
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATE-TO-EARLY TRAINING: LET LLMS LEARN
EARLIER, SO FASTER AND BETTER

Anonymous authors
Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) achieve remarkable empirical success
through scaling model and data size, pretraining has become increasingly crit-
ical yet computationally prohibitive, hindering rapid development. Despite the
availability of numerous pretrained LLMs developed at significant computational
expense, a fundamental real-world question remains underexplored: Can we lever-
age existing small pretrained models to accelerate the training of larger models?
In this paper, we propose a Late-to-Early Training (LET) paradigm that enables
LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The
core idea is to guide the early layers of an LLM during early training using rep-
resentations from the late layers of a pretrained (i.e. late training phase) model.
We identify two key mechanisms that drive LET’s effectiveness: late-to-early-
step learning and late-to-early-layer learning. These mechanisms significantly
accelerate training convergence while robustly enhancing both language model-
ing capabilities and downstream task performance, enabling faster training with
superior performance. Extensive experiments on 1.4B and 7B parameter models
demonstrate LET’s efficiency and effectiveness. Notably, when training a 1.4B
LLM on the Pile dataset, our method achieves up to 1.6× speedup with nearly 5%
improvement in downstream task accuracy compared to standard training, even
when using a pretrained model with 10× fewer parameters than the target model.

4 6 8 10 12 14 16 18 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

1.6x

4.68% better

Avg One-shot Acc on 1.4B LMs

Baseline
LET-1.4B

4 6 8 10 12 14 16 18 20
Tokens Seen (B)

38

39

40

41

42

43

44

45

46

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

1.56x

5.13% better

Avg One-shot Acc on 7B LMs

Baseline
LET-7B

Figure 1: Comparison of Average Downstream Task Performance: LET vs. Baseline (Standard
Training) on 1.4B and 7B Models. LET models are trained under our proposed LET paradigm,
whereas the baseline models utilize standard causal language modeling. Remarkably, LET delivers
significant performance gains, even when aligned with a model 10× smaller than the target model.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across diverse natural
language tasks (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023), marking a significant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

milestone toward artificial general intelligence (AGI) (Goertzel, 2014; Bubeck et al., 2023). Pre-
training plays a key role in shaping these models’ capabilities (Devlin et al., 2019; Radford et al.,
2019), serving as the foundation for their downstream performance. However, training such models
remains extremely resource-intensive (Kaplan et al., 2020; Rae et al., 2021; Hoffmann et al., 2022).
For example, training an LLM with 12B parameters can require about 72,000 GPU hours using
NVIDIA A100 GPUs (Biderman et al., 2023). which calls for more efficient training paradigms.

Meanwhile, fueled by the open-source culture within the AI community, we are witnessing a flour-
ishing era rich with an array of publicly available models of varying sizes (Grattafiori et al., 2024;
Yang et al., 2025; Guo et al., 2025). Building on open-source implementations, many impactful
works have emerged by fine-tuning existing models such as Taori et al. (2023) in the text domain
and Liu et al. (2023a) in the multimodal domain. This approach effectively leverages the substantial
computational resources already invested in the development of these models.

Traditional knowledge distillation (KD) typically trains a smaller student model under the guidance
of a more capable teacher model (Hinton et al., 2015; Romero et al., 2014). Nevertheless, in the
context of LLMs, employing a substantially larger teacher inevitably incurs considerable memory
and computational overhead. Furthermore, in conventional KD, student models tend to lag behind
their teachers in performance, which limits their utility as a foundation for scaling LLM capabilities.

Recently, Rawat et al. (2024) claimed that smaller models can bootstrap the pretraining of larger
LLMs. However, their method has notable limitations. The size gap between the teacher and the
student is modest (only 1.87×), which limits practical applicability because the teacher remains
relatively large and incurs substantial memory overhead. Moreover, the approach relies on heavy
data preprocessing and underutilizes existing open-source models that were trained at considerable
computational cost. Another line of research using smaller models to accelerate larger model train-
ing focuses on model growth strategies, leveraging open-source LLMs to accelerate the training of
larger models (Du et al.; Samragh et al., 2024; Wang et al., 2023). While these approaches can
reduce training time, they typically require deliberate architectural modifications, such as carefully
calibrated increases in network depth and width, which add complexity and constrain the range of
feasible architectures. Consequently, their practical utility is also limited.

This raises natural and practical questions: Given the abundance of small, pretrained open-source
models, can they be generally leveraged during the pretraining of larger LLMs to guide and acceler-
ate the learning process? Furthermore, could the larger target model learn to adaptively process and
refine these representations as it progressively develops greater capabilities?

To address these questions, we propose Late-to-Early Training (LET), a novel and general
paradigm for enhancing LLM pretraining using the representations of small, pretrained models that
were developed at considerable computational expense by the community. LET is architecture-
agnostic as it relies solely on representations of LLMs rather than specific architectural constraints.
Furthermore, LET is designed to remain effective despite the performance limitations of the smaller
models in the later stages of LET training: As training progresses, the larger target model rapidly
improves in overall capability and may eventually surpass the smaller model in overall performance,
thereby reducing the effectiveness of the representations alignment. To address this, LET aligns the
representations of the smaller trained model with the early layers of the target model, allowing the
subsequent layers to naturally adapt to and refine these representations through learning dynamics
(see Section 3.3). Extensive experiments with 1.4B, 3B, and 7B parameter models demonstrate the
effectiveness and efficiency of the LET paradigm, with comparative results for 1B and 7B models
shown in Figure 1. The primary contributions can be summarized as follows.

First, we are the first to tackle a novel, valuable, yet overlooked problem: Given the abundance
of small, pretrained models developed at significant computational expense by the community, can
they be leveraged to generally accelerate the pretraining process of much larger LLMs (e.g., 10×),
regardless of LLM architectures?

Second, we propose the novel LET paradigm. At its core, it enables the early layers of the target
model during early training steps to learn from the late layers of a smaller pretrained LLM (i.e., from
its late training phase). We identify two key mechanisms, Late-to-Early Step Learning and Late-to-
Early Layer Learning, which are robust to the limitations of smaller models’ representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Third, extensive experiments demonstrate that LET achieves both faster training and superior
downstream performance. Notably, for training a 1.4B model on the Pile dataset (as shown in 1),
our method delivers up to a 1.6× faster improvement in downstream performance compared with
standard training, even when relying on a small model with up to 10× fewer parameters than the
target model, which significantly exceeds the typical scope of conventional knowledge distillation.

2 METHODOLOGY

In this section, we formally propose the LET paradigm for faster and better LLM training.

Notation We introduce the notation used in the standard pretraining paradigm for LLMs. Let M
denote an LLM with parameters θ, and let x = [x1, x2, . . . , xT] represent an input token sequence
of length T . The objective of pretraining is to maximize the likelihood of the sequence under M,
typically by training the model to predict each token given its preceding tokens. Formally, at each
position t (1 ≤ t ≤ T), the model M produces a conditional distribution PM(xt | x<t), where
x<t = [x1, . . . , xt−1] denotes the prefix context. We denote by F (l)

M the transformation implemented
by the l-th layer of the model M (and analogously F (l)

T for a model T), where 1 ≤ l ≤ L for a
model with L layers. Thus, a forward pass through the first k layers of M is written as: h

(k)
M =

F (k)
M ◦ F (k−1)

M ◦ · · · ◦ F (1)
M (e1:T), yielding the hidden states after the k-th layer.

We propose the LET paradigm, which incorporates an additional alignment mechanism to guide the
early training of a larger model M with the help of a smaller pretrained model T . LET comprises
two components: Late-to-early-layer learning: encouraging the early-layer representations of M to
align with the late-layer representations of T ; Late-to-early-step learning: employing a pretrained
model T (representing a later training stage) during the initial training steps, and gradually phasing
it out as training progresses. We summarize the procedure of the LET paradigm in Algorithm 1.

The traditional training objective for M is to minimize the cross-entropy loss, i.e., the negative log-
likelihood (NLL) of the target tokens over the training dataset. For a given sequence x, this loss is
formulated as:

LNLL = −
T∑

t=1

logPM
(
xt | x<t

)
. (1)

This loss measures how well the model M predicts the token xt at each step t; a lower value
indicates more accurate predictions.

