
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Decoupling Knowledge and Context: An Efficient and Effective
Retrieval Augmented Generation Framework via Cross Attention

Anonymous Author(s)∗

Abstract
Retrieval-Augmented Generation (RAG) systems have become a
crucial tool to augment large language models (LLMs) with ex-
ternal knowledge for better task performance. However, existing
traditional RAG methods inject knowledge directly in the context,
resulting in several limitations. First, these methods highly rely
on the in-context learning capability of LLMs, which often leads
to excessively long contexts. This is inefficient due to the qua-
dratic complexity of self-attention, leading to significant increases
in inference time. Second, the extended context and the nature of
self-attention can cause the LLMs to lose important information
in the context, thereby degrading the original capabilities of LLMs.
Furthermore, the effectiveness of knowledge injection is perturbed
by the permutation of knowledge within the extended context,
reducing the robustness of existing RAG methods. To tackle the
above problems, we proposeDecoupledRAG, a method that decou-
ples external knowledge from the context within the RAG frame-
work. Specifically, we introduce a cross-attention based method
that injects retrieved knowledge directly to the inference process
of LLM on the fly, without modifying its parameters or the input
context. The external knowledge could be utilized robustly in a
permutation-independent manner. To the best of our knowledge,
this is the first work that explore how to utilize cross-attention to
inject knowledge with low training cost in decoder-only LLM era.
By leveraging cross-attention operation, DecoupledRAG enables
seamless knowledge aggregation without creating extended con-
text. Experimental results demonstrate that our method achieves
high efficiency while maintaining strong performance, which in-
dicates that RAG frameworks have the potential to benefit further
from more knowledge 1 2.

CCS Concepts
• Information systems→ Retrieval tasks and goals.

Keywords
Retrieval Augmented Generation, Language Model, Knowledge
Injection

1The codes are released at https://anonymous.4open.science/r/DecoupledRAG
2Our work is related to “Search and retrieval-augmented AI” track as it contributes to
optimize retrieval-augmented generation system.
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1 Introduction
Retrieval-Augmented Generation (RAG) has emerged as a pow-
erful approach for enhancing the capabilities of large language
models (LLMs) by injecting external knowledge into their context.
RAG enables LLMs to generate correct and timely responses based
on knowledge retrieved from external corpus that may not be pre-
sented to the models in their training process, significantly boosting
their performance across a range of knowledge-intensive natural
language processing (NLP) tasks [17].

Despite the benefits, existing RAG methods face several issues.
As shown in Figure 2(a), VanillaRAG (i.e., in-context manner) di-
rectly concatenates the retrieved external knowledge with the in-
struction and question. Although VanillaRAG can help mitigate the
issue of incorrect or outdated responses, this approach inevitably
leads to excessively long context, reducing both effectiveness and
efficiency. The reasons lies in the following aspects. First, due to
the quadratic complexity of self-attention [26], the processing of
extended context substantially increases inference time. Second, the
extended context and the nature of self-attention can cause LLMs
to lose important information in the context [11, 14, 20], thereby
degrading the original capabilities of LLMs, as demonstrated in Ap-
pendix A. Furthermore, due to the lost in the middle issue [11, 20],
the effectiveness of knowledge injection could be perturbed by the
permutation of knowledge within the extended context, reducing
the robustness of VanillaRAG. Therefore, as shown in our prelimi-
nary experiment (see Figure 1), increasing the number of knowledge
documents injected into the context significantly reduces the per-
formance of LLMs on the T-REx [7] dataset. The issues of long
texts limit the VanillaRAG framework from utilizing extensive use-
ful knowledge efficiently and effectively [11, 14, 20]. Therefore, a
natural research question is: Could we construct a new RAG
paradigm in which the injected knowledge and context are
decoupled?

Decoupling knowledge from context offers several advantages in
the RAG system. First, it enhances efficiency by enabling the offline
caching of external knowledge, allowing the LLM to efficiently uti-
lize knowledge representations during inference on the fly. Second,
decoupling mitigates the information loss issues that often arise
in long contexts [11, 14, 20]. In this work, we propose utilizing
cross-attention to inject the knowledge representations into the
LLM, thereby decoupling the external knowledge from the context.
The knowledge could be utilized in a permutation-independent
manner via cross-attention, further alleviating the information loss
issue [20]. To the best of our knowledge, this is the first work that

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

5 10 15 20
Number of Documents

20

25

30

35

40

45

50

Ac
cu

ra
cy

VanillaRAG
DecoupledRAG

~2k ~4k
Context Length

Figure 1: Performance of Llama3-8B-Chat with VanillaRAG
and DecoupledRAG on T-REx. The maximum context length
of this LLM is 8k.

explore how to utilize cross-attention to inject knowledge with low
training cost in decoder-only LLM era.

However, equipping LLMs with the capability to inject external
knowledge via cross-attention is non-trivial due to the following
two challenges:

• Challenge 1. The training cost should not be excessively high.
LLMs already contain extensive parameters, resulting in inher-
ently high computational overhead. Retraining the entire LLM
or introducing excessive additional trainable parameters is im-
practical.

