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DIVERSE TEXT-TO-IMAGE GENERATION VIA CON-
TRASTIVE NOISE OPTIMIZATION
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(a) DDIM (b) CADS (c) Ours

Figure 1: Example results from our diverse image generation approach. Three distinct prompts
are used: (top) “A person skiing on a very snowy slope”, (middle) “A cow sits in a truck with hay
barrels in it”, and (bottom) “A man sitting on a couch next to a dog”. Standard DDIM (a) exhibits
pronounced mode collapse, producing repetitive images and often failing to capture complex com-
positional details. CADS (Sadat et al., 2024) (b) improves diversity but still yields limited variation
and occasional prompt misalignment. Our method (c) delivers markedly greater diversity and fi-
delity, generating a wide range of images that remain strongly aligned with the input text.

ABSTRACT

Text-to-image (T2I) diffusion models have demonstrated impressive performance
in generating high-fidelity images, largely enabled by text-guided inference. How-
ever, this advantage often comes with a critical drawback: limited diversity, as
outputs tend to collapse into similar modes under strong text guidance. Exist-
ing approaches typically optimize intermediate latents or text conditions during
inference, but these methods deliver only modest gains or remain sensitive to hy-
perparameter tuning. In this work, we introduce Contrastive Noise Optimization,
a simple yet effective method that addresses the diversity issue from a distinct
perspective. Unlike prior techniques that adapt intermediate latents, our approach
shapes the initial noise to promote diverse outputs. Specifically, we develop a
contrastive loss defined in the Tweedie data space and optimize a batch of noise
latents. Our contrastive optimization repels instances within the batch to maximize
diversity while keeping them anchored to a reference sample to preserve fidelity.
We further provide theoretical insights into the mechanism of this preprocessing
to substantiate its effectiveness. Extensive experiments across multiple T2I back-
bones demonstrate that our approach achieves a superior quality-diversity Pareto
frontier while remaining robust to hyperparameter choices.

1 INTRODUCTION

In recent years, diffusion models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022) have
emerged as the leading paradigm for text-to-image (T2I) generation. A key driver of their success is
the use of text-guided inference, which steers the generation process to produce images that are not

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: Conceptual overview of contrastive noise optimization. Our method enhances gen-
eration diversity by optimizing the initial latent vectors, zT , prior to the DDIM sampling process.
We employ an InfoNCE loss that operates on a batch of noise vectors. This loss function pushes
the optimizing sample (blue dot) away from all other negative samples in the batch to maximize
separation. To preserve semantic fidelity, this repulsion is counterbalanced by an attraction force
that pulls the anchor towards its original, non-optimized version (the positive pair), which acts as
a fixed reference point. The attraction coefficient γ regulates this anchoring force, stabilizing the
fidelity-diversity trade-off. This pre-processing step effectively diversifies the final image outputs
without fine-tuning or altering the foundational diffusion sampler.

only high-fidelity but also closely aligned with a given prompt. To maximize this alignment and en-
hance image quality, practitioners often employ strong guidance mechanisms, with techniques like
Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) becoming a standard practice. However,
this pursuit of high fidelity comes at a significant cost: a pronounced lack of diversity. Under strong
textual guidance, the model’s outputs often collapse into a few dominant modes, failing to capture
the rich variety of interpretations a text prompt can have. This fidelity-diversity trade-off (Dhari-
wal & Nichol, 2021) remains a critical bottleneck, severely restricting the creative potential of T2I
models.

To address this challenge, a common line of work has focused on interventions during the iterative
denoising process. These approaches typically optimize intermediate latents (Corso et al., 2024;
Kirchhof et al., 2025) or manipulate text embeddings (Sadat et al., 2024; Um & Ye, 2025b) to en-
force separation between samples, while other strategies rely on multi-agent systems or complex
fine-tuning schedules (Ghosh et al., 2017). Although these methods have shown promise, they often
require repeated adjustments during sampling and thus suffer from notable limitations, including
substantial computational overhead (e.g., DiversityPrompt (Um & Ye, 2025b); see Table 8) and lim-
ited gains under accelerated few-step models, where opportunities for intervention are intrinsically
scarce.

In this work, we tackle the diversity problem at its fundamental source by shifting the paradigm
from inference-time interventions to initial-noise selection. We introduce Contrastive Noise Opti-
mization (CNO), a simple yet powerful one-shot preprocessing framework that optimizes a batch
of initial noise latents before sampling begins. Unlike prior methods that intervene repeatedly dur-
ing the denoising trajectory, CNO performs a single, lightweight optimization step on initial noise
and requires no modifications or adjustments during sampling. The key idea is to incorporate a
contrastive objective to shape a diversity-encouraging initial noise distribution, drawing inspiration
from the structure of InfoNCE-based contrastive learning (van den Oord et al., 2019). Building on
this foundation, we introduce structural modifications tailored to the unique demands of diverse T2I
generation, enabling diversity to be enhanced while retaining strong semantic fidelity.
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At the core of our framework lies a balance between two complementary forces: an attraction term
that anchors each optimized noise to its original counterpart, and a repulsion term that encour-
ages semantic separation across samples. Crucially, we impose this contrastive structure not in the
raw noise latent space but in the Tweedie denoised prediction space, which provides the diffusion
model’s best estimate of clean data. Operating in this space allows the optimization to act directly
on meaningful semantic signals, making the refinement of initial noise substantially more effective.

To further control this interplay, we introduce a novel balancing parameter γ, which modulates
the relative strength of attraction and repulsion. Its behavior is analytically grounded through an
extended mutual-information perspective (Proposition 2), revealing how γ governs the contributions
of positive and negative pairs. We additionally provide a closed-form selection rule for γ that ensures
robust behavior across batch sizes. Practical components such as adaptive latent pooling and a
stop-gradient mechanism further enhance the efficiency and scalability of CNO for modern T2I
backbones.

Comprehensive experiments demonstrate that our lightweight preprocessing substantially improves
diversity across modern T2I frameworks (including Stable Diffusion (Rombach et al., 2022)) while
maintaining high image quality and text alignment. Notably, CNO delivers consistent improve-
ments even under accelerated few-step samplers such as FLUX (Labs et al., 2025) and SDXL-
Lightning (Lin et al., 2024), where existing diversity approaches exhibit limited gains (see Sec-
tion D.1).

• We introduce a paradigm shift from inference-time interventions to initial-noise selection, ad-
dressing the diversity problem at its source while eliminating repeated per-step adjustments and
remaining effective even in accelerated few-step samplers.

• We develop a contrastive noise optimization framework tailored for diverse T2I generation, fea-
turing the balancing parameter γ, an extended mutual-information analysis, and efficient heuristics
such as adaptive latent pooling and stop-gradient.

• We demonstrate state-of-the-art diversity–quality trade-offs across major T2I backbones, in-
cluding SD1.5, SDXL, SD3, and fast few-step samplers such as FLUX and SDXL-Lightning.

2 RELATED WORK

Improving the diversity of diffusion models has recently attracted much attention, mainly due to
their increasing use in critical applications such as text-to-image generation (Rombach et al., 2022).
One prominent effort is CADS (Sadat et al., 2024), which enhances sample diversity by gradually
annealing noise perturbations on conditional embeddings. Although effective, their approach is sen-
sitive to the noise annealing schedule and requires laborious hyperparameter searches to see the
diversity gain. A fundamentally different strategy is seen in Particle Guidance (PG) (Corso et al.,
2024). The idea is to repel intermediate latent samples that share the same condition, thereby en-
couraging the final generated samples to exhibit distinct features. While it does not require difficult
parameter searches like CADS, it often provides limited diversity gain (Kirchhof et al., 2025).s This
approach shares a similar spirit as PG (Corso et al., 2024) and incorporates diversity-improving
guidance for repelling intermediate latent instances during inference, yet in a sparse manner, i.e.,
not at every inference timestep. A key distinction from ours is that its diversity optimization (by
injecting guidance) is performed over inference time, which may be more expensive compared to
ours that focuses on the initial latent space.