In contrast to standard pretraining, knowledge distillation (KD) is a classical approach in which a
smaller (or less capable) student model is trained to match the output probability distributions of a
larger teacher model. As discussed in detail in Section C, in the context of language modeling, given
a pretrained teacher model T producing soft predictions PT (xt | x<t), the KD loss is defined as

LKD = −
T∑

t=1

∑
v∈V

PT (v | x<t) logPM(v | x<t), (2)

where V denotes the vocabulary and v indexes individual tokens. This objective minimizes the
cross-entropy between the teacher’s and the student’s predicted distributions.

Consider an input token sequence x = [x1, x2, . . . , xT] of length T , where each token xt belongs to
the vocabulary V . Let

e1:T = [e1, e2, . . . , eT], et ∈ Rd

denote the corresponding token embeddings, with d being the embedding dimension. These embed-
dings are processed by two models: a target model M and a small pretrained model T . Let LM
and LT denote the total number of Transformer layers in M and T , respectively. The hidden states
after the final layer of T and after the k-th layer of M are:

h
(LT)
T = F (LT)

T ◦ F (LT −1)
T ◦ · · · ◦ F (1)

T (e1:T),

h
(k)
M = F (k)

M ◦ F (k−1)
M ◦ · · · ◦ F (1)

M (e1:T),
(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Late-to-Early Training

1: Input: Training dataset D; target model M; small pretrained model T ; initial projection weight
λ0; projection stop step Sstop

2: Output: Pretrained target model M
3: for each minibatch x ∼ D do
4: Forward x through M and T to obtain hidden representations
5: Compute standard loss LNLL from M
6: Retrieve h

(k)
M from layer k of M and h

(LT)
T from the final layer of T

7: if dT ̸= dM then
8: Project h(k)

M to match h
(LT)
T

9: else
10: Use h

(k)
M directly to align with h

(LT)
T

11: end if
12: Normalize hidden states and compute projection loss Lproj = − h̃

(k)⊤
M h̃

(LT)
T

13: Update projection weight λ = λ0 ·max
(
0,

Sstop−s
Sstop

)
, where s is the current training step

14: Compute total loss Ltotal = LNLL + λLproj
15: Backpropagate and update parameters of M
16: end for

where F (l) denotes the transformation implemented by the l-th Transformer layer, and 1 ≤ k ≤
LM. For clarity, we illustrate the case of a single token: h(LT)

T ∈ RdT and h
(k)
M ∈ RdM represent

the hidden states from T and M, respectively. When dT ̸= dM, a projection is applied before
alignment (details in Appendix G). The representations are then normalized, and the projection loss
is defined as the negative cosine similarity between them:

Lproj = − h̃
(k)⊤
M h̃

(LT)
T = −

(
h
(k)
M

∥h(k)
M ∥

)⊤(
h
(LT)
T

∥h(LT)
T ∥

)
. (4)

To control the influence of this auxiliary alignment term during training, we introduce a weight λ
that decays linearly to zero:

Ltotal = LNLL + λLproj = LNLL + λ0 ·max

(
0,

Sstop − s

Sstop

)
Lproj. (5)

where λ0 is the initial projection loss weight, s is the current training step, and Sstop is the step at
which λ decays to zero. This formulation implements the late-to-early-layer learning mechanism in
the LET paradigm.

In the early stage of training, λ is relatively large, allowing the model to leverage additional rep-
resentational guidance from the model T . As training progresses, λ gradually decays according to
a predefined schedule, ensuring that the model focuses on optimizing the primary objective LNLL.
Overall, LET incorporates both late-to-early-layer learning and late-to-early-step learning into LLM
pretraining, thereby promoting faster convergence and better generalization, as demonstrated by the
experimental results in Section 3.

3 EMPIRICAL ANALYSIS

In the following paragraph, we empirically studied the proposed LET with various settings.

3.1 EXPERIMENTAL SETUP

Model Architecture Our models are based on the LLaMA architecture. We adopt RMSNorm
and SwiGLU activations (Zhang & Sennrich, 2019; Shazeer, 2020; Touvron et al., 2023), and all
models are trained using BF16 precision. In our experiments, the models T are drawn from the OPT
family (Zhang et al., 2022), the Pythia family (Biderman et al., 2023), and the SmolLM family (Allal
et al., 2025). Detailed model hyperparameters are summarized in Section F.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Results on downstream evaluation datasets used in Groeneveld et al.. We report accuracy
scores for each task and the average across all datasets, with the best score per model size boldfaced.
Notably, in the 1.4B scale setting, LET not only achieves higher final accuracy, but also exceeds the
baseline’s average performance while requiring less than 67% of the training steps even with 10×
smaller model T . Here, LET (67%) denote models trained with 67% of the total training steps,
using our proposed LET.

.
ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino. BoolQ Avg.

Model Size = 1.4B
Baseline 17.8 44.2 28.6 24.1 26.0 61.5 73.3 51.4 47.9 41.6
RKD 18.0 42.9 27.7 24.8 26.3 62.4 63.7 52.3 54.8 41.4
SALT 18.1 45.5 28.5 24.5 26.3 64.0 73.6 52.7 52.9 42.9
LET(67%) 17.8 45.7 28.1 23.8 26.6 64.6 72.2 52.6 51.1 42.5
LET 18.3 45.3 28.4 24.9 26.8 64.4 74.0 53.0 57.3 43.6

Model Size = 7B
Baseline 19.4 45.6 29.3 25.5 28.0 63.3 74.5 52.7 51.4 43.3
RKD 19.8 41.6 28.8 26.5 30.8 61.3 63.9 51.4 55.6 42.2
SALT 19.1 46.8 30.5 27.4 30.6 62.1 76.0 52.9 56.9 44.7
LET(67%) 18.4 45.9 29.5 27.0 29.7 61.8 74.1 51.4 57.3 43.9
LET 20.0 47.4 29.8 28.6 31.4 65.3 76.7 54.4 55.9 45.5

Data We pretrain our models on The Pile dataset, a large-scale, diverse, and high-quality English
text corpus designed for training large language models (Gao et al., 2020). It contains approximately
825 GB of text from 22 different sources, and our experiments use approximately 20 billion tokens.

Pretraining Setting We follow the hyperparameter configuration for The Pile dataset from Rawat
et al. (2024). Specifically, we use a total batch size of 2048 and an input sequence length of 1280.
All experiments are conducted on 32 NVIDIA A100 80GB GPUs. We employ the AdamW opti-
mizer (Loshchilov & Hutter, 2017) and a cosine learning rate schedule, with a linear warmup during
the first 10% of training steps and a decay to 10% of the peak learning rate thereafter. Following the
Groeneveld et al. setup, the peak learning rate is set to 4× 10−4 for 1B scale models and 3× 10−4

for 7B scale models. For more details, please refer to Appendix B.

Evaluation We evaluate one-shot performance on the nine downstream test datasets used in
Groeneveld et al.; Gu et al. (2024). For more details on these tasks, please refer to Appendix K.
Additionally, we report the language modeling loss on a test set from The Pile.

Baseline Setting We compare the proposed LET paradigm with both the traditional causal lan-
guage modeling approach (referred to as the Baseline in this paper), SALT Rawat et al. (2024) and
Reverse Knowledge Distillation (RKD). For more details, please refer to Appendix B.

3.2 MAIN RESULTS

LET Improves Downstream Task Performance We empirically evaluate the effectiveness of our
proposed LET paradigm by pretraining language models with 1.4B and 7B parameters and assessing
their downstream task performance on the evaluation datasets used in Groeneveld et al.. Additional
experimental results and discussions are provided in Appendix D. As shown in Table 1, LET consis-
tently outperforms the baseline on the majority of tasks across both scales, yielding higher average
accuracy with a notable margin. These findings demonstrate that integrating both late-to-early-layer
learning and late-to-early-step learning into LLM pretraining can effectively enhance generalization
across downstream applications. Furthermore, in the 1.4B parameter configuration, LET employs a
small pretrained model T that is an order of magnitude smaller (10×) than the target model M, yet
it still achieves substantial performance gains over the baseline.

