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ABSTRACT

Recent findings suggest that diffusion models significantly enhance empirical
adversarial robustness. While some intuitive explanations have been proposed,
the precise mechanisms underlying these improvements remain unclear. In this
work, we systematically investigate how and how well do diffusion models im-
prove adversarial robustness. First, we observe that diffusion models intriguingly
increase—rather than decrease—the ℓp distances to clean samples. This is the
opposite of what was believed previously. Second, we find that the purified images
are heavily influenced by the internal randomness of diffusion models. To properly
evaluate the robustness of systems with inherent randomness, we introduce the
concept of fuzzy adversarial robustness, and find that empirically a substantial
fraction of adversarial examples are fuzzy in nature. Finally, by leveraging a
hyperspherical cap model of adversarial regions, we show that diffusion models
increase robustness by dramatically compressing the image space. Our findings
provide novel insights into the mechanisms behind the robustness improvements of
diffusion model-based purification and offer guidance for the development of more
efficient adversarial purification systems.

1 INTRODUCTION

Neural networks are vulnerable to small adversarial perturbations (Szegedy et al., 2013; Goodfellow
et al., 2014). This presents a fundamental question on the robustness of artificial learning systems.
Adversarial training (Madry et al., 2017) has been proposed as a successful method to overcome
this problem (Shafahi et al., 2019; Pang et al., 2020; Wang et al., 2021). However, research has
found that training with a specific attack usually sacrifices the robustness against other types of
perturbations (Schott et al., 2018; Ford et al., 2019; Yin et al., 2019), indicating that adversarial
training overfits the attack rather than achieving an overall robustness improvement.

Adversarial purification provides an alternative path toward adversarial robustness. This approach
typically relies on generative models to purify the stimulus before passing to a classifier(Song et al.,
2018; Samangouei et al., 2018; Shi et al., 2021; Yoon et al., 2021). The basic idea is to leverage
the image priors learned in some generative models to project adversarial perturbations back toward
the image manifold. Intuitively, the performance of such purification should depend on how well
the generative models capture the probability distribution of natural images. Recently, adversarial
purification based on diffusion models(Ho et al., 2020; Song et al., 2020b) (DiffPure) was reported
to show promising improvements against various empirical attacks on multiple datasets (Nie et al.,
2022). Such a direction of using diffusion models as denoisers was further combined with the
deonise smoothing framework (Cohen et al., 2019; Salman et al., 2020) to improve certificated
robustness (Carlini et al., 2022; Xiao et al., 2023). However, more recent work (Lee & Kim, 2023)
argued that there was an overestimate of the robustness improvement from the DiffPure method. In
all, despite of some promising empirical results, the underlying mechanism of empirical robustness
improvement from diffusion models (how), as well as a proper robustness evaluation with randomness
(how well), were not yet well understood.

To close this important gap, we systematically investigate how diffusion models improve adversarial
robustness. In this paper, we report a set of surprising phenomena of diffusion models, and furthermore
identify the key mechanisms for robustness improvements under diffusion-model-based adversarial
purification. Our main contributions are summarized below:
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• First, we observe that, somewhat surprisingly, diffusion models increase—rather than
decrease—the ℓp distances to clean samples (Sec. 3.1), with the purified states being heavily
influenced by internal randomness (Sec. 3.2).

• To properly evaluate the robustness of systems with inherent randomness, we introduce the
concept of fuzzy adversarial robustness (Sec. 4.1), and find that most of the traditionally
believed adversarial examples are fuzzy in nature (Sec. 4.2).

• Using a hyperspherical cap model of adversarial regions (Sec. 5), we show that diffusion
models increase adversarial robustness by compressing the image space (Sec. 6).

2 RELATED WORK AND PRELIMINARIES

Generative models for adversarial purification Unlike adversarial training which directly aug-
ments the classifier training with adversarial attacks, adversarial purification intends to first “purify”
the perturbed image before classification. Generative models are usually utilized as the purification
system, such as denoising autoencoder (Gu & Rigazio, 2014), denoising U-Net (Liao et al., 2018),
PixelCNN (Song et al., 2018) and GAN (Samangouei et al., 2018). Denote the purification system as
f(x), and the following readout classifier as g(x). Under the assumption that adversarial purification
processes perturbed data x̃ close to the clean data x, thus f(x̃) ≈ x, the Bypass Direct Approximation
(BPDA) (Athalye et al., 2018) can provide a robustness estimation if f is hard-to-differentiate.

Diffusion models (Ho et al., 2020; Song et al., 2020b) set the SOTA performances on image generation,
and represent a natural choice for adversarial purification. Nie et al. (2022) proposed the DiffPure
framework, which utilized both the forward and reverse process and achieved promising empirical
robustness comparable with adversarial training on multiple benchmarks. Similar improvements
were reported with guided diffusion models (Wang et al., 2022). These studies led to substantial
interest in applying diffusion models for adversarial purification in various domains, including
auditory data (Wu et al., 2022) and 3D point clouds (Sun et al., 2023). Recently, other tricks such as
adversarial guidance (Lin et al., 2024) were also introduced to further enhance robustness. However,
through a comprehensive experimental evaluation, (Lee & Kim, 2023) discovered that there was
an overestimate of the robustness improvement from diffusion models, and it was recommended to
apply the PGD-EOT with full gradients directly over AutoAttack. Another line of research applies
diffusion models to improve certificated robustness Cohen et al. (2019). Carlini et al. (2022) found
that plugging diffusion models as a denoiser into the denoised smoothing framework (Salman et al.,
2020) can lead to non-trivial certificated robustness. Xiao et al. (2023) further developed this method
and explained the improvement in certificated robustness.

Diffusion models and randomness Diffusion models consist of forward diffusion and reverse
denoising processes. The forward process of Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020) is

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

in which the ϵ will introduce randomness. Further, the reverse process

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, (2)

also introduces randomness through z ∼ N (0, I). Such randomness may raise concerns about
gradient masking in robustness evaluation (Papernot et al., 2017), which provides a false sense
of robustness against gradient-based attacks (Tramèr et al., 2018). Athalye et al. (2018) further
identified that randomness could cause gradient masking as “stochastic gradients”, and proposed
the expectation-over-transformation (EOT) which became the standard evaluation for stochastic
gradients (Carlini et al., 2019). How to properly understand the effect of randomness in robustness
evaluation is controversial and still debatable (Gao et al., 2022; Yoon et al., 2021).

