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Abstract

Latent reasoning language models aim to improve reasoning efficiency by com-1

puting in continuous hidden space rather than explicit text, but the opacity of2

these internal processes poses major challenges for interpretability and trust. We3

present a mechanistic case study of CODI (Continuous Chain-of-Thought via4

Self-Distillation), a latent reasoning model that solves problems by chaining "latent5

thoughts." Using attention analysis, SAE based probing, activation patching, and6

causal interventions, we uncover a structured "scratchpad computation" cycle: even7

numbered steps serve as scratchpads for storing numerical information, while odd8

numbered steps perform the corresponding operations. Our experiments show that9

interventions on numerical features disrupt performance most strongly at scratch-10

pad steps, while forcing early answers produces accuracy jumps after computation11

steps. Together, these results provide a mechanistic account of latent reasoning as12

an alternating algorithm, demonstrating that non linguistic thought in LLMs can13

follow systematic, interpretable patterns. By revealing structure in an otherwise14

opaque process, this work lays the groundwork for auditing latent reasoning models15

and integrating them more safely into critical applications. All code, data, and16

other artifacts will be publicly released upon acceptance.17

1 Introduction18

Latent reasoning models, such as CODI (Continuous Chain-of-Thought via Self-Distillation), offer19

a more efficient alternative to explicit Chain-of-Thought by performing multi-step inference in a20

continuous hidden space rather than generating text [Shen et al., 2025]. However, this efficiency21

comes at a steep price: transparency. By replacing an auditable textual trace with unobserved "latent22

thoughts," these models create a critical safety blind spot, making it difficult to verify their reasoning,23

align their behavior, or detect potentially dangerous emergent capabilities. Addressing this challenge24

is not just intellectually interesting; it is a prerequisite for safely deploying these powerful models in25

reliable applications.26

To address this opacity, we turn to mechanistic interpretability, a field focused on reverse-engineering27

neural networks from their internal components [Bereska and Gavves, 2024]. This paper applies28

these techniques to produce a detailed mechanistic account of CODI’s internal algorithm, using:29

• SAE-based analysis and steering to isolate and identify how specific features are repre-30

sented and used within CODI’s latent space [Bricken et al., 2023].31

• Activation Patching to swap the model’s residual stream at every layer for all the latent32

thoughts to identify components of the model responsible for specific tasks Meng et al.33

[2022], Heimersheim and Nanda [2024].34

• Early Answer Generation to determine how early the model is able to arrive at the correct35

answer Deng et al., 2023).36
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• Attention Analysis to understand a model’s decision-making process by examining which37

parts of the input sequence it focuses on when performing a specific computation [Rai et al.,38

2024].39

• Latent Step Manipulation to causally probe the model’s internal algorithm by actively40

altering its hidden reasoning steps to test their specific function, necessity, and sequential41

importance Meng et al. [2022], Heimersheim and Nanda [2024].42

Figure 1: A simplified representation of CODI’s reasoning process, illustrating our central finding.
The model alternates between Computation Steps (solid outline), where operations are performed,
and Scratchpad Steps (dashed outline), which store and represent key numerical information for
subsequent access.

Our evidence reveals the model executes an alternating "scratchpad-computation" cycle as seen in43

Figure 1: even-numbered steps store and access numerical information, while odd-numbered steps44

perform the actual operations. This discovery offers an initial blueprint for the internal algorithms45

of latent reasoning models, contributing to the broader effort of making these opaque yet powerful46

systems more auditable and reliable.47

2 Methodology48

Attention-Based Analysis of Latent Steps. To investigate CODI’s use of attention for arithmetic49

reasoning, we first generated a synthetic dataset based on a “minimal-pair” design. In this design, each50

pair of math problems shares the same underlying numbers and narrative structure, but a key word or51

phrase is changed to alter the required arithmetic operation (e.g., “gains 3” vs. “loses 3”), with the52

constraint that all intermediate and final values in both problem variants remained positive integers.53

Using this dataset, we executed each problem pair on the model and captured the full attention54

matrices from every head and layer for each of the six latent reasoning steps (z1, . . . , z6) [Shen et al.,55

2025], for both quantitative and qualitative analysis.56

Our quantitative analysis began by measuring the fraction of attention mass that each latent step57

directs toward numeric tokens within the input prompt. Specifically, for each step, we calculate the58

ratio of attention on numeric tokens to the total attention on all prompt tokens, and then average59

this ratio across all layers and attention heads. This metric reveals the temporal dynamics of the60

model’s focus on numerical data. We then identified specialized heads by calculating the proportion61

of their attention on key numerical operands (e.g., operand B in A+ B) versus the entire prompt.62

