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Abstract
Likelihood-based deep generative models
(DGMs) commonly exhibit a puzzling behaviour:
when trained on a relatively complex dataset,
they assign higher likelihood values to out-of-
distribution (OOD) data from simpler sources.
Adding to the mystery, OOD samples are
never generated by these DGMs despite having
higher likelihoods. This two-pronged paradox
has yet to be conclusively explained, making
likelihood-based OOD detection unreliable.
Our primary observation is that high-likelihood
regions will not be generated if they contain
minimal probability mass. We demonstrate how
this seeming contradiction of large densities
yet low probability mass can occur around data
confined to low-dimensional manifolds. We also
show that this scenario can be identified through
local intrinsic dimension (LID) estimation, and
propose a method for OOD detection which pairs
the likelihoods and LID estimates obtained from
a pre-trained DGM. Our method can be applied
to normalizing flows and score-based diffusion
models, and obtains results which match or
surpass state-of-the-art OOD detection bench-
marks using the same DGM backbones. Our
code is available at https://github.com/
layer6ai-labs/dgm_ood_detection.

1. Introduction
Out-of-distribution (OOD) detection (Quiñonero-Candela
et al., 2008; Rabanser et al., 2019; Ginsberg et al., 2023)
is crucial for ensuring the safety and reliability of machine
learning models given their deep integration into real-world
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applications ranging from finance (Sirignano & Cont, 2019)
to medical diagnostics (Esteva et al., 2017). In areas as
critical as autonomous driving (Bojarski et al., 2016) and
medical imaging (Litjens et al., 2017; Adnan et al., 2022),
these models, while proficient with in-distribution data, may
give overconfident or plainly incorrect outputs when faced
with OOD samples (Wei et al., 2022).

We focus on OOD detection using likelihood-based deep
generative models (DGMs), which aim to learn the density
that generated the observed data. Maximum-likelihood and
related objectives operate by increasing model likelihoods
or appropriate surrogates on training data, and since proba-
bility densities must be normalized, one might expect lower
likelihoods for OOD points. Likelihood-based DGMs such
as normalizing flows (NFs) (Dinh et al., 2017; Kingma &
Dhariwal, 2018; Durkan et al., 2019) and diffusion models
(DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021b;a) have proven to be powerful DGMs that can
render photo-realistic images. Given these successes, it
seems reasonable to attempt OOD detection by thresholding
the likelihood of a query datum under a trained model.

Surprisingly, likelihood-based DGMs trained on more com-
plex datasets assign higher likelihoods to OOD datapoints
taken from simpler datasets (Choi et al., 2018; Nalisnick
et al., 2019a; Havtorn et al., 2021). This becomes even more
puzzling in light of the facts that (i) said DGMs are trained
to assign high likelihoods to in-distribution data without
having been exposed to OOD data, and (ii) they only gen-
erate samples which are visually much more similar to the
training data. In this work, we explore the following expla-
nation for how both these observations can simultaneously
be true (Zhang et al., 2021):

OOD datapoints can be assigned higher likelihoods while
not being generated if they belong to regions of low

probability mass.

Figure 1 illustrates that regions assigned high density by
a model may integrate to very little probability mass. Our
key insight is that when OOD data is “simpler” in the sense
that it concentrates on a manifold of lower dimension than
in-distribution data, the phenomenon depicted in Figure 1
becomes completely consistent with empirical observations.
Based on this insight, we develop a new understanding of
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(a) (b)

Figure 1: (a) A 1D density which is highly peaked in the OOD region (red) assigns high likelihood, but low probability mass to OOD data.
(b) An analogous sketch for a 2D density concentrated around a 1D OOD manifold (red line), illustrated with FMNIST as in-distribution
and MNIST as OOD. The model density has become sharply peaked around the manifold of “simpler” data which has low intrinsic
dimension, which is nonetheless assigned lower probability mass as it has negligible volume.

the eponymous paradox, leading us to the realization that
estimating the intrinsic dimension of the involved mani-
folds provides a simple and effective way to perform OOD
detection using only a pre-trained likelihood-based DGM.

Contributions We (i) develop an OOD detection method
which classifies a datum as in-distribution only if it has high
likelihood and is in a region with non-negligible probability
mass – as measured by a large local intrinsic dimension
(LID) estimate of the DGM’s learned manifold; (ii) em-
pirically verify our explanation for the OOD paradox for
both NFs and DMs; (iii) achieve or match state-of-the-art
OOD detection performance among methods using the same
DGM backbone as us.

2. Background
Normalizing Flows In this study, we target DGMs that
produce a density model pθ, parameterized by θ, which
can be easily evaluated. Among them, NFs readily pro-
vide probability densities through the change of variables
formula, making them suitable for studying pathologies in
the likelihood function. A NF is a diffeomorphic mapping
fθ : Z → X from a latent space Z = Rd to data space
X = Rd, which transforms a simple distribution pZ on Z ,
typically an isotropic Gaussian, into a complicated data dis-
tribution pθ on X . The change of variables formula allows
one to evaluate the likelihood of a datum x ∈ X as

log pθ(x) = log pZ(z)− log |detJ(z)| , (1)

where z = f−1
θ (x) and J(z) = ∇zfθ(z) ∈ Rd×d.

NFs are constructed such that detJ(z) can be effi-
ciently evaluated, and are trained through maximum-
likelihood, maxθ Ex∼p0

[log pθ(x)], where p0 is the true
data-generating distribution. Sampling x ∼ pθ is achieved
by transforming a sample z ∼ pZ through fθ, i.e. x=fθ(z).

Diffusion Models DMs are popular and also admit likeli-
hood evaluation. Various formulations of DMs exist; here
we use score-based models (Song et al., 2021b). DMs first
define an Itô stochastic differential equation (SDE):

dxt = h(xt, t)dt+ g(t)dwt, x0 ∼ p0, (2)

where h : X × [0, T ] → X , g : [0, T ] → R, and T > 0 are
hyperparameters, and where wt denotes a d-dimensional
Brownian motion. This SDE prescribes how to transform
data x0 into noisy data xt, whose distribution we denote as
pt, the intuition being that pT is extremely close to “pure
noise”. Equation 2 can be reversed in time in the sense that
yt = xT−t obeys the SDE

dyt =
(
g(T − t)2sT−t(yt)− h(yt, T − t)

)
dt

+ g(T − t)dw̄t, y0 ∼ pT ,
(3)

where sT−t(yt) = ∇yt
log pT−t(yt) denotes the (Stein)

score, and w̄t is another Brownian motion. Solving Equa-
tion 3 would result in samples from p0 at time T , but both
the score and pT are unknown. DMs use a neural network
sθ : X × [0, T ] → X whose goal is to learn the true score.
This is achieved through the denoising score matching ob-
jective (Vincent, 2011), which Song et al. (2021a) showed
can be interpreted as likelihood-based for an appropriate
hyperparameter choice. Sampling from a trained DM is
achieved by approximately solving Equation 3: sθ(yt, T−t)
replaces sT−t(yt), and a Gaussian distribution p̂T with an
appropriately chosen covariance replaces pT . This proce-
dure implicitly defines the density pθ of a DM. Song et al.
(2021b) show that DMs can be interpreted as continuous
NFs (Chen et al., 2018), transforming samples from p̂T
into (approximate) samples from p0. In turn, this enables
evaluating pθ through a corresponding change of variable
formula analogous to Equation 1.
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(a) FMNIST-trained DM vs. MNIST. (b) FMNIST-trained NF vs. MNIST and Omniglot.

(c) CIFAR10-trained NF vs. SVHN. (d) CelebA-trained NF vs. SVHN. (e) CIFAR10-trained DM vs. SVHN.

Figure 2: (a) A FMNIST-trained DM assigns higher likelihoods to MNIST. (b) A NF trained on FMNIST shows notably lower likelihoods
on its own generated samples than on OOD data. (c-e) Analogous pathologies on RGB datasets, both for DMs and NFs.

Likelihood Pathologies in OOD Detection Choi et al.
(2018) and Nalisnick et al. (2019a) first uncovered unin-
tuitive behaviour that pervasively affects likelihood-based
DGMs. For instance, NFs trained on relatively complex
datasets like CIFAR10 (Krizhevsky & Hinton, 2009) and
FMNIST (Xiao et al., 2017) often yield high likelihoods
when tested on simpler ones like SVHN (Netzer et al., 2011)
and MNIST (LeCun et al., 1998), respectively, despite the
latter datasets not having been seen in the training process.
While this issue is not exclusive to images (Ren et al., 2019),
our experiments, shown in Figure 2, confirm these previous
findings for models trained on image data. Additionally, we
find that this pathological behaviour is not limited to these
well-known cases, but extends to numerous dataset pairs
and generated samples (see Appendix A for details).

Local Intrinsic Dimension According to the manifold
hypothesis, natural data lies around low-dimensional sub-
manifolds of X = Rd (Bengio et al., 2013; Pope et al.,
2021), where d is the ambient dimension of the data space.
The local intrinsic dimension (LID) of x ∈ X with respect
to these data submanifolds is the dimension of the subman-
ifold that contains x. For example, if the ambient space
is R2 and the data manifold is the 1D unit circle S1, then
any point x ∈ S1 will have a local intrinsic dimension of
1. Often, datasets concentrate on multiple non-overlapping
submanifolds of different dimensionalities (Brown et al.,
2023), in which case the LID will vary between datapoints.

Density models pθ implicitly attempt to learn these man-
ifolds by accumulating probability mass around them.
As a consequence, even when defined on the full d-
dimensional space X , trained densities pθ implicitly encode
low-dimensional manifold structure. We refer to the man-
ifold implied by pθ as Mθ, which informally corresponds

to regions of high density. When referring to LID with re-
spect to the implied manifold Mθ, we will write LIDθ(x);
it will be of interest to estimate LIDθ(x) for in- and out-of-
distribution query points x.