Compared to LET, RKD shows clear limitations when the model T is significantly smaller than the
target model; specifically, it underperforms the baseline in both the 1.4B and 7B settings. RKD’s

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

results also exhibit certain patterns. For instance, it performs relatively well on tasks such as ARC-c
and LAMB, indicating stronger reasoning abilities. However, on tasks like SciQ, which involve
multiple-choice question answering in the science domain, RKD’s performance is markedly lower
than that of other methods. This suggests that while the distillation process may strengthen certain
specific capabilities, it can also considerably hinder the model’s overall learning effectiveness.

From Table 1, it is evident that RKD struggles when the teacher model is significantly smaller than
the student model; specifically, it underperforms the baseline in both the 1.4B and 7B model settings.
The results of RKD also exhibit certain patterns—for example, it performs relatively well on tasks
such as ARC-c and LAMB, demonstrating strong reasoning ability. However, on tasks like SciQ,
which focuses on multiple-choice question answering in the science domain, RKD’s performance
is substantially lower than that of other methods. This suggests that while the distillation process
may reinforce certain capabilities in the student model, it can also significantly impede the model’s
overall learning capacity.

2k 3k 4k 5k 6k 7k

Steps

9

10

11

12

13

14

Te
st

 P
er

pl
ex

ity

SmolLM Vocabulary

Baseline
LET1.4B

2k 3k 4k 5k 6k 7k

Steps

8

9

10

11

12

13

14
Te

st
 P

er
pl

ex
ity

OPT Vocabulary

Baseline
LET1.4B

2k 3k 4k 5k 6k 7k

Steps

10

11

12

13

14

15

16

Te
st

 P
er

pl
ex

ity

Pythia Vocabulary

Baseline
LET1.4B

Figure 2: Language modeling performance of LET across three different vocabulary settings. We
evaluate the perplexity of models trained with different vocabulary: SmolLM, OPT, and Pythia. For
fair comparison (Gao et al., 2020), each subplot uses the same vocabulary. The results demonstrate
that LET consistently achieves lower perplexity across all three settings.

LET Improves Language Modeling To comprehensively assess the effectiveness of LET, we
evaluate not only the average performance on nine downstream tasks, but also the language mod-
eling perplexity on the test split of The Pile (Gao et al., 2020). For representation alignment in the
1.4B target model M, we use three distinct small pretrained models T at approximately 125–160M
scale (OPT-125M, Pythia-160M, and SmolLM-135M). As shown in Figure 2, each subfigure uses
a consistent vocabulary across M and T . Despite using different small pretrained models, LET
consistently reduces test perplexity, in line with the performance improvements observed in down-
stream tasks. This confirms the robustness of LET in enhancing modeling capability, irrespective of
the tokenization scheme employed. Moreover, different small pretrained models have varying im-
pacts: although their sizes are similar, substantial differences in architecture (see Appendix F) lead
to different learned representations and, consequently, distinct training dynamics in M. Among
these, using SmolLM as T yields the best overall performance.

LET Accelerates Training In addition to improving performance, LET also significantly accel-
erates training. As shown in Table 1, LET attains higher performance while requiring less than two-
thirds of the training steps needed to surpass the baseline. This represents a substantial speedup,
even when T is an order of magnitude (10×) smaller than M. A similar pattern is observed in
Figure 2, where LET achieves lower test perplexity during training across three different vocabular-
ies. These results demonstrate LET’s effectiveness in accelerating convergence for both language
modeling and generalization across diverse tasks. Furthermore, LET not only facilitates efficient
pretraining for LLMs, but also exhibits strong cross-domain performance. For additional results on
cross-domain generalization, such as time series classification, please refer to Section E.

3.3 ABLATION STUDY AND ANALYSIS

More diverse layer-wise alignment experiments In our proposed late-to-early-layer learning
paradigm, we use the late-layer representations of a small pretrained model T to align the earlier-
layer representations of the target model M during training. This approach has shown strong empir-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ical performance. To systematically assess the impact of different alignment strategies, we conduct a
series of ablation experiments with diverse layer alignment configurations. Specifically, we consider
six variants: L2E, L2M, L2L, where the last layer of T aligns with the early, middle, or last layer of
M, respectively; and M2E, M2M, M2L, where a middle layer of T aligns with the early, middle,
or last layer of M, respectively. In both the 1B scale and 7B scale settings.

5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

Av
g

On
e-

sh
ot

 A
cc

(a) L2X Performance

Baseline
L2E
L2M
L2L

5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

Av
g

On
e-

sh
ot

 A
cc

(b) M2X Performance

Baseline
M2E
M2M
M2L

Figure 3: Comparison of six layer-wise alignment strategies on average downstream task perfor-
mance in one-shot evaluation. The proposed LET paradigm, corresponding to L2E, achieves the
highest average performance across all downstream tasks, outperforming all alternative strategies.

0 2.5 5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

8

10

12

14

16

18

20

Pe
rp

le
xi

ty

(a) L2X Performance

Baseline
L2E
L2M
L2L

0 2.5 5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

8

10

12

14

16

18

20

Pe
rp

le
xi

ty

(b) M2X Performance

Baseline
M2E
M2M
M2L

Figure 4: Comparison of six layer-wise alignment strategies on language modeling performance,
measured as test perplexity on the test split of The Pile dataset. Both M2E and L2E maintain robust
performance throughout training, with L2E yielding the lowest final perplexity among all strategies.

From Figure 3, we can draw two main observations. First, using the middle-layer representations of
T for alignment consistently yields weaker performance compared to using the final-layer represen-
tations, as evidenced by M2E, M2M, and M2L underperforming all of L2E, L2M, and L2L. Second,
among all configurations that use the late layer of T for alignment, L2E demonstrates superior per-
formance and robustness.

As illustrated in Figure 4, the L2E alignment strategy demonstrates superior robustness compared
to alternative approaches. This stability is evident from the perplexity trajectories observed after the
alignment phase: while all non-L2E strategies show varying degrees of perplexity increase immedi-
ately post-alignment, L2E maintains consistent performance. This robustness advantage suggests a
more seamless integration between the alignment objective and the underlying language modeling
capability. Moreover, L2E achieves the lowest perplexity among all approaches and correspondingly
delivers the highest average performance across downstream tasks, further indicating its effective-
ness as an alignment strategy.

These empirical results further validate the effectiveness of our late-to-early-layer learning design,
in which late-layer representations from the small pretrained model T guide the formation of infor-
mative early-layer representations within the target model M. Consistent with the design rationale

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

of LET, the robustness of L2E can be attributed to its alignment strategy: by mapping the represen-
tations of T to the early layers of M, the subsequent layers retain sufficient capacity to adapt and
refine these representations through the learning dynamics of training. This structural configuration
becomes increasingly important as training progresses, since M gradually gains capability and may
eventually surpass T in overall performance, thereby diminishing the relative strength of the align-
ment representations from T . The remaining layers after early alignment act as a buffer, enabling
the seamless integration and progressive refinement of representations provided by T . The trends
observed in Figure 4 provide further empirical support for this explanation.

4 6 8 10 12 14 16 18 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

Av
g

On
e-

sh
ot

 A
cc

Performance Comparison with Varying

Baseline
= 0.01
= 0.1
= 0.3
= 1.0
= 3.0

6 8 10 12 14 16 18 20
Tokens Seen (B)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Pe
rp

le
xi

ty

Test Perplexity Comparison
Baseline

= 0.01
= 0.1
= 0.3
= 1.0
= 3.0

Figure 5: Average downstream task performance (left) and test perplexity on the The Pile dataset
(right) evaluated under different λ values: 0.01, 0.1, 0.3, 1.0, and 3.0. “Baseline” denotes training
with standard causal language modeling, whereas all other configurations employ the proposed LET
paradigm with different λ.

Effect of hyperparameter λ on performance In previous experiments, we adopted λ = 0.1 as
the default setting. To further investigate the effect of the hyperparameter, we conducted additional
evaluations across multiple values, specifically λ ∈ {0.01, 0.1, 0.3, 1.0, 3.0}. The average down-
stream task performance for each setting is shown in Figure 5. As illustrated, when λ exceeds 0.1,
performance consistently drops, indicating that larger values induce excessive alignment of the tar-
get model M to the representations of the small pretrained model T (see Figure 6), which in turn
hampers learning from data. Conversely, setting λ = 0.01 yields performance above the baseline
but still below that achieved with λ = 0.1, suggesting that alignment is insufficient at this lower
value and thus limits the effective utilization of representations from T .