• Challenge 2. Equipping the LLM with this capability should
not collapse its original capabilities. This requires that training
should build on the LLM’s existing capabilities incrementally,
ensuring they remain unaffected.

To tackle these challenges, our DecoupledRAG framework di-
vides the workflow into two stages: knowledge encoding and knowl-
edge aggregation, as shown in Figure 2(b). For knowledge encoding,
we use the same LLM to pre-compute and cache representations of
external knowledge, ensuring alignment with the context represen-
tations. This alignment allows the LLM to effectively utilize these
pre-computed knowledge representations with minimal additional
training overhead, thereby addressing Challenge 1. For knowledge
aggregation, the cached representations of the external knowledge
are retrieved from the database and integrated with the next token’s
representation via cross-attention, producing the next token repre-
sentation with respect to external knowledge. Simultaneously, the
next token undergoes a self-attention operation with the context
to generate the representation with respect to internal context. We
then apply coordinate-wise summation of these representations,
with the weight for external knowledge initially set to zero. This
setting ensures that injecting external knowledge does not disrupt
the LLM’s existing capabilities at the begin of training, address-
ing Challenge 2. As training progresses, LLM learns to balance
internal and external knowledge appropriately. To further reduce
the introduced parameters and maintain a low training cost, we
decompose the zero matrix used in representation summation into
two low-rank matrices. This parameter-efficient approach further
addresses Challenge 1. We conduct extensive experiments across

multiple tasks to validate the effectiveness of our method. The ex-
perimental results demonstrate that our approach achieves high
efficiency while maintaining strong performance, paving the way
for more efficient and effective RAG systems.

To sum up, our contributions lies in the flowing aspects:

• We introduce DecoupledRAG, a novel RAG paradigm in
which the injected knowledge and context are decoupled.

• We propose a low-cost training method that enables LLMs
to effectively inject external knowledge via cross-attention
without compromising their original capabilities.

• We conduct comprehensive experiments across multiple
tasks, demonstrating the high efficiency and strong perfor-
mance of our method.

2 Related Works
2.1 Large Language Models
Large Language Models (LLMs) have become a foundational com-
ponent in natural language processing (NLP), achieving remarkable
results in various tasks. One of the earliest milestones is the intro-
duction of Transformer [26], which revolutionize NLP by introduc-
ing attentionmechanism. This architecture pave the way for models
such as BERT [5], GPT [21], and T5 [22], which have demonstrated
state-of-the-art performance across tasks like question answering,
summarization, and translation.

As model sizes grow, LLMs like GPT-3 [3] and PaLM [4] show
the power of scaling, with billions of parameters enabling models
to generalize better to a variety of prompts. Despite their strengths,
LLMs rely on static knowledge acquired during pre-training, which
limits their ability to adapt to real-time information. Additionally,
hallucination remains a concern, where the model generates con-
fident but incorrect or nonsensical outputs, highlighting the need
for external knowledge augmentation.

2.2 Knowledge Injection in Large Language
Models

Several recent methods have been proposed to enable effective
knowledge injection into LLMs. One common strategy involves the
use of Supervised Fine-Tuning (SFT), where out-of-domain knowl-
edge is injected by fine-tuning models like Llama-3 [1] with new
datasets. This approach has demonstrated significant improvements
in question answering accuracy, particularly in domains where the
model’s pre-existing knowledge is insufficient. Other approaches,
such as those explored by KnowGPT [29], inject external knowl-
edge from structured sources like knowledge graphs into LLMs,
helping mitigate hallucination and improve factual consistency.
Moreover, Graph-Reader [19] utilizes graph-based knowledge rep-
resentations to enhance long-context reasoning and knowledge
injection in LLMs, further pushing the limits of context comprehen-
sion and factuality. These methods enable more precise and struc-
tured knowledge integration, providing models with the ability to
reference external data efficiently. Retrieval-augmented generation
(RAG) [18] has garnered significant attention in recent years. It
extends knowledge injection by dynamically retrieving relevant
documents during the generation process, making it a powerful tool
for enhancing the factual accuracy and relevance of LLM outputs.

2
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Figure 2: Comparison between VanillaRAG and our proposed DecoupledRAG.

2.3 Retrieval-Augmented Generation
RAG is initially introduced by this study [18], combining the ca-
pabilities of information retrieval and generative language mod-
els. The original RAG architecture uses a Dense Passage Retrieval
(DPR) [12] model to index documents and a sequence-to-sequence
model (BART) to generate responses [16].

DPR [12] is a foundational retrieval method that enables precise
retrieval from large knowledge corpus likeWikipedia, and serves as
the retrieval backbone for extensive RAG models [8, 18]. RAG lever-
ages DPR to retrieve relevant documents, conditioning generation
on these documents, and improving generation quality.

Recent agent-based RAG systems, such as PaperQA [13], Graph-
Reader [19], and PersonaRAG [28], introduce specialized frame-
works that combine retrieval and generation with agent-based capa-
bilities. These systems aim to improve performance in long-context
handling, reduce hallucination, and adapt to real-time user data.