Sample-based methods to estimate intrinsic dimension exist
(Fukunaga & Olsen, 1971; Levina & Bickel, 2004; Johnsson
et al., 2014; Facco et al., 2017; Bac et al., 2021). Unfortu-
nately, most of these are inadequate for our purposes, either
because they estimate global (i.e. averaged or aggregated)
intrinsic dimension instead of LIDθ(x), or because they re-
quire observed samples around x to produce the estimate.
Since we will want LIDθ(x) for OOD points x, the latter
methods would require access to samples from pθ which fall
in the OOD region, which are of course unavailable. The key
to circumvent this issue is to move away from sample-based
estimators and instead rely directly on the given DGM.

Tempczyk et al. (2022) proposed such an estimator of LID.
Unfortunately, it requires training multiple NFs, rendering
it incompatible with our OOD detection goal of using a
single pre-trained model. Meanwhile, Stanczuk et al. (2022)
construct an estimator requiring a single variance exploding
DM, i.e. they set h to zero in Equation 2. They argue that,
given a query x, a small enough t0 > 0, and x′ sufficiently
close to x, sθ(x′, t0) will lie on the normal space (at x)
of the manifold containing x – i.e. sθ(x′, t0) is orthogonal
to the manifold. They propose using k independent runs
of Equation 2, starting at x and evolving until time t0, to
obtain x1

t0 , . . . ,x
k
t0 from which they construct the matrix

S(x) = [sθ(x
1
t0 , t0)| · · · |sθ(x

k
t0 , t0)] ∈ Rd×k. The rank of

S(x) estimates the dimension of the normal space when k
is large enough. In turn, LID can be estimated as

LIDθ(x) ≈ d− rankS(x). (4)
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3. Method
Intuitively, the fact that DGMs never generate OOD samples
suggests that they contain the information needed to discern
between OOD and in-distribution data – even when they as-
sign higher likelihoods to the former. In this section we will
show how to leverage LID to extract this information from
a pre-trained model. Although conceptually our insights are
agnostic to the type of model being used and thus apply to
all likelihood-based DGMs, we will focus on NFs and DMs
as LID and likelihoods can be readily computed for them.

3.1. LID, Volume, and Probability Mass

Before showing that LIDθ(x) is the key to the OOD detec-
tion paradox, we heuristically explain here how LIDθ(x) is
related to the contiguous volume associated to the region
around x by pθ.

To demonstrate, consider a fitted three-dimensional model
pθ(x) = winN (x;µin,Σin) + woutN (x;µout,Σout), where
N (x;µ,Σ) is a Gaussian density with mean µ and covari-
ance Σ evaluated at x. Let ∥µin−µout∥2 ≫ 0 so that the µout
component is sufficiently far from µin, and let wout = δ with
win = 1− δ, where 1 ≫ δ > 0 is vanishingly small so that
data around µout has near-zero probability of being sampled.
In these ways, µin and µout are analogous to in-distribution
and pathological OOD data. Let the respective covariance
matrices of the components be Σin = diag(σ2, σ2, ε2) and
Σout = diag(ε2, σ2, ε2), where σ ≫ ε > 0, with ε very
close to zero. The impact of these covariance matrices is
that the model distribution pθ extends primarily in two di-
mensions around µin and in a single dimension around µout.
Thus, numerically, LIDθ(µin) = 2 and LIDθ(µout) = 1.

We first note that pθ(µout) > pθ(µin) whenever ε < σδ,
meaning it is possible here for pθ to be pathologically high
on OOD data. Since, informally, “probability mass = den-
sity × volume”, a reasonable way to measure the volume
assigned by pθ around each of these modes is the ratio of
probability mass to density. For i ∈ {in, out}, mode i has a
respective mass of approximately wi, so we can write

volθ(µi) ≈
wi

pθ(µi)
≈ 1

N (µi;µi,Σi)
∝ ε3

(σ
ε

)LIDθ(µi)

, (5)

where, since σ > ε, volume monotonically increases with
LID. Though the models we use throughout this work are
much more complex, we carry forward the same intuition
that the volume volθ(x) assigned to the vicinity of x by pθ
increases with LIDθ(x). A small LIDθ(x) makes it possi-
ble in practice for pθ(x) to be high, despite pθ assigning
negligible probability mass around x.

LID and probability mass We now make the connection
between LID and probability mass more concrete. For R >
0, we denote the d-dimensional Euclidean ball of radius R

centred at x as BR(x). In Appendix B we argue that, for
sufficiently negative scalars r,

∂

∂r
log

∫
Ber

√
d(x)

pθ(x
′)dx′ ≈ LIDθ(x) + C, (6)

where C is a constant that depends neither on θ nor on x.
The integral on the left hand side corresponds to the proba-
bility assigned by pθ to a small ball around x. Thus, a large
LIDθ(x) is equivalent to a rapid growth of the log probabil-
ity mass that pθ assigns to a neighbourhood of x as the size
of the neighbourhood increases. In turn, we should expect
the probability mass assigned around x to be large if and
only if both pθ(x) and the aforementioned rate of change
are large as well, meaning that LID can indeed be informally
understood as monotonically related to the probability mass.
This view of LID provides the same intuition as the more
informal “volume”-based interpretation, namely that prob-
ability mass being large is equivalent to both density and
LID being large.

3.2. Detecting OOD Data with LID

We now discuss the situation illustrated in Figure 1. We be-
gin by highlighting that there are three manifolds (or rather
unions thereof) at play – Min, Mout, and Mθ – around
which p0, OOD data, and pθ concentrate, respectively. We
take the viewpoint that Min and Mout do not overlap (i.e.,
Min ∩Mout = ∅), otherwise OOD detection would be ill-
posed (Le Lan & Dinh, 2021). The paradoxical nature of
likelihood-based OOD detection can be summarized as fol-
lows: when x ∈ Mout we should expect the ground truth
p0(x) ≈ 0 because Min ∩ Mout = ∅, and since pθ was
trained to approximate p0, we should also expect pθ(x) ≈ 0.
However, it is often observed that pθ is larger on Mout
than on Min; i.e., Mout ⊂ Mθ. We now explain how this
behaviour can occur by leveraging the notion of volume
assigned by pθ.

By the manifold hypothesis, Mout and Min are low-
dimensional, and they thus have zero (Lebesgue) volume
in ambient space. However, here we are concerned with a
different notion of “volume”: the contiguous “volume” asso-
ciated to a region around x by the full-dimensional density
pθ. We informally define this “volume” as a ratio of proba-
bility mass to density, as in Equation 5. In the OOD paradox,
pθ(x) is large for x ∈ Mout, yet samples are never drawn
from Mout, suggesting negligible probability mass has been
assigned around the region. As a consequence, pθ must
have assigned a very small “volume” to the region around x.
This is made mathematically possible by the fact that Mout
has a (Lebesgue) volume of zero, and thus pθ can assign
arbitrarily small “volume” to the region around Mout, even
when high densities are present. From this logic, we see
that the paradox is fully characterized by pθ assigning high
density to, but low “volume” around, the point x ∈ Mout.
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A priori, Mout being contained in the region over which
pθ happens to behave pathologically (i.e., Mout ⊂ Mθ)
might seem like an unbelievable coincidence. However,
in the case of NFs, past work by Kirichenko et al. (2020)
and Schirrmeister et al. (2020) has shown that the multi-
scale convolutional architecture used by these models fix-
ates on high-frequency local features and pixel-to-pixel cor-
relations. Thus, when these features and correlations are
present in OOD data, the corresponding likelihoods are inad-
vertently encouraged to become large through the model’s
implicit bias; we hypothesize other DGMs behave similarly
(see Appendix A for an extended discussion). Our work
is thus complementary to that of Kirichenko et al. (2020)
and Schirrmeister et al. (2020): even when pθ is a good
model for the true data-generating distribution, we show
that pθ ≈ p0 can be violated around a set Mθ \ Min of
small “volume”, whereas they provide an explanation of
why this set sometimes contains Mout.

The connection between LID and “volume” also explains the
directionality of the paradox; i.e., why it only arises when
OOD data is simpler (in that it has lower intrinsic dimen-
sion) than in-distribution data. In the non-pathological case,
when Mout is more complex (i.e., higher-dimensional) than
Min, assigning large densities to Mout would necessarily
correspond to a higher “volume” and hence high probability
mass. High probability mass would imply that pθ generates
samples Mout, which of course never occurs in practice.
However, when Mout is lower-dimensional than Min, the
model pθ is able to assign lower LIDθ(x), and thus lower
“volume”, to Mout. This allows it to simultaneously assign
pathologically large densities and vanishingly small proba-
bility mass to Mout. Only in this second case can pθ closely
approximate p0 while also assigning high densities to Mout.

It follows that if LIDθ(x) has a small value relative to in-
distribution data, we can expect the probability mass that pθ
assigns around x to be negligible – even if pθ(x) is large –
suggesting that x should be classified as OOD.

3.3. Estimating LID

We have now justified the use of LIDθ(x) for OOD detec-
tion, yet this quantity cannot be evaluated, only estimated,
which we now show how to do.

LID for NFs Consider a smooth map f : Z → X be-
tween two manifolds and a point z ∈ Z . If f has constant
rank in an open neighbourhood around z, then the intrinsic
dimension of x = f(z) on its image is given by the rank
of the differential of f at z. When f is a NF, LIDθ(x) is
thus formally given by rankJ(z) (Horvat & Pfister, 2022).
Technically, NFs have full rank Jacobians by construction,
making LIDθ(x) = d for all x. However, since NFs con-
centrate mass around the low-dimensional Mθ they are not

numerically invertible (Cornish et al., 2020; Behrmann et al.,
2021), and so numerically they assign LIDs of less than d to
most points. For a given NF and a query x, we thus estimate
the corresponding (numerical) LID as

L̂ID
NF
θ (x) :=

∣∣{i ∈ [d] : σNF
i (x) > τ}

∣∣ , (7)

where [d] = {1, . . . , d}, σNF
i (x) is the i-th singular value of

J(z), and τ > 0 is a threshold hyperparameter specifying
which singular values are numerically equal to zero.