Geometry of adversarial regions A line of studies has examined the geometry of adversarial
spaces. Goodfellow et al. (2014) first showed that rather than being scattered droplets, adversarial
examples form relatively large, continuous regions (Warde-Farley & Goodfellow, 2016). Tramèr
et al. (2017) studied the dimensionality of the adversarial regions to explain the transferability of
adversarial examples. Ma et al. (2018) further developed this direction with local intrinsic dimensions.
Khoury & Hadfield-Menell (2018) highlighted that there were multiple off-manifold directions to
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construct adversarial examples in a high dimensional space. The adversarial hyperspherical cap
model we proposed here can be regarded as a direct extension to (Tramèr et al., 2017) and leads to an
alternative proof of their GAAS arrangement (Appendix A.2).

3 INTRIGUING BEHAVIOR OF DIFFUSION MODELS

3.1 DIFFUSION MODELS PUSH THE PURIFIED IMAGES AWAY FROM CLEAN IMAGES

While the exact mechanisms for the robustness improvement under diffusion models remain unclear,
intuitive explanations have been discussed in the DiffPure paper (Nie et al., 2022), e.g. diffusion
models “recover clean images through the reverse denoising process”. This motivates us to test a
simple hypothesis, that is, diffusion models shrink the ℓp distances towards clean images during
adversarial purification. Ideally, if a purification system is able to shrink the ℓp distances across
multiple noise levels, we can apply the purification recursively to essentially turn the original
adversarial attack into attacks with smaller magnitudes, thereby increasing robustness (see Fig. 1a).
Below we will systematically examine this hypothesis with experiments.

0

2

4

6

8

di
st

an
ce

 to
 c

le
an

 im
ag

e
2

BPDA
BPDA-EOT
PGD
PGD-EOT

clean
adv. 
attack t=50 t=200

0 100 200
time-steps

magnitude of noise

0 100 200
time-steps

0

10

20

di
st

an
ce

 to
 c

le
an

 im
ag

e
2

8 / 255
32 / 255
64 / 255
128 / 255

adversarial 
perturbation

clean image

diffusion
 model

cat

dog

classification
boundary

a b adversarial 
perturbation

clean image

diffusion
model

c
d

“Denoising” hypothesis Our results

Shrinkage toward clean samples
appears only with much larger noise 

Figure 1: Diffusion models do not shrinkage the distance to clean samples under adversarial
purification. (a) Schematic showing a population hypothesis on how diffusion models improve
robustness by shrinkage towards clean samples. (b) Schematic summarizing our results, suggesting
that the shrinkage hypothesis is not supported. (c) The ℓ2 distance measurements w.r.t. the clean
images on CIFAR-10 during purification steps. Distances between the purified states xt and clean
stimuli x0 are measured with adversarial attacks as initial perturbations (ℓ∞ = 8/255). All models
purify to states with larger ℓ2 distances, thus further away from the initial state. (d) ℓ2 distance
measurements for different levels of uniform noise perturbations.
No shrinkage of the adversarial attack after being transformed by diffusion models. To
test whether diffusion models shrink the distance of the adversarial attack to the clean image, we
performed a series of numerical experiments. From a given clean image, we first generated an
adversarial attack. We then fed the adversarial image through the diffusion model, and quantified the
distance between the purified states and the clean images. See Fig. 1 c for an example. Surprisingly,
we found that the l2 distances to the clean samples were increased after the diffusion models. Not
only that we see no signs of shrinkage of distances towards the clean samples, the distances were
increase by more than 100%.

This increase in distances as reported above is highly robust. First, it is insensitive to the particular
methods used to perform adversarial attack. We tested four different methods (BPDA, PGD, BPDA-
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EOT, PGD-EOT), and the results are essentially the same. Second, the results are also robust to the
way how distances are measured. Instead of l2 distance, we also quantified the l∞ distance, and
found similar results (see Appendix C.1). The results also hold for multiple datasets we tested (i.e.,
CIFAR-10 and ImageNet). Finally, the results are robust to how the diffusion-based purification is
implemented. In the original DiffPure implementation, both forward (noising) and reverse (denoising)
processes were used. In this case, as expected, the DiffPure framework exhibited a clear two-stage
process—first increasing the ℓ2 distance by the forward diffusion and further decreasing by the
reverse denoising (see Fig. 1c). We removed the forward process by only performing denoising, and
still observed that the distances to clean samples were increases (not shown).

Thus, diffusion models tend to push the adversarial images further away, rather than being closer
to the clean samples as often believed (Nie et al., 2022). As a remark, despite the considerable
robustness differences (see Table 1), the ℓ2 distances to the clean images were almost identical for
different attacks throughout the purification processes. Thus the ℓ2 distances to clean samples after
diffusion models could not effectively explain the robustness differences. These observations may
have important implications for adversarial attacks under diffusion models. It raises the possibility
that the attacks based on BPDA may substantially over-estimate the adversarial robustness of the
system based on diffusion purification.

Behavior of diffusion models under random perturbations. We wonder if the behavior of
adversarial attacks under diffusion model is special at all– that is, whether the push-away phenomena
we observed is in fact general to arbitrary perturbations around the clean images. To test this,
we generated perturbations of clean images by sampling random noise uniformly with a fixed
magnitude. We first tested small perturbations that match the size of the adversarial attack on
CIFAR-10 (ℓ∞ = 8/255 uniform noise). We found that the behavior of the model under random
noise (Fig. 1d, blue curve) is almost identical to that induced by the adversarial attack. These results,
together with those reported above, suggest that diffusion models are able to reduce the distances to
a clean image from a slightly perturbed clean image. This raised the intriguing possibility that the
cleans images do not reside on the local peaks of the image priors learned in the diffusion models.
This may make sense given the in memorization v.s. generalization trade-off (Kadkhodaie et al.,
2024). That is, a model simply encodes every clean image as the prior mode may not generalize well.

Although the results above indicate that diffusion models are ineffective in removing small perturba-
tions, it is possible that they may be more effective in removing noise induced by larger perturbations.
We performed the same ℓ2 distance analysis using three larger levels of uniform noises, ranging
from ϵ = {32, 64, 128}/255, to examine the model behavior under larger perturbations (Fig. 1d).
As the noise level increases, the ℓp distances of the final purified states increase. Interestingly, the
model transits from “pushing-away” to “shrinkage” under very large perturbations. We repeated the
above experiments with ℓ∞ distances (Fig. S1) and on the ImageNet dataset, and confirmed that
the observations still held under ℓ∞ measurements across datasets. The original data are provided
in Appendix C.1. Overall, these results suggest that, while diffusion models can denoise the image
toward the image manifold when the noise is large, locally it is ineffective in removing small noise.

