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DIVERSE TEXT-TO-IMAGE GENERATION VIA CON-
TRASTIVE NOISE OPTIMIZATION
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(a) DDIM (b) CADS (c) Ours

Figure 1: Example results from our diverse image generation approach. Three distinct prompts
are used: (top) “A person skiing on a very snowy slope”, (middle) “A cow sits in a truck with hay
barrels in it”, and (bottom) “A man sitting on a couch next to a dog”. Standard DDIM (a) exhibits
pronounced mode collapse, producing repetitive images and often failing to capture complex com-
positional details. CADS (Sadat et al., 2024) (b) improves diversity but still yields limited variation
and occasional prompt misalignment. Our method (c) delivers markedly greater diversity and fi-
delity, generating a wide range of images that remain strongly aligned with the input text.

ABSTRACT

Text-to-image (T2I) diffusion models have demonstrated impressive performance
in generating high-fidelity images, largely enabled by text-guided inference. How-
ever, this advantage often comes with a critical drawback: limited diversity, as
outputs tend to collapse into similar modes under strong text guidance. Exist-
ing approaches typically optimize intermediate latents or text conditions during
inference, but these methods deliver only modest gains or remain sensitive to hy-
perparameter tuning. In this work, we introduce Contrastive Noise Optimization,
a simple yet effective method that addresses the diversity issue from a distinct
perspective. Unlike prior techniques that adapt intermediate latents, our approach
shapes the initial noise to promote diverse outputs. Specifically, we develop a
contrastive loss defined in the Tweedie data space and optimize a batch of noise
latents. Our contrastive optimization repels instances within the batch to maximize
diversity while keeping them anchored to a reference sample to preserve fidelity.
We further provide theoretical insights into the mechanism of this preprocessing
to substantiate its effectiveness. Extensive experiments across multiple T2I back-
bones demonstrate that our approach achieves a superior quality-diversity Pareto
frontier while remaining robust to hyperparameter choices.

1 INTRODUCTION

In recent years, diffusion models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022) have
emerged as the leading paradigm for text-to-image (T2I) generation. A key driver of their success is
the use of text-guided inference, which steers the generation process to produce images that are not
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Figure 2: Conceptual overview of contrastive noise optimization. Our method enhances gen-
eration diversity by optimizing the initial latent vectors, zT , prior to the DDIM sampling process.
We employ an InfoNCE loss that operates on a batch of noise vectors. This loss function pushes
the optimizing sample (blue dot) away from all other negative samples in the batch to maximize
separation. To preserve semantic fidelity, this repulsion is counterbalanced by an attraction force
that pulls the anchor towards its original, non-optimized version (the positive pair), which acts as
a fixed reference point. The attraction coefficient γ regulates this anchoring force, stabilizing the
fidelity-diversity trade-off. This pre-processing step effectively diversifies the final image outputs
without fine-tuning or altering the foundational diffusion sampler.

only high-fidelity but also closely aligned with a given prompt. To maximize this alignment and en-
hance image quality, practitioners often employ strong guidance mechanisms, with techniques like
Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) becoming a standard practice. However,
this pursuit of high fidelity comes at a significant cost: a pronounced lack of diversity. Under strong
textual guidance, the model’s outputs often collapse into a few dominant modes, failing to capture
the rich variety of interpretations a text prompt can have. This fidelity-diversity trade-off (Dhari-
wal & Nichol, 2021) remains a critical bottleneck, severely restricting the creative potential of T2I
models.

To address this challenge, a common line of work has focused on interventions during the iterative
denoising process. These approaches typically optimize intermediate latents (Corso et al., 2024;
Kirchhof et al., 2025) or manipulate text embeddings (Sadat et al., 2024; Um & Ye, 2025b) to en-
force separation between samples, while other strategies rely on multi-agent systems or complex
fine-tuning schedules (Ghosh et al., 2017). While these methods have shown promise, they often
provide only modest gains in diversity and introduce significant practical challenges. Their limita-
tions include high implementation complexity, potential instability, and a heavy reliance on fragile
hyperparameter tuning, which hinders their robustness and scalability.

In this work, we tackle the problem at its fundamental source by shaping the initial noise distribu-
tion. We introduce Contrastive Noise Optimization, a simple yet powerful pre-processing frame-
work that optimizes a batch of initial noise latents to be inherently distinct before the diffusion
process begins. Our main contribution is a contrastive objective defined in the data space of de-
noised predictions via Tweedie’s formula (Robbins, 1992). Specifically, the objective integrates
two complementary forces: a repulsion term that pushes Tweedie predictions from different noises
apart, maximizing semantic distance to promote diversity; and an attraction term that anchors each
optimized noise to its unoptimized counterpart, preserving semantic fidelity and preventing distri-
butional shift.

We highlight that unlike existing approaches that impose diversity loss in the latent space (e.g., the
space of zT ), our method applies the loss in the denoised Tweedie space, which provides the best es-
timate of clean generated data, thereby maximizing effectiveness. See Figure 2 for an illustration. To
provide theoretical intuitions, we extend the traditional mutual information bound of the InfoNCE
loss to incorporate both positive and negative pairs, thereby offering a unified explanation of how
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our contrastive objective simultaneously promotes diversity and preserves semantic fidelity. Com-
prehensive experiments confirm that this simple preprocessing substantially enhances the ability of
modern T2I models to generate visually distinct images with minimal loss in quality or text–image
alignment. We highlight that our method requires neither heavy computation nor extensive hyper-
parameter tuning, unlike existing approaches (Sadat et al., 2024; Um & Ye, 2025b).

Our key contributions are summarized as follows:

• We introduce Contrastive Noise Optimization, a simple yet powerful pre-processing framework
that optimizes initial noise latents to be inherently distinct in the denoised Tweedie space before
the diffusion process begins, tackling the diversity issue at its fundamental source.