LID for DMs As previously mentioned, Stanczuk et al.
(2022) developed an LID estimator for variance explod-
ing DMs (Equation 4) which is based on sθ(x

′, t0) or-
thogonally pointing towards Mθ. We found better per-
formance with variance preserving DMs (Appendix D.3),
where h(x, t) = − 1

2β(t)x and g(t) =
√
β(t) for an affine

function β : [0, T ] → R>0. In this case the direction of
the drift in Equation 3 is not given by sT−t(yt) anymore,
but by sT−t(yt) +

1
2yt instead. Accordingly, we modify

S(x) ∈ Rd×k, where k > d, as

S(x) =

[
sθ(x

1
t0 , t0) +

x1
t0

2

∣∣∣∣∣ · · ·
∣∣∣∣∣sθ(xk

t0 , t0) +
xk
t0

2

]
, (8)

whose columns we now expect to point orthogonally to-
wards Mθ.1 Similarly to NFs, rankS(x) can technically
match d even though many of its singular values are almost
zero. We thus estimate the (numerical) LID of DMs as

L̂ID
DM
θ (x) := d−

∣∣{i ∈ [d] : σDM
i (x) > τ}

∣∣ , (9)

where σDM
i (x) is the i-th singular value of S(x).

Setting the threshold Both LID estimators presented
above require setting τ to threshold singular values. We
found that in practice, no single value of τ performed well
across all datasets. To avoid having to manually tune this
hyperparameter, we propose a way to set τ only using the
available (in-distribution) training data. Specifically, we
leverage local principal component analysis (LPCA) (Fuku-
naga & Olsen, 1971), which is a fast and simple LID es-
timator. Roughly, for a given in-distribution x and a pro-
vided dataset, LPCA uses the nearest neighbours of x in the
dataset to construct a matrix whose rank approximates the
LID at x, and we calibrate τ to match the LPCA estimates.
We reiterate that estimators based on nearest neighbours
such as LPCA are not directly useful for identifying OOD
data, since they require local samples around a query which

1While intuitive, adding xj
t0

to the j-th column of S(x) is
an ad-hoc modification to the estimator proposed by Stanczuk
et al. (2022) to account for our use of variance preserving DMs.
In practice this modification does not drastically affect the corre-
sponding LID estimate, as numerically it is similar to adding the
same constant vector to every column.
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Algorithm 1 Dual threshold OOD detection, returns True
if x is deemed OOD, and False if deemed in-distribution.

Require: log pθ(x), L̂IDθ(x), ψL, ψLID
1: if log pθ(x) < ψL then
2: return True ▷ case (i)

3: if L̂IDθ(x) < ψLID then
4: return True ▷ case (ii)

5: return False ▷ case (iii)

are unavailable for OOD data and cannot be generated by pθ.
For a detailed evaluation of the proposed LID estimators,
see Appendix C.

3.4. Putting it All Together

So far we have argued that LID can be used for OOD detec-
tion and have shown how to obtain estimates L̂IDθ(x) by
using Equation 7 or Equation 9. In summary, three mutu-
ally exclusive cases can happen for a point x: (i) log pθ(x)
is small (relative to in-distribution data). (ii) log pθ(x) is
large and L̂IDθ(x) is small. In both of these cases pθ assigns
negligible probability mass around x, which in turn means
x should be classified as OOD. (iii) log pθ(x) and L̂IDθ(x)
are both large, in which case the likelihood spiking on x is
not pathological, implying that x should be classified as in-
distribution. This leads to our proposed dual threshold OOD
detection method, described in Algorithm 1, where ψL and
ψLID are the log-likelihood and LID thresholds, respectively.
We highlight that our method differs from standard (single
threshold) likelihood-based OOD detection only in that we
classify case (ii) as OOD instead of in-distribution.

4. Related Work
A substantial amount of research into likelihood pathologies
tries to explain the underlying causes of the OOD paradox.
One particular line of research proposes probabilistic expla-
nations: Choi et al. (2018) and Nalisnick et al. (2019b) put
forth the “typical set” hypothesis, which has been contested
in follow-up work. For example, Le Lan & Dinh (2021)
argue that likelihood rankings not being invariant to data
reparameterizations causes the paradox, whereas Caterini
& Loaiza-Ganem (2021) claim it is the lower entropy of
“simpler” distributions as compared to the higher entropy
of more “complex” ones – which somewhat aligns with
our work, although we use intrinsic dimension instead of
entropy to quantify complexity.

We diverge from these explanations in that they all assume,
sometimes implicitly, that Min and Mout overlap. We find
it extremely plausible, for example, that the intersection be-
tween CIFAR10 and SVHN images is empty. In this sense,

we are more in agreement with Zhang et al. (2021), who
propose a similar explanation to ours based on probability
mass. Nonetheless, we differ from the work of Zhang et al.
(2021) in several key ways: (i) they blame poor model fit as
the culprit, which is inconsistent with our results showing
that likelihoods do not distinguish between OOD and gener-
ated samples; (ii) they do not establish a connection to LID;
and (iii) they do not empirically verify their explanation
since they do not propose a method to address the issue.

Another line of work aims to build DGMs which do not
experience the OOD paradox (Li et al., 2022), sometimes
at the cost of generation quality. For example, Grathwohl
et al. (2020) and Liu et al. (2020) argue that the training
procedure of energy-based models (EBMs) (Xie et al., 2016;
Du & Mordatch, 2019) provides inductive biases which
help OOD detection, and Yoon et al. (2021) construct an
EBM specifically designed for this task. Kirichenko et al.
(2020) and Loaiza-Ganem et al. (2022) first embed data
into semantically rich latent spaces, and then employ dense
neural network architectures, thus minimizing susceptibil-
ity to local high-frequency features. We differ from these
works in that they attempt to build DGMs that are better at
likelihood-based OOD detection, whereas we only leverage
a pre-trained model.

Other works use “outside help” or auxiliary models. Some
methods assume access to an OOD dataset (Nalisnick et al.,
2019b), require class labels (Görnitz et al., 2013; Ruff et al.,
2020; van Amersfoort et al., 2021; Liu et al., 2022), or lever-
age an image compression algorithm (Serrà et al., 2020).
Some other works, while fully unsupervised, require train-
ing auxiliary models on distorted data (Ren et al., 2019),
on the incoming test datapoint with regularization (Xiao
et al., 2020), or on data summary statistics (Morningstar
et al., 2021). A final line of work leverages DMs for OOD
detection. Graham et al. (2023), Liu et al. (2023), and Choi
et al. (2023) propose methods based on reconstruction er-
rors. Goodier & Campbell (2023), who use the variational
formulation of DMs (Sohl-Dickstein et al., 2015; Ho et al.,
2020) rather than the score-based one, adopt a likelihood
ratio approach which averages the DM loss across various
noise levels. Again, we are different from these works in
that we do not just care about empirical performance, but
also about understanding why likelihoods alone fail – and
leveraging this understanding for fully unsupervised OOD
detection.

5. Experiments
Setup We compare datasets within two classes: (i) 28×28
greyscale images, including FMNIST, MNIST, Omniglot
(Lake et al., 2015), and EMNIST (Cohen et al., 2017); and
(ii) RGB images resized to 32× 32× 3, comprising SVHN,
CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009),
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(a) (b)

Figure 3: LID estimates and likelihood scatterplots, along with corresponding marginals. (a) FMNIST-trained model, evaluated on
FMNIST, MNIST, and generated samples. (b) MNIST-trained model, evaluated on FMNIST, MNIST, and generated samples.

Tiny ImageNet (Le & Yang, 2015), and a simplified, cropped
version of CelebA (Kist, 2021). We give experimental de-
tails on model training in Appendix D.1 and Appendix D.2.
Due to space constraints, we report results for all dataset
pairs in Appendix D.4.

Evaluation OOD detection methods use the area under
the curve (AUC) of the receiver operator characteristic
(ROC) curve for evaluation. The true positive rate (TPR)
and false positive rate (FPR) from an OOD classifier corre-
spond to points on the FPR-TPR plane. By sweeping over
all possible threshold values, these points determine the
ROC graph. For single threshold OOD classifiers, the graph
provides points on a curve indicating the best achievable
TPR for each FPR, the area under which is denoted as AUC-
ROC. On the other hand, the ROC graph for dual threshold
classifiers corresponds to points on a surface – not a curve –
on the FPR-TPR plane. The upper boundary of this surface
defines a curve, which also indicates the best achievable
TPR for each FPR. Thus, in a slight abuse of terminology,
we also denote the area under this curve as AUC-ROC, as it
is directly comparable to that of single threshold classifiers.
See Appendix D.5 for a thorough explanation of such ROC
curves and how we compute their AUC.

LID with Likelihoods Isolates OOD Regions We com-
pute log-likelihoods and LID estimates for NFs trained on
FMNIST and MNIST, with results shown in Figure 3. The
scatterplots with both likelihoods and LIDs show clear sep-
aration between in-distribution and OOD, despite the like-
lihood and LID marginals overlapping. Furthermore, the
“directions” predicted by our method are correct: in the
pathological case (FMNIST-trained), we see that while OOD

points have higher likelihoods, they also have lower LIDs;
whereas in the non-pathological case (MNIST-trained), like-
lihoods are lower for OOD data. These results highlight
not only the importance of using LID estimates for OOD
detection, but also that of combining them with likelihoods,
as the two together provide a proxy for probability mass.

Visualizing the Benefits of Dual Thresholding The sepa-
ration of OOD and in-distribution data shown in the scatter-
plots in Figure 3 confirms that likelihood/LID pairs contain
the needed information for OOD detection. However, it
remains to show that Algorithm 1 succeeds at this task (re-
call that we cannot simply train a classifier to differentiate
between red and blue points in Figure 3 since the red OOD
points are unavailable when designing the OOD detector).
Figure 4 provides a visual comparison showcasing the ROC
curves from our dual thresholding technique versus the ROC
curves constructed by single threshold classifiers using only
likelihoods. These results show a dramatic boost in AUC-
ROC performance across four different pathological sce-
narios, highlighting the relevance of combining likelihoods
with LIDs for OOD detection. For further experiments,
please refer to the ablations in Appendix D.6.