3.2 RANDOMNESS LARGELY DETERMINES THE PURIFIED STATES OF DIFFUSION MODELS

Diffusion models are intrinsically noisy due to the noise added in both forward and reverse processes.
Thus, a diffusion model defines a stochastic mapping fϵ between the input and output images, i.e.,
y = fϵ(x). When the noise ϵ is fixed (in the implementation, this amounts to fixing the random
seeds, Appendix B), the mapping becomes deterministic. Another way to remove the stochasticity in
diffusion models is to marginalize over the noise ϵ by taking the expectation, i.e., y = Ep(ϵ)[fϵ(x)] .
Practically, this requires taking a large number of samples and averaging, which is computational
expensive. Often, diffusion-based purification is only based on one sample from diffusion models.
Thus, we will focus on study the variability of individual samples generated by diffusion models.

We are interested in understanding how randomness in diffusion models determines the states after
purification. We consider two relevant scenarios. First, we fix the input image x, and pass it through
diffusion models multiple times (n = 100) while allowing the randomness to vary from trial to trial.
Second, we fix the randomness in diffusion models, and randomly draw input images uniformly from
a small ball M (ℓ∞ = 8/255, matching the scale of adversarial attacks) around the clean image x0.
As shown in Fig. 2b, starting from the same image, randomness will drive the purified states into
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Figure 2: Randomness largely determines the purified states of diffusion models. (a) When the
noise is fixed, purified images based on images from the image neighborhood are highly correlated.
(b) When the input image is fixed, purified images from different samples generated by diffusion
models are substantially less correlated. (c,d,e) Schematics illustrating the transformation induced by
diffusion models when allowing images or noises to very, or allowing both to vary. (f) The measured
distribution of l2 distance of the transformed images to the centroid for three different conditions,
comparing to the original perturbations. When noise is fixed, diffusion models reduce the distances.
When noise is allowed to vary, diffusion models increase distances.

different (but positively correlated, mean 0.2368) directions. However, even starting from different
images within a small ball, the same randomness will drive the purified states into almost exactly the
same directions (correlation 0.9954; Fig. 2a). These results imply that if the magnitude of the image
perturbation is small (as for the scenario of adversarial examples), randomness is a decisive factor for
the eventual purified state. If the randomness is not properly controlled, the gradients calculated for
the previous randomness will be applied to an alternative purified state and become non-optimal.

4 FUZZY ROBUSTNESS EVALUATION FOR ADVERSARIAL PURIFICATION

4.1 FUZZY ADVERSARIAL ROBUSTNESS FOR SYSTEMS WITH RANDOMNESS

The results above suggest that the randomness in diffusion models largely determines the eventual
purified state. This implies that randomness may play an important role in the robustness of diffusion
models. How randomness affects robustness has been debated. Some relied on randomness as
a feature for robustness improvements (Yoon et al., 2021), while others argued it might obscure
gradients and make evaluation challenging (Athalye et al., 2018; Carlini et al., 2019; Gao et al., 2022).
Here we approach this question from a new perspective. Specifically, we will show that the classical
definition for adversarial robustness fall short in evaluating systems with robustness, and it is more
appropriate to define “fuzzy adversarial examples”. This concept is best illustrated with the following
example (also see Fig. 3a).

Failure of classical adversarial robustness for systems with randomness. Let (x0, y0) be a data
point x0 with label y0, and g(x) be a deterministic classifier. Consider an additive Gaussian noise
model

f(x) = x+ η,where η ∼ N (0, σ2I). (3)
Suppose that we would like to understand the robustness of the system with randomness s = g ◦ f
around x0. Assume g can successfully classify x0, thus g(x0) = y0, and g is not a constant, thus
∃x′ s.t. g(x′) ̸= y0. Typically, if x′ is close to x0, thus the ℓp-norm less than a given threshold,
∥x′ − x0∥p < ϵ, we say x′ is an adversarial example of g around x0. Such a definition works well
for the deterministic g, but will fail for a system with randomness as s. Examining the purification
f(x), there will be a chance that the clean sample becomes adversarial after purification, f(x0) = x′,
or reversely, it turns an adversarial examples back clean, f(x′) = x0. The randomness blurs the
boundary between adversarial and non-adversarial examples, therefore we can not definitely say that
x′ is or is not an adversarial example for s anymore.
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Figure 3: Fuzzy robustness. (a) Noise added in classification will make the decision probabilistic and
“ fuzzy". (b) Distribution of grade from PGD-EOT attack on CIFAR-10 dataset. (c) The cumulative
of the fuzzy robustness across the dataset for 4 different attack methods and no attack.

These considerations suggest that it is important to consider the probability of an adversarial attack
fooling the system. Below we formalize this idea drawing from the study of fuzzy sets (Zadeh, 1965).

Definition 1 (Fuzzy adversarial examples). Let {(xi, yi)} be a dataset with data xi and labels yi,
i = 1 . . . n. Consider a classification system with randomness s(x). For a given threshold ϵ under
ℓp-norm, a perturbed data point ξi, s.t. ∥ξi − xi∥p ≤ ϵ, is said to be a fuzzy adversarial example,
with grade

m(ξi) = P (s(ξi) ̸= yi),

thus, the probability it successfully fools the system. All such fuzzy adversarial examples form a
fuzzy set, Ξ = (U,m), where U = {ξi} is the collection of such perturbed examples and m(·) is the
measure function defined above.

Definition 2 (α-fuzzy adversarial examples). The fuzzy adversarial example ξi is said to be an
α-fuzzy adversarial example, if

m(ξi) ≥ α,

thus, with at least probability α it can fool the system. All such α-fuzzy adversarial examples form an
α-cut of the fuzzy set, Ξα = {ξi ∈ U |m(ξi) ≥ α}.

4.2 FUZZY ROBUSTNESS EVALUATION OF DIFFUSION MODELS

We next evaluate the fuzziness of adversarial examples experimentally in diffusion models. We
evaluated the fuzzy robustness for DiffPure on CIFAR-10 and ImageNet dataset. We first calculated
the standard BPDA/EOT and PGD/EOT with full gradients on CIFAR-10 (ℓ∞ = 8/255), and
BPDA/EOT attack on ImageNet (ℓ∞ = 4/255) (see Appendix B for details). After calculating the
attacks, we repeatedly evaluate the same attack to DiffPure for r = 100 times, and use the frequency
to estimate the probability of a particular attack fooling the system (i.e., grades of fuzzy adversarial
attack). Two extreme cases are of particular interest: (i) the portion of adversarial examples never
fool the system (non-adversarial, m = 0); (ii) the portion always fools the system successfully
(full-adversarial, m = 1). If the classical definition still holds approximately, we should expect that
the portion of non-adversarial is close to the standard robustness, and full-adversarial is close to the
failure rate (1 − standard robustness). The results are shown in Table 1 and 2. The histograms of
fuzzy adversarial examples with all grades are shown in Fig. 3b and S4a.

