizability.

2. Background and Related Work
2.1. Sparse Tensor Programs
Sparse tensor programs perform computational tasks that
involve tensors where most of the elements are zero. These
computations are optimized to efficiently process only the
non-zero values. We describe two operations frequently
used in these computations below.

Sparse Matrix-Matrix Multiplication (SpMM) is the op-
eration of multiplying a sparse matrix A ∈ RM×K with
a dense matrix B ∈ RK×N , resulting in an output matrix
D ∈ RM×N . The SpMM operation can be expressed as
Di,k =

∑
j Ai,j ·Bj,k, where Ai,j ̸= 0.

Sampled Dense-Dense Matrix Multiplication (SDDMM)
is an operation that involves the multiplication of two
dense matrices, followed by an elementwise multiplica-
tion with a sparse matrix. Given a sparse matrix A ∈
RM×N , a sparse output matrix D ∈ RM×N , and two
dense matrices B ∈ RM×K and C ∈ RK×N , SD-
DMM operation can be expressed as Di,k = Ai,k ·∑

j (Bi,j · Cj,k) , where Ai,k ̸= 0.

2.2. Sparse Tensor Programming Systems
Table 1: Program configuration parameters (Config Params)
available across CPU, GPU, and SPADE.

Config Params CPU GPU SPADE Type
Loop Strip-mining ✓ ✓ Numerical
Loop Reordering ✓ ✓ Categorical

Format Reordering ✓ Categorical
Loop Binding ✓ Categorical

Loop Unrolling ✓ Categorical
Tiling ✓ Numerical
Barrier ✓ Binary

Cache Bypassing ✓ Binary
Matrix Reordering ✓ Binary

A sparse tensor programming system supports a range of
code optimizations that modify the structure of the code
to enhance performance. The effectiveness of these code
optimizations depends on assigning specific values to the
parameters of the program configuration. By tuning these
parameters, we can significantly impact the runtime perfor-
mance of sparse operations. Table 1 outlines the parameters
available for program configurations across different hard-
ware platforms explored in this work (code optimizations are
detailed in Appendix B). The execution strategy for sparse
tensor programs depends on both the hardware platform
and the corresponding programming system used. In this

3

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

work, for CPU execution (source platform), we use TACO
(Kjolstad et al., 2017), a domain-specific language and a
compiler designed for sparse tensor algebra. Considering
our target accelerators, SPADE has its own tile-based open
instruction set architecture (ISA) to leverage different vari-
ations of SpMM and SDDMM operations. For GPU, we
employ SparseTIR (Ye et al., 2023), a sparse tensor com-
pilation framework developed as an enhancement to TVM
Tensor IR (Chen et al., 2018a).

2.3. ML-based cost models
Learned Cost Models. Cost models act as fast cost-
effective proxies for executing workloads on real hardware.
Their primary goal is to accurately estimate the execution
time of workloads as they would perform on real hardware.
To achieve this, these cost models can be trained on data sam-
ples with various program configurations and then be used
to predict the program configuration that will deliver the op-
timal performance. Hence, generally, the training objective
of cost models is tied with minimizing |t∗CM − t∗|, where
t∗ is the runtime of the true optimal program configuration
and t∗CM is the runtime of the best program configuration
suggested by the cost model (accuracy objective)(detailed
Appendix A). Finding the best configuration suggested by
the cost model is usually done using auxiliary intelligent
search techniques such as simulated annealing, Monte Carlo
tree search, and reinforcement learning. There have been
numerous works on learned cost models to predict the run-
time of workloads targeting different hardware platforms
(Chen et al., 2018b; Adams et al., 2019). These techniques
range from simple XGBoost (Chen & Guestrin, 2016) based
cost models (Chen et al., 2018b;a) to sophisticated deep neu-
ral network based models (Baghdadi et al., 2021; Kaufman
et al., 2021; Zhai et al., 2023; Zheng et al., 2020).

WACO’s Cost Model. WACO (Figure 3(a)) (Won et al.,
2023) introduced a learned cost model specifically built for
sparse tensor programs, which utilizes sparsity patterns as
raw input data. WACO’s cost model employs submanifold
sparse convolution networks (SCNN) (Graham & Van der
Maaten, 2017) to extract features using an input featurizer.
It leverages a neural network-based program embedder to
capture the impact of code optimizations on sparse opera-
tions by encoding program configurations into embeddings.
These program embeddings are merged with the extracted
sparsity pattern features produced by the input featurizer.
The merged inputs are then processed through a multi-layer
perceptron predictor to estimate the execution cost.

Transfer Learning. Transfer learning is a technique that
leverages knowledge gained from a task in a source domain
to improve the performance of a related task in a target
domain, where data collection can often be challenging
(Bozinovski, 2020). There have been many successful ex-
amples of transfer learning techniques in a wide range of
fields (Weiss et al., 2016). Transfer learning can be catego-

rized into two main types: homogeneous transfer learning
(Zhuang et al., 2020), where the input and label spaces
are the same, and heterogeneous transfer learning (Day &
Khoshgoftaar, 2017), where either one or both can be dif-
ferent. In program optimization, transfer learning has been
successfully used to transfer cost models learned from one
hardware platform to another, primarily in homogeneous
settings, to minimize the target domain data requirements
(Zheng et al., 2021; Ryu & Sung, 2021; Sasaki et al., 2022).
In this work, we seek to minimize the target domain data
requirement during fine-tuning (Shen et al., 2021), by tar-
geting heterogeneous input feature spaces present between
general-purpose hardware and emerging sparse accelerators
(data-collection objective) (detailed in Appendix A).

3. Our Methodology: COGNATE

Autoencoder

Latent Encoder

Configuration Mapper

Sparse Convolution
Input Featurizer

(3)

Sparse Latent Config

Sparse
 Matrix

Program
Configurations
Homogenous

Heterogenous

Predictor
WACO

Program
Embedder

Sparse Convolution
Input Featurizer

Sparse Config

Predictor

Program
Configurations

(a) (b)

(4)

Runtime
Cost

(1)

(2)

COGNATE

Figure 3: A comparative overview of the enhanced cost
model design in COGNATE (b) alongside WACO’s cost
model design (a), highlighting key differences.

Here, we present COGNATE, a novel framework to design
data-frugal learned cost models to accelerate the execution
of sparse tensor programs on emerging hardware. The fol-
lowing subsections outline our contributions toward achiev-
ing the objectives set forth in Section 2.3; maximizing the
accuracy while minimizing the data collection overhead.

3.1. Enhancements to Enable Transfer Learning

We build upon WACO considering it as our base model by
refining its architecture to better facilitate transfer learning
across diverse hardware platforms. These enhancements
represent contributions that are orthogonal to WACO’s orig-
inal scope. Our improved cost model design (Figure 3(b))
is structured around four key components: configuration
mapper, input featurizer, latent encoder, and predictor. The
configuration mapper (Figure 3(b)(1)) and latent encoder
(Figure 3(b)(2)) replace the program embedder in WACO,
while the input featurizer (Figure 3(b)(3)) has been modi-
fied to more effectively capture low-level information from
sparsity patterns. Both configuration mapper and input fea-
turizer remain consistent across hardware platforms, serving
as the components that enable efficient knowledge transfer.