The minimal-pair design is crucial here, as it isolates how attention to an operand changes when only63

the operational phrase is altered.64

Sparse autoencoder features. We train a Sparse Autoencoder (SAE; Bricken et al. 2023) on65

residual-stream activations from layer 10 of CODI on GSM8K [Cobbe et al., 2021]. The SAE uses a66

hidden layer 32× the residual width and attains R2 = 0.988 with mean L0= 7.97%. We selected67

Layer 10 via a layer-wise P−P ′ ∆-variance sweep on our minimal-pair runs (variance of P−P ′68

across pairs/latents); it ranked highest (full table in Appendix).69

From this dictionary, we constructed conceptual directions by first identifying features corresponding70

to specific concepts. To do this, we calculated a Cohen’s d score for each feature based on its71

activation for our target concept (e.g., the digit ‘2’) versus others, and selected all features with a72
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score above a pre-defined threshold. The final direction vector was created by summing the decoder73

weights of these corresponding features. We then probed the model’s latent steps (h1, . . . , h6) with74

these directions both observationally, by measuring cosine similarity, and causally via activation75

steering [Turner et al., 2023]. For interventions, we added each direction vector to the residual76

stream—scaled to 5% of the activation’s norm at that step—and measured the effect on the output77

using KL Divergence and the change in log probability (∆ log-prob).78

Activation Patching. We use activation patching, a causal localization technique that swaps internal79

activations with those from a perturbed run, to isolate the causal effects of specific layers and latent80

thoughts Meng et al. [2022], Heimersheim and Nanda [2024]. The procedure involves a clean run81

on an original GSM8k question to establish a baseline log probability, followed by a corrupted run82

on a perturbed version1 of the question where we cache the residual stream at every layer and latent83

thought. Finally, in a patching run on the clean input, we replace the residual stream at each position84

with the corresponding cached stream from the corrupted run. The causal effect is quantified by the85

difference in the model’s average log probability of the correct answer tokens between the clean and86

corrupted run. This analysis is restricted to questions where the model correctly answers both the87

original and perturbed versions.88

Early Answer Generation. Based on a similar experiment from Hao et al., 2024, we probe the89

model’s intermediate reasoning by forcing it to generate an answer early. For a given problem, we90

let the model generate one latent thought, then insert the end-of-thought token to get its answer. We91

repeat this process, allowing it to generate two thoughts, then three, and so on, to track how its answer92

changes with more computation. We also measure approximate problem difficulty via operations93

required to solve problem (from compressed CoT found in the GSM8k-Aug dataset from Deng et al.,94

2023)95

Latent Thought Rearrangement. To evaluate whether latent thoughts are self-contained or sequen-96

tially dependent, we systematically manipulate both the order and the number of thoughts available97

to the model and measure the resulting impact on reasoning accuracy. Specifically, we record the98

model’s latent outputs and reintroduce them in controlled configurations, varying one or more of99

sequence, subset, repetition or composition. Each configuration is tested across the GSM8K dataset100

and the accuracy of the first-ranked logit is measured.101

3 Results102

(a) Proportion of attention on all numeric tokens
across latent steps.

(b) Latent-to-latent average log probability of correct
answer in problems the model answered correct, sepa-
rated by operations required to solve problem

Figure 2: Observational evidence for the alternating roles of latent steps. (a) Attention to numeric
tokens peaks on even-numbered steps. (b) The model’s attention is consistently directed toward
previous even-numbered "scratchpad" steps.

Building on the original CODI paper’s observation that some latent thoughts decode to intermediate103

results while others appear to be “placeholders or transitional states” [Shen et al., 2025], our causal104

interventions provide strong evidence that CODI follows a structured scratchpad–computation cycle.105

Even-numbered steps function as scratchpads that store numerical content, whereas odd-numbered106

1Questions are perturbed by changing various numbers in them
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Table 1: Number steering: even–odd deltas (even − odd); positive means larger on even steps.
Features: Cohen’s d≥0.6; n=100 per digit; uncertainties are ± error.

Digit |F | ∆COS ∆KL ∆ logP

2 237 +0.0916± 0.0092 +0.008697± 0.002639 +0.0282± 0.0247
5 184 +0.0824± 0.0109 +0.006080± 0.002762 +0.00227± 0.02596

Table 2: Operation steering: odd–even deltas (odd − even); positive means larger on odd steps. Fea-
tures: Cohen’s d≥0.6; strength γ=0.05; n=50 per operation; | cos | uses magnitude; uncertainties
are 95% CI half-widths.

