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Abstract

Latent reasoning language models aim to improve reasoning efficiency by com-
puting in continuous hidden space rather than explicit text, but the opacity of
these internal processes poses major challenges for interpretability and trust. We
present a mechanistic case study of CODI (Continuous Chain-of-Thought via
Self-Distillation), a latent reasoning model that solves problems by chaining "latent
thoughts." Using attention analysis, SAE based probing, activation patching, and
causal interventions, we uncover a structured "scratchpad computation" cycle: even
numbered steps serve as scratchpads for storing numerical information, while odd
numbered steps perform the corresponding operations. Our experiments show that
interventions on numerical features disrupt performance most strongly at scratch-
pad steps, while forcing early answers produces accuracy jumps after computation
steps. Together, these results provide a mechanistic account of latent reasoning as
an alternating algorithm, demonstrating that non linguistic thought in LLMs can
follow systematic, interpretable patterns. By revealing structure in an otherwise
opaque process, this work lays the groundwork for auditing latent reasoning models
and integrating them more safely into critical applications. All code, data, and
other artifacts will be publicly released upon acceptance.

1 Introduction

Latent reasoning models, such as CODI (Continuous Chain-of-Thought via Self-Distillation), offer
a more efficient alternative to explicit Chain-of-Thought by performing multi-step inference in a
continuous hidden space rather than generating text [Shen et al., 2025]. However, this efficiency
comes at a steep price: transparency. By replacing an auditable textual trace with unobserved "latent
thoughts," these models create a critical safety blind spot, making it difficult to verify their reasoning,
align their behavior, or detect potentially dangerous emergent capabilities. Addressing this challenge
is not just intellectually interesting; it is a prerequisite for safely deploying these powerful models in
reliable applications.

To address this opacity, we turn to mechanistic interpretability, a field focused on reverse-engineering
neural networks from their internal components [Bereska and Gavves, 2024]. This paper applies
these techniques to produce a detailed mechanistic account of CODI’s internal algorithm, using:

• SAE-based analysis and steering to isolate and identify how specific features are repre-
sented and used within CODI’s latent space [Bricken et al., 2023].
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• Activation Patching to swap the model’s residual stream at every layer for all the latent
thoughts to identify components of the model responsible for specific tasks Meng et al.
[2022], Heimersheim and Nanda [2024].

• Early Answer Generation to determine how early the model is able to arrive at the correct
answer Deng et al., 2023).

• Attention Analysis to understand a model’s decision-making process by examining which
parts of the input sequence it focuses on when performing a specific computation [Rai et al.,
2024].

• Latent Step Manipulation to causally probe the model’s internal algorithm by actively
altering its hidden reasoning steps to test their specific function, necessity, and sequential
importance Meng et al. [2022], Heimersheim and Nanda [2024].

Figure 1: A simplified representation of CODI’s reasoning process, illustrating our central finding.
The model alternates between Computation Steps (solid outline), where operations are performed,
and Scratchpad Steps (dashed outline), which store and represent key numerical information for
subsequent access.

Our evidence reveals the model executes an alternating "scratchpad-computation" cycle as seen in
Figure 1: even-numbered steps store and access numerical information, while odd-numbered steps
perform the actual operations. This discovery offers an initial blueprint for the internal algorithms
of latent reasoning models, contributing to the broader effort of making these opaque yet powerful
systems more auditable and reliable.

2 Methodology

Attention-Based Analysis of Latent Steps. To investigate CODI’s use of attention for arithmetic
reasoning, we first generated a synthetic dataset based on a “minimal-pair” design. In this design, each
pair of math problems shares the same underlying numbers and narrative structure, but a key word or
phrase is changed to alter the required arithmetic operation (e.g., “gains 3” vs. “loses 3”), with the
constraint that all intermediate and final values in both problem variants remained positive integers.
Using this dataset, we executed each problem pair on the model and captured the full attention
matrices from every head and layer for each of the six latent reasoning steps (z1, . . . , z6) [Shen et al.,
2025], for both quantitative and qualitative analysis.

Our quantitative analysis began by measuring the fraction of attention mass that each latent step
directs toward numeric tokens within the input prompt. Specifically, for each step, we calculate the
ratio of attention on numeric tokens to the total attention on all prompt tokens, and then average
this ratio across all layers and attention heads. This metric reveals the temporal dynamics of the
model’s focus on numerical data. We then identified specialized heads by calculating the proportion
of their attention on key numerical operands (e.g., operand B in A+ B) versus the entire prompt.
The minimal-pair design is crucial here, as it isolates how attention to an operand changes when only
the operational phrase is altered.