Configuration Mapper (FM). The configuration mapper
captures homogeneity across hardware platforms by pro-
cessing program configurations (cj) and their parameters
to identify similarities in code optimizations across various

4

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

platforms. We designed it to approximately map similar con-
figuration parameters across different hardware platforms
(described in Section 3.2 and Section E) to a unified feature
space. This is achieved by using explicit mapping func-
tions. The resulting parameters are subsequently passed
through a multi-layer perceptron (MLP) to produce the final
configuration vector pj . In this work, we approximate the
code optimizations loop strip-mining and loop reordering
as pj = FM(ϕ(·), π(·), cj). using the mapping functions
ϕ and π, as introduced in Section 3.2.

Input Featurizer (IFE). Matrices with identical dimen-
sions and non-zero elements can exhibit vastly different
sparsity patterns, making it difficult to extract meaning-
ful features based only on statistical properties. Building
on WACO’s input featurizer (Won et al., 2023), we mod-
ify the network architecture (Figure 3) to more effectively
capture low-level information from sparsity patterns. Our
network consists of 12 SCNN layers (compared to 14 layers
in WACO), arranged in 4 blocks, each containing 3 sparse
convolution layers. At the end of each block, we apply
max pooling to condense spatial information. We increase
the number of channels across blocks up to 256, whereas
WACO had them fixed at 32. These additional channels
enables our design to capture hierarchical features more
effectively throughout the network compared to WACO. For
a given sparse matrix M , our input featurizer generates a
sparse feature vector sM , expressed as sM = IFE(M).

Latent Encoder (LE). We handle the heterogeneity of
program configurations across hardware platforms using
per-target autoencoders that compress the heterogeneous
components of the configurations into compact latent rep-
resentations (described in Section 3.3). An autoencoder is
trained for each target–sparse primitive pair. During both
training and inference, the latent encoder LE processes a
configuration (cj), transforming it into a latent representa-
tion zj = LE(cj), that encapsulates the unique characteris-
tics of the program configuration.

Predictor (P). As the final component of the cost model,
the predictor (Figure 3(b)(4)) integrates the three feature
vectors from the preceding components into a single uni-
fied vector, encapsulating all key information about the
sparsity pattern and program configuration. This unified
vector (sM∥pj∥zj) is passed through a multi-layer percep-
tron (MLP) to eventually output a scalar value representing
the predicted execution cost, which can be expressed as
r̂M,cj = P(pj∥sM∥zj).

3.2. Exploiting Homogeneity: Approximate Mapping of
Comparable Code Optimizations

Different hardware platforms often use distinct program-
ming systems, leading to variations in how code optimiza-
tions are parameterized (Figure 1). Further, an optimization
available in one platform may not be directly available on

another, requiring the combination of multiple other code op-
timizations to replicate the same impact. For example, loop
strip-mining optimization on CPUs can be closely approxi-
mated by collectively applying barrier and tiling optimiza-
tions in SPADE. By mapping the effects of these optimiza-
tions using their program configuration parameters, we can
expose patterns that facilitate effective knowledge transfer
across hardware platforms. In this section, we present our
approaches for approximately mapping loop strip-mining,
barrier, and tiling optimizations between CPU and SPADE,
and loop reordering optimization between CPU and GPU.

Loop strip-mining is a code optimization that decomposes
large software loops into smaller segments to optimize com-
putations for memory utilization and cache performance.
In our context, it is applied to loops iterating over the in-
dices i, j, and k of matrices in SpMM and SDDMM sparse
operations (Section 2.1), where parameters I , J , and K
are used to split these loops into outer and inner segments,
resulting in a loop nest of six decomposed loops. The re-
sulting loop segments are {i1, i2, j1, j2, k1, k2} and their
execution order is denoted by ω. In SPADE, we approx-
imate this using barrier and tiling optimizations. Tiling
decomposes a matrix into smaller blocks to optimize data
reuse in the local memory, while barrier controls the ex-
ecution order of tiles. For example, enabling barrier opti-
mization pauses the tiles scheduled by a control processing
element until all previous tiles have been completed (Gero-
giannis et al., 2023). Similar to strip-mining parameters,
the tiling parameters for i, j, and k indices of matrices
are represented in SPADE as pcol, prow, dsplit, respectively,
while barrier is represented by b, where b = 1 if barrier
is enabled, and b = 0 otherwise. Intuitively, tiling divides
computations into smaller blocks, while barriers control syn-
chronization during execution. By enabling and disabling
barriers for various tiling configurations, we can dictate the
order of computation. This resembles loop strip-mining
and reordering in CPUs, where optimizing loop execution
enhances performance and cache utilization. We can approx-
imately map tiling and barrier parameters to the correspond-
ing strip-mining parameters using the mapping function
ϕ : {pcol, prow, ssplit, b} → {I, J,K, ω} as follows:

ϕ(pcol, prow, ssplit, b) = (I, J,K, ω)

I ≈ pcol, J ≈ prow, K ≈ ssplit;

ω =

{
[k2, j2, i2, i1, j1, k1] if b = 1

[k2, i2, j2, i1, j1, k1] if b = 0

Loop reordering is a code optimization that adjusts the exe-
cution order (ω) of loops to improve cache efficiency and
facilitate parallel processing. It is often applied after loop
strip-mining. Here, we examine how it can be approximated
for both CPU (a1) and GPU (a3). In CPU, loop strip-mining
results in six decomposed loops {i1, i2, j1, j2, k1, k2}.
Similarly, in GPU, loop strip-mining produces six loop seg-
ments, but the loop structure differs {i1, i2, j, k1, k2, k3}

5

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

SpMM (SPADE) SDDMM (SPADE) SpMM (GPU) SDDMM (GPU)
Sparse Tensor Operations

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Ge
om

ea
n

Sp
ee

du
p

1.04 1.05

0.52
0.64

1.09 1.07

0.55
0.67

1.29
1.19

0.72

0.89

0.71
0.59

0.07 0.09

1.40
1.27

1.03 1.07

1.47
1.39

1.17 1.15

1.55
1.44

1.25 1.22

WACO+FA WACO+FM No Transfer Zero-Shot (CPU) COGNATE (Top-1) COGNATE (Top-5) Optimal

Figure 4: Geomean speedups of COGNATE and other techniques, normalized to the baseline.

due to architectural differences. We approximate them us-
ing Ω(·) function that determines the index of a loop seg-
ment and a mapping function πai : {i1, i2, . . . , k2, ωai} →
{i1, i2, . . . , k3, ω′

ai
} as follows:

πa1(i1, i2, j1, j2, k1, k2, ωa1) =
(
i1, i2, j1, j2, k1, k2, k3, ω

′
a1

)
;

k3 = 1,Ωa1(k3) = Ωa1(k2) + 1

πa3(i1, i2, j, k1, k2, k3, ωa3) =
(
i1, i2, j, j

′
, k1, k2, k3, ω

′
a3

)
;

j
′
= 1,Ωa3(j

′
) = Ωa3(j) + 1

3.3. Mitigating Heterogeneity: Latent Encoding of
Hardware-specific Code Optimizations

While we can use the strategies described in Section 3.2
to approximate code optimizations with homogeneity, such
techniques are not applicable to hardware-specific optimiza-
tions. An existing approach for representing hardware-
specific optimizations across hardware platforms is to en-
code them using feature augmentation. However, this results
in excessively sparse feature vectors, as code optimizations
that are not applicable to a selected hardware platform are
zeroed out. Training models on such sparse feature vectors
often leads to sub-optimal performance (Figure 4).