• We provide theoretical insights by extending the mutual information bound of the InfoNCE loss to
incorporate both positive and negative pairs, offering a unified explanation of how our contrastive
objective simultaneously promotes diversity and preserves semantic fidelity.

• We show through comprehensive experiments that this lightweight pre-processing significantly
boosts visual diversity with minimal quality or text-image alignment loss, while remaining robust
to hyperparameters and broadly applicable across modern T2I backbones.

2 RELATED WORK

Improving the diversity of diffusion models has recently attracted much attention, mainly due to
their increasing use in critical applications such as text-to-image generation (Rombach et al., 2022).
One prominent effort is CADS (Sadat et al., 2024), which enhances sample diversity by gradually
annealing noise perturbations on conditional embeddings. Although effective, their approach is sen-
sitive to the noise annealing schedule and requires laborious hyperparameter searches to see the
diversity gain. A fundamentally different strategy is seen in Particle Guidance (PG) (Corso et al.,
2024). The idea is to repel intermediate latent samples that share the same condition, thereby en-
couraging the final generated samples to exhibit distinct features. While it does not require difficult
parameter searches like CADS, it often provides limited diversity gain (Kirchhof et al., 2025).s This
approach shares a similar spirit as PG (Corso et al., 2024) and incorporates diversity-improving
guidance for repelling intermediate latent instances during inference, yet in a sparse manner, i.e.,
not at every inference timestep. A key distinction from ours is that its diversity optimization (by
injecting guidance) is performed over inference time, which may be more expensive compared to
ours that focuses on the initial latent space.

A related yet different task is to generate minority samples – low-density instances in the data
manifold (Sehwag et al., 2022; Um & Ye, 2023; 2025b). Pioneer works in this area are offered
by Sehwag et al. (2022); Um & Ye (2023), which share a similar idea of incorporating classifier
guidance (Dhariwal & Nichol, 2021) to push intermediate samples toward low-density regions. The
reliance on external classifiers was addressed in Um & Ye (2024; 2025b); Um et al. (2025), offering
self-contained approaches for producing minority samples with diffusion models. While relevant,
the task of generating low-density minority samples is distinct from improving diversity and does
not guarantee distinct outputs. Notably, MinorityPrompt (Um & Ye, 2025b) considers text-to-image
generation and provides a prompt optimization framework that can also be used to enhance the diver-
sity of generated samples. However, it requires optimizing the diversity-improving prompt during
inference, which imposes substantial computational overhead (Um & Ye, 2025b).

Initial noise optimization in diffusion models has been explored in various contexts (Guo et al.,
2024; Ahn et al., 2024). One instance is InitNO (Guo et al., 2024), where the idea is to optimize the
initial noise latent to promote improved prompt alignment in text-to-image generation. A distinction
with respect to to ours is that their focus is on enhancing text adherence, unlike ours. Another
notable work was done by Ahn et al. (2024), who aim to characterize the influence of classifier-free
guidance (Ho & Salimans, 2021) through a properly optimized latent noise, enabled by an additional
neural network that maps to the optimal noise. While interesting, their focus is inherently distinct
from ours. To the best of our knowledge, our framework is the first to incorporate the idea of noise
optimization for addressing the diversity challenge of diffusion models.
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3 PRELIMINARIES

3.1 LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) (Rombach et al., 2022) improve upon traditional Denoising Dif-
fusion Probabilistic Models (DDPMs) (Ho et al., 2020) by performing the diffusion process in a
computationally efficient, lower-dimensional latent space. LDMs first use a pre-trained autoencoder
to map a high-resolution image x0 into a compressed latent representation, z0 = E(x0). The diffu-
sion process is then applied directly to these latent vectors.

The forward process is a Markov chain that gradually adds Gaussian noise to an initial latent vector
z0 over a series of T discrete timesteps. At each step t, the transition is defined as:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)
where {βt}Tt=1 is a fixed variance schedule that controls the noise level at each step. A key property
of this process is that the marginal distribution at any arbitrary step t can be expressed in a closed
form conditioned only on the initial latent z0:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (2)

where we define αt := 1 − βt and ᾱt :=
∏t

i=1 αi. As t increases towards T , the signal term√
ᾱt approaches zero, and the variance 1 − ᾱt approaches 1. This ensures that the noised latent

zT reliably converges to an isotropic Gaussian distribution N (0, I), regardless of the initial latent
vector z0. Once the reverse process generates a clean latent, the decoder D is used to map it back to
the pixel space.

3.2 REVERSE PROCESS AND DENOISING VIA TWEEDIE’S FORMULA

The generative process is achieved by reversing the forward process, conditioned on external in-
formation such as a text embedding c for Text-to-Image (T2I) synthesis. This involves learning a
model pθ(zt−1|zt, c) that approximates the true posterior. In DDPM (Ho et al., 2020), this condi-
tional reverse process is parameterized as a Gaussian whose mean is learned by a neural network
ϵθ(zt, t, c):

pθ(zt−1|zt, c) = N
(
zt−1;

1
√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t, c)

)
, σ2

t I

)
. (3)

The core of this process is the network ϵθ, which is trained to predict the noise component from the
noisy latent vector zt based on the condition c. The key insight is that this trained network can be
used to directly estimate the original clean latent z0 at any timestep t. This denoised estimate ẑ0 is
implemented via Tweedie’s formula (Chung et al., 2025; Um & Ye, 2025a), which for our specific
noise model takes the form:

ẑ0(zt, t, c) :=
1√
ᾱt

(
zt −

√
1− ᾱtϵθ(zt, t, c)

)
. (4)

This equation forms the foundation of the iterative denoising process in many conditional diffusion
models, allowing for the generation of latent vectors that align with the given context c.