Quantitative Comparisons In the top part of Table 1,
we compare our method against several normalizing flow
(NF) baselines, all of which are evaluated using the exact
same pre-trained NF as our method. These baselines are:
(i) naı̈vely labelling large log-likelihoods log pθ(x) as in-
distribution, which strongly fails at identifying “simpler”
distributions as OOD when trained on “complex” datasets;
(ii) using ∥ ∂

∂x log pθ(x)∥2 as a proxy for local probabil-
ity mass as proposed by Grathwohl et al. (2020), which
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(a) FMNIST vs. MNIST:
AUC-ROC boost (0.070 → 0.953)

(b) FMNIST-gen vs. Omniglot:
AUC-ROC boost (0.000 → 0.996)

(c) CIFAR10 vs. SVHN:
AUC-ROC boost (0.060 → 0.926)

(d) CIFAR10-gen vs. CelebA:
AUC-ROC boost (0.258 → 0.733)

Figure 4: ROC visualizations for select pathological OOD tasks on NFs. The red dots correspond to the FPR-TPR pairs of our method
obtained from different dual thresholds, the yellow areas correspond to the region under the associated Pareto frontier (i.e. the upper
boundary of the red dots), while the blue areas represent the region below the ROC curve for single threshold likelihood-based classifiers.
(a) FMNIST-trained model with MNIST as OOD; (b) as in (a) except we now discern between generated samples and MNIST. (c)
CIFAR10-trained model with SVHN as OOD; (d) as in (c) except we now discern between generated samples and CelebA.

Table 1: AUC-ROC (higher is better). The top part of the table contains NF-based approaches, the middle rows contain DM-based
approaches, and the last row shows an EBM-based one. Notation: ∗ indicates tasks where likelihoods alone do not exhibit pathological
behaviour; ‡ indicates methods that employ external information or auxiliary models. For the NF and DM methods, we bold the best
performing approach among themselves, and the EBM model is bolded when it surpasses all others.

Trained on MNIST ∗ FMNIST CIFAR10 SVHN ∗

OOD Dataset FMNIST Omniglot MNIST Omniglot SVHN CelebA CIFAR10 CelebA

NF Likelihood 1.000 0.796 0.073 0.085 0.063 0.391 0.987 0.996
NF ∥ ∂

∂x
log pθ(x)∥2 0.156 0.444 0.516 0.538 0.722 0.433 0.200 0.080

Complexity Correction‡ 0.945 0.852 0.939 0.935 0.835 0.479 0.771 0.639
NF Likelihood Ratios‡ 0.944 0.722 0.666 0.639 0.299 0.396 0.302 0.099
NF Dual Threshold (Ours) 1.000 0.855 0.951 0.864 0.936 0.655 0.987 0.996

DM Likelihood 0.996 1.000 0.240 0.952 0.064 0.360 0.996 0.996
DM ∥sθ(x, 0)∥2 0.919 0.004 0.075 0.001 0.883 0.716 0.120 0.145
DM Reconstruction‡ 1.000 0.999 0.970 0.992 0.876 0.630 0.984 0.995
DM Likelihood Ratios 0.224 0.296 0.781 0.388 0.829 0.553 0.326 0.357
DM Dual Threshold (Ours) 0.996 1.000 0.912 0.959 0.944 0.648 0.996 0.996

NAE 1.000 0.994 0.995 0.976 0.919 0.887 0.948 0.965

performs inconsistently across tasks; (iii) the complexity
correction method of Serrà et al. (2020), which uses image
compression information to adjust the inflated likelihood
observed in OOD datapoints – despite this comparison be-
ing unfair in that the baseline accessed image compression
algorithms in addition to the NF, we beat it across all tasks
except one; (iv) the likelihood ratios approach of Ren et al.
(2019), which is once again unfair as it employs an auxiliary
likelihood-based reference model to compute ratios, yet we
uniformly beat it across tasks.

Besides the strong empirical performance of our method
with NFs, other aspects of the top part of Table 1 warrant at-
tention. Both the complexity correction and likelihood ratio
baselines lose performance over naı̈vely using likelihoods
on non-pathological tasks, i.e. when models are trained on
relatively “simple” data like MNIST or SVHN. Since likeli-
hoods perform well at these tasks, they are often considered

“easy” and thus omitted from comparisons. The fact that
these baselines struggle at these tasks is a novel finding that
suggests these methods “overfit” to the pathological tasks.
See Appendix D.7 for a thorough discussion.

Additionally, we test our dual threshold method with dif-
fusion models (DMs) in the middle rows of Table 1, and
compare its performance against: (i) using only likelihoods,
which fails at most pathological tasks; (ii) using the norm
of the likelihood derivative, or equivalently, the norm of the
score function (Grathwohl et al., 2020) – this also fails in
pathological tasks; (iii) the reconstruction-error-based ap-
proach of Graham et al. (2023), which provides the strongest
baseline and is very similar to Choi et al. (2023) – we find
it noteworthy that we perform on par with this baseline,
beating it at five out of eight tasks, despite the fact that it is
not fully unsupervised as it relies on a pre-trained LPIPS en-
coder (Zhang et al., 2018); (iv) the likelihood ratios method
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of Goodier & Campbell (2023), which does not perform
well.2 We used the exact same DM for every comparison,
and find that our method outperforms all fully unsupervised
baselines that do not leverage outside data.

Overall, we believe it is remarkable that our dual threshold
outperforms every baseline for NFs and performs on par
with the strongest DM baseline, both pathological and non-
pathological tasks, despite some baselines having access to
additional information. We see these results as strong evi-
dence supporting the understanding that we derived about
the OOD paradox and its connection to LID. We also high-
light that, as mentioned in Section 2, we identified cases of
likelihoods behaving pathologically on generated samples.
In Appendix D.4, we show that our dual threshold method
also excels at detecting these scenarios.

The last row of Table 1 shows normalized autoencoders
(NAEs) (Yoon et al., 2021). NAEs are EBMs specially tai-
lored for OOD detection at the cost of generation quality,
but to the best of our knowledge achieve state-of-the-art
performance on fully unsupervised, likelihood-based OOD
detection. Once again, we believe that the empirical results
of our dual threshold method are remarkable: we achieve
similar performance to NAEs on most tasks, even outper-
forming them on four, despite using a general purpose model
pθ, not one explicitly designed for OOD detection.

6. Conclusions, Limitations, and Future Work
In this paper we studied the OOD detection paradox, where
likelihood-based DGMs assign high likelihoods to OOD
points from “simpler” datasets, but do not generate them.
We proposed a geometric explanation of how the paradox
can arise as a consequence of models assigning low proba-
bility mass around these OOD points when they have small
intrinsic dimensions. We then leveraged LID estimators
for our dual threshold OOD detection method. Having de-
cidedly outperformed the use of likelihoods by themselves,
our results strongly support our geometric explanation. We
believe that extending the utility of this geometric view-
point and of LID beyond OOD detection is an extremely
interesting path for follow-up work.

We highlight that the LID estimator of Stanczuk et al. (2022),
which we heavily relied upon for DMs, obtains very differ-
ent estimates on image datasets than previously established
LID estimators. Our dual threshold technique works despite
this discrepancy likely because only LID rankings are rele-

2Note that Graham et al. (2023) applied their method on latent
diffusion models (Rombach et al., 2022), which, as discussed in
Section 4, makes OOD detection easier. We also point out that
Goodier & Campbell (2023) used the variational formulation of
DMs (Ho et al., 2020), and we adapted their method to score-based
models. These discrepancies explain the differences between the
numbers in Table 1 and those reported in these papers.

vant for OOD detection. Further improving DM-based LID
estimators is a promising avenue to boost performance.

Finally, while our ideas are widely applicable to any den-
sity model, the current incarnation of our method is lim-
ited in that it only applies to NFs and DMs, as estimating
LID is more tractable for these models. Extending our
method to DGMs whose LID might be estimated as the rank
of an appropriate matrix (like the Jacobian of a decoder),
such as variational autoencoders (Kingma & Welling, 2014;
Rezende et al., 2014; Vahdat & Kautz, 2020), injective NFs
(Brehmer & Cranmer, 2020; Caterini et al., 2021; Ross &
Cresswell, 2021), or DMs on latent space (Vahdat et al.,
2021; Rombach et al., 2022) is also likely to work. Nonethe-
less, we see extending our method to EBMs, which achieve
state-of-the-art likelihood-based OOD detection, to be a
particularly promising direction for future research.

Impact Statement
The goal of this work is to advance the understanding and
methodology in the detection of out-of-distribution data
using a pre-trained deep generative model. Our contribution
is primarily of a theoretical nature and therefore has limited
broader societal impacts on its own. However, the generality
of our work lends itself to use with several existing classes
of models. Therefore, we emphasize that further evaluation
on diverse datasets and data modalities is required before
our method is deployed as the sole tool to detect pathologies
in data.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A.,
and Lawrence, N. D. Dataset Shift in Machine Learning.
MIT Press, 2008.
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A. Diagnosing Pathologies in Normalizing Flows and Diffusion Models
In this section, we list the full extent of the pathologies we identified in our experiments. The first class is the standard one,
in which models assign equal or higher likelihoods to OOD data than to in-distribution data; furthermore, we observe a
new class of pathologies where the model assigns low likelihoods to its own generated samples compared to OOD data. In
addition to Figure 2, which shows that FMNIST vs. MNIST, CIFAR-10 vs. SVHN, and CelebA vs. SVHN are pathological,
Figure 5 depicts pathological behaviour for EMNIST vs. MNIST, EMNIST vs. Omniglot, Tiny ImageNet vs. SVHN, CelebA
vs. SVHN, CIFAR100 vs. SVHN, and CIFAR100 vs. CelebA.