To address this limitation, we propose indexing the parame-
ters of the heterogeneous component of the program config-
urations for each platform ai using low-dimensional latent
representations. Specifically, we train an autoencoder AEai

to learn a latent representation zj for each configuration
cj ∈ Cai

. This is accomplished by determining the value
ranges for all parameters of the heterogeneous component in
the program configurations, followed by training an autoen-
coder to learn an unsupervised embedding of this parame-
terization. Once trained, we use the encoder LEai in AEai ,
which takes each configuration (cj) as input and transforms
it into its corresponding latent representation zj , where zj
is a fixed-size vector. By compressing configurations from
different hardware platforms—each with varying param-
eters and ranges—into fixed-size vectors, we standardize
the input for hardware-specific optimizations into the cost
model. This compression significantly simplifies the model
compared to feature augmentation, as the cost model now
processes fewer input features, reducing its computational

complexity. With the hardware specific optimizations now
represented in a unified latent feature space, it becomes
possible to identify and leverage similarities in their impact
on performance during fine-tuning. Finally, this approach
facilitates the seamless integration of emerging hardware
platforms into COGNATE, as we can extend COGNATE to
support new target hardware platforms by training new au-
toencoders and relying on few-shot fine-tuning, eliminating
the need to retrain the source model from scratch (detailed
in Appendix C). As long as the overall structure of the
sparse tensor program remains consistent, COGNATE can
quickly adapt by using a small number of new performance
samples. In contrast, traditional cost model development
approaches would require re-evaluating a large number of
configurations (Won et al., 2023).

4. Evaluation
4.1. Dataset, Training and Evaluation Setup

Dataset. Our experiments were conducted using real-world
sparse matrices sourced from the SuiteSparse Matrix Collec-
tion (Davis & Hu, 2011). This dataset has been widely used
in previous work (Pal et al., 2018; Hong et al., 2019; Jiang
et al., 2020; Gerogiannis et al., 2023; Won et al., 2023) and
covers a broad spectrum of domains, ensuring a realistic and
comprehensive evaluation of COGNATE’s performance. To
collect the training dataset, we performed the sparse op-
erations SpMM and SDDMM on three distinct hardware
platforms: an Intel Xeon Gold 6348 CPU with 1TB of
RAM, an NVIDIA A100 GPU paired with an Intel Xeon
Platinum 8358, and SPADE, a simulated sparse accelera-
tor with 32 processing elements operating at 0.8GHz. To
ensure practical feasibility across hardware platforms, the
program configuration search space was constrained to 256
configurations for SPADE and approximately 300 configura-
tions for SparseTIR (GPU). We gathered data samples using
1,500 matrices for each hardware platform, with up to 1,000
matrices used for model training under various scenarios
and the remainder was set aside for validation. For each
matrix, we randomly sampled 100 program configurations
per hardware platform to have diverse and representative
training datasets across all experiments.

6

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

Program Configuration Search Space for SPADE. The
program configuration search space considered for the
SPADE accelerator was derived from a combination of
key tunable parameters including tiling, synchronization
barriers, cache bypassing, and matrix reordering. As sum-
marized in Table 1, the parameters for barrier insertion,
cache bypassing, and matrix reordering are binary (i.e., ei-
ther enabled or disabled). Tiling is controlled by three
numerical parameters: the number of row panels, column
panels, and the split factor. These values were chosen to
resemble those explored in the original SPADE work (Gero-
giannis et al., 2023), as those values were expected to
show more significant performance deviations for differ-
ent sparse matrices. Specifically, we used 4 values for
row panels {4, 32, 256, 2048}, 4 values for column pan-
els {1024, 16384, 65536, NUM MATRIX COLS} (where
NUM MATRIX COLS depends on the input matrix) and 2
values for the split factor {32, 256}.

Although COGNATE is designed to perform under limited
data availability, we conducted extensive data collection to
rigorously evaluate and justify its effectiveness. This in-
cluded a range of experiments and ablation studies, some of
which required performance data samples from up to 1,000
matrices for training. Altogether, this effort demanded ap-
proximately 4 million CPU hours. Despite the constrained
nature of the search space (256 program configurations),
it took nearly three months to complete the dataset cura-
tion, even though the simulations were parallelized across
multiple machines. Hence, exhaustively evaluating a larger,
unconstrained program configuration space would be com-
putationally infeasible. This underscores the need for data-
efficient methods like COGNATE, which are designed to
operate effectively even under limited data availability.

Baselines and Implementation. We executed SpMM and
SDDMM on CPU, GPU, and SPADE using the respective
programming systems introduced in Section 2.2. We used
the default optimizations of these programming systems
as our baselines. We implemented COGNATE in PyTorch,
utilizing MinkowskiEngine (Choy et al., 2019) to handle
sparse convolution. Separate models were developed for
SpMM and SDDMM to conduct precise performance pre-
dictions. We focused on these two sparse operations because
they are the only operations currently supported natively by
both the SPADE accelerator (Gerogiannis et al., 2023) and
the SparseTIR framework (Ye et al., 2023).

Cost Model Evaluation. We evaluated COGNATE’s per-
formance on 715 real-world matrices from the SuiteSparse
Matrix Collection, ensuring that none of the evaluation data
samples overlapped with the training set. For each matrix,
we predicted the runtime cost across all program configura-
tions and selected the top-1 and top-5. Then we executed the
sparse operations with the selected program configurations
on the target platform and identified the one with the short-

est runtime. We then compared our results to the normalized
runtime of the baseline executions, WacoNet with feature
augmentation, and WacoNet with feature mapping by cal-
culating the geometric mean (geomean) speedups across
matrices to quantify COGNATE’s overall effectiveness.

Pre-training and Fine-tuning Procedure. The matrices
for pre-training were randomly selected from the training
set while ensuring a balanced representation of their dimen-
sions and sparsity. To achieve this, we first grouped the
matrices into five bins based on the number of rows: ≤8192,
≤32,768, ≤65,536, ≤131,072, and >131,072. From each
group, we randomly sampled matrices, ensuring the selected
subset collectively spanned a diverse range of sparsity lev-
els. We empirically demonstrate in Section 4.4 (Figure 11)
that training the source model with 100 matrices strikes a
good balance. We use this setting for our headline result
(Figure 4). Once the source model was pre-trained, we
performed few-shot fine-tuning on accelerators using data
samples from only 5 matrices. This choice was guided by
empirical observations, aiming to strike a good balance be-
tween transfer learning effectiveness and the cost of data
collection. As shown in Section 4.4 (Figure 12), this set-
ting offers the best trade-off between our objectives for
accuracy and data collection (detailed in Appendix A). Fur-
ther, the same set of matrices were used for evaluating the
non-transfer learning baselines, enabling consistent and fair
comparisons across all experimental settings.

4.2. Transferability to SPADE

0 100 200 300 400 500 600 700
Matrix #

1
2
3
4
5

Ge
om

ea
n

Sp
ee

du
p

Speedup
Optimal: 1.55

COGNATE (Top-5): 1.40
Baseline: 1.0

Figure 5: COGNATE per-matrix speedups (SpMM).