3.3 INFORMATION NOISE-CONTRASTIVE ESTIMATION (INFONCE)

Information Noise-Contrastive Estimation (InfoNCE) (van den Oord et al., 2019) is a fundamental
objective for self-supervised representation learning (Chen et al., 2020; He et al., 2020). It aims to
construct an embedding space that maximizes mutual information (Cover, 1999) between represen-
tations of positive (similar) pairs while minimizing it for negative (dissimilar) pairs. The learning
process can be viewed as a classification task in which, for a given anchor sample, the model must
correctly identify its positive counterpart from a set of negative samples.

Specifically, for an anchor embedding vector zi, its positive pair zj , and a set of B − 1 negative
samples {zk}Bk=1,k ̸=j , the InfoNCE loss is formulated as

LInfoNCE := Ei

[
− log

(
exp(sim(zi, zj)/τ)∑B
k=1 exp(sim(zi, zk)/τ)

)]
, (5)
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where sim(·, ·) denotes a similarity measure (e.g., cosine similarity) between two representation
vectors, and τ is a temperature parameter controlling the sharpness of the distribution. Intuitively,
the loss encourages the anchor to be close to its positive pair while pushing it away from all neg-
ative samples, thereby tightening intra-class similarity and enlarging inter-class separation in the
embedding space.

4 PROPOSED METHOD

4.1 OPTIMIZING INITIAL NOISE WITH CONTRASTIVE LOSS BETWEEN TWEEDIES

While text-to-image diffusion models generate high-quality images for a given prompt c, the stan-
dard approach of sampling a random initial noise zT often yields outputs that collapse into similar
modes. This tendency is a primary obstacle to achieving a diverse set of generations. To address this
issue, we propose a novel approach that enhances diversity by optimizing the initial noise zT itself,
prior to commencing the standard DDIM sampling process. This procedure is detailed in Algorithm
1 in Appendix B.1.

The algorithm proceeds as follows. First, we sample a batch of initial latent codes B = {ziT }Bi=1
from a standard Gaussian distribution N (0, I). Immediately after, we compute the initial target
latents, {zi0|T }

B
i=1, by applying the denoising estimator defined in Equation Eq. (4) to this initial

noise at timestep T . Each resulting zi0|T is therefore the model’s one-step prediction of the clean
latent z0 from the noise ziT . These pre-computed latents then serve as fixed anchors, each defining
a unique identity for its respective sample throughout the optimization.

Before computing the loss, we employ a practical optimization to enhance efficiency. The high di-
mensionality of the latents (B,C, S, S) makes the pairwise similarity calculation computationally
intensive. We found experimentally that applying an adaptive average pooling operation to down-
sample the latents to a sufficiently smaller spatial resolution (B,C,w,w), where w < S, did not
compromise performance (Section 5.1). This step substantially reduces memory usage and acceler-
ates the similarity matrix computation, making the optimization process more tractable. Downsam-
pled latents {zi,fixed

0|T }
B
i=1, {zi,opt

0|T }
B
i=1 are then normalized, and the noise {ziT }Bi=1 is updated using a

contrastive loss LCNO:

LCNO := Ei∼B

[
− log

exp(sim(zi,opt
0|T , zi,fixed

0|T )/τ)∑
j∈B exp(sim(zi,opt

0|T , zj,opt
0|T )/τ)

]
. (6)

This loss function is designed to achieve two objectives simultaneously.

Attraction (Numerator). It encourages the current latent zi,opt
0|T to remain similar to its correspond-

ing initial target latent zi,fixed
0|T . This ensures that each sample maintains coherence with its initial

concept and does not drift away during optimization.

Repulsion (Denominator). It pushes the current latent zi,opt
0|T to be dissimilar from all other current

latents {zj,opt
0|T }

B
j=1,j ̸=i in the batch. This directly promotes diversity by forcing the latent represen-

tations to disperse within the batch.

By iteratively updating zT with the gradient of this loss (∇zT
LCNO), we guide the initial noise vec-

tors to positions in the latent space that are predisposed to generating a diverse set of images. Once
the optimization is complete, this well-distributed batch of noise {ziT }Bi=1 is fed into a standard,
pre-trained DDIM denoiser to produce the final images. Consequently, our method effectively en-
hances output diversity through a simple pre-processing stage that modulates the starting point of
the generation, all without requiring any modifications to the pre-trained diffusion model itself.

Stop-gradient for computational efficiency. Optimizing the loss in Eq. (6) requires backpropa-
gation through diffusion models, which can incur substantial computational overhead. To mitigate
this, we apply a stopgrad operator (Chen & He, 2021) on the model path used in computing the
Tweedie’s estimate. As also demonstrated in Ahn et al. (2024), this simple strategy yields significant
savings in training cost with only marginal impact on performance (see Table 4).
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4.2 GAMMA EFFECT: REGULATED ATTRACTION FOR STABLE IMAGE DIVERSIFICATION

In our proposed algorithm, the InfoNCE loss for a single sample within a batch of size B consists of
one attraction term (to itself) and B− 1 repulsion terms (from all other samples in the batch). When
the batch size B is large, the cumulative repulsion force can become excessively strong. This risks
pushing the optimized noise out of the intended distribution, potentially leading to the generation of
less plausible or out-of-distribution images.

To mitigate this issue and achieve a more stable optimization, we introduce a coefficient, γ, to dy-
namically regulate the attraction force. This is done by dividing the similarity term in the numerator
of the loss function by γ. The modified InfoNCE loss is as follows:

Lγ
CNO := Ei∼B

[
− log

exp(sim(zi,opt
0|T , zi,fixed

0|T )/γτ)∑
j∈B exp(sim(zi,opt

0|T , zj,opt
0|T )/τ)

]
. (7)

Empirically, we found that γ in our framework behaves similarly to a Gaussian regularizer (Guo
et al., 2024), which penalizes large deviations from the Gaussian prior. A detailed analysis is pro-
vided in Section C.2.