Regarding the second class of pathologies, we observe a stark difference between the likelihoods of generated samples
and the in-distribution ones. To demonstrate this, we also visualize the likelihoods of generated samples in Figure 2 and
Figure 5. Notably, generated sample likelihoods are almost always smaller than both in-distribution as well as OOD samples.
To the best of our knowledge, generated samples having lower likelihoods than OOD data is a new class of pathologies
not previously discussed in the literature. This raises new unexplained phenomena, even in cases such as MNIST- and
Omniglot-trained models which were previously thought to be non-pathological (Nalisnick et al., 2019a).

The rationale of Schirrmeister et al. (2020) might provide an explanation for why these new pathologies occur in NFs. They
claim that the multi-scale NF architectures used for modelling images pick up on high-frequency features, such as sharp
edges, which are prevalent in any natural dataset; this prompts the latent variables corresponding to shallow scales to sharply
center around zero (i.e. with a very small variance), and in turn the likelihood of these latent variables strongly inflates
the total likelihood, regardless of whether the original datapoint is OOD or not. When passing a generated sample (that
appears semantically similar to in-distribution data) inversely through an NF, we get shallow-scale latent variables that have a
standard deviation of 1 by design. Therefore, compared to OOD data selected from natural images, these latent variables are
not as sharply concentrated around 0, and hence produce relatively smaller likelihoods. That said, none of the explanations
in related works such as those by Kirichenko et al. (2020) or Schirrmeister et al. (2020) directly provide any conclusive
insight into the inductive biases that make DMs behave this way. Among related work on DMs, Goodier & Campbell (2023)
offers a potential explanation for the pathology, suggesting that the score network prioritizes high-frequency features in
earlier timesteps—a characteristic also common in OOD data; however, the evidence they present does not adequately
address the occurrence of the pathology on generated samples, which is a novel observation of our work.

We emphasize that these explanations clarify why NF or DM likelihoods for OOD data points can behave pathologically, but
not why low likelihood data is generated in the first place. Therefore they do not contradict, but rather complement, our
explanation. Similar to in-distribution data, generated samples have comparatively higher probability masses, potentially
even surpassing that of in-distribution data. Consequently, in scenarios where the likelihood is pathological for OOD data,
the LID is anticipated to be small; our experiments in Table 8 further substantiate this observation by getting consistent
performance across OOD detection tasks. Nevertheless, studying the inductive biases in DMs that lead to this new
pathological behaviour of likelihoods on generated data is an interesting open question requiring future research.
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(a) MNIST-trained NF vs. FMNIST and Omniglot (b) MNIST-trained DM vs. FMNIST and Omniglot

(c) EMNIST-trained NF vs. MNIST and Omniglot (d) EMNIST-trained DM vs. MNIST and Omniglot

(e) Tiny-trained NF vs. SVHN (f) CIFAR100-trained NF vs. SVHN (g) CIFAR100-trained NF vs CelebA

(h) Tiny-trained DM vs SVHN (i) CelebA-trained DM vs. SVHN (j) CIFAR100-trained DM vs. CelebA

(k) CIFAR10-trained DM vs. SVHN (l) CIFAR10-trained DM vs. CelebA (m) CIFAR100-trained DM vs. SVHN

Figure 5: Overview of likelihood pathologies: (a-d) Models trained on EMNIST or MNIST assign the highest likelihoods to in-distribution
data as expected, but obtain strikingly low likelihoods on generated samples – even lower than for OOD data. (e-m) Pathologies on RGB
datasets where both the in-distribution samples and the generated samples are assigned likelihoods smaller than that of OOD datapoints.
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B. A Mathematical Link between Probability Mass and Local Intrinsic Dimension
Here we make the association between probability mass and LID more mathematically concrete. This connection is
enabled by a surprising result linking Gaussian convolutions and LID (Loaiza-Ganem et al., 2022; Tempczyk et al., 2022).
Intuitively, adding high-dimensional but low-variance Gaussian noise corrupts pθ more easily when pθ concentrates around
low-dimensional regions (see Figure 1 from Tempczyk et al. (2022)). Comparing pθ convolved with noise for different noise
levels allows one to infer LID from the rate at which pθ is corrupted as the noise increases. More formally, defining the
convolution between a model density pθ and a Gaussian with log standard deviation r as

ρr(x) := [pθ(·) ∗ N ( · ;0, e2rId)](x) =
∫
pθ(x−x′)N (x′;0, e2rId)dx′, (10)

Tempczyk et al. (2022) showed that under mild regularity conditions, for sufficiently negative r (i.e. low variance noise),

log ρr(x) = r(LIDθ(x)− d) +O(1). (11)

Equation 11 suggests that, for sufficiently negative r, the rate of change of log ρr(x) with respect to r can be used to estimate
LID, since

∂

∂r
log ρr(x) ≈ LIDθ(x)− d. (12)

We will now link the above quantity to the probability mass that pθ assigns around x. Let BR(x) := {x′ ∈ X : ∥x′−x∥22 ≤
R2} be an ℓ2 ball of radius R around x. The probability that pθ assigns to this ball is

Pθ (x
′ ∈ BR(x)) =

∫
BR(x)

pθ(x
′)dx′ = vol(BR(0)) · [pθ(·) ∗ U( · ;BR(0))] (x), (13)

where vol(B) denotes the d-dimensional Lebesgue measure of B (i.e. its volume), and U( · ;B) is the density of the uniform
distribution on B – we note that vol(BR(x)) is not strictly equivalent to the volume defined in Equation 5, as the latter
depends on pθ and “ignores directions along which pθ is negligible”. We now leverage the standard and well-known result
that in high dimensions, the uniform distribution on the ball is approximately Gaussian, U( · ;Ber

√
d(0)) ≈ N ( · ;0, e2rId).3

This result combined with Equation 10 suggests that, if we take R = er
√
d, we can approximate the log probability mass in

Equation 13 as

logPθ

(
x′ ∈ Ber

√
d(x)

)
≈ log vol(Ber

√
d(0)) + log ρr(x). (14)

Differentiating with respect to r then yields

∂

∂r
logPθ

(
x′ ∈ Ber

√
d(x)

)
≈ LIDθ(x) +

[
∂

∂r
log vol(Ber

√
d(0))− d

]
, (15)

which establishes a clear relationship between (log) probability mass and LID. Note that the second term on the right hand
side of Equation 15 is just a fixed function of r which does not depend on the model pθ nor on x, so that thresholding
this quantity is equivalent to thresholding LIDθ(x) (whenever the model and r are kept fixed). In other words, small/large
values of LIDθ(x) are equivalent to small/large values of the rate of change of the log probability mass around x, i.e.
∂
∂r logPθ(x

′ ∈ Ber
√
d(x)). In turn, our dual threshold algorithm described in Subsection 3.4 can be interpreted as

thresholding on an estimate of ∂
∂r logPθ(x

′ ∈ Ber
√
d(x)) rather than on L̂IDθ(x), which matches the understanding that we

derived in Section 3: even if log pθ(x) is large, if logPθ(x
′ ∈ Ber

√
d(x)) increases slowly as a function of r (i.e. LIDθ(x)

is small, this corresponds to case (ii) in Subsection 3.4), we can sensibly expect pθ to assign lower probability mass to a
small ball around x as compared to the case where both log pθ(x) is large and logPθ(x

′ ∈ Ber
√
d(x)) increases quickly

(which now corresponds to case (iii) in Subsection 3.4). We can thus understand our dual threshold method as attempting to
classify points as in-distribution when they have (relatively) large probability mass around them.

3Readers unfamiliar with this can see Saremi & Hyvärinen (2019) for a related derivation in a machine learning context. Note that this
derivation shows Gaussians are approximately uniform on the boundary of the ball, but another classic result is that, in high dimensions,
the majority of the mass of the ball lies near its boundary (see e.g. Wegner (2021)), so that uniform distributions on the ball or its boundary
are also approximately equal. Similarly, a textbook derivation shows that when the dimensionality d is large, almost all the probability
mass of a standard Gaussian is concentrated in an annulus at radius

√
d (Blum et al., 2020).
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Table 2: NF-based OOD detection performance (AUC-ROC) for various τ thresholds compared to using dataset-specific values of τ based
on LPCA estimates of LID (higher is better).

FMNIST vs. MNIST MNIST vs. FMNIST CIFAR10 vs. SVHN SVHN vs. CIFAR10

τ = 10−10 0.961 1.000 0.730 0.987
τ = 4.5× 10−5 0.957 1.000 0.737 0.987
Using LPCA 0.951 1.000 0.936 0.987

(a) LID estimates for a DM. (b) LID estimates for an NF.

Figure 6: LID estimates using our LPCA approach to set thresholds. Colours indicate L̂IDθ for a: (a) DM; (b) NF.

C. LID Estimation and Setting the Threshold
While setting a constant threshold τ can yield effective OOD detection results — as demonstrated in Figure 3 where we set
it to an infinitesimal value of τ = 10−10 — choosing the right value of τ remains crucial for good performance across tasks.
From a numerical perspective setting τ to an excessively small value would result in the LID estimator always predicting the
ambient dimension, while setting it to an excessively large value will result in our estimator predicting 0. While Horvat
& Pfister (2022) and Stanczuk et al. (2022) offer thorough methods for setting the threshold τ and estimating intrinsic
dimension, our focus is primarily on effective LID estimation for OOD detection. Consequently, we adopt a straightforward
and rapid approach for LID estimation that behaves well for our intents and purposes.

One sensible way of setting τ is to calibrate it based on another model-free estimator of LID using the training data. In
particular, we perform local principal component analysis (LPCA) which is a model-free method for LID estimation. LPCA
is similar to the LID estimator in Horvat & Pfister (2022) which also uses the concept of local linearizations. We use the
scikit-dimension (Bac et al., 2021) implementation and use the algorithm introduced by Fukunaga & Olsen (1971)
with alphaFO set to 0.001 to estimate the average LID of our training data. Then τ is set so that LIDθ estimates of the
training dataset match the LPCA average.