3 Methodology
3.1 Preliminaries
Before delving into the details of our proposed method, we provide
a formal definition of self-attention operation, as it plays a crucial
role in both the knowledge encoding and aggregation stages. Self-
attention is used in LLM to compute hidden state for generating the
next token. Given a context 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], the self-attention
operation computes attention scores to determine the importance
of each token relative to its preceding tokens, producing a con-
textualized hidden state. For an LLM with 𝐿 layers, at each layer
𝑙 ∈ {1, 2, . . . , 𝐿}, the output of the previous layer 𝑋 (𝑙−1) serves as
the input to the current layer, where 𝑋 (0) represents the output
of the embedding layer. To ensure that the model captures the se-
quential information of the context, positional encoding operation
(Pos(·)) is incorporated into the attention mechanism. The atten-
tion mechanism itself is invariant to the ordering of tokens, which
means that without Pos(·), the model would have no information
about the position of each token. Commonly used Pos(·) functions
include sinusoidal positional encoding [26], learnable positional
encoding [5], and rotary position embedding (RoPE) [23]. Formally,
the self-attention output at layer 𝑙 is computed as

𝑋 (𝑙 ) = softmax

(
Pos(𝑄 (𝑙 ) )Pos(𝐾 (𝑙 )𝑇 ) )√︁

𝑑𝑘

)
𝑉 (𝑙 ) , (1)

where the query, key, and value matrices 𝑄 (𝑙 ) , 𝐾 (𝑙 ) , and 𝑉 (𝑙 ) at
layer 𝑙 are computed from the hidden states of the previous layer
𝑋 (𝑙−1) . Specifically, these matrices could be computed as

𝑄 (𝑙 ) = 𝑋 (𝑙−1)𝑊 (𝑙 )
𝑄
, 𝐾 (𝑙 ) = 𝑋 (𝑙−1)𝑊 (𝑙 )

𝐾
, 𝑉 (𝑙 ) = 𝑋 (𝑙−1)𝑊 (𝑙 )

𝑉
.

(2)
Here,𝑊 (𝑙 )

𝑄
,𝑊 (𝑙 )

𝐾
, and𝑊 (𝑙 )

𝑉
are learned projection matrices at layer

𝑙 that map the hidden states of the input 𝑋 (𝑙−1) into the query, key,
and value spaces, respectively. After processing through all 𝐿 layers
of the LLM, the hidden state from the final layer of last token 𝑥 (𝐿)𝑛

is used to generate the next token. Formally, the next token 𝑥𝑛+1 is
obtained by

𝑥𝑛+1 = argmax(softmax(𝑥 (𝐿)𝑛 𝑊𝑂 + 𝑏𝑂 )), (3)

where𝑊𝑂 is the output projection matrix, and 𝑏𝑂 is the bias term.
The softmax function is applied to produce a probability distribution
over the vocabulary, allowing the model to predict the next token
based on the final layer’s hidden state. After generating 𝑥𝑛+1, it is
added back into the context, i.e., 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛+1].

VanillaRAG methods directly inject knowledge documents into
the input context to improve the generation quality. Given a ques-
tion Q and a set of corresponding retrieved documents D𝑄 =

{𝐷𝑄1 , 𝐷
𝑄

2 , . . . , 𝐷
𝑄

𝑁
}, the input is formed by concatenating the ques-

tion and the documents through a template T , denoted as

𝑋 = T (T,Q,DQ), (4)

where T represents task-specific instructions. The structure of the
template T and the task-specific instructions T are defined in the
Appendix B. Then, the LLM auto-regressively predicts each next
token one by one using Eq. 3. This process is repeated for each
subsequent token until the complete answer is generated.

Notably, themain challenges in equipping LLMwith the ability to
utilize cross-attention for knowledge injection are: (1) training the
LLM efficiently and (2) preserving its original capabilities. We tackle
these challenges by two stages in DecoupledRAG. The framework
of DecoupledRAG is depicted in Figure 3, which includes tow stages,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

knowledge encoding and knowledge aggregation. Next, we present
the details of each stage of DecoupledRAG.

3.2 Knowledge Encoding
The knowledge encoding stage pre-computes the representations of
external knowledge for use in subsequent knowledge aggregation
in an on-the-fly manner. To reduce training difficulty, we ensure the
compatibility between the external knowledge representations and
the internal context representations. Therefore, we use the same
LLM to encode external knowledge.

To formally define the knowledge encoding stage, we denote
𝐷 = [𝑑1, 𝑑2, . . . , 𝑑𝑚] as a external knowledge sequence, where 𝐷 is
consist of𝑚 tokens. At layer 𝑙 of an LLM, the hidden states 𝐷 (𝑙 )

is computed from the hidden states of the previous layer 𝐷 (𝑙−1)

by Eq. 1. Then, we store the key-value representations of the ex-
ternal knowledge. Specifically, at each layer 𝑙 , the key and value
representations 𝐾 (𝑙 )

D and 𝑉 (𝑙 )
D are computed as

𝐾
(𝑙 )
D = 𝐷 (𝑙−1)𝑊 (𝑙 )

𝐾
, 𝑉

(𝑙 )
D = 𝐷 (𝑙−1)𝑊 (𝑙 )

𝑉
, (5)

where𝑊 (𝑙 )
𝐾

and𝑊 (𝑙 )
𝑉

are the learned projection matrices from the
same LLM. The cached key-value representations for all layers are
stored as

KD = {(𝐾 (𝑙 )
D ,𝑉

(𝑙 )
D )}𝐿

𝑙=1 . (6)
Then, the cached key-value representations, KD, can be directly
used for knowledge aggregation. It is worth noting that when a LLM
uses Grouped-Query Attention [2] for acceleration, we only need
to store the key-value representations for each group, significantly
reducing memory overhead.