Figure 4 illustrates the geomean speedups achieved using
multiple techniques: zero-shot inference from the source
model (zero-shot), a model trained exclusively on the target
hardware using the fine-tuning dataset (no transfer), Wa-
coNet with feature augmentation (WACO+FA), WacoNet
with feature mapping (WACO+FM), and COGNATE’s per-
formance for both the top-1 and top-5 (k-best) predicted
program configurations. Our results show that COGNATE
consistently outperformed other techniques across both
sparse operations and hardware platforms. Specifically for
SPADE, COGNATE (Top-1) achieved an average speedup
of 1.40× for SpMM, reaching 90% of the optimal speedup
of 1.55×. When expanding COGNATE (Top-5), it deliv-
ered an average speedup of 1.47×, achieving 95% of the

7

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

optimal speedup. Note that the optimal speedup was deter-
mined by exhaustively evaluating all program configurations
within the defined constrained search space for each matrix
in the test set, and selecting the fastest configuration per
matrix to compute the geometric mean. Similarly, for SD-
DMM in SPADE, COGNATE (Top-1) achieved an average
speedup of 1.27× and COGNATE (Top-5) achieved an aver-
age speedup of 1.39×. This emphasizes COGNATE’s ability
to consistently find near-optimal program configurations
with minimal fine-tuning across multiple sparse operations.
The speedup gained for zero-shot inference from the source
model was significantly lower than the baseline. In contrast,
fine-tuning on a few data samples from SPADE led to signifi-
cant performance gains showing COGNATE’s effectiveness
in knowledge transfer.

0 5 10 15 20 25 30
Epochs

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

/L
os

s

Train Loss(PRL)
Kendall's TAU

Validation Loss(PRL)
Ordered Pair Accracy(OPA)

Figure 6: Loss and accuracy during training.

4.3. Transferability to GPU

COGNATE is generalizable and is not only applicable to
one target hardware platform. To showcase COGNATE’s
capability, we extended our evaluation to a GPU acceler-
ator (NVIDIA A100) (Figure 4). The speedup trends on
GPU aligned with those observed on SPADE, reinforcing
the effectiveness of COGNATE. COGNATE (Top-1) de-
livered an average speedup of 1.03× and COGNATE (Top-
5) yielded an average speedup of 1.17× for SpMM, with
the optimal achievable speedup being 1.25×. In compari-
son, cuSPARSE SpMM (Naumov et al., 2010) achieved a
lower average speedup of 1.01×. For SDDMM, COGNATE
(Top-1) resulted in an average speedup of 1.07×, while
COGNATE (Top-1) yielded a 1.15× speedup, with the op-
timal being 1.22×. Zero-shot inference on the GPU was
significantly worse compared to Zero-shot for SPADE, with
speedups falling well below the baseline. This discrepancy
is likely due to the inherent architectural differences be-
tween the CPU and GPU architectures. Further, to assess
COGNATE’s scalability, we conducted preliminary exper-
iments on an end-to-end GNN workload on GPU. Using
the ‘transient’ sparse matrix from our test set (178,866
rows/columns (nodes), 961,368 non-zeros) and GraphSAGE
model configured with three hidden layers and 256 hidden
features, COGNATE achieved a 1.30× speedup for inference
and a 1.28× speedup for training over the default SparseTIR
(Ye et al., 2023) implementation. These results demon-
strate the potential of COGNATE to scale effectively on
real-world workloads and deliver consistent performance.

Comparison with Other Transfer Learning Techniques.
For comparisons, we modified WacoNet to support feature
augmentation and feature mapping, as it is not inherently
optimized for heterogeneous transfer. Despite these modi-
fications, COGNATE consistently outperformed both. For
SpMM on SPADE, WACO+FA had an average speedup
of 1.04×, while WACO+FM resulted in a slightly higher
average speedup of 1.09×. In comparison, COGNATE deliv-
ered an average speedup of 1.40×, outperforming its closest
alternative (WACO+FM) by 28.44%. The sub-optimal per-
formance of WACO+FA and WACO+FM can be attributed
to the increased sparsity in the feature space due to fea-
ture augmentation and their limited capacity to effectively
mitigate the heterogeneity.

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.01

1.16

1.26

1.40

1.55

w/o LE
w/o FM
w/o IFE

COGNATE
Optimal

Figure 7: Ablation study of
the model components.

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.321.341.36
1.40

1.55

LSTM
GRU
TF

COGNATE
Optimal

Figure 8: Design choices of
the predictor.

4.4. Additional Experiments for SpMM on SPADE
Speedup Performance. Figure 5 shows the speedups
achieved by COGNATE (Top-1) across all evaluated matri-
ces. Matrices where the baseline outperformed COGNATE
are indicated below the y = 1 dotted line. While the baseline
outperformed COGNATE on a few matrices, the overall
results demonstrate that COGNATE delivered substantial
speedups (as high as 5.46x) for the majority of the dataset.

Cost Model Accuracy. Figure 6 shows the accuracy of
COGNATE’s cost model across training epochs using Pair-
wise Ranking Loss (PRL), Ordered Pair Accuracy (OPA),
and Kendall’s Tau (K-Tau). The steady decline in PRL for
both training and validation loss indicates that the model
effectively learns to rank program configurations without
over-fitting. OPA and K-Tau steadily improved to 0.80 and
0.61, indicating effective training.

Component-Level Contributions. The effectiveness of our
cost model relies on the inclusion of all components, each
contributing uniquely to the overall performance. As illus-
trated in Figure 7, the exclusion of individual components
leads to a noticeable decline in speedups. For example, ex-
cluding the input featurizer (IFE) causes a decline from
1.40x to 1.26x. Similarly, omitting the configuration map-
per (FM) leads to a further decline to 1.16x, and excluding
latent encoder (LE) lowers speedup to 1.01x. This em-
phasizes that each component contributes uniquely to the
model’s high performance, and all need to act synergistically
to maximize the benefits of knowledge transfer.

8

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.01 1.04

1.31
1.40

1.55

VAE
FA
PCA

COGNATE
Optimal

Figure 9: Selection of auto-
encoders for COGNATE.

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.29
1.38

1.43 1.40

1.55

NT 5
NT 100
NT 1000

COGNATE
Optimal

Figure 10: Data overhead
w/o transfer learning.

Selection of MLP Predictor. As shown in Figure 3, the
MLP predictor from WACO’s base cost model was retained
in our enhanced design. Figure 8 provides a comparative
analysis of alternative predictors, including LSTM, GRU,
and Transformer (TF). The results demonstrate that our
proposed cost model design outperforms the alternatives,
with the TF predictor achieving the next best performance
with 1.36× speedup. These findings highlight that an MLP
predictor is sufficient to deliver robust performance with
limited data. In contrast, the suboptimal performance of the
TF predictor can be attributed to the limited dataset, as the
high simulation costs associated with emerging hardware
make it challenging to collect larger datasets for fine-tuning.

Selection of Auto-Encoders. Figure 9 shows our inves-
tigation into various methods for handling the heteroge-
neous components of program configurations. We evaluated
choices ranging from conventional feature augmentation
(FA) to principal component analysis (PCA), auto-encoders,
and variational auto-encoders (VAE). Our findings reveal
that auto-encoders were the most effective for capturing het-
erogeneous optimizations in a latent space. This was evident
from the lower validation loss observed during the training
of the auto-encoders to learn the latent representations.

Data Collection Overhead w/o Transfer Learning. Figure
10 shows that without transfer learning, the overhead of
data collection becomes significant on emerging hardware
due to the high costs of running simulations. For example,
models trained exclusively on SPADE would require 20×–
200× more target data samples (collected using 100–1000
matrices) to match or surpass the speedups achieved through
COGNATE via transfer learning.