0 300 600 900
1200

1500

Training Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Initial = 0.01

0 300 600 900
1200

1500

Training Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Initial = 0.1

0 300 600 900
1200

1500

Training Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Initial = 0.3

0 300 600 900
1200

1500

Training Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Initial = 1.0

0 300 600 900
1200

1500

Training Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Initial = 3.0

(a) (b) (c) (d) (e)

Figure 6: Cosine similarity between the late-layer representations of the small pretrained model T
and the early-layer representations of the target model M under varying λ values.

Figure 5 and Figure 6 together indicate that λ = 0.1 achieves an optimal balance, as both excessively
large and small values result in suboptimal performance. In addition, Figure 6 reveals the following:
(1) higher λ values correspond to higher average cosine similarity, reflecting stronger alignment
between M and T ; (2) representation similarity increases steadily throughout training, regardless of
the λ setting; and (3) despite varying λ by an order of magnitude, similarity curves remain relatively
stable, suggesting that even small λ values can provide effective alignment. Overall, λ = 0.1 offers a
well-balanced trade-off between aligning with T and acquiring new knowledge from data, resulting
in optimal performance on both downstream tasks and language modeling perplexity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

LET-1.4B Achieves Superior Performance
over Baseline-3B As shown in Figure 7,
LET-1.4B achieves higher performance than
Baseline-3B, despite having fewer parameters.
This result indicates that the proposed LET
paradigm enables the model to learn more effec-
tively from limited training data. LET achieves
this by effectively leveraging the representa-
tions learned by the model T to guide align-
ment in the target model T , thereby improving
learning efficiency. This improved efficiency
allows models to generalize better with con-
strained data, making LET particularly valuable
in resource-limited settings.

1 2.5 5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

34

36

38

40

42

44

Av
g

On
e-

sh
ot

 A
cc

Average Downstream Task Performance

Baseline-1.4B
Baseline-3B
LET-1.4B

Figure 7: A comparison of average down-
stream task performance across different train-
ing paradigms and model sizes.

4 DISCUSSION

In this section, we discuss the potential limitations and future directions of our work.

Limitations First, in order to ensure a fair comparison of wall-clock training time, we provide a
detailed analysis of the throughput for each method. Due to space constraints, the detailed through-
put results are provided in Table 4 in the Appendix F. As shown in the table, the throughput of our
LET approach is slightly lower than that of the baseline. Second, while our extensive experiments
provide strong evidence for the effectiveness and efficiency of the proposed LET paradigm, empir-
ical evaluations are primarily conducted on models with 1.4B, 3B, and 7B parameters, trained on
datasets comprising up to 20B tokens, due to computational resource limitations. Further scaling of
both model size and training data is needed to fully demonstrate the scalability of the LET paradigm.

Future Work and Discussion First, LET is only applied during the early stages of training. As
training progresses and more data is processed, the computational overhead introduced by LET be-
comes increasingly negligible. Additionally, although RKD achieves marginally higher throughput,
its final performance remains substantially inferior to that of LET. Notably, although the baseline
achieves 1.078× the throughput of LET during the early training phase, our LET paradigm attains a
1.6× speedup in convergence, which more than compensates for the modest reduction in throughput.
Furthermore, when scaling from a 1.4B model to a 7B model, the size of the small teacher model
increases by more than an order of magnitude (from SmolLM-135M to SmolLM-1.7B), yet the re-
sulting decrease in throughput remains minimal. This demonstrates that LET is not only efficient
but also highly scalable. Second, further validation on larger models, such as those with 70B param-
eters or more and on substantially larger datasets (e.g., datasets containing 1T tokens) is warranted
for thoroughly assessing the practical applicability of LET in real-world settings.

5 CONCLUSION

This paper presents Late-to-Early Training (LET), a novel paradigm that transforms the vast com-
putational investments already made by the community into a driving force for building stronger
LLMs, ensuring that these expensive resources are maximally utilized. Unlike conventional knowl-
edge distillation, which typically relies on substantially larger teacher models, thereby incurring
significant memory overhead and may not enable the student to outperform its teacher, LET can ex-
ploit much smaller pretrained models to iteratively enhance the capabilities of larger target models.
LET introduces two core mechanisms late-to-early-step learning and late-to-early-layer learning,
which achieve faster convergence and superior performance without imposing architectural con-
straints. Extensive experiments across models with 1.4B to 7B parameters validate the effectiveness
of LET. Overall, LET offers a pratical pathway for advancing next-generation LLMs, guiding lan-
guage model development toward a more resource efficient trajectory.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on accelerating the training of LLMs. Although gains in training efficiency may
have broader societal implications, we think none of them must be specifically discussed here.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of this work. All models and datasets used are publicly
available. Section 3.1 and Appendix B provide a complete description of the experimental setup,
including model architectures, training hyperparameters. To further facilitate verification, our source
code for training, and evaluation will be made publicly available upon publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
et al. Smollm2: When smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher
Ré. Skill-it! a data-driven skills framework for understanding and training language models.
Advances in Neural Information Processing Systems, 36:36000–36040, 2023.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xianing Chen, Qiong Cao, Yujie Zhong, Jing Zhang, Shenghua Gao, and Dacheng Tao. Dearkd:
data-efficient early knowledge distillation for vision transformers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12052–12062, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and Jie
Fu. Stacking your transformers: A closer look at model growth for efficient llm pre-training. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Scott Fahlman. The recurrent cascade-correlation architecture. Advances in neural information
processing systems, 3, 1990.

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances in
neural information processing systems, 2, 1989.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International conference on machine learning, pp. 1607–1616.
PMLR, 2018.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, September 2021. URL https://doi.org/10.5281/
zenodo.5371628.

Ben Goertzel. Artificial general intelligence: concept, state of the art, and future prospects. Journal
of Artificial General Intelligence, 5(1):1, 2014.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, A Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the science of language
models. arxiv [preprint](2024). URL https://api. semanticscholar. org/CorpusID, 267365485.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. arXiv preprint arXiv:2306.08543, 2023.

11

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxian Gu, Li Dong, Hongning Wang, Yaru Hao, Qingxiu Dong, Furu Wei, and Minlie Huang. Data
selection via optimal control for language models. arXiv preprint arXiv:2410.07064, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Steven Gutstein, Olac Fuentes, and Eric Freudenthal. Knowledge transfer in deep convolutional
neural nets. International Journal on Artificial Intelligence Tools, 17(03):555–567, 2008.

Ethan He, Abhinav Khattar, Ryan Prenger, Vijay Korthikanti, Zijie Yan, Tong Liu, Shiqing Fan,
Ashwath Aithal, Mohammad Shoeybi, and Bryan Catanzaro. Upcycling large language models
into mixture of experts. arXiv preprint arXiv:2410.07524, 2024.

Ruifei He, Shuyang Sun, Jihan Yang, Song Bai, and Xiaojuan Qi. Knowledge distillation as efficient
pre-training: Faster convergence, higher data-efficiency, and better transferability. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9161–9171, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Hayeon Lee, Rui Hou, Jongpil Kim, Davis Liang, Sung Ju Hwang, and Alexander Min. A study
on knowledge distillation from weak teacher for scaling up pre-trained language models. arXiv
preprint arXiv:2305.18239, 2023.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KR,
2012:13th, 2012.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more:
Task-aware layer-wise distillation for language model compression. In International Conference
on Machine Learning, pp. 20852–20867. PMLR, 2023.

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, and
Lawrence Carin. Mixkd: Towards efficient distillation of large-scale language models. arXiv
preprint arXiv:2011.00593, 2020.

Seng Pei Liew, Takuya Kato, and Sho Takase. Scaling laws for upcycling mixture-of-experts lan-
guage models. arXiv preprint arXiv:2502.03009, 2025.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. Advances in
Neural Information Processing Systems, 37:29029–29063, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
ment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Roy Miles and Krystian Mikolajczyk. Understanding the role of the projector in knowledge distilla-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 4233–4241,
2024.