A related yet different task is to generate minority samples – low-density instances in the data
manifold (Sehwag et al., 2022; Um & Ye, 2023; 2025b). Pioneer works in this area are offered
by Sehwag et al. (2022); Um & Ye (2023), which share a similar idea of incorporating classifier
guidance (Dhariwal & Nichol, 2021) to push intermediate samples toward low-density regions. The
reliance on external classifiers was addressed in Um & Ye (2024; 2025b); Um et al. (2025), offering
self-contained approaches for producing minority samples with diffusion models. While relevant,
the task of generating low-density minority samples is distinct from improving diversity and does
not guarantee distinct outputs. Notably, MinorityPrompt (Um & Ye, 2025b) considers text-to-image
generation and provides a prompt optimization framework that can also be used to enhance the diver-
sity of generated samples. However, it requires optimizing the diversity-improving prompt during
inference, which imposes substantial computational overhead (Um & Ye, 2025b).
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Initial noise optimization in diffusion models has been explored in various contexts (Guo et al.,
2024; Ahn et al., 2024). One instance is InitNO (Guo et al., 2024), where the idea is to optimize the
initial noise latent to promote improved prompt alignment in text-to-image generation. A distinction
with respect to to ours is that their focus is on enhancing text adherence, unlike ours. Another
notable work was done by Ahn et al. (2024), who aim to characterize the influence of classifier-free
guidance (Ho & Salimans, 2021) through a properly optimized latent noise, enabled by an additional
neural network that maps to the optimal noise. While interesting, their focus is inherently distinct
from ours. To the best of our knowledge, our framework is the first to incorporate the idea of noise
optimization for addressing the diversity challenge of diffusion models.

3 PRELIMINARIES

3.1 LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) (Rombach et al., 2022) improve upon traditional Denoising Dif-
fusion Probabilistic Models (DDPMs) (Ho et al., 2020) by performing the diffusion process in a
computationally efficient, lower-dimensional latent space. LDMs first use a pre-trained autoencoder
to map a high-resolution image x0 into a compressed latent representation, z0 = E(x0). The diffu-
sion process is then applied directly to these latent vectors.

The forward process is a Markov chain that gradually adds Gaussian noise to an initial latent vector
z0 over a series of T discrete timesteps. At each step t, the transition is defined as:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)

where {βt}Tt=1 is a fixed variance schedule that controls the noise level at each step. A key property
of this process is that the marginal distribution at any arbitrary step t can be expressed in a closed
form conditioned only on the initial latent z0:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (2)

where we define αt := 1 − βt and ᾱt :=
∏t

i=1 αi. As t increases towards T , the signal term√
ᾱt approaches zero, and the variance 1 − ᾱt approaches 1. This ensures that the noised latent

zT reliably converges to an isotropic Gaussian distribution N (0, I), regardless of the initial latent
vector z0. Once the reverse process generates a clean latent, the decoder D is used to map it back to
the pixel space.

3.2 REVERSE PROCESS AND DENOISING VIA TWEEDIE’S FORMULA

The generative process is achieved by reversing the forward process, conditioned on external in-
formation such as a text embedding c for Text-to-Image (T2I) synthesis. This involves learning a
model pθ(zt−1|zt, c) that approximates the true posterior. In DDPM (Ho et al., 2020), this condi-
tional reverse process is parameterized as a Gaussian whose mean is learned by a neural network
ϵθ(zt, t, c):

pθ(zt−1|zt, c) = N
(
zt−1;

1
√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t, c)

)
, σ2

t I

)
. (3)

The core of this process is the network ϵθ, which is trained to predict the noise component from the
noisy latent vector zt based on the condition c. The key insight is that this trained network can be
used to directly estimate the original clean latent z0 at any timestep t. This denoised estimate ẑ0 is
implemented via Tweedie’s formula (Chung et al., 2025; Um & Ye, 2025a), which for our specific
noise model takes the form:

ẑ0|t(zt, t, c) :=
1√
ᾱt

(
zt −

√
1− ᾱtϵθ(zt, t, c)

)
. (4)

This equation forms the foundation of the iterative denoising process in many conditional diffusion
models, allowing for the generation of latent vectors that align with the given context c.
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3.3 INFORMATION NOISE-CONTRASTIVE ESTIMATION (INFONCE)

Information Noise-Contrastive Estimation (InfoNCE) (van den Oord et al., 2019) is a fundamental
objective for self-supervised representation learning (Chen et al., 2020; He et al., 2020). It aims to
construct an embedding space that maximizes mutual information (Cover, 1999) between represen-
tations of positive (similar) pairs while minimizing it for negative (dissimilar) pairs. The learning
process can be viewed as a classification task in which, for a given anchor sample, the model must
correctly identify its positive counterpart from a set of negative samples.

Specifically, for an anchor embedding vector zi, its positive pair zpos
i , and a set of B − 1 negative

samples {zj}Bj=1,j ̸=i, the InfoNCE loss is formulated as

LInfoNCE :=
1

B

B∑
i=1

[
− log

(
exp(f(zi, z

pos
i )/τ)∑B

j=1 exp(f(zi, zj)/τ)

)]
, (5)

where f(·, ·) denotes a similarity measure (e.g., cosine similarity) between two representation vec-
tors, and τ is a temperature parameter controlling the sharpness of the distribution. Intuitively, the
loss encourages the anchor to be close to its positive pair while pushing it away from all negative
samples, thereby tightening intra-class similarity and enlarging inter-class separation in the embed-
ding space.

4 PROPOSED METHOD

4.1 OPTIMIZING INITIAL NOISE WITH CONTRASTIVE LOSS BETWEEN TWEEDIES

A core challenge in text-to-image diffusion models is that independently sampled initial noises zT
often lead to generations that collapse into similar modes, even under varied stochasticity. Rather
than intervening during the denoising trajectory as in prior diversity methods, we enhance diversity
at its fundamental source by optimizing the initial noises themselves before sampling begins. Our
approach, which we call Contrastive Noise Optimization (CNO), refines a batch of initial noises
using a contrastive objective applied in the Tweedie denoised prediction space, enabling the noises
to be semantically well-separated while remaining faithful to their original distribution. The full
procedure is provided in Algorithm 1 in Section B.1.

The algorithm proceeds as follows. First, we sample a batch of initial latent codes ZT = {ziT }Bi=1
from a standard Gaussian distribution N (0, I). Hereafter, we denote the denoised estimate from
Equation Eq. (4) as ẑ0|t. Using this, we compute the initial target latents, {ẑi0|T }

B
i=1, by applying

the denoising estimator defined in Equation Eq. (4) to this initial noise at timestep T . Each resulting
ẑi0|T is therefore the model’s one-step prediction of the clean latent z0 from the noise ziT . These
pre-computed latents then serve as fixed anchors, each defining a unique identity for its respective
sample throughout the optimization.

Before computing the loss, we employ a practical optimization to enhance efficiency. The high di-
mensionality of the latents (B,C, S, S) makes the pairwise similarity calculation computationally
intensive. We found experimentally that applying an adaptive average pooling operation to down-
sample the latents to a sufficiently smaller spatial resolution (B,C,w,w), where w < S, did not
compromise performance (Section 5.1). This step substantially reduces memory usage and acceler-
ates the similarity matrix computation, making the optimization process more tractable. Downsam-
pled latents {ẑi,ref

0|T }
B
i=1, {ẑi0|T }

B
i=1 are then normalized, and the noise {ziT }Bi=1 is updated using a

contrastive loss LCNO:

LCNO :=
1

B

B∑
i=1

[
− log

(
exp(f(ẑi0|T , ẑ

i,ref
0|T )/τ)∑B

j=1 exp(f(ẑ
i
0|T , ẑ

j
0|T )/τ)

)]
. (6)

This loss function is designed to achieve two objectives simultaneously.

Attraction (Numerator). It encourages the current latent ẑi0|T to remain similar to its corresponding

initial target latent ẑi,ref
0|T . This ensures that each sample maintains coherence with its initial concept

and does not drift away during optimization.
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Repulsion (Denominator). It pushes the current latent ẑi0|T to be dissimilar from all other current

latents {ẑj0|T }
B
j=1,j ̸=i in the batch. This directly promotes diversity by forcing the latent representa-

tions to disperse within the batch.

By iteratively updating zT with the gradient of this loss (∇zT
LCNO), we guide the initial noise vec-

tors to positions in the latent space that are predisposed to generating a diverse set of images. Once
the optimization is complete, this well-distributed batch of noise {ziT }Bi=1 is fed into a standard,
pre-trained DDIM denoiser to produce the final images. Consequently, our method effectively en-
hances output diversity through a simple pre-processing stage that modulates the starting point of
the generation, all without requiring any modifications to the pre-trained diffusion model itself.

Stop-gradient for computational efficiency. Optimizing the loss in Eq. (6) requires backpropa-
gation through diffusion models, which can incur substantial computational overhead. To mitigate
this, we apply a stopgrad operator (Chen & He, 2021) on the model path used in computing the
Tweedie’s estimate. As also demonstrated in Ahn et al. (2024), this simple strategy yields significant
savings in training cost with only marginal impact on performance (see Table 8).