Desirable value for γ. The desirable value for γ is derived by creating a balance between the
regulated attraction force and the cumulative repulsion forces. We achieve this by equating the
maximum value of the attraction term (numerator) with the sum of the maximum values of the
B − 1 repulsion terms. Assuming the maximum similarity score is 1, this balance can be expressed
as:

exp(1/γτ) = (B − 1)exp(1/τ). (8)

Solving for γ gives us the following relationship:
γ = (τ ln(B − 1) + 1)−1. (9)

For instance, in our common experimental setting where τ = 0.1 and B = 5, the calculated γ is
approximately 0.88, which is very close to the fixed value of γ = 1.0 we have consistently used. For
a fixed τ = 0.1, the optimal γ changes moderately with batch size B:

B = 13→ γ ≈ 0.8 B = 73→ γ ≈ 0.7 B = 775→ γ ≈ 0.6

This shows that as the batch size B grows larger, γ is not highly sensitive. Therefore, using a single,
appropriately chosen fixed value for γ can also yield stable results without significant performance
degradation.

4.3 THEORETICAL INTUITIONS

We provide mathematical insights into our contrastive framework by establishing its connection to
mutual information. We begin with the classical view of InfoNCE as a variational lower bound
on mutual information, as shown by van den Oord et al. (2019). Specifically, the InfoNCE loss
in Eq. (5) satisfies

LInfoNCE ≥ logB − I(Z;Zpos), (10)
where I(X;Y ) is the mutual information between random variables X and Y . This inequality im-
plies that minimizing LInfoNCE indirectly maximizes I(Z;Zpos), encouraging the learned embedding
space to cluster positive pairs. However, this classical relationship does not clarify how negative
pairs shape the embedding space—an aspect that is critical in our framework, where negative sam-
ples drive diversity.

To capture this effect, we augment the traditional bound to incorporate mutual information with
respect to negative pairs. The following proposition formalizes this result.
Proposition 1. The InfoNCE loss in Eq. (5) satisfies

LInfoNCE ≥ −I(Z;Zpos) + I(Z;Zneg) + log(B − 1), (11)
where B denotes the batch size, and I(X;Y ) is the mutual information between random variables
X and Y :

I(X;Y ) := Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= Ep(X,Y )

[
log

p(X | Y )

p(X)

]
.
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Model Method Prec ↑ Rec ↑ Den ↑ Cov ↑ CLIP ↑ Pick ↑ IR ↑ MSS ↓ Vendi ↑

SD1.5

DDIM 0.7018 0.6706 0.6033 0.7382 31.5863 21.5081 0.2222 0.1657 4.6949
PG 0.6940 0.7024 0.5975 0.7446 31.3222 21.2086 0.1712 0.1426 4.7630
CADS 0.6866 0.7240 0.5686 0.7292 31.4863 21.2938 0.1137 0.1330 4.7805
DiversityPrompt 0.6878 0.7006 0.5839 0.7416 31.5457 21.3510 0.1332 0.1393 4.7599
Ours 0.7308 0.6926 0.6528 0.7728 31.4525 21.3779 0.1284 0.1317 4.7855

SDXL

DDIM 0.6858 0.6538 0.5713 0.7368 31.8788 22.4761 0.7302 0.2169 2.8377
PG 0.5820 0.7088 0.3855 0.5606 31.5679 22.1631 0.6950 0.2050 2.8545
CADS 0.6486 0.6796 0.5262 0.7108 31.9424 22.2078 0.6162 0.1765 2.8864
Ours 0.6720 0.6992 0.5553 0.7568 31.8129 22.3859 0.7273 0.1623 2.9019

SD3

DDIM 0.7184 0.5828 0.6472 0.6770 31.7783 22.5763 1.0301 0.3028 4.2205
PG 0.7782 0.3900 0.8110 0.7370 32.0463 22.3500 1.0357 0.3066 4.2097
CADS 0.6984 0.5752 0.6110 0.6682 31.6974 22.4987 1.0233 0.2960 4.2487
Ours 0.7100 0.5806 0.6573 0.6938 31.7713 22.5647 1.0233 0.2909 4.2644

Table 1: Quantitative results of zero-shot diverse samplers. Our proposed method is bench-
marked against the standard DDIM sampler and state-of-the-art diversity-enhancing techniques:
PG (Corso et al., 2024) and CADS (Sadat et al., 2024). DiversityPrompt refers to the prompt-
optimization-based diversity approach developed in Um & Ye (2025b). The evaluation demonstrates
that our approach consistently achieves superior performance in diversity metrics, including MSS(↓)
and Vendi Score(↑), across Stable Diffusion 1.5, XL, and 3. Notably, it enhances diversity while ef-
fectively preserving image quality and prompt fidelity, successfully navigating the fidelity-diversity
trade-off by optimizing the initial latent space.

The proof is provided in Section A.1. This result shows that the InfoNCE loss is inherently linked
to negative samples as well as positive ones: minimizing the loss decreases the mutual information
with negatives while increasing that with positives.

Extension with Gamma. We further analyze our modified loss in Eq. (7), which introduces a
coefficient γ to control the relative strength of positive pairs.

Proposition 2. For the loss function defined in Eq. (7), the following inequality holds:

Lγ
InfoNCE ≥ −

1

γ
I(Z;Zpos) + I(Z;Zneg) + log(B − 1). (12)

The proof is given in Section A.2. This proposition indicates that γ scales the positive mutual infor-
mation term, serving as a control knob to modulate the influence of positive pairs in our contrastive
objective. We provide empirical results to demonstrate the impact of γ in the appendix; see Sec-
tion C.1.