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.07

1.21

1.401.36

1.19

1.55

CPU 5
CPU 20
COGNATE

CPU 500
CPU 1000
Optimal

Figure 11: Impact of nega-
tive transfer for fine-tuning.

1.0

1.2

1.4

1.6

Ge
om

ea
n

Sp
ee

du
p

1.00

1.401.411.421.43

1.55

Baseline
COGNATE
TL 100

TL 1000
NT 1000
Optimal

Figure 12: Impact of number
of samples for fine-tuning.

Impact of Negative Transfer. Figure 11 shows that using a
large dataset to train the source model (e.g., data samples

from 1000 matrices) does not necessarily lead to better out-
comes. As the size of the training dataset increases, the
model becomes overly specialized to the source platform,
diminishing its adaptability during fine-tuning. To inves-
tigate this effect, we trained source models on datasets of
varying sizes (5, 20, 100, 500, and 1,000 matrices) and eval-
uated their transferability to our target platform (SPADE)
using few-shot fine-tuning on just 5 matrices (Figure 11).
Our results show that training on the CPU (source) with
data samples from 100 matrices and fine-tuning on SPADE
(target) with data samples from 5 matrices produces the best
results. In contrast, training the source model with data
from 1,000 matrices yields sub-optimal performance due to
overfitting to source-specific characteristics. This highlights
the importance of carefully selecting the size of the source
training dataset to avoid over-specialization and minimize
the impact of negative transfer.

Number of Samples in Fine-Tuning. In Figure 12, we
show COGNATE’s performance as fine-tuning data samples
increase. Despite fine-tuning on data from 1,000 matrices,
the maximum speedup saturates at 1.42×. We can achieve
a comparable speedup of 1.40× with data from 5 matrices,
which shows the diminishing returns associated with larger
datasets. Further, the non-transfer learning setup achieved a
marginally higher speedup of 1.43× when using data from
1,000 matrices. However, considering the significant data
collection overhead, these marginal improvements are not
practically justifiable. To further assess sensitivity to the
size of the fine-tuning dataset, we conducted additional ex-
periments using 3 and 7 matrices. The resulting speedups
were 1.30× and 1.41×, respectively, compared to 1.40× with
5 matrices. While using only 3 matrices led to a noticeable
drop in performance, increasing to 7 did not yield a sig-
nificant gain but required substantially more data samples,
incurring several days of additional data collection time.
These results suggest that using 5 matrices strikes a practi-
cal balance between data collection cost and performance,
while demonstrating that COGNATE is relatively robust to
small variations in dataset size.

5. Conclusion
In this paper, we introduced COGNATE, a novel frame-
work to develop data-frugal learned cost models to optimize
sparse tensor programs for emerging hardware platforms.
COGNATE leverages a unique technique that capitalizes on
the homogeneity of input features across different platforms
while effectively mitigating heterogeneity. This enables
COGNATE to train cost models using low-cost data sam-
ples from widely accessible general-purpose hardware (such
as CPUs) and then fine-tune them for emerging hardware
platforms with few-shot learning. Our results demonstrate
that COGNATE is able to achieve near-optimal accuracy
while maintaining significant sample efficiency.

9

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

Acknowledgements
The work is partially supported by the National Science
Foundation Graduate Research Fellowship, ACE, one of the
seven centers in JUMP 2.0, a Semiconductor Research Cor-
poration (SRC) program sponsored by DARPA, by NSF un-
der the grants CCF-2338739 and CCF-2316233, by DARPA
under the grant D24AP00295-00 and by generous gifts from
Qualcomm. Any opinion, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the
NSF or DARPA.

Impact Statement
The goal of this work is to accelerate the execution of sparse
tensor programs in the domain of emerging sparse accel-
erators through the application of machine learning-based
techniques. Experiments demonstrate that our approach
exhibits potential in benefiting early-stage accelerator devel-
opment by enabling data-efficient design space exploration.
There may be potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

References
Aananthakrishnan, S., Abedin, S., Cavé, V., Checconi, F.,

Du Bois, K., Eyerman, S., Fryman, J. B., Heirman, W.,
Howard, J., Hur, I., et al. The intel programmable and
integrated unified memory architecture graph analytics
processor. IEEE Micro, 43(5):78–87, 2023.

Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-
M., Gharbi, M., Steiner, B., Johnson, S., Fatahalian, K.,
Durand, F., et al. Learning to optimize halide with tree
search and random programs. ACM Transactions on
Graphics (TOG), 38(4):1–12, 2019.

Baghdadi, R., Merouani, M., Leghettas, M.-H., Abdous, K.,
Arbaoui, T., Benatchba, K., et al. A deep learning based
cost model for automatic code optimization. Proceedings
of Machine Learning and Systems, 3:181–193, 2021.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bozinovski, S. Reminder of the first paper on transfer learn-
ing in neural networks, 1976. Informatica, 44(3), 2020.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An

automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018a.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze,
L., Guestrin, C., and Krishnamurthy, A. Learning to opti-
mize tensor programs. Advances in Neural Information
Processing Systems, 31, 2018b.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choy, C., Gwak, J., and Savarese, S. 4d spatio-temporal
convnets: Minkowski convolutional neural networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3075–3084, 2019.

Dao, T., Chen, B., Liang, K., Yang, J., Song, Z., Rudra,
A., and Re, C. Pixelated butterfly: Simple and efficient
sparse training for neural network models. arXiv preprint
arXiv:2112.00029, 2021.

Daumé III, H. Frustratingly easy domain adaptation. arXiv
preprint arXiv:0907.1815, 2009.

Davis, T. A. and Hu, Y. The university of florida sparse
matrix collection. ACM Transactions on Mathematical
Software (TOMS), 38(1):1–25, 2011.

Day, O. and Khoshgoftaar, T. M. A survey on heterogeneous
transfer learning. Journal of Big Data, 4:1–42, 2017.

Duan, L., Xu, D., and Tsang, I. Learning with augmented
features for heterogeneous domain adaptation. arXiv
preprint arXiv:1206.4660, 2012.

Gerogiannis, G., Yesil, S., Lenadora, D., Cao, D., Mendis,
C., and Torrellas, J. Spade: A flexible and scalable ac-
celerator for spmm and sddmm. In Proceedings of the
50th Annual International Symposium on Computer Ar-
chitecture, ISCA ’23, New York, NY, USA, 2023. Associ-
ation for Computing Machinery. ISBN 9798400700958.
doi: 10.1145/3579371.3589054. URL https://doi.
org/10.1145/3579371.3589054.

Gerogiannis, G., Aananthakrishnan, S., Torrellas, J., and
Hur, I. Hottiles: Accelerating spmm with heterogeneous
accelerator architectures. In 2024 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 1012–1028. IEEE, 2024.

Graham, B. and Van der Maaten, L. Submanifold sparse con-
volutional networks. arXiv preprint arXiv:1706.01307,
2017.

10

https://doi.org/10.1145/3579371.3589054
https://doi.org/10.1145/3579371.3589054

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

Hegde, K., Asghari-Moghaddam, H., Pellauer, M., Crago,
N., Jaleel, A., Solomonik, E., Emer, J., and Fletcher, C. W.
Extensor: An accelerator for sparse tensor algebra. In
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 319–333, 2019.

Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., and
Sadayappan, P. Adaptive sparse tiling for sparse matrix
multiplication. In Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, pp.
300–314, 2019.