4.2 GAMMA EFFECT: REGULATED ATTRACTION FOR STABLE IMAGE DIVERSIFICATION

In our proposed algorithm, the InfoNCE loss for a single sample within a batch of size B consists of
one attraction term (to itself) and B− 1 repulsion terms (from all other samples in the batch). When
the batch size B is large, the cumulative repulsion force can become excessively strong. This risks
pushing the optimized noise out of the intended distribution, potentially leading to the generation of
less plausible or out-of-distribution images.

To mitigate this issue and achieve a more stable optimization, we introduce a coefficient, γ, to dy-
namically regulate the attraction force. This is done by dividing the similarity term in the numerator
of the loss function by γ. The modified InfoNCE loss is as follows:

Lγ
CNO :=

1

B

B∑
i=1

[
− log

(
exp(f(ẑi0|T , ẑ

i,ref
0|T )/(γτ))∑B

j=1 exp(f(ẑ
i
0|T , ẑ

j
0|T )/τ)

)]
. (7)

Empirically, we found that γ in our framework behaves similarly to a Gaussian regularizer (Guo
et al., 2024), which penalizes large deviations from the Gaussian prior. A detailed analysis is pro-
vided in Section C.3.

Desirable Value for γ. The desirable value for γ is derived by creating a balance between the
regulated attraction force and the cumulative repulsion forces. We achieve this by equating the
maximum value of the attraction term (numerator) with the sum of the maximum values of the
B − 1 repulsion terms. Assuming the maximum similarity score is 1, this balance can be expressed
as:

exp(1/(γτ)) = (B − 1)exp(1/τ). (8)

Solving for γ gives us the following relationship:

γ = (τ ln(B − 1) + 1)−1. (9)

For instance, in our common experimental setting where τ = 0.1 and B = 5, the calculated γ is
approximately 0.88, which is very close to the fixed value of γ = 1.0 we have consistently used. For
a fixed τ = 0.1, the optimal γ changes moderately with batch size B:

B = 13→ γ ≈ 0.8 B = 73→ γ ≈ 0.7 B = 775→ γ ≈ 0.6

This shows that as the batch size B grows larger, γ is not highly sensitive. Therefore, using a single,
appropriately chosen fixed value for γ can also yield stable results without significant performance
degradation.

4.3 THEORETICAL INTUITIONS

We provide mathematical insights into our contrastive framework by establishing its connection to
mutual information. We begin with the classical view of InfoNCE as a variational lower bound

6
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on mutual information, as shown by van den Oord et al. (2019). Specifically, the InfoNCE loss
in Eq. (5) satisfies

LInfoNCE ≥ logB − I(Z;Zpos), (10)

where I(X;Y ) is the mutual information between random variables X and Y . This inequality im-
plies that minimizing LInfoNCE indirectly maximizes I(Z;Zpos), encouraging the learned embedding
space to cluster positive pairs. However, this classical relationship does not clarify how negative
pairs shape the embedding space – an aspect that is critical in our framework, where negative sam-
ples drive diversity.

To capture this effect, we augment the traditional bound to incorporate mutual information with
respect to negative pairs. The following proposition formalizes this result.
Proposition 1. The InfoNCE loss in Eq. (5) satisfies

LInfoNCE ≥ −I(Z;Zpos) + I(Z;Zneg) + log(B − 1), (11)

where B denotes the batch size, and I(X;Y ) is the mutual information between random variables
X and Y :

I(X;Y ) := Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= Ep(X,Y )

[
log

p(X | Y )

p(X)

]
.

The proof is provided in Section A.1. This result shows that the InfoNCE loss is inherently linked
to negative samples as well as positive ones: minimizing the loss decreases the mutual information
with negatives while increasing that with positives.

Extension with Gamma. We further analyze our modified loss in Eq. (7), which introduces a
coefficient γ to control the relative strength of positive pairs.
Proposition 2. For the loss function defined in Eq. (7), the following inequality holds:

Lγ
CNO ≥ −

1

γ
I(Z;Zpos) + I(Z;Zneg) + log(B − 1). (12)

The proof is given in Section A.2. This proposition indicates that γ scales the positive mutual infor-
mation term, serving as a control knob to modulate the influence of positive pairs in our contrastive
objective. We provide empirical results to demonstrate the impact of γ in the appendix; see Sec-
tion C.2.

5 EXPERIMENTS

Implementation Details. Our experiments are conducted on three distinct pre-trained text-to-image
diffusion frameworks: Stable Diffusion v1.5 (SD1.5), SDXL, and SD3. We compare our method
with state-of-the-art zero-shot diversity samplers, including Condition-Annealed Diffusion Sampler
(CADS) (Sadat et al., 2024) and Particle Guidance (PG) (Corso et al., 2024), as well as the prompt-
optimization-based diversity method of Um & Ye (2025b), referred to as DiversityPrompt. All
evaluations use text prompts randomly sampled from the MS-COCO (Lin et al., 2014) validation
set. For each prompt, we generate 3–5 images, yielding a total of roughly 6–10 K samples.

Evaluation Metrics. The goal of our research is to enhance the Pareto frontier between image
quality and diversity of generated images while maintaining a high degree of relevance to the text
prompt. To quantitatively assess this, we used the following key metrics: CLIPScore, PickScore,
Image-Reward for evaluating image quality, and Vendi Score, Mean Pairwise Similarity (MSS)
for diversity. Details for those metrics appear in Section B.2.

5.1 RESULTS

Comparison with Existing Zero-Shot Diversity Samplers. The results in Table 1 demonstrate the
effectiveness of our approach. Our method achieves high performance on the key diversity met-
rics, Vendi Score and MSS, consistently outperforming all baselines across the different foundation
models. While performance on Density and Coverage is highly competitive, our approach’s strong
results on Vendi Score and MSS prove its robust, model-agnostic ability to mitigate mode collapse.
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Model Method Prec ↑ Rec ↑ Den ↑ Cov ↑ CLIP ↑ Pick ↑ IR ↑ MSS ↓ Vendi ↑

SD1.5

DDIM 0.7018 0.6706 0.6033 0.7382 31.5863 21.5081 0.2222 0.1657 4.6949
PG 0.6940 0.7024 0.5975 0.7446 31.3222 21.2086 0.1712 0.1426 4.7630
CADS 0.6866 0.7240 0.5686 0.7292 31.4863 21.2938 0.1137 0.1330 4.7805
DiversityPrompt 0.6878 0.7006 0.5839 0.7416 31.5457 21.3510 0.1332 0.1393 4.7599
Ours 0.7308 0.6926 0.6528 0.7728 31.4525 21.3779 0.1284 0.1317 4.7855

SDXL

DDIM 0.6858 0.6538 0.5713 0.7368 31.8788 22.4761 0.7302 0.2169 2.8377
PG 0.5820 0.7088 0.3855 0.5606 31.5679 22.1631 0.6950 0.2050 2.8545
CADS 0.6486 0.6796 0.5262 0.7108 31.9424 22.2078 0.6162 0.1765 2.8864
Ours 0.6720 0.6992 0.5553 0.7568 31.8129 22.3859 0.7273 0.1623 2.9019

SD3

DDIM 0.7184 0.5828 0.6472 0.6770 31.7783 22.5763 1.0301 0.3028 4.2205
PG 0.7782 0.3900 0.8110 0.7370 32.0463 22.3500 1.0357 0.3066 4.2097
CADS 0.6984 0.5752 0.6110 0.6682 31.6974 22.4987 1.0233 0.2960 4.2487
Ours 0.7100 0.5806 0.6573 0.6938 31.7713 22.5647 1.0233 0.2909 4.2644

Table 1: Quantitative results of zero-shot diverse samplers. Our proposed method is bench-
marked against the standard DDIM sampler and state-of-the-art diversity-enhancing techniques:
PG (Corso et al., 2024) and CADS (Sadat et al., 2024). DiversityPrompt refers to the prompt-
optimization-based diversity approach developed in Um & Ye (2025b). The evaluation demonstrates
that our approach consistently achieves superior performance in diversity metrics, including MSS(↓)
and Vendi Score(↑), across Stable Diffusion 1.5, XL, and 3. Notably, it enhances diversity while ef-
fectively preserving image quality and prompt fidelity, successfully navigating the fidelity-diversity
trade-off by optimizing the initial latent space.

Figure 4: Pareto curves of diverse sampling methods between Vendi Score and text-to-image align-
ment metrics. For our methods, we use Nopt = 5, γ = 1.0, w = 8, τ = 0.1 in common.

Figure 3: Ablation on the window size
w. The Pareto frontier of PickScore vs.
Vendi Score.