Sparse autoencoder features. We train a Sparse Autoencoder (SAE; Bricken et al. 2023) on
residual-stream activations from layer 10 of CODI on GSM8K [Cobbe et al., 2021]. The SAE uses a
hidden layer 32× the residual width and attains R2 = 0.988 with mean L0= 7.97%. We selected
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Layer 10 via a layer-wise P−P ′ ∆-variance sweep on our minimal-pair runs (variance of P−P ′

across pairs/latents); it ranked highest (full table in Appendix).

From this dictionary, we constructed conceptual directions by first identifying features corresponding
to specific concepts. To do this, we calculated a Cohen’s d score for each feature based on its
activation for our target concept (e.g., the digit ‘2’) versus others, and selected all features with a
score above a pre-defined threshold. The final direction vector was created by summing the decoder
weights of these corresponding features. We then probed the model’s latent steps (h1, . . . , h6) with
these directions both observationally, by measuring cosine similarity, and causally via activation
steering [Turner et al., 2023]. For interventions, we added each direction vector to the residual
stream—scaled to 5% of the activation’s norm at that step—and measured the effect on the output
using KL Divergence and the change in log probability (∆ log-prob).

Activation Patching. We use activation patching, a causal localization technique that swaps internal
activations with those from a perturbed run, to isolate the causal effects of specific layers and latent
thoughts Meng et al. [2022], Heimersheim and Nanda [2024]. The procedure involves a clean run
on an original GSM8k question to establish a baseline log probability, followed by a corrupted run
on a perturbed version1 of the question where we cache the residual stream at every layer and latent
thought. Finally, in a patching run on the clean input, we replace the residual stream at each position
with the corresponding cached stream from the corrupted run. The causal effect is quantified by the
difference in the model’s average log probability of the correct answer tokens between the clean and
corrupted run. This analysis is restricted to questions where the model correctly answers both the
original and perturbed versions.

Early Answer Generation. Based on a similar experiment from Hao et al., 2024, we probe the
model’s intermediate reasoning by forcing it to generate an answer early. For a given problem, we
let the model generate one latent thought, then insert the end-of-thought token to get its answer. We
repeat this process, allowing it to generate two thoughts, then three, and so on, to track how its answer
changes with more computation. We also measure approximate problem difficulty via operations
required to solve problem (from compressed CoT found in the GSM8k-Aug dataset from Deng et al.,
2023)

Latent Thought Rearrangement. To evaluate whether latent thoughts are self-contained or sequen-
tially dependent, we systematically manipulate both the order and the number of thoughts available
to the model and measure the resulting impact on accuracy. Specifically, we record the model’s latent
outputs and reintroduce them in controlled configurations, varying one or more of sequence, subset,
repetition or composition. Each configuration is tested across the GSM8K dataset and the accuracy
of the first-ranked logit is measured.

3 Results

(a) Proportion of attention on all numeric tokens
across latent steps.

(b) Latent-to-latent average log probability of correct
answer in problems the model answered correct, sepa-
rated by operations required to solve problem

Figure 2: Observational evidence for the alternating roles of latent steps. (a) Attention to numeric
tokens peaks on even-numbered steps. (b) The model’s attention is consistently directed toward
previous even-numbered "scratchpad" steps.

1Questions are perturbed by changing various numbers in them
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Table 1: Number steering: even–odd deltas (even − odd); positive means larger on even steps.
Features: Cohen’s d≥0.6; n=100 per digit; uncertainties are ± error.

Digit |F | ∆COS ∆KL ∆ logP

2 237 +0.0916± 0.0092 +0.008697± 0.002639 +0.0282± 0.0247
5 184 +0.0824± 0.0109 +0.006080± 0.002762 +0.00227± 0.02596

Table 2: Operation steering: odd–even deltas (odd − even); positive means larger on odd steps. Fea-
tures: Cohen’s d≥0.6; strength γ=0.05; n=50 per operation; | cos | uses magnitude; uncertainties
are 95% CI half-widths.

Operation |F | ∆|COS| ∆KL ∆ logP

Subtraction 1391 −0.0334± 0.0093 +0.0180± 0.0099 +0.0726± 0.0531
Addition 2315 −0.1640± 0.0091 +0.0105± 0.0080 +0.0519± 0.0420

Building on the original CODI paper’s observation that some latent thoughts decode to intermediate
results while others appear to be “placeholders or transitional states” [Shen et al., 2025], our causal
interventions provide strong evidence that CODI follows a structured scratchpad–computation cycle.
Even-numbered steps function as scratchpads that store numerical content, whereas odd-numbered
steps perform active computation. We first establish the causal localization of these roles using
activation patching and SAE-based number steering, then turn to supportive observational patterns.