Jiang, P., Hong, C., and Agrawal, G. A novel data trans-
formation and execution strategy for accelerating sparse
matrix multiplication on gpus. In Proceedings of the 25th
ACM SIGPLAN symposium on principles and practice of
parallel programming, pp. 376–388, 2020.

Jin, H., Yue, Z., Zhao, Z., Du, Y., Deng, C., Srivastava, N.,
and Zhang, Z. Vesper: A versatile sparse linear algebra
accelerator with configurable compute patterns. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2024.

Kaufman, S., Phothilimthana, P., Zhou, Y., Mendis, C., Roy,
S., Sabne, A., and Burrows, M. A learned performance
model for tensor processing units. Proceedings of Ma-
chine Learning and Systems, 3:387–400, 2021.

Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Ama-
rasinghe, S. The tensor algebra compiler. Proc.
ACM Program. Lang., 1(OOPSLA), oct 2017. doi:
10.1145/3133901. URL https://doi.org/10.
1145/3133901.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, Z., Li, J., Chen, T., Niu, D., Zheng, H., Xie, Y., and Gao,
M. Spada: Accelerating sparse matrix multiplication
with adaptive dataflow. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume
2, pp. 747–761, 2023.

Liang, H., Fu, W., and Yi, F. A survey of recent advances in
transfer learning. In 2019 IEEE 19th International Con-
ference on Communication Technology (ICCT), pp. 1516–
1523, 2019. doi: 10.1109/ICCT46805.2019.8947072.

Muñoz-Martı́nez, F., Garg, R., Pellauer, M., Abellán, J. L.,
Acacio, M. E., and Krishna, T. Flexagon: A multi-
dataflow sparse-sparse matrix multiplication accelerator
for efficient dnn processing. In Proceedings of the 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Vol-
ume 3, pp. 252–265, 2023.

Naumov, M., Chien, L., Vandermersch, P., and Kapasi, U.
Cusparse library. In GPU Technology Conference, vol-
ume 12, 2010.

Neyshabur, B., Sedghi, H., and Zhang, C. What is being
transferred in transfer learning? Advances in neural
information processing systems, 33:512–523, 2020.

Pal, S., Beaumont, J., Park, D.-H., Amarnath, A., Feng,
S., Chakrabarti, C., Kim, H.-S., Blaauw, D., Mudge, T.,
and Dreslinski, R. Outerspace: An outer product based
sparse matrix multiplication accelerator. In 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pp. 724–736. IEEE, 2018.

Ryu, J. and Sung, H. Metatune: Meta-learning based
cost model for fast and efficient auto-tuning frameworks.
arXiv preprint arXiv:2102.04199, 2021.

Sasaki, Y., Takahashi, K., Shimomura, Y., and Takizawa, H.
A cost model for compilers based on transfer learning. In
2022 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 942–951.
IEEE, 2022.

Shen, Z., Liu, Z., Qin, J., Savvides, M., and Cheng, K.-T.
Partial is better than all: Revisiting fine-tuning strategy
for few-shot learning. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 35, pp. 9594–9602,
2021.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of
transfer learning. Journal of Big data, 3:1–40, 2016.

Won, J., Mendis, C., Emer, J. S., and Amarasinghe, S.
Waco: Learning workload-aware co-optimization of
the format and schedule of a sparse tensor program.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS
2023, pp. 920–934, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450399166.
doi: 10.1145/3575693.3575742. URL https://doi.
org/10.1145/3575693.3575742.

Yang, H., Liu, Y., Luan, Z., Gan, L., Yang, G., and Qian,
D. Input-aware sparse tensor storage format selection
for optimizing mttkrp. Computer, 56(08):4–7, aug 2023.
ISSN 1558-0814. doi: 10.1109/MC.2023.3279447.

11

https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3575693.3575742

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

Ye, Y. and Ji, S. Sparse graph attention networks. IEEE
Transactions on Knowledge and Data Engineering, 35
(1):905–916, 2021.

Ye, Z., Lai, R., Shao, J., Chen, T., and Ceze, L. Sparse-
tir: Composable abstractions for sparse compilation
in deep learning. ASPLOS 2023, pp. 660–678, New
York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450399180. doi: 10.1145/
3582016.3582047. URL https://doi.org/10.
1145/3582016.3582047.

Zhai, Y., Zhang, Y., Liu, S., Chu, X., Peng, J., Ji, J., and
Zhang, Y. Tlp: A deep learning-based cost model for
tensor program tuning. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume
2, pp. 833–845, 2023.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A.,
Wang, Y., Yang, J., Zhuo, D., Sen, K., et al. Ansor: Gen-
erating {High-Performance} tensor programs for deep
learning. In 14th USENIX symposium on operating sys-
tems design and implementation (OSDI 20), pp. 863–879,
2020.

Zheng, L., Liu, R., Shao, J., Chen, T., Gonzalez, J. E., Sto-
ica, I., and Ali, A. H. Tenset: A large-scale program
performance dataset for learned tensor compilers. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?
id=aIfp8kLuvc9.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong,
H., and He, Q. A comprehensive survey on transfer
learning. Proceedings of the IEEE, 109(1):43–76, 2020.

12

https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1145/3582016.3582047
https://openreview.net/forum?id=aIfp8kLuvc9
https://openreview.net/forum?id=aIfp8kLuvc9

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

A. Problem Formulation
In this work, our aim is to build accurate learned cost models for emerging hardware platforms to enable faster identification
of optimal program configurations. A key challenge is the need to maximize the accuracy of the cost model (accuracy
objective) while using as few expensive (i.e. collected through simulation) data samples as possible (data collection
objective). We first formalize the program optimization objective and then tie it with the cost model objectives.

A.1. Program Optimization Selection

The goal of program optimization in sparse tensor programs is to select the optimal program configuration for a given
hardware platform and input sparsity pattern from the total configuration space. Let configuration space Ca be the set
{c1, c2, . . . , cma} of all valid program configurations for a given hardware platform a (ma ∈ Z+). For example, for CPU,
a valid configuration from CCPU is a tuple of program configuration parameters for loop strip-mining, loop reordering,
and format reordering (Table 1). The optimal program configuration minimizes the execution time of a sparse tensor
program. For an input sparse matrix (sparsity pattern) M , the optimal program configuration on platform a can be given as,
c∗ = argminci∈Ca

Ta(M, ci), where Ta is the execution time function for platform a (ground truth runtime). The execution
time for the optimal program configuration is given by t∗ = Ta(Ml, c

∗).

A.2. Cost Model Performance and Data Efficiency Objectives

We approximate the ground truth runtime Ta using learned cost models. Usually, these cost models are trained with one
objective: to achieve high accuracy. However, due to the high cost of simulation in emerging hardware, we also want to
minimize the amount of data samples required from these platforms for model training. We formalize these two objectives
as follows.

Data Collection Objective (DCE). Let Da = {(Ml, ci), ti | i ∈ ma , l ∈ Z+} be the dataset collected from hardware
platform a, and let βa represent the average cost of collecting a single data sample from the platform. Our objective is to
minDa βa × |Da|.