Crucially, these substantial gains in diversity do not com-
promise generation quality. Our method maintains strong
prompt fidelity, evidenced by competitive CLIP scores,
and sustains a competitive or superior Pick-Score com-
pared to CADS across all Stable Diffusion models. This
indicates our outputs are not only more varied but also
aesthetically preferable. This quantitative strength is mir-
rored in our qualitative results (see Figure 5), where
our model shows particular strength on complex com-
positional prompts that cause competitor methods to fail.
Where gains in diversity often come at the cost of quality,
our method achieves both, delivering outputs that are not
only more varied but also consistently high in fidelity.

Figure 4 illustrates the quality-diversity trade-off by plot-
ting the Pareto frontiers for our method and key baselines.
The plots reveal a clear and compelling advantage for our approach, which establishes a domi-
nant frontier across metrics trained on large-scale human preferences. This is most evident in the
PickScore and Image-Reward charts, where our method is strictly superior to competitors like
CADS, indicating our outputs are more aesthetically pleasing for any given level of diversity. While
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(a) DDIM (b) Particle Guidance

(c) CADS (d) Ours

Figure 5: Qualitative comparison with pre-existing zero-shot diverse generative methods For
the prompt “A white rabbit on the moon.”(left) and “A green unicorn in a snowy forest”(right), we
compare our method (d) with baseline approaches. Our method successfully generates high-fidelity
images that are strongly aligned with the text prompts. In contrast, the other methods exhibit various
failures.

CADS may achieve a marginally higher peak CLIPScore, this metric is known to favor rigid seman-
tic alignment rather than creative or aesthetically superior interpretations. In contrast, our method’s
dominance across both PickScore and Image-Reward demonstrates a more intelligent trade-off. It
prioritizes what a human user would find visually appealing and contextually appropriate over a
mechanical, word-for-word adherence to the prompt. This quantitative strength is mirrored in our
qualitative results (see Appendix D.4), where our model uniquely succeeds on complex composi-
tional prompts that cause competitors to fail.

Effect of Window Size w. We conduct an ablation study to investigate the effect of the downsam-
pling window size, w, applied to the Tweedie latent shape ẑi0|T (Algorithm 1, Line 10). This step is
crucial for capturing the global structure of the initial noise prediction while reducing computational
cost. We experiment with w ∈ {4, 8, 16} and compare these against the baseline of w = 64, which
effectively uses the full-resolution latent shape.

The results are illustrated in the PickScore-Vendi Score Pareto frontier in Figure 3. As shown, an ag-
gressive downsampling with w = 4 leads to a noticeable performance degradation, failing to match
the frontier established by larger window sizes. In contrast, moderate downsampling with w = 8
and w = 16 achieves highly competitive performance compared to the w = 64 baseline. This
suggests that moderate downsampling successfully preserves the essential structural information for
diversification while benefiting from increased computational efficiency. Excessive downsampling
(w = 4), however, appears to discard critical details necessary for the optimization process. Based
on these findings, we select w = 16 for our main experiments, as it provides the best trade-off
between performance and efficiency.

6 CONCLUSION

We introduced Contrastive Noise Optimization, a simple yet effective pre-processing method to
address mode collapse in text-to-image (T2I) diffusion models. By applying a contrastive loss di-
rectly to the initial noise vectors for a given text prompt, our approach ensures diverse starting points
for generation, eliminating the need for the complex sampling guidance or laborious hyperparameter
tuning required by prior work. Our method sets a new state-of-the-art on the quality-diversity Pareto
frontier, outperforming strong baselines on key diversity metrics without compromising prompt fi-
delity or image quality.

9
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1. The InfoNCE loss in Eq. (5) satisfies

LInfoNCE ≥ −I(Z;Zpos) + I(Z;Zneg) + log(B − 1), (13)

where B denotes the batch size, and I(X;Y ) is the mutual information between random variables
X and Y :

I(X;Y ) := Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= Ep(X,Y )

[
log

p(X | Y )

p(X)

]
.

Proof. In general, we can formulate the infoNCE loss as Eq. (14) by setting g(·, ·) = exp(f(·, ·)/τ)
from Eq. (5):

LInfoNCE = −Ep(z,zpos,zneg)

[
log

g(z, zpos)

g(z, zpos) +
∑B−1

i=1 g(z, z
(i)
neg)

]
. (14)

Let us simply notate zpos, zneg as zp, zn, respectively. This can be split into two terms:

LInfoNCE = −Ep(z,zp) [log g(z, zp)] + Ep(z,zp,zn)

[
log

{
g(z, zp) +

B−1∑
i=1

g(z, z(i)n )

}]
. (15)

Given that g(·, ·) is non-negative due to its exponential form, Eq. (15) has a lower bound by omitting
the positive pair similarity from second term:

LInfoNCE ≥ −Ep(z,zp) [log g(z, zp)] + Ep(z,zn)

[
log

B−1∑
i=1

g(z, z(i)n )

]
. (16)

According to van den Oord et al. (2019), function g(z, z′) estimates the probability density ratio
p(z | z′)

p(z) related to mutual information maximization. This formulation of g induces the follow-
ing Eq. (17):

LInfoNCE ≥ −Ep(z,zp)

[
log

p(z | zp)
p(z)

]
+ Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

p(z)

]
(17)

= −I(Z;Zp) + Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

]
− Ep(z) [log p(z)] .

Using the property of logarithm and Jensen’s Inequality, then

LInfoNCE ≥ −I(Z;Zp) + Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

B − 1

]
+ log(B − 1)− Ep(z) [log p(z)]

≥ −I(Z;Zp) +
1

B − 1

B−1∑
i=1

Ep(z,zn)

[
log p(z | z(i)n )

]
+ log(B − 1)− Ep(z) [log p(z)] .

(18)

Note that negative sample zns are sampled in same distribution. According to Law of large numbers,
we can approximate 1

B−1

∑B−1
i=1 Ep(z,zn)

[
log p(z | z(i)n )

]
≈ Ep(z,zn) [log p(z | zn)].

Therefore, the last inequality Eq. (19) holds.

LInfoNCE ≥ −I(Z;Zp) + Ep(z,zn) [log p(z | zn)] + log(B − 1)− Ep(z) [log p(z)] (19)

= −I(Z;Zp) + I(Z;Zn) + log(B − 1). (20)
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A.2 PROOF OF PROPOSITION 2

Proposition 2. For the loss function defined in Eq. (7), the following inequality holds:

Lγ
CNO ≥ −

1

γ
I(Z;Zpos) + I(Z;Zneg) + log(B − 1). (21)

Proof. Compared to Equation Eq. (14), similarity function g(z, z′) is replaced with gγ(z, z
′) =

exp( f(z,z
′)

γτ ) = {g(z, z′)}
1
γ . Therefore, Equation Eq. (16) can be rewritten as:

Lγ
CNO ≥ −Ep(z,zp)

[
log{g(z, zp)}

1
γ

]
+ Ep(z,zn)

[
log

B−1∑
i=1

g(z, z(i)n )

]
(22)

= − 1

γ
Ep(z,zp) [log g(z, zp)] + Ep(z,zn)

[
log

B−1∑
i=1

g(z, z(i)n )

]
. (23)

Following similar derivations with Appendix A.1, we can simply show that Lγ
CNO ≥ −

1
γ I(Z;Zp)+

I(Z;Zn) + log(B − 1).

B IMPLEMENTATION DETAILS

B.1 PSEUDOCODE

Detailed algorithm for our sampling method is provided in Algorithm 1.

B.2 EVALUATION METRICS

• Image Quality and Prompt Alignment. To measure the quality and textual relevance of the
generated images, we employ a suite of widely-recognized automated metrics.

– CLIPScore. This metric evaluates the semantic consistency between a generated image and
its corresponding text prompt by calculating the cosine similarity of their embeddings from
a pre-trained CLIP model (Hessel et al., 2021).

– PickScore. We use PickScore (Kirstain et al., 2023), a reward model trained on large-scale
human preferences, to assess the overall aesthetic quality and prompt alignment of the im-
ages.

– Image-Reward. As a complementary metric, Image-Reward (Xu et al., 2023) is another
human-preference-based reward model that provides scores reflecting the general quality of
the generated content.

• Diversity. To evaluate the intra-prompt diversity of the generated images, we utilize two distinct
metrics that capture different aspects of variation.

– Vendi Score. The Vendi Score (Friedman & Dieng, 2023) measures the diversity of a set
of samples by analyzing the eigenvalue distribution of their similarity matrix. It provides a
holistic assessment of both the variety and balance of the generated images.

– Mean Pairwise Similarity (MSS). This metric directly quantifies the average similarity be-
tween all unique pairs of images generated for a single prompt. We first extract image features
using the self-supervised descriptor for image copy detection (SSCD) model (Pizzi et al.,
2022). Then, we compute the pairwise cosine similarity matrix of these features and calcu-
late the mean of its off-diagonal elements. A lower MSS value indicates higher diversity, as
images in the set are, on average, less similar to one another.