Operation |F | ∆|COS| ∆KL ∆ logP

Subtraction 1391 −0.0334± 0.0093 +0.0180± 0.0099 +0.0726± 0.0531
Addition 2315 −0.1640± 0.0091 +0.0105± 0.0080 +0.0519± 0.0420

steps perform active computation. We first establish the causal localization of these roles using107

activation patching and SAE-based number steering, then turn to supportive observational patterns.108

Even (scratchpad) steps—numerical content is causally localized. SAE-based number steering109

quantifies the asymmetry (Table 1): for both digits tested (2 and 5), even steps show larger shifts110

in representation alignment (∆COS) and distributional divergence (∆KL) than odd steps. The111

corresponding ∆ logP effects trend positive but their uncertainties overlap zero, so we treat them as112

supportive rather than decisive and leave broader digit coverage to future work.113

Odd (computation) steps—operations are causally localized. Early-answer forcing shows the114

largest accuracy gains immediately after odd steps (Figure 2b), indicating that key computational115

updates occur there. SAE-based operation steering quantifies this asymmetry (Table 2)2. Odd116

steps produce larger distributional shifts (KL) than even steps for both subtraction and addition,117

while projection magnitudes (| cos |) are larger on even steps—consistent with operation structure118

being loaded on even steps and applied on odd steps.3 Together with latent-thought rearrangement119

(Figure 5), these results localize computation to odd steps.120

Observational patterns align with the causal picture. Without interventions, the model’s focus121

on numeric tokens peaks at even steps (Figure 2a). Latent-to-latent attention preferentially routes to122

prior even steps (Appendix, Figure 3a), and several attention heads exhibit operand-identification123

specialization predominantly on even steps (Appendix, Figure 3b). These descriptive signals are124

consistent with even steps serving as staging points for information that is subsequently used by the125

odd steps.126

4 Conclusion and Limitations127

This paper provides mechanistic evidence for a structured, algorithmic process within CODI’s latent128

steps. Building on the “placeholder” observation, we show a "scratchpad–computation" cycle: even129

steps store numeric information; odd steps operate on it. Both observational probes and causal130

interventions support this alternation, indicating that continuous latent reasoning can be reverse-131

engineered with mechanistic tools.132

Our experiments target one model (GPT-2 CODI) and one domain (GSM8K arithmetic), with SAE133

probes centered on a single layer and four concepts (the digits “2” and "5" and the operations134

subtraction and addition) and attention analyses based on limited, templated minimal pairs. The next135

frontier is to test whether this alternating cycle holds in larger models (e.g., LLaMA-style latent136

reasoning) and beyond arithmetic. This work provides the blueprint for those investigations.137

2KL is used as the primary metric for step-local disruption because it captures full-distribution change and
yields tighter intervals in our setting; ∆logP targets only the correct answer token and is therefore noisier.

3Cosine sign depends on direction orientation; we interpret KL and | cos | magnitude together.
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A Additional Experimental Results167

A.1 Attention Analysis Visualizations168

(a) Latent-to-latent attention, averaged across all lay-
ers, showing consistent focus on prior even-numbered
steps.

(b) Specialization of attention heads for identifying
the second numerical operand in arithmetic problems.

Figure 3: Attention analysis results providing further evidence for the scratchpad-computation cycle.

(a) Average attention patterns on addition problems.
(b) Average attention patterns on subtraction prob-
lems.

Figure 4: Average attention patterns for 200 examples of the template pair ("[name1] has [A] [item]s
and finds [C] more. Then [name2] adds [B] more. Total?", "[name1] has [A] [item]s and finds [C]
more. Then [name2] gives away [B]. Total?") across all 12 heads in Layer 8. Note the distinct, sparse
patterns in certain heads (e.g., Head 3, Head 7) which focus on key tokens and latent steps.

A.2 Latent Thought Rearrangement Results169

For each question q, we first perform a forward pass through the model to extract the sequence of170

continuous thoughts:171

Z = (z1, z2, . . . , zn), zi ∈ Rd.

These vectors are recorded and stored as the original continuous thoughts. Next, we perform a second172

forward pass where the same question q is input to the model, but instead of allowing the model to173

generate its continuous thoughts naturally, we manually feed the stored thoughts Z after applying a174

transformation F . This allows us to evaluate the effect of various thought manipulations on the final175

output while keeping the model and question fixed.176

We experimented with the following set of transformations:177

• Baseline:178

FCODI(Z) = Z
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Figure 5: Results for the latent rearrangment experiment.