5 EXPERIMENTS

Implementation details. Our experiments are conducted on three distinct pre-trained text-to-image
diffusion frameworks: Stable Diffusion v1.5 (SD1.5), SDXL, and SD3. We compare our method
with state-of-the-art zero-shot diversity samplers, including Condition-Annealed Diffusion Sampler
(CADS) (Sadat et al., 2024) and Particle Guidance (PG) (Corso et al., 2024), as well as the prompt-
optimization-based diversity method of Um & Ye (2025b), referred to as DiversityPrompt. All
evaluations use text prompts randomly sampled from the MS-COCO (Lin et al., 2014) validation
set. For each prompt, we generate 3–5 images, yielding a total of roughly 6–10 K samples.

Evaluation metrics. The goal of our research is to enhance the Pareto frontier between image
quality and diversity of generated images while maintaining a high degree of relevance to the text
prompt. To quantitatively assess this, we used the following key metrics: CLIPScore, PickScore,
Image-Reward for evaluating image quality, and Vendi Score, Mean Pairwise Similarity (MSS)
for diversity. Details for those metrics appear in Section B.2.
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Figure 3: Pareto curves of diverse sampling methods between Vendi Score and text-to-image align-
ment metrics. For our methods, we use Nopt = 5, γ = 1.0, w = 8, τ = 0.1 in common.

5.1 RESULTS

Comparison with existing zero-shot diversity samplers. The results in Table 1 demonstrate the
effectiveness of our approach. Our method achieves high performance on the key diversity met-
rics, Vendi Score and MSS, consistently outperforming all baselines across the different foundation
models. While performance on Density and Coverage is highly competitive, our approach’s strong
results on Vendi Score and MSS prove its robust, model-agnostic ability to mitigate mode collapse.

Crucially, these substantial gains in diversity do not compromise generation quality. Our method
maintains strong prompt fidelity, evidenced by competitive CLIP scores, and sustains a competitive
or superior Pick-Score compared to CADS across all Stable Diffusion models. This indicates our
outputs are not only more varied but also aesthetically preferable. This quantitative strength is
mirrored in our qualitative results (see Figure 5), where our model shows particular strength on
complex compositional prompts that cause competitor methods to fail. Where gains in diversity
often come at the cost of quality, our method achieves both, delivering outputs that are not only
more varied but also consistently high in fidelity.

Figure 3 illustrates the quality-diversity trade-off by plotting the Pareto frontiers for our method and
key baselines. The plots reveal a clear and compelling advantage for our approach, which establishes
a dominant frontier across metrics trained on large-scale human preferences. This is most evident in
the PickScore and Image-Reward charts, where our method is strictly superior to competitors like
CADS, indicating our outputs are more aesthetically pleasing for any given level of diversity.

Figure 4: Ablation on the window size
w. The Pareto frontier of PickScore vs.
Vendi Score.

While CADS may achieve a marginally higher peak
CLIPScore, this metric is known to favor rigid seman-
tic alignment rather than creative or aesthetically supe-
rior interpretations. In contrast, our method’s dominance
across both PickScore and Image-Reward demonstrates
a more intelligent trade-off. It prioritizes what a human
user would find visually appealing and contextually ap-
propriate over a mechanical, word-for-word adherence to
the prompt. This quantitative strength is mirrored in our
qualitative results (see Appendix C.4), where our model
uniquely succeeds on complex compositional prompts
that cause competitors to fail.

Effect of window size w. We conduct an ablation study to
investigate the effect of the downsampling window size,
w, applied to the Tweedie latent shape zi0|T (Algorithm 1,
Line 10). This step is crucial for capturing the global
structure of the initial noise prediction while reducing computational cost. We experiment with
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(a) DDIM (b) Particle Guidance

(c) CADS (d) Ours

Figure 5: Qualitative comparison with pre-existing zero-shot diverse generative methods For
the prompt “A white rabbit on the moon.”(left) and “A green unicorn in a snowy forest”(right), we
compare our method (d) with baseline approaches. Our method successfully generates high-fidelity
images that are strongly aligned with the text prompts. In contrast, the other methods exhibit various
failures.

w ∈ {4, 8, 16} and compare these against the baseline of w = 64, which effectively uses the full-
resolution latent shape.

The results are illustrated in the PickScore-Vendi Score Pareto frontier in Figure 4. As shown, an
aggressive downsampling with w = 4 leads to a noticeable performance degradation, failing to
match the frontier established by larger window sizes. In contrast, moderate downsampling with
w = 8 and w = 16 achieves highly competitive performance compared to the w = 64 baseline.

This suggests that moderate downsampling successfully preserves the essential structural informa-
tion for diversification while benefiting from increased computational efficiency. Excessive down-
sampling (w = 4), however, appears to discard critical details necessary for the optimization process.
Based on these findings, we select w = 16 for our main experiments, as it provides the best trade-off
between performance and efficiency.

6 CONCLUSION

We introduced Contrastive Noise Optimization, a simple yet effective pre-processing method to
address mode collapse in text-to-image (T2I) diffusion models. By applying a contrastive loss di-
rectly to the initial noise vectors for a given text prompt, our approach ensures diverse starting points
for generation, eliminating the need for the complex sampling guidance or laborious hyperparameter
tuning required by prior work. Our method sets a new state-of-the-art on the quality-diversity Pareto
frontier, outperforming strong baselines on key diversity metrics without compromising prompt fi-
delity or image quality.

For future work, while our method focuses on the initial noise zT , we believe that applying a sim-
ilar optimization strategy to intermediate latents zt (where t < T ) could be a promising avenue
for further enhancing diversity for a single prompt. Some studies have explored optimizing these
intermediate latents to generate images with high fidelity to complex textual conditions (Wallace
et al. 2023 ; Ding et al. 2024). The effectiveness of such an approach may depend on the model and
the degree to which its Tweedie prediction is already structured to reflect the semantic content of
the input prompt at intermediate timesteps. This direction may warrant deeper investigation on our
approach.