Roy Miles, Ismail Elezi, and Jiankang Deng. Vkd: Improving knowledge distillation using orthog-
onal projections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15720–15730, 2024.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan Liu,
Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language models. arXiv
preprint arXiv:2105.13880, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Ankit Singh Rawat, Veeranjaneyulu Sadhanala, Afshin Rostamizadeh, Ayan Chakrabarti, Wittawat
Jitkrittum, Vladimir Feinberg, Seungyeon Kim, Hrayr Harutyunyan, Nikunj Saunshi, Zachary
Nado, et al. A little help goes a long way: Efficient llm training by leveraging small lms. arXiv
preprint arXiv:2410.18779, 2024.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Mohammad Samragh, Iman Mirzadeh, Keivan Alizadeh Vahid, Fartash Faghri, Minsik Cho, Moin
Nabi, Devang Naik, and Mehrdad Farajtabar. Scaling smart: Accelerating large language model
pre-training with small model initialization. arXiv preprint arXiv:2409.12903, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobile-
bert: a compact task-agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984,
2020.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretrain-
ing via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36:53983–53995, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. In The Eleventh International Conference on Learning
Representations.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neu-
ral information processing systems, 33:5776–5788, 2020.

Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu, Jianbo Yuan, Haibin Lin, Ruoyu Sun, and
Hongxia Yang. Lemon: Lossless model expansion. arXiv preprint arXiv:2310.07999, 2023.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. 2024.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023a.

Siyue Wu, Hongzhan Chen, Xiaojun Quan, Qifan Wang, and Rui Wang. Ad-kd: Attribution-
driven knowledge distillation for language model compression. arXiv preprint arXiv:2305.10010,
2023b.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798–
69818, 2023a.

14

https://github.com/tatsu-lab/stanford_alpaca

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao. Towards the law of capacity gap in distilling
language models. arXiv preprint arXiv:2311.07052, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley. Bert learns to teach: Knowledge distillation
with meta learning. arXiv preprint arXiv:2106.04570, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A STATEMENT ON THE USE OF LLMS

In preparing this manuscript, we employed LLMs for linguistic refinement, including identifying
and correcting typographical errors and minor grammatical issues, as well as rephrasing sentences
to improve clarity and overall readability. LLMs were not involved in the formulation of research
ideas, methodological design, experimental execution, data analysis, or the interpretation of results.

B EXPERIMENTAL SETTINGS AND DETAILS

This section provides comprehensive experimental settings and implementation details to facilitate
full reproducibility of our work.

Training Hyperparameters For the experimental configuration, we employed a total batch size of
2048 with an input sequence length of 1280 tokens, resulting in approximately 2.62 million tokens
per step. We used The Pile dataset with all copyrighted content removed and define the third layer
of M as the early layer in all configurations. The training setup was adapted based on model size.
For the 1.4B parameter model, we utilized a per-GPU batch size of 16 with a gradient accumulation
factor of 4. In contrast, for the larger 7B parameter model, we reduced the per-GPU batch size to
4 while increasing gradient accumulation to 16 to accommodate memory constraints. Both models
shared common hyperparameters: we applied the AdamW optimizer with β1 = 0.9 and β2 = 0.999,
a weight decay of 0.01, and a maximum gradient norm of 1.0 for gradient clipping. The learning
rate varied by model size: 4×10−4 for the 1.4B parameter model and 3×10−4 for the 7B parameter
model, with both utilizing a cosine learning rate schedule for optimization.

Evaluation and Benchmark For model evaluation, we assessed our models using nine down-
stream tasks (used in OLMo). The task suite includes Hellaswag (Zellers et al., 2019), Wino-
grade (Levesque et al., 2012), LAMBADA (Paperno et al., 2016), OpenbookQA (Mihaylov et al.,
2018), ARC-easy/challenge (Clark et al., 2018), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017),
BoolQ (Clark et al., 2019). Regarding perplexity measurements on The Pile dataset, we conducted
evaluations at regular intervals of 500 training steps, corresponding to approximately 1.3 billion to-
kens of training. For downstream task assessments, we saved checkpoints throughout the training
process and evaluated them using the EleutherAI evaluation harness framework (Gao et al., 2021).
To optimize evaluation efficiency, we use automatic batch size detection within the evaluation har-
ness to identify the maximum supported batch size for each model configuration. Consistent with
our training setup, all evaluations were performed on NVIDIA A100 80GB GPUs.

Baseline Setup For RKD and SALT experiments, we follow the parameter settings from Rawat et al.
(2024) and employ the same small pretrained model as in LET. Unless otherwise specified, we use
SmolLM2 (referred to as SmolLM for brevity) as the small model in this paper, with SmolLM-135M
for the 1.4B model and SmolLM-1.7B for the 7B model.

C RELATED WORK

In this section, we review existing works relevant to LET in details.

C.1 KNOWLEDGE TRANSFER

Traditional knowledge distillation and its variants Traditional knowledge distillation
(KD) (Hinton et al., 2015; Romero et al., 2014) involves transferring knowledge from a larger, well-
trained teacher model to a smaller student model by minimizing the difference between their output
distributions. KD methodologies can be systematically categorized into two principal approaches:
logits-based and hint-based techniques. The former operates at the level of output logits. Con-
versely, hint-based methodologies focus on aligning intermediate representations. Model including
DistillBERT (Sanh et al., 2019), DistillBiLSTM (Tang et al., 2019), MINILLM (Gu et al., 2023),
MiniMA (Zhang et al., 2023) and MixKD (Liang et al., 2020) adhere to the logits-based distilla-
tion paradigm. In contrast, models such as TinyBERT (Jiao et al., 2019), MobileBERT (Sun et al.,
2020), MiniLM (Wang et al., 2020), TED (Liang et al., 2023), MetaDistil (Zhou et al., 2021), and
AD-KD (Wu et al., 2023b) implement hint-based techniques to establish correspondence between

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

intermediate representations of the teacher and student models. In the domain of computer vision,
Touvron et al. (2021) achieved competitive results by having the student learn from the teacher
through attention. To address training efficiency, He et al. (2022) introduced the KDEP framework
for efficient pre-training by aligning feature. Chen et al. (2022) proposed a two-stage approach to
improve data efficiency. Recent work has advanced the theoretical understanding of KD by demon-
strating that the projector enables relational gradients for the student model (Miles & Mikolajczyk,
2024). In parallel, orthogonal projection has proven highly effective, yielding significant enhance-
ments in object detection and image generation (Miles et al., 2024). Most KD approaches focus on
scenarios where the teacher model is larger than the student model. In contrast, our work investi-
gates the reverse setting. This setup provides a pathway toward developing next-generation models
that aim to balance strong performance with improved memory efficiency and throughput.

Weak to strong The idea that weaker models can enhance stronger ones has been explored in
various forms, with the concept of weak-to-strong generalization formalized by Burns et al. (2023).
They demonstrated that fine-tuning a strong pretrained model on labels generated by a weaker model
consistently yields performance surpassing that of the weak supervisor, terming this phenomenon
weak-to-strong generalization. Earlier work laid the groundwork for this concept. For instance,
work like (Furlanello et al., 2018) showed that in computer vision and language modeling tasks,
student models can outperform equivalently sized teacher models without requiring a larger teacher,
suggesting inherent robustness in knowledge transfer. In language modeling (Qin et al., 2021; Lee
et al., 2023; Rawat et al., 2024) has highlighted the potential and limitations of leveraging weaker
models to assist the training of larger models. Within the Mix of Experts (MoE) paradigm, various
studies have undertaken significant explorations (He et al., 2024; Liew et al., 2025). Notably, Liew
et al. (2025) advances our understanding by identifying empirical scaling laws that characterize
the relationship between performance and both dataset size and model configuration. While these
works provide valuable insights, they often focus on small-size models (fewer than 1B parameters)
or settings where the student is only marginally larger than the teacher with similar architecture.
In contrast, our study involves architecture-agnostic student models scaling up to 7B parameters,
with the student can be up to 10× larger than the teacher. Moreover, we focus on reusing released
open-source models in the community. These models have consumed significant computational
resources during their initial pretraining, yet are often underutilized when training new models. Our
approach aims to leverage these existing assets more effectively, providing a resource-efficient path
for improving larger models using smaller, accessible ones.