To increase efficiency, we select a random set of 80 data points from our training set as representative samples. We then
employ a binary search to fine-tune τ . During each iteration of the binary search, we compare the average LIDθ of our
subsamples with the intrinsic dimension determined by LPCA. If the average LIDθ is lower, we increase τ ; otherwise, we
decrease it. We initially set τ ’s binary search range between 0 and 1010, representing a wide range of plausible thresholds.
Binary search is then executed in 50 steps to accurately ascertain a value of τ . Table 2 represents three distinct scenarios to
assess how to set τ optimally for NF models. In the first two rows, τ is held constant across datasets, while in the third, τ
is dynamically adjusted to each dataset based on the above approach. Although there is a minor performance drop in the
FMNIST vs. MNIST comparison, this is offset by a notable enhancement in the CIFAR10 vs. SVHN case. This significant
improvement further justifies our preference for this method of obtaining the threshold rather than setting it to a fixed value
as a hyperparameter.

To assess the LID estimates across points with varying dimensionalities, we utilize a 2D lollipop dataset (Tempczyk et al.,
2022) depicted in Figure 6. This dataset comprises points uniformly sampled from three distinct submanifolds: (i) the
“candy” portion with an intrinsic dimension of 2; (ii) the “stick” with an intrinsic dimension of 1; and (iii) an isolated point

17



A Geometric Explanation of the Likelihood OOD Detection Paradox

(a) LID estimates for a DM. (b) LID estimates for an NF.

Figure 7: Average LID estimates for datapoints in 800-dimensional datasets with low intrinsic dimension across various threshold values.
The dotted lines correspond to the the LID estimate obtained from LPCA. Results are shown for: (a) DMs; (b) NFs.

with an intrinsic dimension of 0. Utilizing LPCA, which accurately estimates the average LID, our LPCA-based method
correctly sets the threshold τ . As shown in Figure 6, the LID estimates are generally precise on both NFs and DMs, with
deviations only near the boundaries of the submanifolds, which is arguably appropriate behaviour.

In addition, to test our estimator in high-dimensional environments, we examine five distinct datasets, each with 800 ambient
dimensions but varying intrinsic dimensionalities of 50, 80, 100, 160, and 200. For each dataset, we initially generate
10,000 samples from an isotropic Gaussian in the respective intrinsic dimension and then replicate individual elements
to expand the ambient dimensionality to 800. We then train both NFs and DMs on these datasets, adjusting the threshold
values τ to derive the results presented in Figure 7. A key observation is that the model LID estimates stabilize at the actual
intrinsic dimension for a range of thresholds τ . Moreover, LPCA effectively aligns with this stabilization point, enabling our
binary search method to precisely estimate the optimal threshold τ – thus giving us confidence in our LID estimates.
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Table 3: Essential hyperparameter settings for the normalizing flow models.

Property Model Configuration

Learning rate 1× 10−3

Gradient Clipping Value based (max = 1.0)
Scheduler ExponentialLR (with a factor of 0.99)
Optimizer AdamW
Weight decay 5× 10−5

Batch size 128
Epochs 400

Transform blocks Actnorm → (1× 1) Convolution → Coupling
Number of multiscale levels 7 levels
Coupling layer backbone ResNet (channel size = 64, # blocks = 2, dropout = 0.2)
Masking scheme Checkerboard
Latent Space Standard isotropic Gaussian

Data pre-processing Dequantization & Logit scaling
Data shape 28× 28× 1 for grayscale and 32× 32× 3 for RGB

D. Experimental Details and Additional Experiments
D.1. Hyperparameter Setting for Normalizing Flows

We trained both Glow (Kingma & Dhariwal, 2018) and RQ-NSFs (Durkan et al., 2019) on our datasets, with the hyperpa-
rameters detailed in Table 3. Specifically, while Glow utilized an affine coupling layer, we adopted RQ-NSF’s piecewise
rational quadratic coupling with two bins and linear tails capped at 1. In Figure 9 and Figure 10, we highlight failure cases
of the Glow architecture. The artifacts, particularly in CelebA, Tiny ImageNet, and Omniglot samples, stem from the affine
coupling layers’ unfavourable numerical properties. In contrast, the RQ-NSF architectures showed no such issues, leading
us to adopt them for subsequent experiments.

In the context of OOD detection, expressive architectures sometimes face issues of numerical non-invertibility and exploding
inverses, particularly with OOD samples (Behrmann et al., 2021). While expressive NFs adeptly fit data manifolds, their
mapping from a full-dimensional space to a lower-dimensional one can cause non-invertibility, especially in OOD datapoints.
Behrmann et al. (2021) specifically identified non-invertibility examples in Glow models on OOD data. Contrarily, the
RQ-NSFs we trained according to the hyperparameter setup in Table 3 demonstrated full reconstruction on OOD data, as
depicted in Figure 8. This is another reason why we chose RQ-NSFs.

We used an NVIDIA Tesla V100 SXM2 with 7 hours of GPU time to train each of the models.

(a) Original samples from the test split. (b) Reconstructed samples from the test
split.

(c) Original samples from the OOD
dataset.

(d) Reconstructed samples from the OOD
dataset.

Figure 8: Numerical invertibility: (a-b) A random batch of samples and their reconstructions from the test split of an RQ-NSF model
trained on CelebA. (c-d) A random batch of samples and their reconstructions from the OOD dataset, SVHN.
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(a) Glow model trained on MNIST. (b) Glow model trained on FMNIST. (c) Glow model trained on Omniglot. (d) Glow model trained on EMNIST.

(e) RQ-NSF model trained on MNIST. (f) RQ-NSF model trained on FMNIST. (g) RQ-NSF model trained on Omniglot. (h) RQ-NSF model trained on EMNIST.

Figure 9: Samples generated from models trained on the grayscale collection: due to numerical properties of affine coupling layers, Glow
models tend to produce artifacts in their generated data.

(a) Glow model trained on SVHN. (b) Glow model trained on CIFAR10. (c) Glow model trained on CelebA. (d) Glow model trained on Tiny ImageNet.

(e) RQ-NSF model trained on SVHN. (f) RQ-NSF model trained on CIFAR10. (g) RQ-NSF model trained on CelebA. (h) RQ-NSF model trained on Tiny Ima-
geNet.

Figure 10: Samples generated from models trained on the RGB collection: the artifacts in Glow models are apparent.
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Table 4: Essential hyperparameter settings for the Diffusion models.

Property Model Configuration

Learning rate 5× 10−5

Gradient Clipping Value based (max = 1.0)
Optimizer Adam
Batch size 128
Epochs 200

Score-matching weighting Likelihood weighting λ(t) := Var(xT−t | x0)
SDE dynamics Variance preserving with β(t) := 0.1 + 20t
Maximum time T = 1

UNet # channels (2× 128) → (2× 256) → (2× 512)
Attention The penultimate UNet block performs spatial self-attention
Down/Up-sampling Blocks ResNet

Data pre-processing Dequantization & Scaling pixels between [0, 1]
Data shape Resize everything to 32× 32

D.2. Hyperparameter Setting for Diffusion Models

We utilized UNet backbones from the diffusers library (von Platen et al., 2022) for training our diffusion models.
While the library provided the foundational architecture, we manually implemented additional functionalities such as LID
estimation and log likelihood computations. The key hyperparameters guiding our training process are detailed in Table 4.
Samples generated by these models, as illustrated in Figure 11, demonstrate a markedly superior quality compared to those
produced by NFs. We used an NVIDIA Tesla V100 SXM2 with on average 4 hours of GPU time to train each of the models.

(a) DM samples on MNIST. (b) DM samples on FMNIST. (c) DM samples on Omniglot. (d) DM samples on EMNIST.

(e) DM samples on CIFAR10. (f) DM samples on Tiny ImageNet. (g) DM samples on CelebA. (h) DM samples on SVHN.

Figure 11: Samples generated from DMs trained on all the datasets: the number of diffusion steps to generate these samples are 1000.
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Table 5: AUC-ROC (higher is better) at A (vs.) B tasks. Ablation between variance preserving and exploding variations of DMs.

Trained on MNIST FMNIST CIFAR10 SVHN

OOD Dataset FMNIST Omniglot MNIST Omniglot SVHN CelebA CIFAR10 CelebA

Variance Exploding DM Likelihood 0.999 1.000 0.211 0.953 0.088 0.485 0.990 0.998
Variance Exploding DM Dual Threshold 0.999 1.000 0.899 0.954 0.855 0.485 0.990 0.998
Variance Preserving DM Likelihood 0.996 1.000 0.240 0.952 0.064 0.360 0.996 0.996
Variance Preserving DM Dual Threshold 0.996 1.000 0.912 0.959 0.944 0.648 0.996 0.996

Computing Likelihoods To calculate the likelihood, one needs to solve an appropriate ordinary differential equation
(for more details, please refer to Song et al. (2021b)). We use a standard Euler numerical solver and take 25 iterations to
compute the likelihood estimates. Moreover, at each step of the solver, one needs to compute the trace of the score’s Jacobian
utilizing the Hutchinson trace estimator (Hutchinson, 1989). We set the number of samples for trace estimation to 25. These
hyperparameters are chosen to ensure tractability of estimating likelihoods across entire datasets of size 215. In addition
to that, we performed an extensive hyperparameter sweep to make sure that the pathology occurs even when likelihoods
are computed more accurately with a stronger hyperparameter setting — i.e. with more steps in the differential equation
solver or with more Hutchinson samples to estimate the trace. For further evaluation, we have picked two pathological OOD
detection scenarios: FMNIST vs. MNIST and CIFAR10 vs. SVHN where likelihoods inflate on OOD data. In Figure 12a
and Figure 12b we hold the number of Hutchinson samples at a constant 500 and vary the number of steps in the Euler solver.
As the number of steps increases, the likelihood estimate concentrates more accurately around the true likelihood value.
However, even with a larger number of steps, the ordering of OOD likelihoods versus their in-distribution counterparts
does not change. We performed a similar experiment where we held the number of steps at a constant 500 and varied the
numbers of Hutchinson samples; we observed no substantial change in the mean and standard deviation of the likelihoods
beyond 25 samples. Finally, we also compute AUC-ROC for single threshold classifiers on likelihood values for these tasks
to quantify the pathology. In Figure 12d, we maintain a constant step count of 25 while varying the number of Hutchinson
samples. This adjustment reveals negligible variations in the AUC metric across both evaluated tasks. Similarly, Figure 12c
documents our experiment where we fix the Hutchinson samples at 25 and modify the step count. Here, not only do we
observe minimal fluctuations in the AUC-ROC metric with increasing steps, but we also note a deterioration in performance
for the FMNIST vs. MNIST, indicating the pathology even becomes worse as the configuration for likelihoods becomes
more accurate. These results rule out the possibility that the pathological behaviour of likelihoods for OOD detection in
DMs was caused by poor density evaluation.