9
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1. The InfoNCE loss in Eq. (5) satisfies

LInfoNCE ≥ −I(Z;Zpos) + I(Z;Zneg) + log(B − 1), (13)

where B denotes the batch size, and I(X;Y ) is the mutual information between random variables
X and Y :

I(X;Y ) := Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= Ep(X,Y )

[
log

p(X | Y )

p(X)

]
.

Proof. In general, we can formulate the infoNCE loss as Eq. (14):

LInfoNCE = −Ep(z,zpos,zneg)

[
log

f(z, zpos)

f(z, zpos) +
∑B−1

i=1 f(z, z
(i)
neg)

]
. (14)

Let us simply notate zpos, zneg as zp, zn, respectively. This can be split into two terms:

LInfoNCE = −Ep(z,zp) [log f(z, zp)] + Ep(z,zp,zn)

[
log

{
f(z, zp) +

B−1∑
i=1

f(z, z(i)n )

}]
. (15)

We can easily assume that f(z, zp) ≥ 0 by leveraging an exponential function in convention. Then,
Eq. (15) has a lower bound by omitting the positive pair similarity from second term:

LInfoNCE ≥ −Ep(z,zp) [log f(z, zp)] + Ep(z,zn)

[
log

B−1∑
i=1

f(z, z(i)n )

]
. (16)

According to van den Oord et al. (2019), function f(z, z′) estimates the probability density ratio
p(z | z′)

p(z) related to mutual information maximization. This formulation of f induces the follow-
ing Eq. (17):

LInfoNCE ≥ −Ep(z,zp)

[
log

p(z | zp)
p(z)

]
+ Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

p(z)

]
(17)

= −I(Z;Zp) + Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

]
− Ep(z) [log p(z)] .

Using the property of logarithm and Jensen’s Inequality, then

LInfoNCE ≥ −I(Z;Zp) + Ep(z,zn)

[
log

B−1∑
i=1

p(z | z(i)n )

B − 1

]
+ log(B − 1)− Ep(z) [log p(z)]

≥ −I(Z;Zp) +
1

B − 1

B−1∑
i=1

Ep(z,zn)

[
log p(z | z(i)n )

]
+ log(B − 1)− Ep(z) [log p(z)] .

(18)

Note that negative sample zns are sampled in same distribution. According to Law of large numbers,
we can approximate 1

B−1

∑B−1
i=1 Ep(z,zn)

[
log p(z | z(i)n )

]
≈ Ep(z,zn) [log p(z | zn)].

Therefore, the last inequality Eq. (19) holds.

LInfoNCE ≥ −I(Z;Zp) + Ep(z,zn) [log p(z | zn)] + log(B − 1)− Ep(z) [log p(z)] (19)

= −I(Z;Zp) + I(Z;Zn) + log(B − 1). (20)
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A.2 PROOF OF PROPOSITION 2

Proposition 2. For the loss function defined in Eq. (7), the following inequality holds:

Lγ
InfoNCE ≥ −

1

γ
I(Z;Zpos) + I(Z;Zneg) + log(B − 1). (21)

Proof. Compared to Equation Eq. (14), similarity function f(z, z′) is replaced with fγ(z, z
′) =

exp( sim(z,z′)
γ ) = {f(z, z′)}

1
γ . Therefore, Equation Eq. (16) can be rewritten as:

Lγ
InfoNCE ≥ −Ep(z,zp)

[
log{f(z, zp)}

1
γ

]
+ Ep(z,zn)

[
log

B−1∑
i=1

f(z, z(i)n )

]
(22)

= − 1

γ
Ep(z,zp) [log f(z, zp)] + Ep(z,zn)

[
log

B−1∑
i=1

f(z, z(i)n )

]
. (23)

Following similar derivations with Appendix A.1, we can simply show that Lγ
InfoNCE ≥

− 1
γ I(Z;Zp) + I(Z;Zn) + log(B − 1).

B IMPLEMENTATION DETAILS

B.1 PSEUDOCODE

Detailed algorithm for our sampling method is provided in Algorithm 1.

B.2 EVALUATION METRICS

• Image Quality and Prompt Alignment: To measure the quality and textual relevance of the
generated images, we employ a suite of widely-recognized automated metrics.

– CLIPScore: This metric evaluates the semantic consistency between a generated image and
its corresponding text prompt by calculating the cosine similarity of their embeddings from
a pre-trained CLIP model (Hessel et al., 2021).

– PickScore: We use PickScore (Kirstain et al., 2023), a reward model trained on large-scale
human preferences, to assess the overall aesthetic quality and prompt alignment of the im-
ages.

– Image-Reward: As a complementary metric, Image-Reward (Xu et al., 2023) is another
human-preference-based reward model that provides scores reflecting the general quality of
the generated content.

• Diversity: To evaluate the intra-prompt diversity of the generated images, we utilize two distinct
metrics that capture different aspects of variation.

– Vendi Score: The Vendi Score (Friedman & Dieng, 2023) measures the diversity of a set
of samples by analyzing the eigenvalue distribution of their similarity matrix. It provides a
holistic assessment of both the variety and balance of the generated images.

– Mean Pairwise Similarity (MSS): This metric directly quantifies the average similarity be-
tween all unique pairs of images generated for a single prompt. We first extract image features
using the self-supervised descriptor for image copy detection (SSCD) model (Pizzi et al.,
2022). Then, we compute the pairwise cosine similarity matrix of these features and calcu-
late the mean of its off-diagonal elements. A lower MSS value indicates higher diversity, as
images in the set are, on average, less similar to one another.

B.3 HYPERPARAMETER SETTINGS

For our main experiments, we use a set of 2K prompts, with each prompt generating a batch of
B images. The number of inference steps was set to 50 for Stable Diffusion 1.5 and XL, and 28
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for Stable Diffusion 3. The batch size (B) was set to 5 for SD1.5 and SD3, and 3 for SDXL. The
specific hyperparameters for our proposed method are detailed in Table 2. As shown in the table,
most settings are shared across different T2I backbones, highlighting the robustness of our approach
to hyperparameter choices.