C.2 TRAINING ACCELERATION METHODS

Two lines of research have been particularly active in accelerating language model training: data
selection and model growth. Data selection aims to improve training efficiency by improving the
quality and diversity of the data used during pretraining (Lin et al., 2024; Li et al., 2023; Liu et al.,
2023b). Recent progress has been made in both offline and online selection strategies. Offline
methods (Xie et al., 2023a; Tirumala et al., 2023; Xia et al., 2024; Xie et al., 2023b) typically involve
pre-filtering or reweighting data before training, whereas online methods (Lin et al., 2024; Xia et al.;
Chen et al., 2023) dynamically adjust the data distribution during training. Recent work (Gu et al.,
2024) revisits data selection from the perspective of optimal control, offering new theoretical insights
into selection dynamics. Model growth, initially explored in the 1990s (Fahlman & Lebiere, 1989;
Fahlman, 1990; Gutstein et al., 2008), was significantly advanced by Net2Net (Chen et al., 2015),
which introduced function-preserving expansions along both the width and depth dimensions. This
paradigm has been extended in several directions. Bert2Bert (Chen et al., 2021), Lemon (Wang et al.,
2023), StackedBERT (Gong et al., 2019), LiGO (Wang et al.) and other related methods (Du et al.;
Samragh et al., 2024) focuses on width expansion, depth expansion, or learning-based mapping.

These methods effectively improve model convergence efficiency, but they still require carefully de-
signed depth and width expansion strategies, which increase the overall complexity, particularly
given the growing number of attention variants and the potential need for additional data pre-
processing or complex online selection strategies. LET is orthogonal to these approaches and instead
leverages a small pretrained model to accelerate the early stage of model training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D SUPPLEMENTARY EMPIRICAL RESULTS

This section provides supplementary empirical results on LLMs, including additional 1B-scale
results, detailed comparisons with RKD, analysis of stopping thresholds, and experiments using
LLaMA 3.2 1B as the model T .

Additional experiments with 1B-scale models In Section 3.2, we presented results using
SmolLM-135M (Allal et al., 2025) as model T . Here, we further extend our investigation by pre-
training a 1.4B model with OPT-125M Zhang et al. (2022) and Pythia-160M (Biderman et al., 2023)
as the models T , following the same experimental setup described previously 3.1. As shown in Fig-
ure 8, despite the T being significantly smaller than the target model and differing in architecture, we
still observe substantial improvements and faster convergence. These results highlight the robust-
ness of our proposed L2E paradigm, which consistently delivers strong performance across different
choices of models T .

5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

Av
g

On
e-

sh
ot

 A
cc

Average Downstream Task Performance

Baseline
LET-opt125m
LET-pythia160m

Figure 8: A comparison of average downstream task performance when using Pythia-160M and
OPT-125M as the model T . Here, ”LET-opt125m” and ”LET-pythia160m” represent the use of the
LET paradigm with OPT-125M and Pythia-160M as the small models T respectively.

Downstream task comparisons with RKD In Section 3.2, we compared the final average down-
stream task performance of RKD with the baseline and our L2E paradigm. In this section, we
provide further insight by examining how the average downstream task performance evolves during
training when using the RKD. As shown in Figure 9, RKD consistently underperforms compared
to the baseline on both 1.4B and 7B models. This observation aligns with the findings of Lee
et al. (2023); Rawat et al. (2024). The former, based on experiments with 67M-size models, found
that knowledge distillation can degrade performance when the teacher model is at least 0.78 times
smaller than the student model. The latter primarily focused on 1.5B and 2.8B models and similarly
observed that RKD underperforms the baseline. Moreover, we also observe that the performance
degradation of the RKD method is more pronounced on the 7B scale compared to the 1.4B scale.

These results further underscore the performance advantage of our proposed L2E paradigm, which
achieves up to 1.6× speedup and a 5.13% improvement in performance even when the model T
is 10× smaller than the target model M. While the work (Lee et al., 2023; Rawat et al., 2024)
was highly valuable and provided inspiration for subsequent research, we believe that as language
models become increasingly powerful and are trained on ever-growing datasets, even much smaller
models T can still provide useful guidance during the early stages of training. The results in Figure 9
support this analysis.

Experiments and analysis of Different Sstop Values To gain preliminary insights into the choice
of Sstop, we conducted experiments by setting Sstop to 1500 and 3000, respectively. As shown in
Figure 10, when training reaches around 5B tokens, using Sstop = 3000 yields better performance.
This can be attributed to the gradually decreasing λ schedule described in Section 2: with a larger
Sstop, the alignment strength remains higher for a longer period during the early stages of training,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

5 10 15 20
Tokens Seen (B)

32

34

36

38

40

42

44

Av
g

On
e-

sh
ot

 A
cc

1.4B Model Performance

Baseline-1.4B
RKD-1.4B
LET-1.4B

5 10 15 20
Tokens Seen (B)

30

32

34

36

38

40

42

44

46

Av
g

On
e-

sh
ot

 A
cc

7B Model Performance

Baseline-7B
RKD-7B
LET-7B

Figure 9: A comparison of average downstream task performance between RKD, Baseline, and
LET paradigm at both 1.4B and 7B model scales. We used SmolLM-135M and SmolLM-1.7B as
the models T , respectively.

which is beneficial for initial learning. However, as training progresses and the student model, being
much larger, develops a greater capacity to capture complex knowledge, continued alignment with
a much smaller teacher model can actually hinder further improvement. The results in Figure 10
support this analysis.

Ultimately, we choose Sstop = 1500, which yields better final performance while reducing overall
training time. For a more detailed discussion on wall-clock training time, please refer to Section 4.

2.5 5 7.5 10 12.5 15 17.5 20
Tokens Seen (B)

34

36

38

40

42

44

Av
g

On
e-

sh
ot

 A
cc

Average downstream task performance

Baseline
Sstop = 1500
Sstop = 3000

Figure 10: A comparison of average downstream task performance using different stopping thresh-
olds in the LET paradigm. In this experiment, Sstop = 1500 and Sstop = 3000 represent implemen-
tations of the LET paradigm where alignment was terminated after 1500 and 3000 steps respectively.

LLaMA 3.2 1B as the model T for 7B-scale model We presented results on the 7B model using
SmolLM-1.7B in Section 2. To enable a broader empirical analysis and further evaluate the gener-
alizability of our LET paradigm on 7B models, we conduct additional experiments in this section
using Llama-3.2-1B as the model T .

As shown in Figure 11, applying the LET paradigm to the 7B model also yields significant accel-
eration and noticeable improvements in final performance. Although the final performance gain is
smaller than that observed when using SmolLM-1.7B, the acceleration ratio remains similarly high.
We attribute this to the larger parameter size of SmolLM-1.7B, which enables stronger language
modeling capabilities and thus provides more effective alignment representations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

4 6 8 10 12 14 16 18 20
Tokens Seen (B)

36

37

38

39

40

41

42

43

44

45

Av
g

On
e-

sh
ot

 A
cc

Average Downstream Task Performance

Baseline
LET-Lllama_3.2_1B

4 6 8 10 12 14 16 18 20
Tokens Seen (B)

10

11

12

13

14

15

Pe
rp

le
xi

ty

Perplexity Comparison
Baseline
LET-Lllama_3.2_1B

Figure 11: Average performance of the 7B model on downstream tasks (left) and perplexity on test
split of The Pile dataset (right). The LET-Llama 3.2 1B model is trained using our proposed
LET paradigm and leverages Llama-3.2-1B as the model T . In contrast, the baselines are trained
using standard causal language modeling. Both models have 7B parameters and share the Llama-
3.2-1B vocabulary.

Table 2: Comparison of accuracy between baseline (Qwen-0.5B) and LET across various datasets.
Our experimental setup is to add alignment losses at a depth of 6 (24 in total).

Dataset Qwen-0.5B LET (Ours)

EthanolConcentration 25.8% 28.8%
FaceDetection 59.2% 66.9%
Handwriting 23.0% 33.2%
HreatBeat 66.8% 75.0%
JapaneseVowels 83.9% 95.7%
PEMS-SF 45.5% 62.5%
SelfRegulationSCP1 69.6% 85.5%
SelfRegulationSCP2 50.0% 53.9%
SpokenArabicDigits 99.3% 99.7%
UWaveGestureLibrary 67.5% 82.2%

Comparison with SALT Table 1 presents a comparison between LET and SALT under identical
hyperparameter configurations. SALT employs a two-stage training paradigm controlled by a hyper-
parameter nKD: KD is applied for the first stage, followed by standard training. For fair comparison,
we set nKD = Sstop to align with our experimental configuration. Our empirical results show that
LET achieves superior performance with the same token budget, indicating better robustness to large
model scale discrepancies. Furthermore, LET exhibits stable training dynamics, contrasting with the
severe fluctuations reported in SALT’s curves (Rawat et al., 2024).