3.3 Knowledge Aggregation
Once the external knowledge is encoded and cached, the next step
is to inject it into the LLM through cross-attention. Since we may
inject multiple external knowledge, we concatenate all the key-
value representations of external knowledge before performing the
cross-attention.

Specifically, the context used in DecoupledRAG can be formed
as

𝑋 = T (T,Q), (7)
which decouples the external knowledge D𝑄 from the instruction
T and the question Q. Since the subsequent formulas all focus on
a specific question Q, we omit the subscript Q in D𝑄 for clarity.
For multiple external knowledge D = {𝐷1, 𝐷2, . . . , 𝐷𝑁 }, we con-
catenate the key-value representations at layer 𝑙 of all 𝑁 external
knowledge sequences as

𝐾
(𝑙 )
ext = [𝐾 (𝑙 )

D1
, 𝐾

(𝑙 )
D2
, . . . , 𝐾

(𝑙 )
D𝑁

], 𝑉
(𝑙 )
ext = [𝑉 (𝑙 )

D1
,𝑉

(𝑙 )
D2
, . . . ,𝑉

(𝑙 )
D𝑁

] . (8)

For the aggregation process, the last token’s hidden state is first
integrated through the self-attention operationwith the internal con-
text representations, followed by integration with the concatenated
external knowledge representations through the cross-attention op-
eration. Formally, the self-attention operation for the last token 𝑥𝑛
at layer 𝑙 can be defined as

𝑥
(𝑙 )
𝑛,int = softmax

(
Pos(𝑄 (𝑙 )

𝑥𝑛 )Pos(𝐾 (𝑙 )𝑇 )√︁
𝑑𝑘

)
𝑉 (𝑙 ) , (9)

𝑥
(𝑙 )
𝑛,int is the token representation with respect to internal context.
Next, the representation of the last token 𝑥𝑛 undergoes a cross-
attention operation with the concatenated external knowledge. This
step aggregates information from the external knowledge to pro-
duce the token representation 𝑥 (𝑙 )𝑛,ext, which could be defined as

𝑥
(𝑙 )
𝑛,ext = softmax

(
𝑄

(𝑙 )
𝑥𝑛 𝐾

(𝑙 )𝑇
ext√︁
𝑑𝑘

)
𝑉

(𝑙 )
ext . (10)

Notably, the knowledge aggregation is permutation-independent
due to the absence of Pos(·) function, enabling DecoupledRAG
to inject knowledge without considering the order of knowledge
documents.

Finally, the hidden state of the last token at layer 𝑙 is obtained
by combining the self-attention and cross-attention outputs, which
can be computed as

𝑥
(𝑙+1)
𝑛 = 𝑥

(𝑙 )
𝑛,int +𝑊

(𝑙 )
𝛽
𝑥
(𝑙 )
𝑛,ext, (11)

where𝑊 (𝑙 )
𝛽

is introduced as a learnable weight matrix to control
the influence of external knowledge during the aggregation of inter-
nal and external hidden states. We initialize𝑊 (𝑙 )

𝛽
as a zero matrix,

ensuring that at the start of training, LLM relies entirely on its in-
ternal knowledge, with the contribution from external knowledge
gradually learned during fine-tuning. This initialization prevents
the collapse of the LLM’s original capabilities and facilitates the
smooth aggregation of external knowledge. Zero initialization of
𝑊

(𝑙 )
𝛽

is crucial because if external knowledge is weighted too heav-
ily at the start of training, it could significantly disrupt the LLM’s
behavior. This would necessitate a complete retraining of the model,
introducing excessive training costs.

Inspired by low rank adaptation [10], we further reduce the
number of trainable parameters in𝑊𝛽 by decomposing it into two
low-rank matrices and a scaling factor

𝑊
(𝑙 )
𝛽

= 𝛼𝐴
(𝑙 )
𝛽
𝐵
(𝑙 )
𝛽
, (12)

where 𝐴(𝑙 )
𝛽

∈ R𝑑×𝑟 and 𝐵 (𝑙 )
𝛽

∈ R𝑟×𝑑 are low-rank matrices, with

𝑟 ≪ 𝑑 . 𝐴(𝑙 )
𝛽

is initialized with Gaussian noise, while 𝐵 (𝑙 )
𝛽

is ini-
tialized as a zero matrix. This decomposition enables the model to
learn how to integrate external knowledge efficiently, with minimal
additional training costs. Therefore, the Eq. 11 could be rewritten
as

𝑥
(𝑙+1)
𝑛 = 𝑥

(𝑙 )
𝑛,int + 𝛼𝐴

(𝑙 )
𝛽
𝐵
(𝑙 )
𝛽
𝑥
(𝑙 )
𝑛,ext . (13)

The next token is obtained in the same manner as in Eq. 3.