As shown in the Tables and Fig. 3b, rather than being a 0-1 distribution approximating the determinis-
tic regime, the grades have a wide span of range across. Depending on the criteria for considering an
image as adversarial (the selection minimum grade α), we will have different robustness evaluations
rather than a single number believed in the previous works (Nie et al., 2022; Xiao et al., 2023; Lee &
Kim, 2023). Since the selection of α is arbitrary, here we set α = 0.5 as an exemplar, thus considering
an example as adversarial if with at least 50% of the chance it can fool the system. This is a natural
selection as for any sample with a grade m < 0.5, there is a high chance that it can be corrected by a
majority voting (which chooses the category with most “votes" from the samples) .1

1Note that it is not a direct correspondence between samples with grades m < 0.5 and that can be corrected
by majority voting, unless binary classification, as there can be multiple wrong classes account for the fuzziness.
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Table 1: Fuzzy robustness evaluation of DiffPure on CIFAR-10 (ℓ∞ = 8/255).

Attack Standard Robust. Fuzzy Robust. Major. Vote
m = 0 m = 1 α = 0.5 k = 10 k = 100

Clean 85.75 ± 0.82 49.5 0.1 88.0 89.61 90.8

BPDA 83.71 ± 0.82 46.5 0.2 85.9 87.78 88.4
BPDA-EOT 81.54 ± 0.84 44.1 0.9 83.2 85.10 85.5

PGD (Full) 71.74 ± 0.88 38.8 1.8 70.9 74.14 74.5
PGD-EOT 60.53 ± 0.83 30.0 7.0 59.4 61.58 61.2

Table 2: Fuzzy robustness evaluation of DiffPure on ImageNet (ℓ∞ = 4/255).

Attack Standard Robust. Fuzzy Robust. Major. Vote
m = 0 m = 1 α = 0.5 k = 10 k = 100

Clean 68.70 ± 1.89 40.0 9.5 68.0 71.0 71.5

BPDA 64.73 ± 1.79 35.5 10.5 66.5 68.0 68.0
BPDA-EOT 58.41 ± 1.88 29.0 13.5 59.0 61.5 63.0

One can define a fuzzy example as adversarial by setting a particular α, and acquiring a corresponding
robustness. This is essentially the cumulative distribution function of the grade distribution, which
we defined as cumulative fuzzy robustness (CFR). Given a particular grade threshold α, for the
same attack, a higher CFR reflects a better fuzzy robustness; for the same model, a lower CFR
reflects a stronger attack. For the limiting case, a perfect robustness system will have an all-zero
grade distribution, thus yielding a CFR curve of a horizontal line at 1; while an entirely non-robust
system will have an all-one grade distribution, yielding a CFR curve of a horizontal line at 0. Any
deterministic system will have a CFR curve with a horizontal line at its robustness rate, while a
randomness system will have a CFR curve increasing to 1 (Fig. 3c). We propose the CFR curve as
the proper robustness metric for systems with randomness. We observe that the adversarial robustness
of the two attacks based on BPDA is substantially lower than that based on PGD. This is consistent
with our earlier observation that diffusion models push the adversarial images away from the clean
image, which would make the BPDA method less effective.

5 THE HYPERSPHERICAL CAP MODEL OF ADVERSARIAL REGIONS

To reveal how adversarial robustness can be improved by purification, it would be important to
understand the geometry of the adversarial regions for the classifier. If adversarial regions are tiny
regions (e.g., small droplets) and there are many of them surrounding a given clean image, it would
be relatively easy to escape these regions by adding a small amount of Gaussian noise. In contrast, if
adversarial regions are large and continuous in space, it would be difficult to escape these regions by
adding isotropic noise, instead systematic directional biases are needed to avoid these regions. While
early work proposed that adversarial regions are small "pockets" in high-dimensional space (Szegedy
et al., 2013), Tramèr et al. (2017) showed that rather than being isolated high-dimensional droplets,
adversarial examples form continuous spaces so that about 25 orthogonal vectors can be fit into the
adversarial region. In the following, we propose a hyperspherical cap model for adversarial regions.

The hyperspherical cap model. An image x is an adversarial example if and only if its projection
along the adversarial direction crosses a threshold. Because all such points form a hyperspherical cap
around the adversarial direction, the adversarial region is a hyperspherical cap.

Essentially, this model means that for adversarial examples, the classification boundaries are locally
linear. To establish this model, we rely on the assumption that adversarial directions are sparse so that
they can not be sampled by random directions, which is consistent with prior empirical observations.
Under these assumptions, one can mathematically show that the adversarial regions should be a
hyperspherical cap when considering l2 neighborhood (Appendix A.1). Notably, based on this model,
we can derive an alternative proof of the GAAS algorithm (Tramèr et al., 2017) (Appendix A.2), and
as well estimate the volume of adversarial regions for each cap (Appendix A.3).
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Figure 4: Hyperspherical cap model. (a) A schematic of the hyperspherial cap model for adversarial
regions. (b) A 2-D projection on one adversarial and one random direction. (c) A 2-D projection on
two adversarial directions. (d) A key prediction of the hyperspherical cap model is that the transition
of the categorical decision after projecting onto the adversarial direction should be sharp. (e) The
empirically measured slope of the transition of decision after projecting onto the adversarial direction.
The predominant large slopes support the hyperspherical cap model. (f) The average adversarial
transition curve after proper shifting and alignment. This again suggests the transition is sharp.

Empirical test of the hyperspherical cap model. We next test the hyperspherical cap model
numerically using a WideResNet-28-10 classifier trained on CIFAR-10. We studied its adversarial
regions around individual clean images within the ℓ2 distances of 3.0. We have deliberately chosen
a radius that is larger than the typical length of adversarial attack on CIFAR-10, which is about 1.
We first visualized the adversarial region in 2-D subspace spanned by an adversarial direction (via
PGD attack, untargeted) and a random direction. Consistent with the hyperspherical cap model, the
boundary between the correct and incorrect categories is roughly linear (see Fig. 4b for an example).
We also note that, for the special case where slicing over two adversarial directions, two spherical caps
may interface with each other (Fig. 4c). We quantify how well the data support the hyperspherical cap
model. One key prediction of this model is that, there should be a sharp transition of the categorization
decision along the axis of the projection onto adversarial direction (Fig. 4d). We test this prediction
by quantifying the sharpness of this transition around 1000 clean images. We found the slope of the
transition curve (fit by Sigmoid function) along the adversarial direction is generally large, with most
larger than 6 (Fig. 4e). This provides strong empirical support for the hyperspherical cap model and
suggests that the decision boundary within the small image neighborhood is roughly linear.