B.3 HYPERPARAMETER SETTINGS

For our main experiments, we use a set of 2K prompts, with each prompt generating a batch of
B images. The number of inference steps was set to 50 for Stable Diffusion 1.5 and XL, and 28
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Table 2: Model-specific hyperparameters for our proposed method.

Hyperparameter Stable Diffusion 1.5 Stable Diffusion XL Stable Diffusion 3
CFG Scale 6.0 6.0 7.0
Optimization Steps (Nopt) 3 3 3
Gamma (γ) 1.0 1.0 1.0
Window Size (w) 16 16 32
Learning Rate (η) 0.01 0.01 0.001

for Stable Diffusion 3. The batch size (B) was set to 5 for SD1.5 and SD3, and 3 for SDXL. The
specific hyperparameters for our proposed method are detailed in Table 2. As shown in the table,
most settings are shared across different T2I backbones, highlighting the robustness of our approach
to hyperparameter choices.

C FURTHER ANALYSES AND DISCUSSIONS

C.1 STEPWISE MECHANISM OF CONSTRASTIVE NOISE OPTIMIZATION

To clarify the exact role of the attraction coefficient γ and the gradient dynamics within our frame-
work, we provide a stepwise breakdown using a minimal batch example.

Loss Mechanism: Attraction and Repulsion. Consider a minimal batch of size B = 2. Let L1

denote the loss for the first initial noise vector z1T . Given a fixed reference anchor ẑ1,ref
0|T and the

similarity function sim(·, ·), the loss decomposes into two distinct forces:

L1 = − log
exp(sim(ẑ10|T , ẑ

1,ref
0|T )/(γτ))∑2

j=1 exp(sim(ẑ10|T , ẑ
j
0|T )/τ)

= −
sim(ẑ10|T , ẑ

1,ref
0|T )

γτ︸ ︷︷ ︸
(A) Attraction

+ log
(
exp(sim(ẑ10|T , ẑ

1
0|T )/τ) + exp(sim(ẑ10|T , ẑ

2
0|T )/τ)

)
︸ ︷︷ ︸

(B) Repulsion

(A) Attraction. This term encourages alignment between the current estimate ẑ10|T and its fixed

reference ẑ1,ref
0|T , preserving semantic fidelity to the original concept.

(B) Repulsion. It pushes ẑ10|T away from other samples in the batch (e.g., ẑ20|T ), enforcing diversity
by maximizing semantic distance.

Role of Gamma (γ). The coefficient γ serves as a regulator for the fidelity-diversity trade-off by
exclusively scaling the attraction term. As derived in Proposition 2, the effective objective is lower-
bounded by:

Lγ
CNO ≥ −

1

γ
I(Z;Zpos) + I(Z;Zneg) + log(B − 1).

This reveals that γ modulates the strength of the positive mutual information. Specifically:

• Decreasing γ < 1: Amplifies the attraction force (1/γ > 1). This is crucial for larger
batch sizes (e.g., B = 3), where the cumulative repulsion from B − 1 negative pairs can
overshadow the single attraction term. A lower γ restores balance, preventing the sample
from drifting too far from the anchor.

• Increasing γ > 1: Dampens the attraction, allowing the repulsion term to dominate. This
promotes greater diversity but risks reducing fidelity.

Practically, we find that setting γ ≈ (τ ln(B − 1) + 1)−1 provides a robust baseline for balancing
these forces across varying batch sizes.
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Gradient Flow and the Stop-Gradient Strategy. To optimize zT efficiently, we analyze the gradi-
ent flow. For the loss L1 defined above:

• Active Gradient Flow: Gradients propagate through ẑ10|T in both numerator and denomi-
nator, driving it toward the anchor and away from negatives.

• No Flow to Anchor: The reference ẑ1,ref
0|T is fixed; thus, no gradients flow through this term,

ensuring it remains a stable guidepost.

Crucially, to backpropagate from ẑ0|T to zT , we utilize a stopgrad operation on the diffusion
model output ϵθ. By the chain rule:

∇zT
L =

(
∂ẑ0|T

∂zT

)T

∇ẑ0|TL

=
1√
ᾱT

(
I−
√
1− ᾱT

∂ϵθ(zT )

∂zT

)T

∇ẑ0|TL.

Calculating the full Jacobian ∂ϵθ/∂zT is computationally prohibitive. By applying stopgrad, we
set this term to zero, simplifying the update to:

∇zT
L ≈ 1√

ᾱT
· I · ∇ẑ0|TL.

This approximation effectively updates the noise directly in the direction of the semantic gradi-
ent. This strategy mirrors the effective Jacobian approximation used in Score Distillation Sampling
(SDS) (Poole et al., 2023) and NoiseRefine (Ahn et al., 2024), ensuring stable and efficient guidance
without the cost of backpropagating through the U-Net.

C.2 GAMMA EFFECT: STABILIZING OPTIMIZATION PROCESS

Figure 6: Impact of γ. The Pareto fron-
tier of PickScore vs. Vendi Score.

To validate the stability of our proposed method, we con-
duct an ablation study on the hyperparameter γ to ana-
lyze its impact on output variability. We set γ to values
of {1.0, 0.9, 0.8, 0.7}. To ensure that our findings are not
contingent on a specific learning rate, we vary the learn-
ing rate η within the range of [0.01, 0.02]. For each set-
ting of γ, we generate 5 images per prompt, collecting a
total of 5K images using SD1.5 model. We then compute
evaluation metrics and calculate their sample variance to
quantify the statistical variability of the outputs.

The results of this experiment are summarized in Table 3,
where we calculate the sample variance of those metrics
in η ∈ [0.01, 0.02]. We observe a clear saturation effect:
as γ is decreased from 1.0, the variance of the evalua-
tion metrics stabilizes. Specifically, the most significant
change in variance occurs when γ is reduced from 1.0 to
0.9. Further decreasing γ to 0.8 and 0.7 yields diminishing changes in variance, indicating that the
metrics enter a stable regime. For instance, s2V S exhibits a steady downward trend as γ decreases,
while the other metrics maintain a relatively consistent level of variance for γ ≤ 0.9.

Table 3: Gamma effect. Subscripts
V S,CS, PS, IR mean Vendi Score,
CLIPScore, PickScore, Image-Reward,
respectively.

γ Sample variance (×10−4)

s2V S s2CS s2PS s2IR

1.0 0.076 5.49 1.54 0.60
0.9 0.068 2.47 1.00 0.61
0.8 0.061 3.89 0.78 0.34
0.7 0.050 1.61 0.41 0.11

To further investigate the boundaries of the fidelity-
diversity trade-off, we extended our analysis to ex-
treme values of γ. We evaluated γ = 0.01 and
γ = 100.0 using the SD1.5 backbone and compared
their performance against the standard DDIM sampler
and our nominal setting (γ = 1.0).

The quantitative results are summarized in Table 4. We
observe two distinct behaviors at these extremes:

Strong Attraction (γ = 0.01). When γ is extremely
small, the attraction term becomes overwhelmingly
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Method CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

DDIM 31.3940 21.3937 0.0890 0.1485 4.7413
Ours (γ = 0.01) 31.3934 21.3945 0.0888 0.1485 4.7412
Ours (γ = 1.0) 31.3424 21.2907 0.0360 0.1276 4.7945
Ours (γ = 100.0) 31.3764 21.2696 0.0185 0.1279 4.7933

Table 4: Ablation on extreme gamma values. We compare performance under extreme settings
(γ = 0.01 and γ = 100.0) against DDIM and our nominal parameter (γ = 1.0). Extremely
low γ reverts performance to the DDIM baseline, while extremely high γ degrades fidelity without
providing the optimal diversity gains achieved at γ = 1.0.

dominant (1/γ ≫ 1), rigidly anchoring the noise to the initial Tweedie estimate. This effectively
suppresses the diversity-inducing repulsion, resulting in metrics nearly identical to the DDIM base-
line.

Weak Attraction (γ = 100.0). Conversely, a very large γ negates the anchoring force. While this
allows for marginal diversity gains, it causes a significant drop in fidelity (PickScore and ImageRe-
ward) compared to γ = 1.0, indicating that the optimization drifts away from semantic alignment
without sufficient regularization.

These findings confirm that our nominal value (γ ≈ 1.0) strikes an effective balance, leveraging suf-
ficient attraction to maintain quality while allowing enough repulsive freedom to enhance diversity.

C.3 LEVERAGING KL DIVERGENCE FOR NOISE REGULARIZATION

To further analyze the stability of our method, we investigate the effect of an explicit regularization
term. This can be achieved by penalizing the deviation of the optimized noise batch {ziT }Bi=1 from
the standard Gaussian prior,N (0, I), using a Kullback-Leibler (KL) divergence term (Shlens, 2014).