3.4 Model Training
Both VanillaRAG and our DecoupledRAG are optimized using the
next token prediction objective, commonly employed for auto-
regressive language models training.

Following recent work [11], VanillaRAG is trained using the stan-
dard next token prediction objective with teacher forcing, where
the model is provided with the ground truth answer during train-
ing. The input to the model is represented as 𝑆 = 𝑋 + 𝐴, where
𝑋 = T (T,Q,D) and 𝐴 is the ground truth answer. Formally, the
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Figure 3: The illustration of DecoupledRAG framework.

training objective is to minimize the cross-entropy loss as follows

L = −
|S |∑︁
𝑖=1

log 𝑃𝜃 (𝑦𝑖+1 = 𝑠𝑖+1 |𝑠1, 𝑠2, . . . , 𝑠𝑖 ), (14)

where 𝑦𝑖+1 represents the predicted token.
In contrast, our DecoupledRAG follows the same next token

prediction objective but decouples the external knowledge from the
input context, i.e., 𝑆 = 𝑋+𝐴, where𝑋 = T (T,Q). While the training
objective remains a next-token prediction task, DecoupledRAG
generates the next token based on preceding tokens and pre-cached
knowledge representations KD = {K𝐷1 ,K𝐷2 , . . . ,K𝐷𝑁

}, which
can be denoted as

L = −
|S |∑︁
𝑖=1

log 𝑃𝜃 (𝑦𝑖+1 = 𝑠𝑖+1 |KD , 𝑠1, 𝑠2, . . . , 𝑠𝑖 ). (15)

3.5 Computational Complexity
In this subsection, we analyze the computational complexity of
aggregating external knowledge using self-attention and cross-
attention operations, respectively. Let |D|, |Q|, and |A| denote the
number of tokens in the external knowledge, question, and answer,
respectively.
Self-Attention for External Knowledge Aggregation.When
using self-attention to aggregate external knowledge, the external
knowledge is treated as part of the context, together the question
and answer. This results in the following computational complexity

𝑂

(
(𝑁 · |D| + |Q|)2 + |A| · (𝑁 · |D| + |Q|)

)
, (16)

where𝑁 represents the number of external knowledge. Since |Q| ≪
|D|, the Equation (16) could be simplified as

𝑂

©«
Knowledge encoding︷      ︸︸      ︷

(𝑁 · |D|)2 +

Answer generation︷           ︸︸           ︷
|A| · (𝑁 · |D|)︸                                         ︷︷                                         ︸

Online inference cost

ª®®®®®¬
. (17)

As 𝑁 increases, the online inference cost of VanillaRAG grows
exponentially.
Cross-Attention for External Knowledge Aggregation. In con-
trast, DecoupledRAG encodes knowledge documents independently
from each other and from the question. This reduces the computa-
tional complexity, which can be expressed as

𝑂

(
𝑁 · |D|2 + |Q|2 + |A| · (𝑁 · |D| + |Q|)

)
. (18)

Similarly, this equation could be simplified as

𝑂

©«
Knowledge encoding︷                ︸︸                ︷

𝑁 · |D|2︸   ︷︷   ︸
Offline inference cost

+

Answer generation︷                ︸︸                ︷
|A| · (𝑁 · |D|)︸           ︷︷           ︸

Online inference cost

ª®®®®¬
. (19)

Here, the quadratic term 𝑁 · |D|2 reflects the offline cost of en-
coding each external knowledge separately. This results in more
efficient handling of larger external knowledge sets, as the question
and external knowledge are all decoupled. Notably, the encoded
knowledge is question-independent and can therefore be used for
all questions, rather than being tied to a specific one.
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As 𝑁 increases, DecoupledRAG demonstrates increasingly supe-
rior efficiency compared to VanillaRAG, since the online inference
cost of DecoupledRAG grows linearly.

4 Experiments
In this section, we present the experiments conducted to evaluate
the performance of our proposed DecoupledRAG. We first describe
the datasets and evaluation metrics used, followed by details of the
experimental setup. Finally, we present the results and provide a
comprehensive analysis.