Accuracy Objective. Let CMa (which approximates Ta) be the learned cost model trained on dataset Da. If the
best program configuration returned by the cost model (c∗CMa

) has an actual execution time t∗CMa
, our objective is

to min |t∗CMa
− t∗|, where t∗ is the execution time for the optimal configuration. For a set of input sparse matrices

{M1,M2, . . . ,Mk}, our objective can be extended to minimizing the Absolute Percentage Error (APE) across all matrices:

APE =
1

k

k∑
l=1

|t∗CMa,Ml
− t∗Ml

|
t∗Ml

× 100

where t∗CMa,Ml
denotes the execution times for the predicted best program configuration for the input sparse matrix Ml and

t∗Ml
denote the optimal program configurations for the same matrix.

A.3. Evaluations for Cost Model Objectives

To evaluate the cost model objectives, we conducted the following experiments for SpMM on SPADE. For simplicity in the
calculations, we set βCPU = 1 and βSPADE = 1000. However, a CPU execution typically takes milliseconds, while a SPADE
execution can extend up to two weeks. We explored 11 distinct models across four different categories, differentiated
by the number of data samples they were trained on, while the cost model architecture remained the same. Category I
consists of models (NT d) trained exclusively on data samples from d matrices executed on SPADE. Category II includes
transfer-learned models (TL d), which were pre-trained with data samples from 100 matrices on CPU (10,000 data samples)
and then fine-tuned on SPADE with data samples from d matrices. Category III consists of models (CPU d) pre-trained with
varying numbers of data samples from d matrices on CPU and then fine-tuned on data samples from 5 matrices on SPADE.
Finally, we did zero-shot inference (Zero-Shot) from a model pre-trained on CPU with data samples from 100 matrices
without additional fine-tuning on SPADE.

Models trained exclusively on SPADE data samples (NT d) generally exhibit increasing speedup and decreasing APE as the
number of SPADE data samples increases. For example, NT 1000, trained on 100,000 SPADE data samples, achieves the
highest speedup of 1.43 and an APE of 7.06. However, the data collection overhead for these models rises significantly with
the number of SPADE samples, making the use of them impractical due to the long simulation times. In contrast, the TL

13

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

models, which are pre-trained on CPU data and fine-tuned on SPADE samples, demonstrate an excellent balance between
speedup, APE, and DCE. TL 5 model, for instance, delivers a competitive speedup of 1.40 and a low APE of 7.28, while
maintaining an excellent DCE of 0.51.

Model Data Samples COGNATE (Top-1) Speedup APE DCE/106
CPU SPADE

NT 5 - 500 1.29 15.02 0.50
NT 100 - 10000 1.38 9.42 10.00
NT 1000 - 100000 1.43 7.06 100.00
TL 5 (CPU 100) 10000 500 1.40 9.58 0.51
TL 100 10000 10000 1.41 8.74 10.01
TL 1000 10000 100000 1.42 7.28 100.01
CPU 5 500 500 1.07 27.80 0.50
CPU 20 2000 500 1.21 19.35 0.50
CPU 500 50000 500 1.36 16.34 0.55
CPU 1000 100000 500 1.19 36.00 0.60
Zero-Shot (CPU) 10000 - 0.71 46.22 0.01

Table 2: Comparison of cost model performance with varying data samples from CPU and SPADE.

A.4. Learning Objective

Our objective is to train a cost model that effectively learns to identify a program configuration that minimizes the runtime
of a sparse operation for a given sparsity pattern. To achieve this, we begin by training our cost model to learn the relative
rankings of program configurations during execution, enabling it to accurately identify optimal configurations based on their
performance. This objective improves robustness to noise and runtime scale variance, which are common in early-stage
accelerator performance data, as the model focuses on preserving relative orderings. This also enables us to efficiently
integrate our cost model with a search technique to efficiently select the top-k (k-best) program configurations from the
configuration space. Furthermore, prior work (Kaufman et al., 2021) has shown that training with ranking loss significantly
improves a model’s ability to identify optimal configurations. We use the pairwise ranking loss as our learning objective
(implemented using margin ranking loss) to rank program configurations based on their true performance differences.
For a given input matrix M , the pairwise ranking loss (L) across all program configuration pairs can be defined as
L =

∑
(c1,c2)

max(0, 1− (r̂M,c1 − r̂M,c2)) · δtrue; δtrue = sign(tM,c1 − tM,c2) where r̂M,c1 and r̂M,c2 are the predicted
scores for configurations c1 and c2, respectively; tM,c1 and tM,c2 represent their actual runtimes; and δtrue signifies the
true performance difference where sign(x) returns 1 if x > 0, -1 if x < 0, and 0 if x = 0. This ensures that the model
is penalized when the predicted ranking does not align with the true ranking. By minimizing this loss (L), COGNATE
improves its ability to accurately rank and identify the top-k program configurations. This also contributes to achieving our
accuracy objective (Section A.2).

B. Code Optimizations Across Hardware Platforms
• Loop strip-mining: Breaks down large software loops into smaller segments to optimize cache utilization.

• Loop reordering: Adjusts the execution order of loops to improve cache efficiency. Typically, it is applied after loop
strip-mining.

• Format reordering: Reorganizes the data structure layout of sparsity patterns in memory to optimize memory access
patterns

• Parallelization: Distributes tensor computations across multiple threads or processors to run tasks simultaneously.

• Loop binding: Assigns specific loop iterations to threads for parallel processing.

• Loop unrolling: Executes multiple iterations of a loop in a single iteration, reducing loop control overhead and boosting
execution speed.

14

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

• Tiling: Decomposes a matrix into smaller blocks to optimize data reuse in the local memory and improve cache
efficiency.

• Barrier: Applying a barrier would ensure all threads finish processing their current tile (synchronized) before progressing
to the next stage.

• Cache bypassing: Capability of bypassing caches to to reduce cache pollution.

• Matrix reordering: Enhances data locality by reordering the input matrix.

C. Generalizability
Our approximated code mappings are designed to enable well-established code optimizations that remain effective across
emerging hardware platforms. For instance, we expect loop transformations (e.g. loop strip-mining, loop reordering,
tiling, etc) to be implemented regardless of the underlying hardware platform although the exact implementation may be
slightly different. Any hardware-specific optimizations (code optimizations that cannot be mapped) are included in the
heterogeneous component using the latent encoder. Since the dimension of the latent embedding is fixed, we can effectively
finetune using an already pre-trained model. To elaborate, let us have a qualitative discussion and explore the intuition
behind incorporating approximate mapping of these loop transformations into sparse accelerators, using Intel PIUMA
(Gerogiannis et al., 2024; Aananthakrishnan et al., 2023) and Vesper (Jin et al., 2024) as examples. These mappings are
conceptually aligned with those we applied to SPADE and GPU, highlighting the general applicability of our approach
across diverse hardware backends.

Intel PIUMA (Gerogiannis et al., 2024; Aananthakrishnan et al., 2023) is a configurable accelerator that has a RISC ISA
making it CPU-programmable. This enables it to employ code optimizations that are available in CPUs. Hence, it is possible
to implement SpMM and SDDMM sparse operations (kernels) with code optimizations such as loop reordering with a
one-to-one mapping. Similarly, loop strip-ming and tiling can be mapped. However, similar to SPADE, where we accounted
for the ”barrier” optimization in the mapping process, one would need to consider the PIUMA ”scratchpad reuse”.

Vesper (Jin et al., 2024) is another reconfigurable accelerator designed for sparse computations, supporting three dataflow
models implemented through distinct loop traversal orders. While the authors refer to the use of “tiling,” they do not provide
implementation details, source code, or a description of the tile size selection mechanism. Based on standard tiling practices,
we can approximate Vesper’s approach using loop stripping and loop reordering within our representation.