D.3. Ablations on Variance Exploding Diffusion Models

Stanczuk et al. (2022) propose their LID estimation technique for variance exploding DMs, we trained a series of variance
exploding DMs with the same hyperparameter setting as Table 4 but with an appropriate noise scheduler and assessed their
performance in OOD detection, as detailed in Table 5. The results demonstrate that combining variance preserving LID with
likelihoods yields more consistent outcomes for OOD detection, leading us to favour this type of DM. We hypothesize this
is due to either one (or a combination) of the following reasons that render the likelihood estimates inaccurate: (i) Variance
preserving DMs are designed in such a way that pT is very close to an isotropic Gaussian. In practice p̂T is thus chosen
as an isotropic Gaussian for these models. On the other hand, for variance exploding DMs, pT does not converge, and p̂T
is simply set to a Gaussian with large variance. We thus hypothesize that the greater mismatch between pT and p̂T in the
variance exploding setting might in turn render likelihoods less reliable, thereby adversely affecting the performance of
OOD detection. (ii) The input to the score networks in variance exploding DMs is heterogeneous, meaning that at time t
the input xt to the score network sθ(xt, t) might be either extremely large or small in scale. In particular, for t ≫ 0, xt

would be extremely noisy with large variance, and as t→ 0+, xt would be on the scale of the image data. This results in an
unstable score network that can negatively impact the likelihood estimates. It is important to highlight that Song & Ermon
(2019) employ a technique named CondInstanceNorm++ to address this challenge. Unfortunately, this method has
not been incorporated into the existing diffusers diffusion architectures that we have used. Despite this omission, our
variance preserving DMs yield satisfactory outcomes without necessitating such additional complexities.
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(a) Likelihoods calculated for a model trained on FMNIST and evaluated on both
FMNIST (blue) and MNIST (red); the numbers of Euler iterations are varied across
the x-axis and the log probabilities mean and variance are shown on the y-axis.

(b) Likelihoods calculated for a model trained on CIFAR10 and evaluated on both
CIFAR10 (blue) and SVHN (red); the numbers of Euler iterations are varied across
the x-axis and the log probabilities mean and variance are shown on the y-axis.

(c) AUC-ROC evaluated by a single threshold OOD detector on likelihoods for two
pathological tasks; the number of Euler iterations are varied across the x-axis and the
AUC-ROC is shown on the y-axis.

(d) AUC-ROC evaluated by a single threshold OOD detector on likelihoods for two
pathological tasks; the number of samples for Hutchinson trace estimation is varied
across the x-axis and the AUC-ROC is shown on the y-axis.

Figure 12: The pathological behaviour holds even for strong hyperparameter settings for likelihood evaluation: (a-b) increasing the
number of Euler steps produces more accurate likelihood estimates but does not change the ordering of the in-distribution and OOD
estimates; (c-d) increasing the number of Euler steps and trace estimation samples does not improve the performance of a likelihood-based
OOD detector.
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D.4. Extra Dataset Pairs and Results on the Generated Samples Pathologies

Table 6 and Table 7 compare naı̈vely detecting OOD based on likelihoods against our dual threshold method across all
tasks for NFs and DMs, respectively. In these tables, we use the suffixes “-train”, “-test”, and “-gen” when talking about
datasets to specify if we are referring to the train set, test set, or generated samples, respectively. For datasets A and B,
“A vs. B” indicates the OOD detection task that aims to distinguish A-test from B-test using the model pθ pre-trained on
A-train. When we write “A-gen vs. B”, A-test is replaced by A-gen, but pθ is still pre-trained on A-train. Note that even for
A-gen vs. B tasks we calibrate τ using the training dataset. For fairness across all tasks, for any dataset, a random set of
215 = 32768 sampled datapoints with replacement has been considered. We can see an extremely consistent improvement,
highlighting the relevance of dual thresholding.

The tasks of the form A-gen vs. B are especially relevant in our study as there is no discrepancy between the in-distribution
and model manifolds by design, and thus any practical concerns about poor model fit and misalignment between generated
and in-distribution samples would be addressed; this in turn tests our hypothesis in a more isolated manner. Furthermore, in
Table 8 we have benchmarked our method against the baselines of Table 1 but replaced tasks A vs. B with A-gen vs. B. For
all the A-gen vs. B tasks, we use the same τ as we used for the corresponding A vs. B task, i.e. we do not recalibrate τ .
Overall, our dual threshold method outperforms all the baselines on NFs, but falls short in some comparisons against DM
baselines. We hypothesize this discrepancy is because the LID estimates from Stanczuk et al. (2022) are not sufficiently
accurate.

Table 6: AUC-ROC Results for NF Experiments: Comparing likelihood-only and dual-threshold methods (higher is better).
The table is split into greyscale tasks (top) and RGB tasks (bottom). Entries showing over 10% improvement when
comparing dual thresholding to the likelihood-only counterpart are boldfaced.

OOD Task Type A-gen vs. B A vs. B

Dataset Pair
A and B

(AUC-ROC)
Likelihood

(AUC-ROC)
Dual Threshold

(AUC-ROC)
Likelihood

(AUC-ROC)
Dual Threshold

FMNIST and MNIST 0.000 0.999 0.073 0.951
FMNIST and EMNIST 0.001 0.956 0.394 0.596
FMNIST and Omniglot 0.000 0.996 0.085 0.864
Omniglot and FMNIST 0.153 1.000 1.000 1.000
Omniglot and MNIST 0.016 1.000 1.000 1.000
Omniglot and EMNIST 0.000 1.000 0.984 0.984
EMNIST and FMNIST 0.038 1.000 0.998 0.998
EMNIST and MNIST 0.000 1.000 0.540 0.806
EMNIST and Omniglot 0.000 1.000 0.389 0.824
MNIST and FMNIST 0.007 0.999 1.000 1.000
MNIST and EMNIST 0.000 1.000 0.987 0.988
MNIST and Omniglot 0.000 1.000 0.796 0.855

Tiny and CelebA 0.639 0.660 0.821 0.821
Tiny and SVHN 0.030 0.961 0.154 0.913
Tiny and CIFAR100 0.694 0.799 0.805 0.831
Tiny and CIFAR10 0.694 0.787 0.805 0.831
CelebA and Tiny 0.938 0.960 0.906 0.928
CelebA and SVHN 0.148 0.935 0.146 0.949
CelebA and CIFAR100 0.945 0.968 0.921 0.942
CelebA and CIFAR10 0.948 0.967 0.921 0.939
SVHN and Tiny 0.972 0.972 0.989 0.989
SVHN and CelebA 0.984 0.984 0.996 0.996
SVHN and CIFAR100 0.967 0.967 0.986 0.986
SVHN and CIFAR10 0.970 0.970 0.987 0.987
CIFAR100 and Tiny 0.386 0.448 0.477 0.479
CIFAR100 and CelebA 0.226 0.646 0.370 0.638
CIFAR100 and SVHN 0.014 0.941 0.072 0.933
CIFAR100 and CIFAR10 0.403 0.486 0.490 0.491
CIFAR10 and Tiny 0.376 0.535 0.485 0.491
CIFAR10 and CelebA 0.239 0.724 0.391 0.655
CIFAR10 and SVHN 0.014 0.950 0.063 0.936
CIFAR10 and CIFAR100 0.426 0.602 0.521 0.562
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Table 7: AUC-ROC Results for DM Experiments: Comparing likelihood-only and dual-threshold methods (higher is
better). The table is split into greyscale tasks (top) and RGB tasks (bottom). Entries showing over 10% improvement when
comparing dual thresholding to the likelihood-only counterpart are boldfaced.

OOD Task Type A-gen vs. B A vs. B

Dataset Pair
A and B

(AUC-ROC)
Likelihood

(AUC-ROC)
Dual Threshold

(AUC-ROC)
Likelihood

(AUC-ROC)
Dual Threshold

MNIST and EMNIST 0.000 1.000 0.846 0.846
MNIST and FMNIST 0.000 0.999 0.996 0.996
MNIST and Omniglot 0.000 0.980 1.000 1.000
EMNIST and MNIST 0.000 1.000 0.830 0.830
EMNIST and FMNIST 0.000 0.991 0.999 0.999
EMNIST and Omniglot 0.000 1.000 1.000 1.000
FMNIST and MNIST 0.000 1.000 0.240 0.912
FMNIST and EMNIST 0.000 1.000 0.339 0.568
FMNIST and Omniglot 0.000 1.000 0.952 0.959
Omniglot and MNIST 0.000 0.971 0.995 0.995
Omniglot and EMNIST 0.000 0.952 1.000 1.000
Omniglot and FMNIST 0.000 0.979 1.000 1.000

SVHN and Tiny 0.768 0.891 0.996 0.996
SVHN and CIFAR10 0.774 0.833 0.996 0.996
SVHN and CelebA 0.608 0.802 0.996 0.996
SVHN and CIFAR100 0.773 0.834 0.996 0.996
Tiny and SVHN 0.000 0.996 0.219 0.951
Tiny and CIFAR10 0.172 0.708 0.882 0.908
Tiny and CelebA 0.012 0.919 0.895 0.895
Tiny and CIFAR100 0.190 0.701 0.880 0.910
CIFAR10 and SVHN 0.000 0.987 0.064 0.944
CIFAR10 and Tiny 0.065 0.675 0.452 0.458
CIFAR10 and CelebA 0.000 0.847 0.360 0.648
CIFAR10 and CIFAR100 0.120 0.688 0.528 0.560
CelebA and SVHN 0.001 0.985 0.087 0.747
CelebA and Tiny 0.130 0.716 0.844 0.845
CelebA and CIFAR10 0.164 0.702 0.877 0.878
CelebA and CIFAR100 0.176 0.700 0.876 0.878
CIFAR100 and SVHN 0.000 0.994 0.045 0.945
CIFAR100 and Tiny 0.039 0.766 0.416 0.465
CIFAR100 and CIFAR10 0.052 0.791 0.470 0.504
CIFAR100 and CelebA 0.000 0.902 0.340 0.663

Table 8: AUC-ROC (higher is better) at A-gen vs. B task; due to the extensive computation time required for the DM baselines, the tasks
are executed on subsamples of size 512. Notation: ∗ tasks where likelihoods alone do not exhibit pathological behaviour, ‡ methods that
employ external information or auxiliary models. For each task, we bold the best performing model.