4.1 Datasets and Metrics
We evaluate our proposed method across three distinct tasks, using
five datasets to comprehensively assess performance.
Multi-hop Question Answering. 2WikiMultihopQA [9] is de-
signed to test the multi-hop reasoning capabilities across multiple
Wikipedia articles, requiring models to gather and synthesize in-
formation from multiple sources to answer complex questions. The
ComplexWebQuestions [24] dataset involves answering multi-step,
web-based questions, further challenging the LLM’s ability to re-
trieve and reason over large-scale web content. We use accuracy
and F1 score to evaluate these tasks. Accuracy is measured as the
percentage of answers that exactly match the ground truth (EM)
divided by the total number of questions in the test set, while the
F1 score captures the balance between precision and recall by ac-
counting for partially correct answers.
Slot Filling. For slot-filling tasks, we evaluate our method on the
Zero-Shot RE [15] and T-REx [7] datasets. Zero-Shot RE [15] is
used for zero-shot relation prediction, where LLMs are tested on
relations they haven’t explicitly seen in training. T-REx is a large-
scale factual knowledge dataset used to evaluate the LLM’s ability
to fill in factual slots using external knowledge fromWikipedia. For
these datasets, we use both accuracy and F1 score.
Dialogue. We use the Wizard of Wikipedia (WoW) [6] dataset for
dialogue tasks. In this dataset, the LLM is expected to engage in
knowledgeable conversations by leveraging external knowledge
retrieved from Wikipedia articles. The task tests both the knowl-
edge integration capabilities of the LLM and its ability to maintain
coherent dialogue. For this task, we use F1 score to evaluate the
LLM’s ability to generate relevant and correct responses during
conversations.

4.2 Experimental Setup
We implement our approach on top of pre-trained LLMs, specifically
Llama3-8B-Instruct [1] and Llama2-7B-Chat [25], using the Hugging
Face Transformers library. Both training and evaluation take place
on up to 8 NVIDIA A100 GPUs with 40GB of memory. The training
process runs for 5 epochs, with a learning rate of 1e-3 and a batch
size of 16.

We use Wikipedia as the knowledge corpus. Documents are di-
vided into non-overlapping segments, each consisting of exactly
256 tokens. Any final segment with fewer than 128 tokens is dis-
carded. After segmentation, the corpus comprises approximately
21 million knowledge documents. For the experiments, 1, 3, 5, 10,
and 20 knowledge documents are injected to assess performance,

respectively. We use RetroMAE [27] as the retrieval module to re-
call relevant external knowledge. In each experiment, all baselines
and our method utilize the same set of retrieved documents to en-
sure a fair comparison and consistent evaluation across different
approaches.

During LLM fine-tuning, we apply LoRA with rank 𝑟 = 16 and
𝛼 = 32, introducing a total of 6.82M additional parameters. Similarly,
our proposed DecoupledRAG also employs 𝑟 = 16 and 𝛼 = 32 for
Eq. 13, resulting in an 4.19M additional parameters.

4.3 Experimental Results
Table 1 compares the performance of our proposed DecoupledRAG
method with VanillaRAG across three tasks: Slot Filling, Multi-hop
Question Answering, and Dialogue. We evaluate the effectiveness
of both methods by injecting 1, 3, 5, 10, and 20 external knowledge
documents. From this table, we can draw the following findings:

• DecoupledRAG demonstrates superior performance with
more knowledge documents injected. This performance
gain can be attributed to DecoupledRAG’s ability to avoid
increasing the context length while effectively aggregating
external knowledge. Consequently, the LLM benefits from
external knowledge to generate accurate responses while
preserving its instruction following capability.

• When a limited number of external knowledge documents
are injected, VanillaRAG performs slightly better than De-
coupledRAG. The reason lies in that self-attention provides
more comprehensive interaction across the entire context.
The knowledge representations could aggregate informa-
tion from the instruction and the question, making LLM can
effectively follow the instruction and focus on the question.

• VanillaRAG requires a trade-off between the number of
external knowledge and the length of internal context.
The optimal number of injected knowledge documents
varies across different datasets and models. For example,
with Llama-3-8B-Instruct, the best performance is observed
with two injected documents in Zero-Shot RE, T-REx, and
2WikiMultihopQA, while three documents yield the high-
est results in ComplexWebQuestions. In WoW, VanillaRAG
achieves best performance with just one injected document.

• Overall, Llama-3-8B-Instruct outperforms Llama2-7B-Chat
consistently across all datasets, owing to its stronger foun-
dational capabilities and enhanced ability to handle longer
contexts effectively.

To facilitate the analysis of trends, we present Figure 4 and 5,
which compare the performance of DecoupledRAG and VanillaRAG
across multiple datasets using Llama-3-8B-Instruct and Llama-2-
7B-Chat, respectively. Since the trends for Accuracy and F1 are
consistent in the Slot Filling and Multi-hop Question Answering
tasks, we only present the Accuracy results. From these figures, we
can draw several key observations:

• Compared to VanillaRAG, DecoupledRAG shows a steady
improvement in performance as more external knowledge
documents are injected. This upward trend stems from
DecoupledRAG’s ability to decouple external knowledge
from the context, ensuring that injecting additional knowl-
edge does not overwhelm the important information in the

6
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Table 1: Performance comparison between VanillaRAG and DecoupledRAG. The best performances are highlighted in bold.