Even (scratchpad) steps—numerical content is causally localized. SAE-based number steering
quantifies the asymmetry (Table 1): for both digits tested (2 and 5), even steps show larger shifts
in representation alignment (∆COS) and distributional divergence (∆KL) than odd steps. The
corresponding ∆ logP effects trend positive but their uncertainties overlap zero, so we treat them as
supportive rather than decisive and leave broader digit coverage to future work.

Odd (computation) steps—operations are causally localized. Early-answer forcing shows the
largest accuracy gains immediately after odd steps (Figure 2b), indicating that key computational
updates occur there. SAE-based operation steering quantifies this asymmetry (Table 2)2. Odd
steps produce larger distributional shifts (KL) than even steps for both subtraction and addition,
while projection magnitudes (| cos |) are larger on even steps—consistent with operation structure
being loaded on even steps and applied on odd steps.3 Together with latent-thought rearrangement
(Figure 5), these results localize computation to odd steps.

Observational patterns align with the causal picture. Without interventions, the model’s focus
on numeric tokens peaks at even steps (Figure 2a). Latent-to-latent attention preferentially routes to
prior even steps (Appendix, Figure 3a), and several attention heads exhibit operand-identification
specialization predominantly on even steps (Appendix, Figure 3b). These descriptive signals are
consistent with even steps serving as staging points for information that is subsequently used by the
odd steps.

4 Conclusion and Limitations

This paper provides mechanistic evidence for a structured, algorithmic process within CODI’s latent
steps. Building on the “placeholder” observation, we show a "scratchpad–computation" cycle: even
steps store numeric information; odd steps operate on it. Both observational probes and causal
interventions support this alternation, indicating that continuous latent reasoning can be reverse-
engineered with mechanistic tools.

Our experiments target one model (GPT-2 CODI) and one domain (GSM8K arithmetic), with SAE
probes centered on a single layer and four concepts (the digits “2” and "5" and the operations
subtraction and addition) and attention analyses based on limited, templated minimal pairs. The next

2KL is used as the primary metric for step-local disruption because it captures full-distribution change and
yields tighter intervals in our setting; ∆logP targets only the correct answer token and is therefore noisier.

3Cosine sign depends on direction orientation; we interpret KL and | cos | magnitude together.
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frontier is to test whether this alternating cycle holds in larger models (e.g., LLaMA-style latent
reasoning) and beyond arithmetic. This work provides the blueprint for those investigations.
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A Additional Experimental Results

A.1 Attention Analysis Visualizations

(a) Latent-to-latent attention, averaged across all lay-
ers, showing consistent focus on prior even-numbered
steps.

(b) Specialization of attention heads for identifying
the second numerical operand in arithmetic problems.

Figure 3: Attention analysis results providing further evidence for the scratchpad-computation cycle.

(a) Average attention patterns on addition problems.
(b) Average attention patterns on subtraction prob-
lems.

Figure 4: Average attention patterns for 200 examples of the template pair ("[name1] has [A] [item]s
and finds [C] more. Then [name2] adds [B] more. Total?", "[name1] has [A] [item]s and finds [C]
more. Then [name2] gives away [B]. Total?") across all 12 heads in Layer 8. Note the distinct, sparse
patterns in certain heads (e.g., Head 3, Head 7) which focus on key tokens and latent steps.

A.2 Latent Thought Rearrangement Results

For each question q, we first perform a forward pass through the model to extract the sequence of
continuous thoughts:

Z = (z1, z2, . . . , zn), zi ∈ Rd.

These vectors are recorded and stored as the original continuous thoughts. Next, we perform a second
forward pass where the same question q is input to the model, but instead of allowing the model to
generate its continuous thoughts naturally, we manually feed the stored thoughts Z after applying a
transformation F . This allows us to evaluate the effect of various thought manipulations on the final
output while keeping the model and question fixed.

We experimented with the following set of transformations:

• Baseline:
FCODI(Z) = Z
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Figure 5: Results for the latent rearrangment experiment.