0 1000 2000 3000
0

1

ei
ge

nv
al

ue
s

Eigenspectrum of the Jacobian

dimension

va
ria

nc
e 

ex
pl

ai
ne

d

rank of the principal components

original images

transformed by 
diffusion model

0 20 40

0.006

0

dog
decision 
boundary

diffusion 
model

dog

catf

f(x0)

x0

a b c

M

M~

Figure 5: Diffusion models compress the image space. (a) Schematic illustrating diffusion model
may compress the space to avoid adversarial regions. (b) PCA analysis shows that, after passing
through diffusion models, the variance along most direction are reduced. 50 top PCs were plotted.
(c) Analysis of the eigenspectrum of the Jacobian at the clean samples again suggest the image
neighbourhood is hugely compressed.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 DIFFUSION MODELS IMPROVE ROBUSTNESS BY COMPRESSING IMAGE SPACE

Next, we seek to understand how the diffusion models improve robustness in adversarial purification
within a particular randomness configuration. In particular, we would like to understand precisely
what factors decide the robust/non-robust outcomes after purification. We have shown in Sec. 3.1
that diffusion models pushes images away from the clean samples, with no shrinkage of distances as
naively expected. Intuitively, this may lead to a drop of clean accuracy. Indeed, we observed that
clean accuracy drop to about 86% after passing clean images of CIFAR-10 through diffusion models
(Table 1). This leads to a conundrum: how can diffusion model increase the robustness after all? We
reason that the increase in adversarial accuracy must be due to a narrowing of the gap between the
adversarial accuracy and clean accuracy. Crucially, as we will demonstrate below, this narrowing
(thus robustness improvement) is due to a compression of image space by diffusion models.

Diffusion models compress the image neighborhood. Denote the neighbourhood around a clean
sample x0 as M, and the diffusion model transform M into M̃ which always contain the transformed
clean image f(x0) (see Fig. 5a). Recall that the clean accuracy is calculated from based on f(x0),
and adversarial accuracy is calculated based on worse-case-scenario in the neighbourhood M̃. In
the extreme case that M̃ collapses onto f(x0), the adversarial accuracy and clean accuracy will
be identical. This inspired us to treat a purified clean sample f(x0) as a “reference point”, and
study the deviation of the worse-case-scenario from it. Specifically, for some perturbation η, the
robustness differences should be decided by the differences of the purified images with respect to the
reference points, i.e., η′ = f(x0 +η)− f(x0). As hinted in Sec. 3.2, diffusion models may lead to a
comparison of the image space, as for random perturbations, the compression rate ∥η′∥/∥η∥ ≈ 0.25.
Following this initial observation, we develop two methods to investigate the transformation of image
space induced by diffusion models.

(i) Principal Component Analysis (PCA). First, we sampled 10,000 points around the neighborhood
of a clean image and transformed these images using a diffusion model with fixed randomness.
We performed PCA on the original images and the transformed images to obtain their spectrums,
respectively. As shown in Fig. 5b, after transformed by the diffusion model, most eigenvalues are
much smaller than 1, indicating substantial compression.

(ii) Analysis of the Jacobian matrix. Under a locally linear assumption, we may use Taylor expansion
to study the transformation induced by diffusion model via interrogating the Jacobian at a clean
sample. Specifically, we may write

f(x0 + η) ≈ x0 + (f(x0)− x0) + Jf (x0)η, (4)

Here, the term f(x0)−x0 describes the shift of the entire image neighborhood as analyzed in Sec. 3.2.
Importantly, the eigenspectrum of the Jacobian matrix Jf (x0) indicates the amount of compression
and expansion along each eigen-direction. Fig. 5c plots the averaged eigen-spectrum based on 50
clean images from CIFAR-10. The largest eigenvalue is 1.32± 0.21, which is comparable with the
compression rates; around 90% of the eigenvalues (2760 out of 3072) are smaller than 0.25, with
only 17 eigenvalues exceeding 1. Together, the results from the two analyses establish a substantial
compression of the image neighborhood induced by diffusion models.

Dissecting the factors underlying whether an attack would succeed/fail. What determines
whether a particular attack would be successful or not under diffusion models? Given the compression
induced by diffusion model, it is natural to consider that the eigenvalues of the Jacobian of the robust
images may be smaller that those of the non-robust ones. However, comparing the eigenspectrum of
Jacobian matrices for robust v.s. non-robust images, we did not observe a difference between the two.

We next evaluate a couple of additional factors that may distinguish the two (see Fig. 6). First,
the closest decision boundary may be closer for some samples compared to others. This can be
quantified by moving along the adversarial direction starting from the purified clean sample f(x0)
and identifying the critical threshold for reversing the decision to a wrong category. Second, because
the orientation of transformed image neighborhood M̃ (which can be approximated by an ellipsoid) is
likely different for different clean images, it may lead to differences in the magnitude of the purified
adversarial attack. We find both factors are important.

(i) Analysis of the critical threshold. We numerically calculated the critical threshold for robust and
non-robust images up to ℓ2 distance of 5. We observed that robust samples exhibit higher critical
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Figure 6: Robust v.s. non-robust samples. (a) Schematics showing the factors that make a sample
robust or non-robust. The two key factors are the critical threshold along the adversarial direction
and the distance of the purified attack to reference point (i.e., the purified clean image). A sample
is robust if the former is larger than the latter. (b) Critical threshold along the adversarial direction
distinguishes robust v.s. non-robust samples, with a large AUC. (c) Similar to (b), but for distance to
the reference point.

thresholds (Fig. 6b). The two distributions are reasonably well separated. We calculated the Receiver
operating characteristic (ROC) curve for classifying robustness v.s. non-robustness using the critical
threshold alone, and found that the AUC is 0.98, suggesting that the magnitude of the critical threshold
is highly predictive of whether a sample is robust or nonrobust.

(ii) Analysis of the magnitude of the purified attack. We also observe that there is a significant
difference in the length of the purified adversarial perturbations relative to the purified clean samples
(Fig. 6c). For robust samples, the average length of purified attack is 0.76 ± 0.19. This yield a
compression rate of 0.76/1.16 ≈ 65.5% compared to the size of the adversarial attack pre-purification.
For non-robust samples, the average length of purified attack is 1.29± 0.35, yielding an expansion
rate of 1.29/1.23 ≈ 104.9%. Analysis of the ROC curve shows that length of the purified adversarial
perturbations can distinguish the robust v.s. non-robust samples with an AUC of 0.91, although to a
less extent compared to the critical threshold described above.