# Docs Method
Slot Filling Multi-hop Question Answering Dialogue

Zero-Shot RE T-REx 2WikiMultihopQA ComplexWebQuestions WoW
Acc. F1 Acc. F1 Acc. F1 Acc. F1 F1

Llama-3-8B-Instruct

+1 doc VanillaRAG 38.1 49.9 61.2 63.2 17.2 12.1 23.4 31.9 22.3
DecoupledRAG 28.6 37.1 61.1 63.9 15.2 11.1 9.8 16.8 24.4

+3 doc VanillaRAG 39.9 51.3 69.3 72.8 29.5 34.3 15.3 21.3 22.0
DecoupledRAG 45.4 53.1 73.7 76.2 28.1 32.5 29.2 37.0 25.5

+5 doc VanillaRAG 25.0 29.9 35.7 37.4 26.3 31.4 10.1 17.5 18.9
DecoupledRAG 49.0 56.3 76.3 78.3 29.9 34.3 33.8 41.8 25.9

+10 doc VanillaRAG 22.4 28.0 30.2 32.0 13.1 23.4 12.5 19.6 19.3
DecoupledRAG 49.2 56.9 78.4 80.3 32.7 37.6 37.6 45.1 25.3

+20 doc VanillaRAG 18.1 24.8 25.3 27.4 3.8 9.6 15.7 24.0 19.3
DecoupledRAG 50.3 57.5 80.2 81.9 33.4 38.1 39.6 47.1 26.1

Llama-2-7B-Chat

+1 doc VanillaRAG 3.7 5.1 18.1 19.2 13.1 18.9 11.0 14.7 18.5
DecoupledRAG 2.2 4.1 11.8 13.0 13.2 19.3 10.5 14.0 17.3

+3 doc VanillaRAG 3.1 4.6 18.3 19.5 15.5 20.7 12.5 15.9 19.2
DecoupledRAG 4.2 5.6 17.4 18.7 16.6 21.8 12.2 15.8 17.3

+5 doc VanillaRAG 3.4 4.8 17.7 18.9 12.2 16.5 9.8 12.4 15.6
DecoupledRAG 4.2 5.5 19.0 20.1 17.4 22.6 13.4 16.7 17.8

+10 doc VanillaRAG 2.5 4.2 6.2 7.4 6.5 8.2 5.1 6.3 7.4
DecoupledRAG 4.6 5.9 18.5 19.7 17.7 23.1 13.1 16.5 18.2

+20 doc VanillaRAG 1.7 3.8 6.9 7.3 3.2 4.0 2.3 3.0 3.6
DecoupledRAG 4.8 6.1 20.6 21.8 18.2 23.5 13.8 17.0 20.0

5 10 15 20
Number of Documents

20

30

40

50

Ac
cu

ra
cy VanillaRAG

DecoupledRAG

(a) Zero-Shot RE

5 10 15 20
Number of Documents

40

60

80

Ac
cu

ra
cy VanillaRAG

DecoupledRAG

(b) T-REx

5 10 15 20
Number of Documents

10

20

30

Ac
cu

ra
cy

VanillaRAG
DecoupledRAG

(c) 2WikiMultihopQA

5 10 15 20
Number of Documents

10

20

30

40

Ac
cu

ra
cy VanillaRAG

DecoupledRAG

(d) ComplexWebQuestions

5 10 15 20
Number of Documents

20

22

24

26

F1

VanillaRAG
DecoupledRAG

(e) WoW

Figure 4: Performance of Llama-3-8B-Instruct across datasets
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Figure 5: Performance of Llama-2-7B-Chat across datasets

context. However, with few external documents, the perfor-
mance of DecoupledRAG is limited due to cross-attention
interactions being less comprehensive than self-attention.

• In contrast, VanillaRAG experiences a significant drop in
performance as the number of injected documents increases,

particularly in tasks like Zero-Shot RE and ComplexWe-
bQuestions. This decline further demonstrates the self-
attentionmechanism inVanillaRAG is inefficientwith longer
contexts, hindering the LLM’ capability to utilize important
information in instruction and knowledge.

• DecoupledRAG consistently outperforms the highest per-
formance of VanillaRAG across all datasets, demonstrating
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its superior ability to effectively leverage knowledge with-
out compromising the essential information in the context.

4.4 Comparison with Long-Context RAG
Methods

The most relevant work to ours is a recent study [11] published
by Google, which provides an in-depth analysis of the challenges
faced by RAG w.r.t. long-context. The study also proposes three
potential solutions to address these issues.
Retrieval Reordering (RR). This is a training-free method pro-
posed to address the lost in the middle issue. By reordering the
knowledge documents based on their relevance scores to the ques-
tion, the most relevant documents are placed at the beginning and
end of the context.
RAG Fine-Tuning (RAG FT). This method aims to improve LLM
robustness to hard negatives by training themwith retrieved knowl-
edge documents, which is identical to the settings of VanillaRAG
in our experiments.
RAG FT with an intermediate reasoning (RAG FT w/. Int).
RAG FT w/. Int explicitly trains the LLM to differentiate between
relevant and irrelevant passages within the retrieved context by
generating a reasoning paragraph. However, the inference time
overhead is significantly scaling up due to the additional reasoning
generation, making the comparison unfair. Therefore, this method
is not included in our comparison.
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Figure 6: Comparison of different long-context RAGmethods
on the T-REx dataset.