For a single noise tensor zT , we treat all of its constituent elements as a single population of data
points to estimate an underlying distribution. First, we compute the sample mean (µ̂) and sample
variance (σ̂2) across all D = C ×H ×W elements within the tensor:

µ̂ =
1

D

H∑
h=1

W∑
w=1

C∑
c=1

zT [c, h, w], σ̂2 =
1

D − 1

H∑
h=1

W∑
w=1

C∑
c=1

(zT [c, h, w]− µ̂)2.

Here, zT [c, h, w] represents the pixel value allocated in c-th channel and (h,w)-position of the latent
tensor zT . These statistics define an estimated univariate Gaussian distribution, P = N (µ̂, σ̂2), that
characterizes the single noise tensor. We then measure the divergence of this distribution from the
standard normal prior, Q = N (0, 1). The KL divergence for these univariate Gaussian distributions
is:

DKL(N (µ̂, σ̂2)∥N (0, 1)) = log
1

σ̂
+

σ̂2 + µ̂2

2
− 1

2
.

Figure 7: Ablation study on ap-
plying Kullback-Leibler diver-
gence. Weight for KL diver-
gence is set as λ = 1000.

By minimizing this KL penalty, we enforce a constraint that en-
courages the internal statistics of the optimized noise tensor to
remain close to those of a standard normal distribution. Integrated
algorithm is shown in Algorithm 2.

As shown in Figure 7, incorporating this KL penalty shifts the
quality-diversity Pareto frontier to the lower-right, indicating a
trade-off towards higher textual fidelity at the cost of lower diver-
sity. Interestingly, we observe an analogous phenomenon in our
analysis of the attraction coefficient γ. As detailed in Section C.2,
lowering the value of γ similarly shifts the frontier to the lower-
right and stabilizes performance; see Figure 6 for therein. This
parallel suggests that the γ coefficient in our contrastive loss im-
plicitly functions as a regularizer, controlling the diversity-fidelity
trade-off in a manner similar to an explicit KL divergence penalty.
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Table 5: Ablation of window size w across prompt types. We compare the effect of full spatial
resolution (w = 64) versus aggressive downsampling (w = 1) on GenEval (simple) and T2I-
CompBench (complex).

Dataset Setting CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

GenEval
w = 64 30.7080 21.3857 0.0585 0.1017 4.8376
w = 1 30.8394 21.3320 0.0083 0.1016 4.8374

T2I-CompBench
w = 64 30.8639 20.0979 -0.1697 0.1218 4.7931
w = 1 30.9414 20.0856 -0.2335 0.1208 4.7879

Table 6: Effect of adjusting the initial noise variance. We evaluate the influence of scaling the
initial Gaussian prior variance by a factor τ (zT ∼ N (0, τ2I)). Naively increasing variance fails to
improve diversity and degrades quality at higher values, whereas our framework achieves the best
diversity-quality trade-off.

Method CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

τ = 1.0 (DDIM) 31.5041 21.4358 0.1324 0.1620 4.7029
τ = 1.01 31.4950 21.4381 0.1597 0.1608 4.7060
τ = 1.025 31.4668 21.4313 0.1814 0.1599 4.7090
τ = 1.05 31.4469 21.3237 0.2058 0.1621 4.7058
τ = 1.1 31.4757 20.8230 0.0817 0.1811 4.6539
τ = 1.15 30.0744 19.6513 -0.6910 0.2114 4.5561

Ours 31.3424 21.2907 0.0360 0.1276 4.7945

C.4 INFLUENCE OF WINDOW SIZE ON PROMPT TYPES

To address the question of whether aggressive downsampling disproportionately affects specific
prompt categories, we expanded our ablation study on the window size w. While Figure 4 demon-
strates the global impact of w, here we specifically examine the performance difference between
preserving full spatial resolution (w = 64) and aggressive downsampling (w = 1) across two dis-
tinct prompt domains:

• GenEval (Ghosh et al., 2023): representing general, simple captions.

• T2I-CompBench (Huang et al., 2023): representing complex, compositional prompts that require
spatial reasoning.

The comparative results are summarized in Table 5. We observe that for both prompt categories,
using w = 1 results in degraded performance compared to w = 64. This confirms that spatial struc-
ture in the initial noise prediction is valuable for optimization. Notably, the degradation in fidelity
(PickScore and ImageReward) and diversity (Vendi Score) is observed in both, but the preserva-
tion of spatial dimensions (w = 64) is particularly critical for maintaining the quality of complex
prompts in T2I-CompBench. Aggressive downsampling (w = 1) effectively collapses spatial infor-
mation into a single vector, which hinders the model’s ability to optimize for compositional elements
that rely on spatial layout. Thus, a moderate to large window size is essential to ensure robustness
across varying prompt complexities.

C.5 IMPACT OF INITIAL NOISE VARIANCE ON DIVERSITY

The initial latent zT is standardly sampled from a Gaussian distribution N (0, I). To investigate
whether simply increasing the prior variance promotes diversity, we introduced a scaling factor τ
such that zT ∼ N (0, τ2I).

As shown in Table 6, slight increases in variance (τ ∈ [1.01, 1.05]) yield negligible diversity gains,
suggesting that small perturbations fail to escape dominant modes. Conversely, larger variances
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Prompt: ‘photo of a cat and a dog running, mountain background.”

(a) DDIM (b) CADS (c) TweedieMix (d) Ours

Figure 8: Qualitative comparison with concept fusion methods. We compare DDIM, CADS, Tweed-
ieMix, and ours using the prompt: “photo of a cat and a dog running, mountain background.” While
TweedieMix (c) attempts to fuse concepts, it suffers from low text-image alignment, often failing to
generate one of the subjects (e.g., omitting the cat) due to the limitations of personalization-based
tuning. In contrast, Ours (d) successfully captures all semantic elements while providing diverse
variations.

Method CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

DDIM 35.9353 23.1232 1.4163 0.2319 2.8302
CADS 35.2270 22.7042 1.1303 0.1860 2.8816
TweedieMix 29.7348 20.1795 -0.4640 0.2112 2.8531
Ours 35.3717 22.7858 1.2632 0.1645 2.9040

Table 7: Quantitative comparison with TweedieMix. We evaluate performance on compositional
prompts using personalized concepts. Our method achieves a better balance of alignment (CLIP,
PickScore) and diversity (MSS, Vendi) without requiring the pre-training or segmentation steps
mandated by TweedieMix.

(τ ≥ 1.1) cause a sharp decline in fidelity and paradoxically reduce diversity, indicating a failure
to converge to meaningful image manifolds. This observation aligns with recent findings that vari-
ance inflation deteriorates ODE-based sampling (Um et al., 2025). In contrast, our method achieves
superior diversity (Vendi ≈ 4.79) without such quality collapse, demonstrating that contrastive op-
timization is far more effective than naive noise scaling.

C.6 INVESTIGATION OF ALTERNATIVE DIVERSITY APPROACHES

While our primary comparisons focus on zero-shot diversity samplers, the landscape of diversity-
enhancing techniques also includes methods based on multi-concept fusion, 3D-aware generation,
and counterfactual interventions. In this section, we extend our analysis to these broader families of
approaches, incorporating both (i) direct empirical comparison where feasible, and (ii) conceptual
discussion for methods whose goals or training regimes differ fundamentally from ours.

To provide a more comprehensive assessment, we therefore evaluate our method against Tweed-
ieMix, a recent method that fuses personalized concepts via Tweedie’s formula. We conducted ex-
periments using compositional prompts derived from the official personalized concepts provided by
TweedieMix (e.g., “dog”, “cat”, “mountain”). As shown in Table 7 and Figure 8, CNO demonstrates
a superior trade-off between diversity and text-image alignment.

We observe that TweedieMix often exhibits degraded fidelity, such as omitting requested subjects
(e.g., the cat in Figure 8(c)). This limitation largely stems from the catastrophic forgetting inher-
ent in personalization-based approaches; optimizing for specific concepts can degrade the model’s
ability to generate general concepts or complex compositions outside the pre-learned set. Further-
more, TweedieMix relies on concept embeddings learned through an additional training stage. This
naturally biases generation toward those memorized representations, restricting the model’s ability
to explore the diverse variations that a zero-shot method like CNO can access. Computationally,
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TweedieMix incurs significant overhead as it requires segmenting latents using an external segmen-
tation model (e.g., Text-SAM) prior to fusion. In contrast, our framework requires no extra training
or external models, applying directly to arbitrary prompts in a lightweight, one-shot manner.