• Order manipulations:179

Fperm(Z) = (zπ(1), zπ(2), . . . , zπ(n)), π ∼ Uniform(Sn),
180

Frev(Z) = (zn, zn−1, . . . , z1)

• Subset selection:181

Fodd(Z) = (z1, z3, z5), Feven(Z) = (z2, z4, z6),
182

Ffirst3(Z) = (z1, z2, z3), Flast3(Z) = (z4, z5, z6)

• Single-thought substitution:183

Fk-only(Z) = (zk), k ∈ {1, . . . , 6},
184

Fzero-only(Z) = (0), 0 ∈ Rd

• Thought repetition:185

Fk-repeat(Z) = (zk, zk, . . . , zk), |Z| = n,
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A.3 Layer-wise ∆-variance Sweep (Paired P/P ′)186

Layer Mean ∆-variance
0 3.1273
1 2.9035
2 2.8513
3 3.0911
4 3.3083
5 3.6817
6 4.1858
7 5.5977
8 8.4259
9 11.4380

10 19.3736
11 1.9160

Table 3: Layer-wise mean ∆-variance (variance of P−P ′ across pairs and latent steps). Layer 10 is
largest.
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A.4 Activation Patching187

Figure 6: Heatmap comparing the difference of average log probability of the correct numerical
answer tokens between the patched and unpatched runs of CODI on questions the model answered
correctly.

A.5 Self-Explanation188

To try and interpret the latent thought tokens from CODI, we prompted its original base (GPT-2 or189

Llama-3.2-1b-Instruct) to generate a natural language explanation for them. We input the sequence190

of latent thought tokens generated by CODI into the base model, guided by a prompt asking it to191

generate a natural language explanation of these "abstract ideas."192

For both GPT and Llama versions of CODI, the base model failed to produce coherent interpretations,193

treating the latent tokens as noise. This result may suggest that the fine-tuning process develops a194

specialized internal syntax for reasoning that is indecipherable to the foundation model.195
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A.6 Prompt Modification196

A.6.1 Core Problem Variations197

We test the stability of CODI’s latent arithmetic reasoning by applying controlled linguistic and198

structural edits to a small set of seed problems. The goal is to assess whether latent thoughts exhibit a199

consistent reasoning pattern and how distractors or syntactic changes perturb the internal trace.200

Seeds (from GSM8K).201

1. Ducks. Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes202

muffins for her friends every day with four. She sells the remainder at the farmers’ market daily203

for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?204

2. Robes. A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total205

does it take?206

3. Sprints. James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many207

total meters does he run a week?208

Variations. Each seed is edited into ten variants, yielding 33 total prompts (3 originals + 30209

variants), covering:210

• Explicit vs. implicit numerical framing211

• Passive/rephrased grammar212

• Added distractor details213

• Ratio-/proportion-based reframing214

Protocol. Prompts are presented one at a time; the model’s seven latent thoughts (LT0–LT6) are215

recorded. Accuracy is computed per latent response against ground truth to inspect progression and216

robustness.217

Results (Exp. 1).218

• LT0 (Surface bias): Overconfident, often incorrect guesses driven by salient tokens; distractors219

amplify errors (e.g., “726”, “400”).220

• LT1 (Subtraction/filtering): Encodes reductions/proportions reliably (halves, remainders); robust221

to modest rewording.222

• LT2 (Hallucination/memorized): Unstable; implausible values/units appear.223

• LT3 (Final arithmetic logic): Accurate values in most contexts.224

• LT4–LT6 (Validation/finalization): Reinforce LT3 and stabilize outputs.225

Accuracy rises from ∼20–30% at LT0 to >70% at LT5–LT6 on original/clear prompts, but drops226

sharply under distractor or proportional edits. Overall, latent thoughts behave like a modular pipeline:227

LT0 (surface), LT1 (early arithmetic), LT3 (reasoning engine), LT4–LT6 (confirmation). Irrele-228

vance/ambiguity disrupt LT3 and prolong error-prone states (LT0/2).229

A.6.2 Experiment 2: Prompt-Type Comparison230

We next examine how prompt categories affect latent-step accuracy.231

Setup. Ten GSM8K problems (rates, proportions, inventory changes, multi-step sequences) are232

each modified in four ways (two versions per modification), yielding 90 prompts (10 originals + 80233

edits):234

1. Original: Unmodified GSM8K text235

2. Clear arithmetic: All operations and numbers stated explicitly236

3. Rephrased/passive: Syntax altered, semantics preserved237

4. Distractor: Added plausible but irrelevant details238
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5. Proportional/ratio: Reframed as percentages or ratios239

Each prompt is processed individually; LT0–LT6 are recorded; accuracy is computed per latent.240

Results (Exp. 2).241

• Original: Reaches ∼90% at LT5–LT6.242

• Clear arithmetic: Peaks at ∼75%; explicit formatting underperforms natural phrasing.243

• Rephrased/passive: Early accuracy drops to ∼15%, partially recovers to ∼60% at LT5.244

• Distractor: 0% at LT0; final accuracy capped at ∼15% (persistent confusion).245

• Proportional/ratio: ≈0% across all latents.246
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