• Order manipulations:

Fperm(Z) = (zπ(1), zπ(2), . . . , zπ(n)), π ∼ Uniform(Sn),

Frev(Z) = (zn, zn−1, . . . , z1)

• Subset selection:

Fodd(Z) = (z1, z3, z5), Feven(Z) = (z2, z4, z6),

Ffirst3(Z) = (z1, z2, z3), Flast3(Z) = (z4, z5, z6)

• Single-thought substitution:

Fk-only(Z) = (zk), k ∈ {1, . . . , 6},

Fzero-only(Z) = (0), 0 ∈ Rd

• Thought repetition:

Fk-repeat(Z) = (zk, zk, . . . , zk), |Z| = n,
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A.3 Layer-wise ∆-variance Sweep (Paired P/P ′)

Layer Mean ∆-variance
0 3.1273
1 2.9035
2 2.8513
3 3.0911
4 3.3083
5 3.6817
6 4.1858
7 5.5977
8 8.4259
9 11.4380

10 19.3736
11 1.9160

Table 3: Layer-wise mean ∆-variance (variance of P−P ′ across pairs and latent steps). Layer 10 is
largest.
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A.4 Activation Patching

Figure 6: Heatmap comparing the difference of average log probability of the correct numerical
answer tokens between the patched and unpatched runs of CODI on questions the model answered
correctly.

A.5 Self-Explanation

To try and interpret the latent thought tokens from CODI, we prompted its original base (GPT-2 or
Llama-3.2-1b-Instruct) to generate a natural language explanation for them. We input the sequence
of latent thought tokens generated by CODI into the base model, guided by a prompt asking it to
generate a natural language explanation of these "abstract ideas."

For both GPT and Llama versions of CODI, the base model failed to produce coherent interpretations,
treating the latent tokens as noise. This result may suggest that the fine-tuning process develops a
specialized internal syntax for reasoning that is indecipherable to the foundation model.
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A.6 Prompt Modification

A.6.1 Core Problem Variations

We test the stability of CODI’s latent arithmetic reasoning by applying controlled linguistic and
structural edits to a small set of seed problems. The goal is to assess whether latent thoughts exhibit a
consistent reasoning pattern and how distractors or syntactic changes perturb the internal trace.

Seeds (from GSM8K).

1. Ducks. Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily
for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

2. Robes. A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

3. Sprints. James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Variations. Each seed is edited into ten variants, yielding 33 total prompts (3 originals + 30
variants), covering:

• Explicit vs. implicit numerical framing
• Passive/rephrased grammar
• Added distractor details
• Ratio-/proportion-based reframing

Protocol. Prompts are presented one at a time; the model’s seven latent thoughts (LT0–LT6) are
recorded. Accuracy is computed per latent response against ground truth to inspect progression and
robustness.

Results (Exp. 1).

• LT0 (Surface bias): Overconfident, often incorrect guesses driven by salient tokens; distractors
amplify errors (e.g., “726”, “400”).

• LT1 (Subtraction/filtering): Encodes reductions/proportions reliably (halves, remainders); robust
to modest rewording.

• LT2 (Hallucination/memorized): Unstable; implausible values/units appear.
• LT3 (Final arithmetic logic): Accurate values in most contexts.
• LT4–LT6 (Validation/finalization): Reinforce LT3 and stabilize outputs.

Accuracy rises from ∼20–30% at LT0 to >70% at LT5–LT6 on original/clear prompts, but drops
sharply under distractor or proportional edits. Overall, latent thoughts behave like a modular pipeline:
LT0 (surface), LT1 (early arithmetic), LT3 (reasoning engine), LT4–LT6 (confirmation). Irrele-
vance/ambiguity disrupt LT3 and prolong error-prone states (LT0/2).

A.6.2 Experiment 2: Prompt-Type Comparison

We next examine how prompt categories affect latent-step accuracy.

Setup. Ten GSM8K problems (rates, proportions, inventory changes, multi-step sequences) are
each modified in four ways (two versions per modification), yielding 90 prompts (10 originals + 80
edits):

1. Original: Unmodified GSM8K text
2. Clear arithmetic: All operations and numbers stated explicitly
3. Rephrased/passive: Syntax altered, semantics preserved
4. Distractor: Added plausible but irrelevant details
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5. Proportional/ratio: Reframed as percentages or ratios

Each prompt is processed individually; LT0–LT6 are recorded; accuracy is computed per latent.

Results (Exp. 2).

• Original: Reaches ∼90% at LT5–LT6.
• Clear arithmetic: Peaks at ∼75%; explicit formatting underperforms natural phrasing.
• Rephrased/passive: Early accuracy drops to ∼15%, partially recovers to ∼60% at LT5.
• Distractor: 0% at LT0; final accuracy capped at ∼15% (persistent confusion).
• Proportional/ratio: ≈0% across all latents.
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