Beyond multi-concept fusion, several recent approaches advance generative controllability from
orthogonal directions, namely 3D consistency, layout reasoning, and counterfactual structure. Diff-
Splat (Lin et al., 2025) introduces a differentiable 3D splatting pipeline designed to improve multi-
view coherence and geometric accuracy. CoT-lized Diffusion (Liu et al., 2025) incorporates multi-
modal LLM-based chain-of-thought reasoning into the denoising trajectory to refine spatial arrange-
ments and relational structure. Pan & Bareinboim (2025) propose a causally grounded latent space
enabling counterfactual manipulation with invariant factors preserved across interventions. While
these approaches significantly enhance compositional fidelity, geometric structure, or causal inter-
pretability, they do not target the diversity–quality trade-off in T2I generation. Their methods typ-
ically modify the generative process itself, whereas our approach directly reshapes the initial noise
distribution to mitigate mode collapse without altering the sampling trajectory or model architecture,
making CNO complementary to these orthogonal research directions.

C.7 COMPUTATIONAL ANALYSIS

Table 8: Computational cost and performance comparison on Stable Diffusion v1.5.

Method Time (sec / batch) ↓ PickScore ↑ VendiScore ↑
DDIM 11.131 21.2398 4.8024
Particle Guidance 11.164 21.2164 4.8016
CADS 11.167 21.2254 4.7964
DiversityPrompt 18.703 21.3067 4.7599
Ours (w/o stopgrad) 12.853 21.3125 4.8010
Ours (with stopgrad) 11.866 21.3044 4.8039

To evaluate the practical efficiency and computational overhead of our proposed method, we con-
ducted a comparative analysis against several baseline and state-of-the-art techniques. All experi-
ments in this section were performed using the Stable Diffusion v1.5 model.

Our evaluation focuses on the trade-off between computational cost and performance. We generated
a total of 5K samples for each method to measure the average time per batch, along with key per-
formance indicators for quality (PickScore) and diversity (VendiScore). The results, summarized in
Table 8, provide a clear overview of each method’s performance profile.

As presented in Table 8, our approach demonstrates a highly compelling efficiency-performance
profile. With an optimization step of Nopt = 3, our method incurs a modest computational overhead
of approximately 5% relative to the standard DDIM sampler.

Despite this, our approach is notably faster and achieves superior metric scores compared to Mi-
norityPrompt. It also remains significantly more efficient than computationally intensive methods
like Particle Guidance. Crucially, this slight increase in latency is a highly acceptable trade-off.
Our method achieves a unique point on the Pareto frontier of efficiency, quality, and diversity. The
combination of high PickScore and VendiScore delivered by our approach represents a state-of-the-
art balance unmatched by any other method at any computational cost. This result underscores the
practical value of our method, offering a solution that is both powerful and efficient for real-world
applications.

Impact of Batch Size (B). To provide practical guidelines for real-world usage, we further analyzed
how the batch size B influences both generation quality and computational overhead. Our empirical
findings suggest that the optimal strategy is to set B equal to the number of images intended for
generation per prompt (NIPP).

Table 9 illustrates the performance trade-offs. Increasing B from 3 to 5 allows the repulsion term
to act on a larger set of samples, pushing them into increasingly diverse directions. Consequently,
B = 5 achieves a superior fidelity-diversity balance compared to B = 3, yielding comparable
diversity (Vendi Score) with improved quality metrics (CLIPScore, PickScore, and ImageReward).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Impact of batch size B on performance. B = 5 yields a better balance, improving quality
metrics while maintaining high diversity compared to B = 3.

Method CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

DDIM 31.3940 21.3937 0.0890 0.1485 4.7413
Ours (B = 3) 31.3298 21.2640 0.0238 0.1267 4.7949
Ours (B = 5) 31.3424 21.2907 0.0360 0.1276 4.7945

Table 10: Influence of batch size B on computations. We report Peak Memory (MiB) and Time
(sec/batch). Our method remains efficient even at larger batch sizes compared to DiversityPrompt.

B = 3 B = 5

Method Memory (MiB) ↓ Time (sec/batch) ↓ Memory (MiB) ↓ Time (sec/batch) ↓

DDIM 7694 8.091 10978 12.778
Ours 7672 8.809 10828 13.427
DiversityPrompt 13070 15.063 19006 21.631

We generally do not observe stagnation in diversity improvement up to the NIPP limit; thus, utilizing
the largest feasible B is recommended.

Regarding computational cost, while increasing B naturally raises memory usage and inference
time, the overhead for our method remains relatively marginal. Crucially, even at B = 5, our ap-
proach is significantly more efficient than iterative baselines such as DiversityPrompt, which incurs
nearly double the memory and time cost (see Table 10). This efficiency stems from our one-shot op-
timization of the initial noise, avoiding the heavy cost of iterative interventions during the sampling
process.

C.8 LIMITATIONS AND FUTURE WORK

Despite its effectiveness in mitigating mode collapse, our method – like other diversity-focused ap-
proaches – exhibits limitations when handling prompts that require strong compositional grounding.
In scenarios involving specific spatial relations or interactions, the optimization for diversity can oc-
casionally compromise text-image alignment. For instance, as illustrated in Figure 9, while standard
sampling successfully captures specific relational details (e.g., a dog holding a frisbee), diversity
methods including CADS, PG, and our method (at γ = 1.0) may struggle to fully preserve this
structural coherence.

Prompt: “A dog holding a yellow frisbee in it’s mouth.”

(a) DDIM (b) CADS (c) PG (d) Ours (γ = 1.0) (e) Ours (γ < 1.0)

Figure 9: Failure case analysis. We illustrate a scenario requiring strong compositional grounding
(specifically, the relation of holding). While the standard DDIM sampler (a) correctly captures
the relational structure, diversity-enhancing methods (b-d) – including Ours with the nominal γ =
1.0 – may struggle to maintain this fine-grained alignment. However, unlike other baselines, our
framework provides a remedy: by lowering the attraction coefficient (γ < 1.0), we can recover the
correct semantic alignment (e) by trading off a small degree of diversity.
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Crucially, however, our framework offers a novel advantage to address this challenge: the attrac-
tion coefficient γ. Unlike existing baselines where the fidelity-diversity trade-off is often rigid, our
method enables dynamic control via γ. As demonstrated in Figure 9(e), by lowering γ below 1.0,
we can intensify the anchoring force toward the initial Tweedie estimate. This effectively recovers
the correct compositional alignment (e.g., the holding relation) at the cost of a modest reduction in
diversity. This capability confirms that γ functions as an effective fidelity controller, allowing users
to flexibly navigate failure cases that are otherwise difficult to resolve in competing frameworks.

For future work, while our method focuses on the initial noise zT , we believe that applying a sim-
ilar optimization strategy to intermediate latents zt (where t < T ) could be a promising avenue
for further enhancing diversity for a single prompt. Some studies have explored optimizing these
intermediate latents to generate images with high fidelity to complex textual conditions (Wallace
et al. 2023 ; Ding et al. 2024). The effectiveness of such an approach may depend on the model and
the degree to which its Tweedie prediction is already structured to reflect the semantic content of
the input prompt at intermediate timesteps. This direction may warrant deeper investigation on our
approach.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE ON ACCELERATED MODELS

Model Method CLIPScore ↑ PickScore ↑ ImageReward ↑ MSS ↓ Vendi Score ↑

SDXL-Lightning
(4-step)

DDIM 31.5536 22.6598 0.7231 0.2865 2.7470

CADS 31.4425 22.5767 0.6876 0.2674 2.7749

Ours 31.4474 22.5659 0.6740 0.2289 2.8258

FLUX-1-Schnell
(4-step)

FM-ODE 32.1012 22.7411 1.0499 0.3012 2.7220

CADS 31.7153 22.5431 0.8622 0.2287 2.8250

Ours 32.0664 22.6137 1.0070 0.2231 2.8316

Table 11: Quantitative comparison on few-step accelerated models. We evaluate performance on
SDXL-Lightning and FLUX-1-Schnell under a 4-step inference setting. Our method is compared
against DDIM, CADS, and Flow-Matching ODE (FM-ODE), the default sampler used in FLUX.
The results indicate that our approach maintains robust diversity improvements (higher Vendi Score,
lower MSS) even in aggressive few-step regimes where iterative interventions like CADS are less
effective.

Prompt: “An astronaut on the moon”

(a) SD1.5 (b) SDXL (c) SD3 (d) SDXL-Lightning (e) FLUX-1-Schnell

Figure 10: Visualization of initial Tweedie estimates (ẑ0|T ) across different backbones. We compare
the one-step denoised predictions from the initial Gaussian noise zT .