7 DISCUSSION

We have systematically examined the properties of diffusion models used in adversarial purification.
We show that diffusion models do not shrinkage the distance of the transformed images toward clean
images. In fact, it substantially increases the distance. Furthermore, randomness in diffusion models
necessitate a new framework in evaluation of adversarial robustness (e.g., fuzzy robustness). We
further show that adversarial regions are large and continuous regions that form hyperspherical caps.
Importantly, diffusion models increase robustness by shrinkage of the image space to avoid these
regions. Several limitations still exist in our current work. First, we do not offer a principled reason of
why diffusion models push the perturbed images further away from clean images. We have speculated
that this may be related to the generalization v.s. memorization trade-off in high-dimensional space
(Kadkhodaie et al., 2024), which deserves further investigation in the future. Second, we have
only tested diffusion models that are formulated in the pixel space. One interesting question is
whether these results would generalize to models constructed in latent space (Rombach et al., 2022).
Third, our robust evaluation on ImageNet is non-exhausive. Due to the limitation of computational
resources, we were unable to run the PGD-EOT attack on ImageNet. Overall, our results clarify a
number of misconceptions about adversarial purification and provide new insights into the behavior of
diffusion models. Better understanding the exact mechanisms of how diffusion models and diffusion
model-based purification work will likely lead to more robust and transparent AI systems.
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A THE HYPERSPHERICAL CAP MODEL OF ADVERSARIAL REGIONS

A.1 THE HYPERSPHERICAL CAP MODEL

Here we describe the hyperspherical cap model of adversarial regions in detail. We start with a formal
definition of adversarial directions.
Definition 3 (Adversarial directions). Let (x0, y0) be the data point-label pair, and consider its
robustness in an ℓ2 ball with radius ϵ. Let g(x) be a classifier correctly classifying the point, i.e.
argmax

i
gi(x0) = y0, where gi(x0) denotes the i-th logit. For a given direction η, define the range

of the i-th logit (change of the logit) as
ri(η, ϵ) = sup

γ1∈[0,ϵ)

gi(x0 + γ1η/∥η∥2)− inf
γ2∈[0,ϵ)

gi(x0 + γ2η/∥η∥2).

Then the direction ηadv is said to be an adversarial direction if for some logit i, the change of logit
along that direction is considerably larger than the expectation along a random direction ηrand,

E
ηrand

ri(ηrand) = o (ri(ηadv)) .

In the following, we propose a hyperspherical cap model for adversarial regions. Essentially, this
model relies on the classification boundary being linear locally.

Assumption 1. (Sparsity). Adversarial directions are sparse.

By “sparse", we mean that adversarial directions usually can not be sampled by random directions.
This is in line with the fact that classifiers trained with random Gaussian noises do not provide
meaningful improvements on adversarial robustness.
Assumption 2. (Critical threshold). Locally, when moving along the adversarial direction starting
from the clean sample, the decision boundary is only crossed once. The radius of the single crossing
point (to the clean sample) is defined as the critical threshold γ.
Model 1 (The hyperspherical cap model of adversarial regions.). When ϵ is small, consider a point x

“around” an adversarial direction ηadv , that is, it has projection onto the adversarial direction
< x− x0,ηadv/∥ηadv∥2 >= βϵ = O(ϵ), β ∈ R. (5)

Based on Assumption 1, the logits at point x can be approximated by the logits of the projection,
g(x) ≈ g(x0 + βϵ · ηadv/∥ηadv∥2). (6)

Combined with Assumption 2, x is an adversarial example iff the projection crosses the critical
threshold, thus β > γ/ϵ. All such points form a hyperspherical cap around the adversarial direction.

Proof. For the point x around x0, the directional vector (x−x0) can be decomposite into components
parallel and orthogonal to the adversarial direction,

(x− x0) = (x− x0)//ηadv
+ (x− x0)⊥ηadv

,

where (x−x0)//ηadv
=< x−x0,ηadv/∥ηadv∥2 > ηadv/∥ηadv∥2 = βϵ ·ηadv/∥ηadv∥2, and denote

Since ϵ is small, conduct a Taylor expansion at x0 + (x− x0)//ηadv
for some logit i,

gi(x) = gi(x0 + (x− x0)//ηadv
+ (x− x0)⊥ηadv

)

≈ gi(x0 + (x− x0)//ηadv
) +∇T gi(x0 + (x− x0)//ηadv

) · (x− x0)⊥ηadv
.

Again since ϵ is small, assume the gradients do not change considerably locally, then∣∣∇T gi(x0 + (x− x0)//ηadv
) · (x− x0)⊥ηadv

∣∣ ≈ ∣∣∇T gi(x0) · (x− x0)⊥ηadv

∣∣ ≤ ri(⊥ ηadv, ϵ).

Since adversarial directions are sparse, with a high probability that ⊥ ηadv is not an adversarial
direction (Fig. 4b), although we also witness the rare case where ⊥ ηadv is indeed another adversarial
direction (Fig. 4c), thus

E
⊥ηadv

ri(⊥ ηadv, ϵ) = o(ri(ηadv, ϵ)).

Consequently,
gi(x) ≈ gi(x0 + βϵ · ηadv/∥ηadv∥2).
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A.2 THE GAAS ARRANGEMENT (MAXIMUM k-SIMPLEX IN A HYPERSPHERICAL CAP)

Here we provide an alternative proof of the GAAS algorithm (Tramèr et al., 2017) based on the
hyperspherical cap model.

Proof. For a (k − 1) simplex embedded in the k dimensional space with radius ϵ, the coordinates are
the permutations of

(0, . . . , ϵ, . . . , 0) .

The center is given by
(
ϵ
k , . . . ,

ϵ
k

)
. Therefore the height (distance to the origin) is

h =
ϵ√
k
.

With the hyperspherical cap model, the height should exceed the critical threshold γ, denote α = γ/ϵ,

h =
ϵ√
k
≥ γ ⇒ k ≤ 1

α2
.

Therefore the maximum number of orthogonal directions that can fit into the adversarial regions is

k = min

(⌊
1

α2

⌋
, d

)
,

where d is the dimensionality of the data as a trivial bound.

A.3 VOLUME OF THE ADVERSARIAL CAP

Corollary 1.1 (Volume of the adversarial cap). Let β̄ = γ/ϵ be the ratio of the critical threshold and
the radius of the ℓ2 hyperball, and d be the dimensionality of the data. The ratio of volumes between
the hyperspherical cap and hyperball is given by (Li, 2010)

Vcap

Vball
=

1

2
I1−β̄2

(
d+ 1

2
,
1

2

)
=

1

2

(
1− Iβ̄2

(
d+ 1

2
,
1

2

))
, (7)

where Ix(a, b) denotes the regularized incomplete beta function (cdf of beta distribution).