Trained on MNIST ∗ FMNIST CIFAR10 SVHN ∗

OOD Dataset FMNIST Omniglot MNIST Omniglot SVHN CelebA CIFAR10 CelebA

NF Likelihood 0.007 0.000 0.000 0.000 0.014 0.239 0.970 0.984
NF ∥ ∂

∂x
log pθ(x0)∥2 0.997 0.997 0.993 0.993 0.712 0.379 0.195 0.077

Complexity Correction‡ 0.026 0.000 0.044 0.001 0.678 0.243 0.714 0.451
NF Likelihood Ratios‡ 0.998 1.000 1.000 1.000 0.299 0.396 0.302 0.099
NF Dual Threshold (Ours) 0.999 1.000 0.999 0.996 0.950 0.724 0.970 0.984

DM Likelihood 0.843 0.925 0.000 0.777 0.000 0.001 0.806 0.625
DM Reconstruction 1.000 1.000 0.994 0.998 0.817 0.610 0.927 0.930
DM Likelihood Ratios‡ 0.985 0.991 0.971 0.998 0.959 0.835 0.441 0.474
DM Dual Threshold (Ours) 0.843 0.931 0.880 0.938 0.966 0.797 0.806 0.625
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Table 9: Ablation study on the necessity of dual threshold on AUC-ROC (higher is better).

Method FMNIST vs. MNIST MNIST vs. FMNIST CIFAR10 vs. SVHN SVHN vs. CIFAR10

NF LIDθ(x) 0.951 0.006 0.936 0.014
NF ∥ ∂

∂x
log pθ(x)∥2 and log pθ(x) 0.516 0.983 0.722 0.962

NF LIDθ(x) and log pθ(x) 0.951 1.000 0.936 0.987

DM LIDθ(x) 0.912 0.004 0.944 0.005
DM ∥sθ(x, 0)∥2 and log pθ(x) 0.240 0.996 0.883 0.994
DM LIDθ(x) and log pθ(x) 0.912 0.996 0.944 0.996

D.5. Evaluation Metric Details

Formal Definition of the ROC Curve for Dual Threshold Classifiers When the ROC graph does not follow a curve-like
structure – as is the case with dual threshold classifiers – optimal ROC curves are used to generalize traditional ROC curves
(Liu & Zhu, 2022). The optimal ROC curve is obtained by first establishing a partial order on the ROC graph; a classifier
is “better” than another if it has both a smaller FPR and a larger TPR. Furthermore, the Pareto frontier of a partial order
is the set of all maximal elements, and in turn, optimal ROC curves are defined by interpolating along the Pareto frontier
of this partial order. For illustration, Figure 4 shows the frontier alongside the optimal ROC curve as the upper boundary
of the ROC graph using red lines. In OOD detection, we consider a finite dataset of N samples, each being assigned a
likelihood and LID, constituting the sets {log pθ(x(n))}Nn=1 and {L̂IDθ(x

(n))}Nn=1, respectively. These values can be seen
as “features” and the labels associated with a datapoint are binary: whether the corresponding datapoint is in-distribution or
OOD. With that in mind, the possible achievable combinations of FPR-TPR pairs are finite, making the Pareto frontier a
set of disjoint points rather than a continuous curve. Therefore, we obtain the optimal ROC curve by step-interpolating
the Pareto frontier of FPR-TPR pairs. The area under the optimal ROC curve holds various interpretations, making it an
appropriate generalization of the traditional AUC-ROC in many model specification scenarios. For an in-depth exploration,
we direct readers to Liu & Zhu (2022).

Computing the Optimal ROC Curve To numerically compute the optimal ROC curve, one must first define a set of dual
threshold classifiers as:

Ψ := {(ψL ± ε, ψLID ± ε) : ψL ∈ {log pθ(x(n))}Nn=1, ψLID ∈ {L̂IDθ(x
(n))}Nn=1}, (16)

where in practice we set ε = 10−10. Since the cardinality of Ψ is O(N2), computing all FPR-TPR pairs may not be feasible.
To address this, we select a subset of Ψ and calculate the FPR-TPR pairs for this subset. We then compute their Pareto
frontier, and in turn, the AUC-ROC. Although this method may underestimate the true AUC-ROC, we observe that the
estimated AUC-ROC rapidly converges to the true value as the subset size increases. For the results presented in our tables,
we have used a subset of Ψ consisting of 5× 105 classifiers.

D.6. Extra Ablations

Throughout our paper, we have argued in favour of our dual threshold method, which combines likelihoods and LID
estimates. To highlight that our strong performance is not just based on dual thresholding itself, we carry out an ablation
where we use dual thresholding, but on likelihood and gradient norm ∥ ∂

∂x log pθ(x)∥2 pairs (or ∥sθ(x, 0)∥2 for DMs). In
this case, gradient norms are a proxy for how peaked a density is, in place of LID estimates. Table 9 shows the results for
both NFs and DMs, highlighting that LID estimates are much more useful. The table also shows that using single thresholds
with LID estimates is also not enough to reliably detect OOD points. In the case of DMs, for the results presented in both
Table 9 and Table 1, we compute sθ(x, ϵ) using a value of ϵ = 10−4. This approach is adopted to ensure numerical stability,
a key consideration given that score-based diffusion models are known to become numerically unstable with extremely
small timesteps (Pidstrigach, 2022; Lu et al., 2023).

D.7. Critical Analysis of OOD Baselines

As we outlined in Section 5, when benchmarking against the complexity correction and likelihood ratio methods, we
observed notable underperformance in non-pathological directions. Both methods aim to correct inflated likelihoods
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encountered in pathological OOD scenarios by assigning a score to each datapoint, which is obtained by adding a complexity
term to the likelihood (Serrà et al., 2020), or subtracting a reference likelihood obtained from a model trained on augmented
data (Ren et al., 2019). This score then becomes the foundation for their OOD detection through single thresholding.
However, as we will demonstrate in this section, these techniques often necessitate an artificial hyperparameter setup to
combine these metrics together, making it less than ideal.

Formally, both of these studies aim to find a score ξ(x) to correct the inflated likelihood term log pθ(x), by adding a metric
m(x) as follows:

ξ(x) = log pθ(x) + λ ·m(x). (17)

In Serrà et al. (2020), λ = 1 and m(x) is the bit count derived by compressing x using three distinct image compression
algorithms and selecting the least bit count from the trio (an ensemble approach as they describe). The algorithms include
standard cv2, PNG, JPEG2000, and FLIF (Sneyers & Wuille, 2016). Moreover, we did not find any official implementation
for the complexity correction method; however, since their algorithm was fairly straightforward, we re-implemented it
according to their paper and it is readily reproducible in our experiments. On the other hand, Ren et al. (2019) propose
training a reference likelihood model with the same architecture as the original model; however, on perturbed data. We
employ another RQ-NSF, samples of which are depicted in the bottom row of Figure 13. Ren et al. (2019) claim that their
reference model only learns background statistics that are unimportant to the semantics we care for in OOD detection; hence,
subtracting the reference likelihood m(x) can effectively correct for these confounding statistics that potentially inflate our
original likelihoods. That said, they employ a hyperparameter tuning process on λ to ensure best model performance.

As illustrated in Figure 14, we sweep over values of λ and compare our method against all these models. While certain
λ values enhance OOD detection in pathological scenarios, they falter in non-pathological contexts. In contrast, our dual
thresholding remains robust irrespective of the scenario’s nature. This observation underscores a significant gap in the OOD
detection literature. While several methods address the OOD detection pathologies, many are overly specialized, performing
well predominantly in the pathological direction. The results we report in Table 1 correspond to the best values of λ.
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(a) Samples from RQ-NSF model trained
on CIFAR10.

(b) Samples from RQ-NSF model trained
on SVHN.

(c) Samples from RQ-NSF model trained
on FMNIST.

(d) Samples from RQ-NSF model trained
on MNIST.

(e) Samples from background model
trained on CIFAR10.

(f) Samples from background model
trained on SVHN.

(g) Samples from background model
trained on FMNIST.

(h) Samples from background model
trained on MNIST.

Figure 13: Samples generated from normal and background models that are trained using the RQ-NSF hyperparameters provided in
Table 3. The background models are trained on perturbed data, using the scheme presented by Ren et al. (2019).

(a) Performance comparison of different methods on two pathological and non-
pathological OOD detection tasks obtained from the FMNIST and MNIST pair.

(b) Performance comparison of different methods on two pathological and non-
pathological OOD detection tasks obtained from the CIFAR10 and SVHN pair.

Figure 14: Comparing our dual thresholding approach against all the different single score thresholding baselines by sweeping over
different values of λ in Equation 17. The tasks that are considered are either: pathological such as (a) FMNIST vs. MNIST or (b)
CIFAR10 vs. SVHN; or non-pathological such as (a) MNIST vs. FMNIST or (b) SVHN vs. CIFAR10.
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