Few-step accelerated models, while computationally efficient, are prone to severe mode collapse due
to limited stochasticity in their shortened trajectories. To validate the robustness of our approach in
this regime, we evaluated CNO on two representative accelerated models: SDXL-Lightning (4-step
distilled diffusion) and FLUX-1-Schnell (4-step rectified flow).
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As summarized in Table 11, CNO delivers consistent improvements in diversity metrics (Vendi
Score and MSS) across both architectures. Notably, we observe that iterative diversity samplers like
CADS yield limited gains in this 4-step setting. This performance gap stems from a fundamental
operational difference: iterative methods rely on accumulating guidance over many timesteps, a
mechanism that becomes ineffective when the sampling trajectory is drastically condensed.

In contrast, CNO performs a one-shot optimization of the initial noise zT prior to sampling, making
it independent of the inference step count. Crucially, we found that accelerated models tend to pro-
duce significantly clearer and more deterministic Tweedie predictions (ẑ0|T ) at the initial timestep
compared to standard many-step models (see Figure 10). This characteristic renders the initial noise
optimization particularly effective, as the contrastive gradients derived from these sharp Tweedie
estimates are highly semantically meaningful. These results confirm that our framework is model-
agnostic and robust even under aggressive sampling acceleration.

D.2 USER STUDY RESULTS

Alignment & Quality (%) Diversity & Creativity (%)

Baseline CNO (Ours) Baseline CNO (Ours)

vs. CADS 21.29 78.71 16.45 83.55
vs. PG 41.29 58.71 21.94 78.06

Table 12: Human preference evaluation. We compare CNO against CADS and Particle Guidance
(PG). The values represent the percentage of user preference. CNO demonstrates a strong advantage
in both image quality and generation diversity.

To complement our quantitative evaluation, we conducted a human preference study comparing
CNO against two diversity-focused baselines: CADS (Sadat et al., 2024) and Particle Guidance
(PG) (Corso et al., 2024). A total of 32 participants evaluated 30 randomly ordered image pairs,
each generated using identical prompts and seeds. For each pair, participants selected the preferred
sample according to two criteria: (i) Alignment & Quality (text adherence and visual fidelity) and
(ii) Diversity & Creativity (semantic distinctiveness and variation).

As shown in Table 12, CNO is consistently preferred over both baselines. Notably, against CADS,
our method achieved preference rates of 78.71% for quality and 83.55% for diversity. A similar
trend is observed against PG, confirming that the quantitative gains of CNO translate into perceptibly
superior generation quality and diversity.

D.3 EXPERIMENTS ON DISTINCT PROMPT DOMAINS

Table 13: Quantitative evaluation on the GenEval benchmark.

Method CLIPScore ↑ PickScore ↑ ImReward ↑ MSS ↓ Vendi Score ↑

DDIM 32.0443 21.7006 -0.1422 0.1389 4.7550
CADS 31.6739 21.4260 -0.3117 0.1020 4.8433
Ours 31.6738 21.4923 -0.2841 0.1006 4.8508

To verify that our method’s effectiveness is not limited to the daily scenes typical of MS-COCO, we
extended our evaluation to the GenEval benchmark (Ghosh et al., 2023). GenEval is designed to
test compositional reasoning and includes a diverse set of prompts distinct from standard captioning
datasets. We evaluated Stable Diffusion v1.5 using this benchmark, comparing CNO against DDIM
and CADS.

The quantitative results are presented in Table 13. Consistent with our main findings, CNO achieves
the highest diversity scores (Vendi Score and MSS), outperforming both the standard sampler and
the baseline diversity method (CADS). Crucially, while maintaining superior diversity, CNO also
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retains higher image quality compared to CADS, as evidenced by higher PickScore and ImageRe-
ward values. This demonstrates that the robustness of our contrastive noise optimization extends
beyond specific datasets and effectively generalizes to diverse textual domains.

D.4 ADDITIONAL GENERATED SAMPLES

Figure 11 represents that our method shows high image quality and textual fidelity compared to
DDIM and CADS. We use SDXL in common, and hyperparameters of our method are equivalent to
Table 2.

E USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to aid in the verbal refinement and polishing of our paper.
This usage was only limited to improving readability and fixing some grammar errors. The core
research, including the formulation of our method, experimental design, and analysis of results, was
conducted solely by the authors.
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Algorithm 1 Diverse T2I Generation via Contrastive Noise Optimization

Inputs: Text embedding c, batch size B, optimization steps Nopt, learning rate η, temperature τ ,
attraction coefficient γ, window size w

Outputs: {xi
0}Bi=1, a batch of diverse images.

1: Models: Diffusion model ϵθ, DDIM sampler DDDIM
2: Initialize a batch of trainable noise vectors ZT = {ziT }Bi=1 ∼ N (0, I)
3: Let Zref

T ← ZT

4: for n = 1 to Nopt do
5: for i = 1 to B do
6: ẑi0|T ←

1√
ᾱT

(ziT −
√
1− ᾱTstopgrad{ϵθ(ziT , T, c)})

7: if n = 1 then
8: ẑi,ref

0|T ← ẑi0|T
9: end if

10: ẑi0|T , ẑ
i,ref
0|T ← DownSample(ẑi0|T ;w), DownSample(ẑi,ref

0|T ;w)

11: ẑi0|T , ẑ
i,ref
0|T ← Normalize(ẑi0|T ), Normalize(ẑi,ref

0|T )

12: end for
13: Lγ

CNO := 1
B

∑B
i=1

[
− log

(
exp(f(ẑi

0|T ,ẑi,ref
0|T )/(γτ))∑B

j=1 exp(f(ẑi
0|T ,ẑj

0|T )/τ)

)]
14: ZT ← ZT − η · ∇ZT

Lγ
CNO

15: end for
16: {zi0}Bi=1 ← DDDIM(ZT , c)
17: {xi

0}Bi=1 ← Decode({zi0}Bi=1)
18: return {xi

0}Bi=1

Algorithm 2 Contrastive Noise Optimization with KL Regularization

Inputs: Text embedding c, batch size B, optimization steps Nopt, learning rate η, temperature τ ,
attraction coefficient γ, window size w, KL divergence weight λ

Outputs: {xi
0}Bi=1, a batch of diverse images.

1: Models: Diffusion model ϵθ, DDIM sampler DDDIM
2: Let D be the number of pixels in a single noise tensor (channel C × height H × width W )
3: Initialize a batch of trainable noise vectors ZT = {ziT }Bi=1 ∼ N (0, I)
4: Let Zref

T ← ZT

5: for n = 1 to Nopt do
6: for i = 1 to B do
7: ẑi0|T ←

1√
ᾱT

(ziT −
√
1− ᾱTstopgrad{ϵθ(ziT , T, c)})

8: if n = 1 then
9: ẑi,ref

0|T ← ẑi0|T
10: end if
11: ẑi0|T , ẑ

i,ref
0|T ← DownSample(ẑi0|T ;w), DownSample(ẑi,ref

0|T,;w)

12: ẑi0|T , ẑ
i,ref
0|T ← Normalize(ẑi0|T ), Normalize(ẑi,ref

0|T )

13: end for
14: Lγ

CNO := 1
B

∑B
i=1

[
− log

(
exp(f(ẑi

0|T ,ẑi,ref
0|T )/(γτ))∑B

j=1 exp(f(ẑi
0|T ,ẑj

0|T )/τ)

)]
15: µ̂i ← 1

D

∑H
h=1

∑W
w=1

∑C
c=1 zT [c, h, w] for i = 1, . . . , B

16: σ̂2
i ← 1

D−1

∑H
h=1

∑W
w=1

∑C
c=1(zT [c, h, w]− µ̂)2 for i = 1, . . . , B

17: LKL := 1
B

∑B
i=1

[
log 1

σ̂i
+

σ̂2
i+µ̂2

i

2 − 1
2

]
18: Ltotal ← Lγ

CNO + λLKL
19: ZT ← ZT − η · ∇ZT

Ltotal
20: end for
21: {zi0}Bi=1 ← DDDIM(ZT , c)
22: {xi

0}Bi=1 ← Decode({zi0}Bi=1)
23: return {xi

0}Bi=1
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”A dog sits on a boat
floating in water”

”A batter goes to hit the
ball just thrown to him from

the pitcher.”

”A cat is sitting on a leather
couch next to two remotes.”

”A man smiles while
holding a large turkey.”

”A person that is flying a
kite in the air.”

”Two dogs lying on blanket
sleeping on couch.”

”A ripe banana sitting in a
black bowl.”

”A tall building that has a
clock with roman numerals

on it.”

(a) DDIM

(b) CADS

(c) Ours

Figure 11: Qualitative comparison of images generated from the same set of text prompts by (a)
DDIM, (b) CADS, and (c) our proposed method. Images with the same position in individual grids
share the same prompt and seed.
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