In summary, our extensive empirical analyses in both Section 3 and this section consistently demon-
strate the effectiveness and efficiency of our proposed LET.

E TIME SERIES EXPERIMENTS

The applicability of LET extends beyond LLMs. To demonstrate its versatility, we evaluate LET
on time series classification tasks. As demonstrated in Table 2, we evaluated LET on a diverse
set of time series datasets, including EthanolConcentration, FaceDetection, Handwriting, Heart-
beat, JapaneseVowels, PEMS-SF, SelfRegulationSCP1, SelfRegulationSCP2, SpokenArabicDigits,
and UWaveGestureLibrary (Wang et al., 2024). The results indicate that LET significantly outper-
forms the baseline, which involved fine-tuning Qwen-0.5B on the respective tasks. Furthermore, the
model T is the TimesNet (Wu et al., 2023a), specifically pre-trained on a subset of these time se-
ries datasets (EthanolConcentration, FaceDetection, Handwriting, Heartbeat, JapaneseVowels, Sel-
fRegulationSCP1, and UWaveGestureLibrary). These empirical findings strongly validate both the
generalizability and effectiveness of LET.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F LM ARCHITECTURE AND THROUGHPUT

In this section, we detail the model configurations and training efficiency of our experiments.

Table 3: LM architecture comparison

.

Hidden
size

Intermediate
size

Num
layers

Num
heads Activation

Attention
variant

1B scale setting
OPT-125M 768 3072 12 12 Relu Full
Pythia-160M 768 3072 12 12 Gelu Full
SmolLM2-135M 576 1536 30 9 Silu GQA
Ours-1B 2048 5461 24 32 SwiGLU Full

7B scale setting
SmolLM2-1.7B 2048 8192 24 32 Silu GQA
Llama3.2-1B 2048 8192 16 32 Silu GQA
Ours-7B 4096 11008 32 32 SwiGLU Full

Table 4: Training Efficiency and Resource Consumption Comparison. Throughput Ratio is defined
as the throughput of the corresponding method divided by the baseline throughput. Wall-Clock
Ratio and Peak-VRAM Ratio are defined in the same way.

Method
Throughput

(token/s)
Throughput

Ratio ↑
Wall-Clock

Ratio ↓
Peak-VRAM

Ratio ↓
1.4B Model

Baseline 224.2k 1.000 1.000 1.000
RKD 211.1k 0.9415 1.0621 1.1742
SALT 221.5k 0.9880 1.0122 1.1742
LET 220.8k 0.9848 1.0154 1.1544

7B Model

Baseline 105.9k 1.000 1.000 1.000
RKD 98.3k 0.9282 1.0773 1.0946
SALT 104.3k 0.9849 1.0153 1.0946
LET 104.2k 0.9839 1.0163 1.0944

Table 3 summarizes the architectural configurations of the models used in our empirical analysis.
Remarkably, the LET paradigm achieves significant improvements despite substantial architectural
heterogeneity among these models. The differences span several dimensions, including hidden size,
intermediate size, number of layers, number of attention heads, activation functions, and attention
mechanisms. For example, activation functions vary across models, including ReLU (Nair & Hin-
ton, 2010), GeLU (Hendrycks & Gimpel, 2016), SiLU (Elfwing et al., 2018), and SwiGLU (Shazeer,
2020). Similarly, the attention variants include “Full,” which denotes standard multi-head atten-
tion (Vaswani et al., 2017), and “GQA” referring to Grouped Query Attention (Ainslie et al., 2023).

As shown in Table 4, we compare throughput, wall-clock time, and peak VRAM across methods.
Notably, LET achieves lower peak VRAM than other methods requiring auxiliary models when
training with large batch sizes. This efficiency stems from LET’s focus on learning representations in
T rather than the larger logit space, thereby reducing memory overhead. It is worth noting that both
LET and SALT only require auxiliary models during the early training phase, resulting in minimal
impact on wall-clock time and throughput compared to the baseline. While LET exhibits slightly
higher wall-clock time than SALT, its lower peak VRAM under large batch training demonstrates
considerable potential for scaling.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G HIDDEN STATES ALIGNMENT

In this section, we provide a detailed description of the projection component in section 2.

In our LET framework, the hidden states extracted from the model M and the model T may differ
in their hidden dimensionality. Specifically, let h(k)

M ∈ RB×S×dM and h
(L)
T ∈ RB×S×dT denote the

hidden representations at layer k of the M and the final layer L of the T , respectively, where B is
the batch size, S is the sequence length, and dM, dT are the hidden dimensions.

When dM ̸= dT , we apply an projection operation to the hidden state h
(k)
M to align dimension

with that of the T . Concretely, we apply linear interpolation along the hidden dimension for each
token position independently. That is, for each token index i ∈ {1, . . . , S} and each sample in
the batch, the student representation vector h(k)

M,i ∈ RdM is interpolated to produce h̃
(k)
M,i ∈ RdT .

This operation treats the hidden dimension as a 1D information. The interpolation formula for each
interpolated coordinate j ∈ {0, . . . , dT − 1} is:

h̃
(k)
M,i,j = (1− βj) · h(k)

M,i,⌊uj⌋ + βj · h(k)
M,i,⌊uj⌋+1, (6)

where the source index uj = j · dM−1
dT −1 and βj = uj − ⌊uj⌋. This procedure preserves endpoint

alignment. After that, the representations h̃
(k)
M and h

(L)
T are normalized and compared using the

cosine similarity loss:

Lproj = −
S∑

i=1

h̃
(k)⊤
M,i h

(L)
T ,i

∥h̃(k)
M,i∥ · ∥h

(L)
T ,i∥

. (7)

This alignment ensures that the cosine similarity loss can be computed, even when the model M
and T have different hidden dimensions.

H LOGSUM LOSS SETTING

Our LET design (Section 2) employs cosine similarity as the measure of similarity between the
normalized representations of model M and model T . Here, we investigate alternative alignment
objectives to assess potential performance improvements.

Given that models M and T exhibit substantial differences in capacity in our setting, we note
that the logsum loss demonstrates promising performance when applied to models with significant
capacity gaps (Miles & Mikolajczyk, 2024). Motivated by this observation, we investigate the effect
of replacing cosine similarity with logsum loss in the LET.

As shown in Table 5, employing logsum loss consistently outperforms the Baseline, RKD, and
SALT, and further improves upon LET. We attribute the effectiveness of logsum loss to its tendency
to emphasize regions where representations between T and M diverge significantly, which provides
explicit guidance by directing model M to prioritize learning features with the largest discrepancies,
which may be particularly beneficial for efficiently aligning the larger model M with the pre-trained
smaller model T during early training stages.

I THEORETICAL ANALYSIS

We provide a theoretical analysis of why LET promotes smoother optimization landscapes compared
to non-early layer alignment. To facilitate analytical tractability, we focus on a simplified setting: a
deep linear network, where the representation dimension is set to d for both model M and model T .

I.1 SETUP

We begin by specifying the notation that will be used in the subsequent analysis and proofs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Comparison of average downstream task performance under 1-shot setting. LET-LogSum
denotes LET with logsum loss, LET-CCA indicates LET using Canonical Correlation Analysis
(CCA) for representation alignment, and LET† represents the tokenizer-mismatch setting where
the model T uses OPT tokenizer while target models M use SmolLM tokenizer.

Method Avg. Performance Relative Gain

Comparison Methods
Baseline 41.6 -
RKD 41.4 -0.2
SALT 42.9 +1.3

Our Methods
LET-LogSum 43.7 +2.1
LET-CCA 42.7 +1.1
LET† 42.3 +0.7
LET 43.6 +2.0

Consider a model M with L layers defined by:

h(l+1) = W (l)h(l), l = 0, 1, . . . , L− 1 (8)

Here, h(0) = x ∈ Rd denotes the input, W (l) ∈ Rd×d are the weight matrices, and h(L) is the
output. We define θ(l) = vec(W (l)) ∈ Rd2

as the vectorized parameters of layer l, and Θ =

(θ(0)⊤, . . . , θ(L−1)⊤)⊤ ∈ RLd2

as the complete parameter vector.