Table 2: Model-specific hyperparameters for our proposed method.

Hyperparameter Stable Diffusion 1.5 Stable Diffusion XL Stable Diffusion 3
CFG Scale 6.0 6.0 7.0
Optimization Steps (Nopt) 3 3 3
Gamma (γ) 1.0 1.0 1.0
Window Size (w) 16 16 32
Learning Rate (η) 0.01 0.01 0.001

C ADDITIONAL ANALYSES AND RESULTS

C.1 GAMMA EFFECT: STABILIZING OPTIMIZATION PROCESS

Figure 6: Impact of γ. The Pareto fron-
tier of PickScore vs. Vendi Score.

To validate the stability of our proposed method, we con-
duct an ablation study on the hyperparameter γ to ana-
lyze its impact on output variability. We set γ to values
of {1.0, 0.9, 0.8, 0.7}. To ensure that our findings are not
contingent on a specific learning rate, we vary the learn-
ing rate η within the range of [0.01, 0.02]. For each set-
ting of γ, we generate 5 images per prompt, collecting a
total of 5K images using SD1.5 model. We then compute
evaluation metrics and calculate their sample variance to
quantify the statistical variability of the outputs.

The results of this experiment are summarized in Table 3,
where we calculate the sample variance of those metrics
in η ∈ [0.01, 0.02]. We observe a clear saturation effect:
as γ is decreased from 1.0, the variance of the evalua-
tion metrics stabilizes. Specifically, the most significant
change in variance occurs when γ is reduced from 1.0 to
0.9. Further decreasing γ to 0.8 and 0.7 yields diminishing changes in variance, indicating that the
metrics enter a stable regime. For instance, s2V S exhibits a steady downward trend as γ decreases,
while the other metrics maintain a relatively consistent level of variance for γ ≤ 0.9.

C.2 LEVERAGING KL DIVERGENCE FOR NOISE REGULARIZATION

Table 3: Gamma Effect. Subscripts
V S,CS, PS, IR mean Vendi Score,
CLIPScore, PickScore, Image-Reward,
respectively.

γ Sample variance (×10−4)

s2V S s2CS s2PS s2IR

1.0 0.076 5.49 1.54 0.60
0.9 0.068 2.47 1.00 0.61
0.8 0.061 3.89 0.78 0.34
0.7 0.050 1.61 0.41 0.11

To further analyze the stability of our method, we in-
vestigate the effect of an explicit regularization term.
This can be achieved by penalizing the deviation of
the optimized noise batch {ziT }Bi=1 from the stan-
dard Gaussian prior,N (0, I), using a Kullback-Leibler
(KL) divergence term (Shlens, 2014).

For a single noise tensor zT , we treat all of its con-
stituent elements as a single population of data points
to estimate an underlying distribution. First, we com-
pute the sample mean (µ̂) and sample variance (σ̂2)
across all D = C ×H ×W elements within the ten-
sor:

µ̂ =
1

D

H∑
h=1

W∑
w=1

C∑
c=1

zT [c, h, w], σ̂2 =
1

D − 1

H∑
h=1

W∑
w=1

C∑
c=1

(zT [c, h, w]− µ̂)2.
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Here, zT [c, h, w] represents the pixel value allocated in c-th channel and (h,w)-position of the latent
tensor zT . These statistics define an estimated univariate Gaussian distribution, P = N (µ̂, σ̂2), that
characterizes the single noise tensor. We then measure the divergence of this distribution from the
standard normal prior, Q = N (0, 1). The KL divergence for these univariate Gaussian distributions
is:

DKL(N (µ̂, σ̂2)∥N (0, 1)) = log
1

σ̂
+

σ̂2 + µ̂2

2
− 1

2
.

Figure 7: Ablation study on applying
Kullback-Leibler divergence. Weight
for KL divergence is set as λ = 1000.

By minimizing this KL penalty, we enforce a constraint
that encourages the internal statistics of the optimized
noise tensor to remain close to those of a standard normal
distribution. Integrated algorithm is shown in Algorithm
2.

As shown in Figure 7, incorporating this KL penalty shifts
the quality-diversity Pareto frontier to the lower-right, in-
dicating a trade-off towards higher textual fidelity at the
cost of lower diversity. Interestingly, we observe an anal-
ogous phenomenon in our analysis of the attraction coef-
ficient γ. As detailed in Section C.1, lowering the value
of γ similarly shifts the frontier to the lower-right and
stabilizes performance; see Figure 6 for therein. This
parallel suggests that the γ coefficient in our contrastive
loss implicitly functions as a regularizer, controlling the
diversity-fidelity trade-off in a manner similar to an explicit KL divergence penalty.

C.3 COMPUTATIONAL ANALYSIS

To evaluate the practical efficiency and computational overhead of our proposed method, we con-
ducted a comparative analysis against several baseline and state-of-the-art techniques. All experi-
ments in this section were performed using the Stable Diffusion v1.5 model.

Our evaluation focuses on the trade-off between computational cost and performance. We generated
a total of 5K samples for each method to measure the average time per batch, along with key per-
formance indicators for quality (PickScore) and diversity (VendiScore). The results, summarized in
Table 4, provide a clear overview of each method’s performance profile.

Table 4: Computational cost and performance comparison on Stable Diffusion v1.5.

Method Time (sec / batch) ↓ PickScore ↑ VendiScore ↑
DDIM 11.131 21.2398 4.8024
Particle Guidance 11.164 21.2164 4.8016
CADS 11.167 21.2254 4.7964
DiversityPrompt 18.703 21.3067 4.7599
Ours (w/o stopgrad) 12.853 21.3125 4.8010
Ours (with stopgrad) 11.866 21.3044 4.8039

As presented in Table 4, our approach demonstrates a highly compelling efficiency-performance
profile. With an optimization step of Nopt = 3, our method incurs a modest computational overhead
of approximately 5% relative to the standard DDIM sampler.