The results are presented in Figure 6. Since LLMs are sensi-
tive to the position of knowledge documents, RR exhibits unstable
performance on the T-REx dataset, especially when the number
of documents is limited, demonstrating that LLM performance is
easily perturbed by the permutation of knowledge. RAG-oriented
fine-tuning is an effective method for improving performance,
but as the number of documents increases (e.g., greater than 5),
performance declines sharply, which highlights the limitation of
long context in LLMs. Notably, RAG FT is identical to VanillaRAG
in our experiments. Our DecoupledRAG utilizes knowledge in a
permutation-independent manner while avoiding excessively long
contexts, thereby achieving superior performance.

4.5 Efficiency Analysis
In this subsection, we compare the online inference efficiency of
DecoupledRAG and VanillaRAG in terms of Tokens per Second

(TPS). The results are presented in Figure 7. From this figure, we
can draw the following conclusions:

• DecoupledRAG consistently demonstrates better efficiency
in terms of TPS compared to VanillaRAG across two models,
particularly as the number of injected documents increases.
This is primarily because directly utilizing pre-computed
knowledge representations in DecoupledRAG significantly
reduces the computational overhead during inference.

• When a limited number of documents are injected (e.g.,
fewer than 5), the efficiency gap between DecoupledRAG
and VanillaRAG is marginal. This is because the overhead
introduced by knowledge encoding in VanillaRAG is less
pronounced with a short context size. As demonstrated in
Equation (17), when 𝑁 is less than 5, the knowledge could
be encoded in a single forward-pass with negligible time
overhead. However, as the number of documents increases,
DecoupledRAG exhibits a significantly better efficiency,
attributed to the decoupling of knowledge and context.

• As the number of injected documents increases (from 0
to 50), the TPS for VanillaRAG drops significantly, while
DecoupledRAG maintains a much more gradual decline.
Notably, the TPS of DecoupledRAG with 50 injected doc-
uments still outperforms that of VanillaRAG with just 20
injected documents, as illustrated by the green dashed line
in Figure 7. This further paves the way for injecting more
knowledge with RAG framework.

In conclusion, DecoupledRAG offers superior efficiency, partic-
ularly when handling a large number of knowledge documents.
Its decoupling mechanism enables LLMs to maintain fast token
generation speed, making them more scalable and better suited for
scenarios requiring the injection of substantial external knowledge.
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Figure 7: Tokens per Second Performance Comparison.

5 Conclusion
In this work, we present DecoupledRAG, a novel framework de-
signed to address the inherent limitations of traditional context-
based RAG systems. By decoupling external knowledge from the
context and utilizing cross-attention for knowledge injection, De-
coupledRAG mitigates the issues related to long context, such as
increased inference latency and degradation of fundamental ca-
pabilities. Besides, DecoupledRAG is more robust to the permuta-
tion of knowledge, as the knowledge is injected in a permutation-
independentmanner. Extensive experiments acrossmultiple datasets
demonstrate that DecoupledRAG not only maintains high efficiency
but also achieves superior performance.
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SYSTEM: You are a helpful assistant. {   }

USER: {   }

Answer the question based on the references.
References: {   }

ASSISTANT:

Figure 8: The template T used in our experiments.

Table 2: The task-specific instructions.

Instruction
Zero-Shot RE Please answer user question to

the best of your ability. The an-
swer MUST in ONE OR FEW
WORDS.

T-REx Please fill in the [MASK] in the
sentence.

2WikiMultihopQA Answer the user question that
require reasoning over multi-
ple Wikipedia articles. The an-
swer MUST in ONE OR FEW
WORDS.

ComplexWebQuestions Answer the user question that
require reasoning over multi-
ple Wikipedia articles. The an-
swer MUST in ONE OR FEW
WORDS.

WoW Integrating knowledge from
Wikipedia to improve the infor-
mativeness of your answers.

A Failure Analysis for VanillaRAG
In this section, we present the failure analysis of VanillaRAG on
the T-REx dataset using Llama-3-8B-Instruct. Specifically, we exam-
ine 400 randomly selected cases where the LLM provides correct
answer with 1 injected document but fails when 20 documents are
injected into its context. Through manual analysis, the failures can
be categorized into three types:

• Failure to Follow Instruction. The T-REx instruction
prompts the LLM to fill the [MASK] token in the given sen-
tence based on the retrieved references. However, as the
context length increases, the LLM often loses focus on the
instruction and tends to either continue writing the context
or summarize context. Among the 400 cases, 187 cases fall
into this category.

• Wrong Answer. This issue arises because long context
degrades the in-context learning capability of LLMs, even
though the retrieved references are highly relevant to the
question. LLM generates incorrect answers in 74 cases.

• Meaningless Content. Long contexts collapse the foun-
dational capabilities of LLMs, resulting in the generation
of random segments. This issue is observed in 139 cases.

From this analysis, it can be concluded that long contexts hinder
the performance of VanillaRAG due to a decline in instruction-
following, in-context learning, and other foundational capabilities
in LLMs, further highlighting the limitations of directly injecting
knowledge into the context.

B Template and Task-specific Instructions
The template T (T,Q,D) used in our experiments is presented in
Figure 8. The task-specific instructions are shown in Table 2.
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