The total training objective is:

Ltotal(Θ) = LNLL(Θ) + λ · Lproj(Θ) (9)

where LNLL and Lproj are defined as in Section 2. Our analysis focuses primarily on Lproj to
explicitly isolate the structural impact of the alignment depth, as the task loss LNLL remains a
shared component across different settings.

I.2 HESSIAN STRUCTURE ANALYSIS

We analyze the curvature properties of the loss landscape using the Hessian matrix.

For the alignment loss at layer k:

∂Lproj

∂θ(j)
= 0, ∀ j ≥ k. (10)

This arises because the representation h(k) depends on the parameters {W (0), . . . ,W (k−1)}.

The Hessian of model M

Hproj =
∂2Lproj

∂Θ ∂Θ⊤

exhibits a structured block form

Hproj =

(
H

(0:k)
proj 0
0 0

)
, (11)

where H
(0:k)
proj ∈ Rkd2×kd2

corresponds to parameters in layers 0, . . . , k − 1. For any i and j ≥ k,

∂2Lproj

∂θ(i)∂θ(j)⊤
=

∂

∂θ(i)

(
∂Lproj

∂θ(j)

)⊤

=
∂

∂θ(i)
0⊤ = 0, (12)

and, by symmetry of the Hessian, blocks with i ≥ k are also zero.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I.3 CURVATURE BOUND VIA FROBENIUS NORM

We employ the Frobenius norm ∥ · ∥F as a measurable proxy for the curvature magnitude. Recalling
that the spectral norm, denoted as ∥ · ∥2, which dictates the Lipschitz smoothness constant, is upper-
bounded by the Frobenius norm (i.e., ∥A∥2 ≤ ∥A∥F), it follows that establishing a tighter bound on
the Frobenius norm implicitly constrains the maximal curvature.

For a block matrix

M =

(
A 0
0 0

)
,

its Frobenius norm of the block matrix is identical to that of the upper-left block:

∥M∥F = ∥A∥F .
This follows directly from the definition, since

∥M∥2F =
∑
i,j

|Mij |2 =
∑
i,j∈A

|Aij |2 = ∥A∥2F .

We adopt the simplified deep linear network setting where all layers share the same structure. Let
H(i,j) denote the Hessian block corresponding to the second derivatives with respect to θ(i) and θ(j).
To derive an analytical upper bound, and for analytical tractability, we postulate a uniform bound on
the Frobenius norms of all Hessian blocks. Specifically, we assume there exists a constant C > 0
such that for all layer pairs i, j < L, the Hessian blocks satisfy

∥H(i,j)∥F ≤ C.

Utilizing the established Hessian block structure together with the block matrix norm property,

∥Hproj∥2F = ∥H(0:k)
proj ∥

2
F =

k−1∑
i=0

k−1∑
j=0

∥H(i,j)∥2F ≤ k2C2,

and taking square roots gives the bound.

From the curvature upper bound ∥Hproj(k)∥F ≤ k C, it follows immediately that, for k1 < k2 < L,
the theoretical upper bound on the total curvature for alignment at depth k1 is smaller than that for
alignment at depth k2. This indicates that, within our bounding analysis, earlier alignment layers
admit smaller upper bounds on curvature than later ones.

In summary, under the simplified deep linear network model and the uniform Hessian block bound
assumption, our analysis shows that LET incurs a smaller theoretical upper bound on the additional
curvature cost, thereby preserving more of the original optimization landscape than non-early align-
ment and ultimately yielding a smoother landscape. Extending beyond this simplified setting, we
empirically validate in Section 3 that the smooth optimization landscape induced by LET is consis-
tently observed in modern model architectures.

J FAILURE MODE ANALYSIS AND LAYER SELECTION STRATEGIES

In this section, we investigate scenarios where LET exhibits limitations and examine the impact of
layer selection strategies on final performance.

When employing GPT-2 (Radford et al., 2019) as the small model T , LET underperforms the base-
line. As shown in Table 6, we evaluate three configurations: LET-GPT2-Small pairs LET with
GPT-2 Small as T , LET-GPT2-Medium uses GPT-2 Medium, and RKD employs GPT-2 Small. The
results reveal a progressive improvement from RKD to LET-GPT2-Small to LET-GPT2-Medium,
though all variants underperform the baseline. We attribute this degradation to the potentially lower
quality of GPT-2’s training data (with a cutoff of late 2017) compared to modern language models.
Consequently, GPT-2’s representations fail to provide effective alignment signals. Notably, LET
consistently outperforms RKD, demonstrating superior robustness to model quality.

Aligning the final layer of T with earlier layers of M, specifically the third layer, yields optimal
performance gains. As illustrated in Figure 12, we use SmolLM-135M as T and evaluate different

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Method Avg. ∆

Baseline 41.6 –
RKD 39.2 -2.4
LET-GPT2-Small 40.7 -0.9
LET-GPT2-Medium 41.1 -0.5

Table 6: Average 1-shot performance across
downstream tasks when employing GPT-2
variants as the small model T , which was
pre-trained on data up to late 2017.

42.8 43 43.2 43.4 43.6 43.8

L3-F3

L1-F5

L1-F3

L1-F1

43.3

43.4

43.6

43.2

Avg. Performance

Figure 12: Impact of layer selection strategies

pairing strategies, where L1-F1 denotes aligning the last layer of T with the first layer of M, with
analogous notation for other layer pairs. The results demonstrate that L1-F3 achieves the best per-
formance, which suggests that the first layer may primarily encode input-specific information. The
inferior performance of L1-F5 compared to L1-F3 indicates that the third layer strikes an optimal
balance for representation alignment.

K DESCRIPTIONS OF EVALUATION TASKS

We briefly describe each downstream evaluation task used in our experiments, which are intended
to help interpret the one-shot performance results reported in the main experiment section 3.

HellaSwag (HS) (Zellers et al., 2019): A commonsense reasoning benchmark where the model needs
to choose the most plausible sentence to follow a given context from options. The task is designed
to be adversarial against language models through counter-intuitive distractors.

Winogrande (Wino.) (Levesque et al., 2012): A coreference resolution benchmark that evaluates the
model’s ability to resolve pronouns in sentences requiring commonsense knowledge. It is based on
the Winograd schema challenge, scaled up in size and difficulty.

LAMBADA (LAMB) (Paperno et al., 2016): A word prediction task where the model needs to pre-
dict the final word of a passage. The passages are filtered to require broad contextual understanding
beyond the last sentence.

OpenbookQA (OBQA) (Mihaylov et al., 2018): A multiple-choice question answering task that
combines a small “open book” of science facts with commonsense reasoning. The model must
integrate both explicit knowledge and inference.

ARC (ARC-c and ARC-e) (Clark et al., 2018): A science question answering benchmark divided
into two subsets. The “easy” (ARC-e) set consists of questions that can often be answered with
simple reasoning or basic science knowledge, while the “challenge” (ARC-c) set includes more
difficult questions requiring complex inference or broader background knowledge.

PIQA (Bisk et al., 2020): A physical common sense reasoning task involving everyday scenarios.
The model must select the more plausible solution among candidates for completing an action.

SciQ (Welbl et al., 2017): A science multiple-choice QA dataset with questions crowd-sourced
and aligned to middle school science curricula. The task requires a mixture of factual recall and
reasoning.

BoolQ (Clark et al., 2019): A binary (yes/no) question answering task over short passages. The
model must decide whether the answer to the question is entailed by the given passage.

25

	Introduction
	Methodology
	Empirical Analysis
	Experimental setup
	Main Results
	Ablation Study and Analysis

	Discussion
	Conclusion
	Statement on the Use of LLMs
	Experimental Settings and Details
	Related work
	Knowledge transfer
	Training acceleration methods

	Supplementary Empirical Results
	Time Series Experiments
	LM Architecture and Throughput
	Hidden States Alignment
	LogSum Loss Setting
	Theoretical Analysis
	Setup
	Hessian Structure Analysis
	Curvature Bound via Frobenius Norm

	Failure Mode Analysis and Layer Selection Strategies
	Descriptions of Evaluation Tasks