A.4 FITTING PSYCHOMETRIC FUNCTIONS FOR DECISION BOUNDARIES

We fitted psychometric functions to quantify the transition of decision boundaries in the hyperspherical
cap model. For each clean sample, we first picked one adversarial and one random direction to slice
a plane from the high-dimensional stimuli space. We further sampled 1000 points within the ℓ2
distances of 3 to the clean image on each plane, a typical example is shown in Fig. 4b. Each points
are projected onto the adversarial direction (Fig. 4d), and will be measured as either adversarial (1)
or non-adversarial (0) to the classifier similar to a two-alternative forced choice (2AFC) task. The
binary values and projections onto the adversarial direction were fitted with a sigmoid psychometric
function

S(x) =
1

1 + e−k(x−x0)
(8)

with logistic regression, where k is the slope and x0 is the threshold. All fitted psychometric functions
(n = 1000, corresponding to the first 10% testing set of CIFAR-10) were aligned to the threshold and
averaged, as shown in Fig. 4f.
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B IMPLEMENTATIONS DETAILS OF ADVERSARIAL ATTACKS ON DIFFPURE

Datasets and base classifiers The experiments were conducted on the CIFAR-10 Krizhevsky &
Hinton (2009) and ImageNet (Deng et al., 2009) datasets. For CIFAR-10, we subsampled the first
1000 images from the test set. For ImageNet, we subsampled the first 200 images from the validation
set. Standard preprocessing was applied to the datasets. We used the standard classifiers from the
RobustBench (Croce et al., 2020)https://github.com/RobustBench/robustbench.
Namely, the WideResNet-28-10 model for CIFAR-10, and ResNet-50 model for ImageNet. The
clean accuracy for the classifier is 94.78% on CIFAR-10 and 76.52% on ImageNet.

Diffusion models We focused on discrete-time diffusion models in this paper to avoid the po-
tential gradient masking induced by numerical solvers in continuous-time models (Huang et al.,
2022). For CIFAR-10, we used the official checkpoint of DDPM (coverted to PyTorch from Ten-
sorflow https://github.com/pesser/pytorch_diffusion) instead of Score-SDE. For
ImageNet, we used the official checkpoint of 256× 256 unconditional Guided diffusion (Dhariwal
& Nichol, 2021) https://github.com/openai/guided-diffusion as the purification
system. The purification time steps were kept the same with Nie et al. (2022), namely t∗ = 0.1 (100
forward and 100 reverse steps) for CIFAR-10 and t∗ = 0.15 (150 forward and 150 reverse steps) for
ImageNet.

Fixing randomness in diffusion models We controlled the randomness within diffusion models
by controlling the random seeds during both the forward and reverse processes. For the base seed s,
i-th batch of data at the t step of the forward/reverse process, we set the random seed

Seed(s, i, t) =

{
104s+ 2× (103i+ t) + 1, if forward process

104s+ 2× (103i+ t), if reverse process
(9)

before sampling the Gaussian noise from eq. 1 or eq. 2. This setting ensures that we have a different
random seed for each batch of data and timesteps in the forward/reverse process, but will keep the
randomness the same through the entire purification process if encountering the same data batch. We
changed the base seed s from 0 to 99 for the inter random seed experiments, and used the base seed 0
for the intra random seed experiments.

Adversarial attacks We conducted BPDA/BPDA-EOT and PGD/PGD-EOT attacks (Atha-
lye et al., 2018) on CIFAR-10 with ℓ∞ = 8/255, and BPDA/BPDA-EOT attacks on Ima-
geNet with ℓ∞ = 4/255. The PGD was conducted based on the foolbox (Rauber et al.,
2020)https://github.com/bethgelab/foolbox, and the BPDA wrapper was adapted
from advertorch (Ding et al., 2019)https://github.com/BorealisAI/advertorch.
Full gradients were calculated for the PGD/PGD-EOT as Lee & Kim (2023) discovered that the
approximations methods used in the original DiffPure (Nie et al., 2022) incurred weaker attacks.
The full gradient of PGD/PGD-EOT is the strongest attack for DiffPure methods according to Lee
& Kim (2023) experiments, and is very computationally expensive. We ran our CIFAR-10 attack
experiments on a NVIDIA RTX 6000 GPU for 10 days. We were not able to conduct the full PGD
attack on ImageNet in a reasonable time given our available resources. The PGD/PGD-EOT attacks
with be made available to the public to facilitate future research. The key hyperparameters for our
attacks are listed in Table S1.

Table S1: Hyperparameters for adversarial attacks.

Hyperparameters Values {CIFAR-10, ImageNet}
Attack magnitude {8, 4}/255
PGD steps 40
Relative PGD step size 0.01 / 0.3
EOT numbers 15
Batch size {50, 10}
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ℓp DISTANCE MEASUREMENTS DURING DIFFPURE

Additional distance measurements during the DiffPure process are shown in Fig. S1 and S2. For
CIFAR-10, we further measured the ℓ∞ distances for the experiment illustrated in Fig. 1. For
ImageNet, we repeated the same experiment with the unconditional Guided diffusion with 150
diffusion and denoising steps (t∗ = 0.15, the same setting with the DiffPure (Nie et al., 2022)), and
measured the ℓ2/ℓ∞ distances. The distances during the intermediate diffusion process in ImageNet
(Fig. S2) are not shown as the code base implemented the one-step diffusion equation equivalent
to the multistep diffusion. Again, similar effects were observed under both ℓ2/ℓ∞ distances across
datasets, namely, diffusion models purified to states further away from the clean images, considerably
larger than the original adversarial perturbation ball. Detailed data points are listed in Table S2,S3,S4.
Specifically, the ℓ2/ℓ∞ distances to clean samples at the init point (t = 0, the scale of the original
perturbation), maximum point (t = 100/150, after forward diffusion), and end point (t = 200/300,
after the reverse denoising). The end point distances are roughly 4 or 5 times of the size of the
adversarial ball under ℓ2 distance on CIFAR-10/ImageNet, and 10 or 26 times under ℓ∞ distance.
Diffusion models transit back to the ℓ2 shrinkage regime beyond the uniform noise of ϵ = 16/255,
which is twice of the standard ℓ∞ adversarial ball considered for CIFAR-10.
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(a) Adversarial attacks (ϵ = 8/255).
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Figure S1: Diffusion models increase ℓ∞ distances in adversarial purification.
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(a) ℓ2 distances.
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(b) ℓ∞ distances.

Figure S2: Distances measurements during DiffPure on ImageNet.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table S2: ℓ2 distance measurements during DiffPure on CIFAR-10 (ℓ∞ = 8/255).