Intel PIUMA is proprietary, and Vesper’s source code was not available. This made it infeasible to test our hypothesis on
these accelerators. Hence, our current evaluation focuses only on two examples (SPADE and NVIDIA A100) primarily due
to practical constraints. However, it should be emphasized that COGNATE was designed with hardware-agnostic principles
in mind. We believe that as a wider range of accelerators becomes accessible to the research community, and as sparse
compilation frameworks like SparseTIR (Ye et al., 2023) evolve, COGNATE can be extended with minimal changes.

Assuming these accelerators were available, the data collection process would still be highly time-consuming, likely
requiring millions of machine hours to gather sufficient data for training, validation, and testing. For example, collecting
performance data or training, validation, and testing across all matrices and experimental settings for SPADE required
approximately 4 million CPU hours. Despite parallelizing experiments across multiple machines, each with 64 CPU cores,
this process spanned nearly three months. While extending the evaluation to additional hardware platforms remains an
important direction, it was beyond the practical scope of this work given resource constraints.

Further, frequent changes in emerging hardware may require updates to configuration mappings and fine-tuning, this
challenge is significantly mitigated by our approach in COGNATE. As long as the entire kernel does not change or the newly
introduced optimizations are heterogeneous, updating the mappings is relatively straight forward. However, relying solely
on simulations would require rerunning them for a large number of configurations each time a change is made, resulting in
significant computational and time costs. In contrast, our transfer learning-based approach significantly reduces the cost and
time of running simulations. By collecting only a few data samples and fine-tuning the model, we can efficiently adapt to
hardware changes without the need for extensive simulations. Hence, this approach not only reduces maintenance complexity
but also accelerates the design process, making it more feasible to handle frequent and timely updates in emerging hardware.

15

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

D. Cost Models for Early-Stage Sparse Accelerator Design
With the flexibility of recent accelerators to have software programmable kernels (Gerogiannis et al., 2023; Jin et al., 2024;
Gerogiannis et al., 2024), integration of cost models and heuristics into the DSE pipeline has become an up and coming area
(Gerogiannis et al., 2024; Jin et al., 2024). For example, Vesper is a recent work that had integrated an analytical model
to a configurable sparse accelerator to enable higher throughput (Jin et al., 2024). HotTiles is another work that uses an
analytical model to predict the performance of different accelerator processing elements (PEs) that accommodate intra-matrix
heterogeneity (Gerogiannis et al., 2024). Further, in HotTiles, the authors acknowledged that a more accurate model could
have enabled making better design decisions during the early stages. We believe that our proposed data-driven cost model
framework, COGNATE, addresses this gap (resulting in speedups close to optimal) while complementing expert-driven
strategies to enable more informed and better design decisions. This would effectively replace the analytical approaches
with a data driven approach. The primary overhead associated with our approach arises from the need to gather data points
to fine-tune the cost model. This overhead is minimal compared to the effort required for an expert to iteratively optimize a
kernel for sparse workloads, where kernel performance is highly input-sensitive due to diverse sparsity patterns.

E. An Example of Code Optimization Notations Used in Approximate Mappings
Here, we provide an additional explanation and an illustrative example to clarify the notation used in the code op-
timization mapping functions presented in Section 3.2. These are designed to approximate how high-level schedule
configurations in SPADE are translated into low-level loop representations in CPU. The following example demon-
strates how a sparse matrix-matrix multiplication (SpMM) configuration in SPADE is mapped into its corresponding
loop-level representation using the defined notation. Consider the following high-level configuration for the SpMM oper-
ation in SPADE: name, row panels, column panels, split, barrier, bypass, reorder, time
= 144, 4, 1024, 1, 0, 0, 0, 38.83592. Here, row panels, column panels, and split define the
tiling strategy, while the binary flags barrier, bypass, and reorder indicate the use of additional code op-
timizations. Using our mapping functions, this configuration is mapped into the following loop-level represen-
tation: name, i split, j split, k split, loop 1, ..., loop 7, barrier, bypass, reorder,
time = 144, 4, 1024, 32, 6, 7, 2, 4, 1, 3, 5, 0, 0, 0, 38.83592. In this mapped form, the
tiling parameters are converted to i split, j split, and k split, which define how the loop indices are partitioned
across the three dimensions. The sequence loop 1 through loop 7 encodes the execution order of the nested loops,
and the binary flags are retained to preserve platform-specific scheduling decisions. This example demonstrates how our
framework captures key aspects of tiling structure, loop ordering, and other scheduling optimizations.

F. Hyperparamters

Table 3: Hyperparameters for model training/fine-tuning

Hyperparameter Value
Learning Rate 0.0001

Batch Size 32
Optimizer Adam

Number of Epochs 100
Loss Function MarginRankingLoss

Table 4: Hyperparameters for the autoencoders

Hyperparameter Value
Learning Rate 0.001

Batch Size 32
Optimizer Adam

Number of Epochs 1000
Loss Function MSE

16

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

Table 5: Composition of layers in the Input Featurizer (IFE)

Layer Description
Layer 1 MinkowskiConvolution (in channels, 32, kernel size=5)
Layer 2 MinkowskiConvolution (32, 32, kernel size=3)
Layer 3 MinkowskiConvolution (32, 64, kernel size=3) MinkowskiMaxPooling
Layer 4 MinkowskiConvolution (64, 64, kernel size=3)
Layer 5 MinkowskiConvolution (64, 64, kernel size=3)
Layer 6 MinkowskiConvolution (64, 128, kernel size=3) MinkowskiMaxPooling
Layer 7 MinkowskiConvolution (128, 128, kernel size=3)
Layer 8 MinkowskiConvolution (128, 128, kernel size=3)
Layer 9 MinkowskiConvolution (128, 256, kernel size=3)MinkowskiMaxPooling

Layer 10 MinkowskiConvolution (256, 256, kernel size=3)
Layer 11 MinkowskiConvolution (256, 256, kernel size=3)
Layer 12 MinkowskiConvolution (256, 256, kernel size=3)

Global Pooling Layer MinkowskiGlobalAvgPooling

Table 6: Composition of layers in the Predictor (P)

Component/Layer Input Size Output Size
Matrix Embedding (x) 128 128

Configuration Embedding (y) 53 64
Latent Embedding (z) 64 64
Concatenation (xyz) 128 + 64 192

Predictor Layer 1 192 128
Predictor Layer 2 128 64
Predictor Layer 3 64 1

17

COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning

G. Additional Results

0 100 200 300 400 500 600 700
Matrix #

1

2

3

4

5

Ge
om

ea
n

Sp
ee

du
p Speedup

Optimal: 1.55
COGNATE (Top-5): 1.47
Baseline: 1.0

Figure 13: COGNATE (Top-5) per-matrix speedups (SpMM)

0 100 200 300 400 500 600 700
Matrix #

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ge
om

ea
n

Sp
ee

du
p

Speedup
Optimal: 1.44

COGNATE (Top-1): 1.27
Baseline: 1.0

Figure 14: COGNATE (Top-1) per-matrix speedups (SDDMM)

0 100 200 300 400 500 600 700
Matrix #

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ge
om

ea
n

Sp
ee

du
p Speedup

Optimal: 1.44
COGNATE (Top-5): 1.39
Baseline: 1.0

Figure 15: COGNATE (Top-5) per-matrix speedups (SDDMM)

18