Despite this, our approach is notably faster and achieves superior metric scores compared to Mi-
norityPrompt. It also remains significantly more efficient than computationally intensive methods
like Particle Guidance. Crucially, this slight increase in latency is a highly acceptable trade-off.
Our method achieves a unique point on the Pareto frontier of efficiency, quality, and diversity. The
combination of high PickScore and VendiScore delivered by our approach represents a state-of-the-
art balance unmatched by any other method at any computational cost. This result underscores the
practical value of our method, offering a solution that is both powerful and efficient for real-world
applications.
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C.4 ADDITIONAL GENERATED SAMPLES

Figure 8 represents that our method shows high image quality and textual fidelity compared to DDIM
and CADS. We use SDXL in common, and hyperparameters of our method are equivalent to Table
2.

D USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) to aid in the verbal refinement and polishing of our paper.
This usage was only limited to improving readability and fixing some grammar errors. The core
research, including the formulation of our method, experimental design, and analysis of results, was
conducted solely by the authors.
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Algorithm 1 Diverse T2I Generation via Contrastive Noise Optimization

Inputs: Text embedding c, batch size B, optimization steps Nopt, learning rate η, temperature τ ,
attraction coefficient γ, window size w

Outputs: {xb
0}Bb=1, a batch of diverse images.

1: Models: Diffusion model ϵθ, DDIM sampler DDDIM
2: Initialize a batch of trainable noise vectors ZT = {ziT }Bi=1 ∼ N (0, I)
3: Let Zfixed

T ← ZT

4: for n = 1 to Nopt do
5: for i = 1 to B do
6: zi,opt

0|T ←
1√
ᾱT

(zi,opt
T −

√
1− ᾱTstopgrad{ϵθ(zi,opt

T , T, c)})
7: if n = 1 then
8: zi,fixed

0|T ← zi,opt
0|T

9: end if
10: zi,opt

0|T , zi,fixed
0|T ← DownSample(zi,opt

0|T ;w), DownSample(zi,fixed
0|T ;w)

11: zi,opt
0|T , zi,fixed

0|T ← Normalize(zi,opt
0|T ), Normalize(zi,fixed

0|T )

12: end for
13: Lγ

CNO := Ei∼B

[
− log

exp(sim(zi,opt
0|T ,zi,fixed

0|T )/γτ)∑
j∈B exp(sim(zi,opt

0|T ,zj,opt
0|T )/τ)

]
14: ZT ← ZT − η · ∇ZT

Lγ
InfoNCE

15: end for
16: {zb0}Bb=1 ← DDDIM(ZT , c)
17: {xb

0}Bb=1 ← Decode({zb0}Bb=1)
18: return {xb

0}Bb=1

Algorithm 2 Contrastive Noise Optimization with KL Regularization

Inputs: Text embedding c, batch size B, optimization steps Nopt, learning rate η, temperature τ ,
attraction coefficient γ, window size w, KL divergence weight λ

Outputs: {xb
0}Bb=1, a batch of diverse images.

1: Models: Diffusion model ϵθ, DDIM sampler DDDIM
2: Let D be the number of pixels in a single noise tensor (channel × height × width)
3: Initialize a batch of trainable noise vectors ZT = {ziT }Bi=1 ∼ N (0, I)
4: Let Zfixed

T ← ZT

5: for n = 1 to Nopt do
6: for i = 1 to B do
7: zi,opt

0|T ←
1√
ᾱT

(zi,opt
T −

√
1− ᾱTstopgrad{ϵθ(zi,opt

T , T, c)})
8: if n = 1 then
9: zi,fixed

0|T ← zi,opt
0|T

10: end if
11: zi,opt

0|T , zi,fixed
0|T ← DownSample(zi,opt

0|T ;w), DownSample(zi,fixed
0|T, ;w)

12: zi,opt
0|T , zi,fixed

0|T ← Normalize(zi,opt
0|T ), Normalize(zi,fixed

0|T )

13: end for
14: Lγ

CNO := Ei∼B

[
− log

exp(sim(zi,opt
0|T ,zi,fixed

0|T )/γτ)∑
j∈B exp(sim(zi,opt

0|T ,zj,opt
0|T )/τ)

]
15: µ̂i ← 1

D

∑H
h=1

∑W
w=1

∑C
c=1 zT [c, h, w] for i = 1, . . . , B

16: σ̂2
i ← 1

D−1

∑H
h=1

∑W
w=1

∑C
c=1(zT [c, h, w]− µ̂)2 for i = 1, . . . , B

17: LKL := 1
B

∑B
i=1

[
log 1

σ̂i
+

σ̂2
i+µ̂2

i

2 − 1
2

]
18: Ltotal ← Lγ

CNO + λLKL
19: ZT ← ZT − η · ∇ZT

Ltotal
20: end for
21: {zb0}Bb=1 ← DDDIM(ZT , c)
22: {xb

0}Bb=1 ← Decode({zb0}Bb=1)
23: return {xb

0}Bb=1
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”A dog sits on a boat
floating in water”

”A batter goes to hit the
ball just thrown to him from

the pitcher.”

”A cat is sitting on a leather
couch next to two remotes.”

”A man smiles while
holding a large turkey.”

”A person that is flying a
kite in the air.”

”Two dogs lying on blanket
sleeping on couch.”

”A ripe banana sitting in a
black bowl.”

”A tall building that has a
clock with roman numerals

on it.”

(a) DDIM

(b) CADS

(c) Ours

Figure 8: Qualitative comparison of images generated from the same set of text prompts by (a)
DDIM, (b) CADS, and (c) our proposed method. Images with the same position in individual grids
share the same prompt and seed.
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