Attack Init (t = 0) Max (t = 100) End (t = 200)
BPDA 1.027 ± 0.023 8.976 ± 0.118 3.606 ± 0.607
BPDA-EOT 1.072 ± 0.046 8.992 ± 0.116 3.607 ± 0.615
PGD (Full) 1.077 ± 0.040 8.980 ± 0.118 3.646 ± 0.614
PGD-EOT 1.188 ± 0.072 8.999 ± 0.115 3.695 ± 0.617

Uniform (ϵ = 8/255) 1.004 ± 0.009 8.979 ± 0.113 3.598 ± 0.618
Uniform (ϵ = 16/255) 4.015 ± 0.034 9.699 ± 0.124 3.823 ± 0.640
Uniform (ϵ = 32/255) 8.030 ± 0.065 11.715 ± 0.145 5.258 ± 0.714
Uniform (ϵ = 128/255) 16.051 ± 0.129 17.622 ± 0.184 9.307 ± 0.581

Table S3: ℓ∞ distance measurements during DiffPure on CIFAR-10 (ℓ∞ = 8/255).

Attack Init (t = 0) Max (t = 100) End (t = 200)
BPDA 0.031 ± 0.000 0.601 ± 0.051 0.313 ± 0.053
BPDA-EOT 0.031 ± 0.000 0.603 ± 0.051 0.316 ± 0.053
PGD (Full) 0.031 ± 0.000 0.606 ± 0.050 0.317 ± 0.055
PGD-EOT 0.031 ± 0.000 0.606 ± 0.050 0.319 ± 0.053

Uniform (ϵ = 8/255) 0.031 ± 0.000 0.605 ± 0.050 0.314 ± 0.052
Uniform (ϵ = 16/255) 0.125 ± 0.000 0.647 ± 0.054 0.330 ± 0.055
Uniform (ϵ = 32/255) 0.251 ± 0.000 0.735 ± 0.052 0.425 ± 0.059
Uniform (ϵ = 128/255) 0.502 ± 0.000 0.941 ± 0.057 0.623 ± 0.054

Table S4: ℓ2/ℓ∞ distances measurements during DiffPure on ImageNet (ℓ∞ = 4/255).

Distances Attack Init (t = 0) Max (t = 150) End (t = 300)

ℓ2
BPDA 3.537 ± 0.079 61.116 ± 0.738 17.712 ± 4.851
BPDA-EOT 3.772 ± 0.139 61.078 ± 0.762 17.694 ± 4.838

ℓ∞
BPDA 0.016 ± 0.000 0.832 ± 0.059 0.422 ± 0.077
BPDA-EOT 0.016 ± 0.000 0.839 ± 0.060 0.418 ± 0.084
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C.2 PERCEPTUAL METRIC AND ADDITIONAL SAMPLING TECHNIQUES

In the following sections, we include additional experimental results suggested during rebuttal, which
would be incorpated to the main text in the final version.

We repeated the ℓp distance measurements in Sec. 3.1 with additional sampling techniques along
with a perceptual distances. The results are summarized in Table S5. Examples of purified states with
diffrent sampling methods are shown in Fig. S3.

Table S5: Distance measurements pre/post-diffusion models on CIFAR-10 (PGD-EOT, ℓ∞ = 8/255).

Sampling method ℓ2 ℓ∞ SSIM
DDPG Ho et al. (2020) 1.188 → 3.695 (↑) 0.031 → 0.319 (↑) 0.963 → 0.791 (↓)
Reverse-only 1.188 → 3.084 (↑) 0.031 → 0.273 (↑) 0.963 → 0.834 (↓)
One-step Carlini et al. (2022) 1.188 → 2.692 (↑) 0.031 → 0.239 (↑) 0.963 → 0.869 (↓)
DDIM Song et al. (2020a) 1.188 → 2.895 (↑) 0.031 → 0.249 (↑) 0.963 → 0.861 (↓)

Reverse-only diffusion models The DiffPure (Nie et al., 2022) framework proposed to utilize
both the forward and reverse processes of diffusion models for adversarial purification. Since the
forward process introduces a large amount of randomness, we want to explore whether it’s possible
to remove the forward process, thus only using the reverse process of diffusion models for adversarial
purification (RevPure). A similar reverse-only framework was proposed in DensePure (Xiao et al.,
2023), but further equipped with a majority voting mechanism to study the certificated robustness.

Deterministic sampling An alternative way to eliminate the effect of randomness is to use a
deterministic reverse process. Notably, deterministic reverse process has also been proposed, e.g., in
Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a) the reverse process

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ(xt, t), x̂0 =

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
(10)

is fully deterministic and thus does not introduce randomness.2

One-step denoising Lastly, we considered the one-step denoising method proposed in Carlini et al.
(2022) for improving certificated robustness. One-step denoising significantly reduced computa-
tion time, making adversarial attack evaluations more tractable. While clean accuracy remained
comparable, adversarial robustness (PGD-EOT) decreased slightly.

The results show that all sampling methods considered (reverse-only, one-step DDPG, and DDIM)
achieve comparable clean accuracy to DDPG on CIFAR-10, with ℓ2 and ℓ∞ distances to clean images
smaller than DDPG but still greater than the initial adversarial perturbations. These findings are
consistent with our general results and highlight the robustness of our observations across different
sampling methods. We will include these results in the revised manuscript.

Perceptual-based distances Despite the increasement on ℓp distances to the clean images after
purification, it is possible that the actual perceptual-based distances decrease. To study this question,
we evaluated the structural similarity index measure (SSIM) Wang et al. (2004), a widely used
perceptual metric in computer vision, in addition to ℓp distances. As shown in Table S5, the results
reveal an approximate 20% decrease in perceptual distances (SSIM) after diffusion purification,
indicating that purified images become perceptually closer to clean images despite the increase in ℓp
distances. This observation complements our findings and will be included in the final paper.

However, we would like to emphasize the importance of ℓp distance measurements in the context of
adversarial purification. This is because adversarial attacks are inherently constructed based on ℓp
distances. Diffusion models do not merely convert adversarial perturbations into smaller ℓp distances,

2We follow the notation of the DDPM paper, thus the form is slightly different from the DDIM paper. The ᾱt

in DDPM is corresponding to the αt in DDIM.
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which would simplify the problem; instead, they purify states, making them perceptually closer to
the original images while potentially increasing ℓp distances. This highlights a unique aspect of their
operation that we believe warrants further exploration.

x x 1 50 100 150 175 200 250 300

(a) DDPM (DiffPure).

x x 1 10 25 50 75 100 125 150

(b) DDPM (Reverse-only).

x x 1 10 25 50 75 100 125 150

(c) DDIM (Reverse-only).

Figure S3: Visualization of the purification process. The first column is the clean stimuli, the second
is the perturbed stimuli, and the rest are purified states.
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C.3 FUZZY ROBUSTNESS EVALUATION ON IMAGENET
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(a) Grades distribution (BPDA-EOT).
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(b) Cumulative fuzzy robustness (CFR).

Figure S4: Fuzzy robustness evaluations on ImageNet.
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