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ABSTRACT

As Large Language Models (LLMs) achieve remarkable empirical success
through scaling model and data size, pretraining has become increasingly crit-
ical yet computationally prohibitive, hindering rapid development. Despite the
availability of numerous pretrained LLMs developed at significant computational
expense, a fundamental real-world question remains underexplored: Can we lever-
age existing small pretrained models to accelerate the training of larger models?
In this paper, we propose a Late-to-Early Training (LET) paradigm that enables
LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The
core idea is to guide the early layers of an LLM during early training using rep-
resentations from the late layers of a pretrained (i.e. late training phase) model.
We identify two key mechanisms that drive LET’s effectiveness: late-to-early-
step learning and late-to-early-layer learning. These mechanisms significantly
accelerate training convergence while robustly enhancing both language model-
ing capabilities and downstream task performance, enabling faster training with
superior performance. Extensive experiments on 1.4B and 7B parameter models
demonstrate LET’s efficiency and effectiveness. Notably, when training a 1.4B
LLM on the Pile dataset, our method achieves up to 1.6× speedup with nearly 5%
improvement in downstream task accuracy compared to standard training, even
when using a pretrained model with 10× fewer parameters than the target model.
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Figure 1: Comparison of Average Downstream Task Performance: LET vs. Baseline (Standard
Training) on 1.4B and 7B Models. LET models are trained under our proposed LET paradigm,
whereas the baseline models utilize standard causal language modeling. Remarkably, LET delivers
significant performance gains, even when aligned with a model 10× smaller than the target model.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across diverse natural
language tasks (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023), marking a significant
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milestone toward artificial general intelligence (AGI) (Goertzel, 2014; Bubeck et al., 2023). Pre-
training plays a key role in shaping these models’ capabilities (Devlin et al., 2019; Radford et al.,
2019), serving as the foundation for their downstream performance. However, training such models
remains extremely resource-intensive (Kaplan et al., 2020; Rae et al., 2021; Hoffmann et al., 2022).
For example, training an LLM with 12B parameters can require about 72,000 GPU hours using
NVIDIA A100 GPUs (Biderman et al., 2023). which calls for more efficient training paradigms.

Meanwhile, fueled by the open-source culture within the AI community, we are witnessing a flour-
ishing era rich with an array of publicly available models of varying sizes (Grattafiori et al., 2024;
Yang et al., 2025; Guo et al., 2025). Building on open-source implementations, many impactful
works have emerged by fine-tuning existing models such as Taori et al. (2023) in the text domain
and Liu et al. (2023a) in the multimodal domain. This approach effectively leverages the substantial
computational resources already invested in the development of these models.

Traditional knowledge distillation (KD) typically trains a smaller student model under the guidance
of a more capable teacher model (Hinton et al., 2015; Romero et al., 2014). Nevertheless, in the
context of LLMs, employing a substantially larger teacher inevitably incurs considerable memory
and computational overhead. Furthermore, in conventional KD, student models tend to lag behind
their teachers in performance, which limits their utility as a foundation for scaling LLM capabilities.

Recently, Rawat et al. (2024) claimed that smaller models can bootstrap the pretraining of larger
LLMs. However, their method has notable limitations. The size gap between the teacher and the
student is modest (only 1.87×), which limits practical applicability because the teacher remains
relatively large and incurs substantial memory overhead. Moreover, the approach relies on heavy
data preprocessing and underutilizes existing open-source models that were trained at considerable
computational cost. Another line of research using smaller models to accelerate larger model train-
ing focuses on model growth strategies, leveraging open-source LLMs to accelerate the training of
larger models (Du et al.; Samragh et al., 2024; Wang et al., 2023). While these approaches can
reduce training time, they typically require deliberate architectural modifications, such as carefully
calibrated increases in network depth and width, which add complexity and constrain the range of
feasible architectures. Consequently, their practical utility is also limited.

This raises natural and practical questions: Given the abundance of small, pretrained open-source
models, can they be generally leveraged during the pretraining of larger LLMs to guide and acceler-
ate the learning process? Furthermore, could the larger target model learn to adaptively process and
refine these representations as it progressively develops greater capabilities?

To address these questions, we propose Late-to-Early Training (LET), a novel and general
paradigm for enhancing LLM pretraining using the representations of small, pretrained models that
were developed at considerable computational expense by the community. LET is architecture-
agnostic as it relies solely on representations of LLMs rather than specific architectural constraints.
Furthermore, LET is designed to remain effective despite the performance limitations of the smaller
models in the later stages of LET training: As training progresses, the larger target model rapidly
improves in overall capability and may eventually surpass the smaller model in overall performance,
thereby reducing the effectiveness of the representations alignment. To address this, LET aligns the
representations of the smaller trained model with the early layers of the target model, allowing the
subsequent layers to naturally adapt to and refine these representations through learning dynamics
(see Section 3.3). Extensive experiments with 1.4B, 3B, and 7B parameter models demonstrate the
effectiveness and efficiency of the LET paradigm, with comparative results for 1B and 7B models
shown in Figure 1. The primary contributions can be summarized as follows.

First, we are the first to tackle a novel, valuable, yet overlooked problem: Given the abundance
of small, pretrained models developed at significant computational expense by the community, can
they be leveraged to generally accelerate the pretraining process of much larger LLMs (e.g., 10×),
regardless of LLM architectures?

Second, we propose the novel LET paradigm. At its core, it enables the early layers of the target
model during early training steps to learn from the late layers of a smaller pretrained LLM (i.e., from
its late training phase). We identify two key mechanisms, Late-to-Early Step Learning and Late-to-
Early Layer Learning, which are robust to the limitations of smaller models’ representations.
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Third, extensive experiments demonstrate that LET achieves both faster training and superior
downstream performance. Notably, for training a 1.4B model on the Pile dataset (as shown in 1),
our method delivers up to a 1.6× faster improvement in downstream performance compared with
standard training, even when relying on a small model with up to 10× fewer parameters than the
target model, which significantly exceeds the typical scope of conventional knowledge distillation.

2 METHODOLOGY

In this section, we formally propose the LET paradigm for faster and better LLM training.

Notation We introduce the notation used in the standard pretraining paradigm for LLMs. Let M
denote an LLM with parameters θ, and let x = [x1, x2, . . . , xT ] represent an input token sequence
of length T . The objective of pretraining is to maximize the likelihood of the sequence under M,
typically by training the model to predict each token given its preceding tokens. Formally, at each
position t (1 ≤ t ≤ T ), the model M produces a conditional distribution PM(xt | x<t), where
x<t = [x1, . . . , xt−1] denotes the prefix context. We denote by F (l)

M the transformation implemented
by the l-th layer of the model M (and analogously F (l)

T for a model T ), where 1 ≤ l ≤ L for a
model with L layers. Thus, a forward pass through the first k layers of M is written as: h

(k)
M =

F (k)
M ◦ F (k−1)

M ◦ · · · ◦ F (1)
M (e1:T ), yielding the hidden states after the k-th layer.

We propose the LET paradigm, which incorporates an additional alignment mechanism to guide the
early training of a larger model M with the help of a smaller pretrained model T . LET comprises
two components: Late-to-early-layer learning: encouraging the early-layer representations of M to
align with the late-layer representations of T ; Late-to-early-step learning: employing a pretrained
model T (representing a later training stage) during the initial training steps, and gradually phasing
it out as training progresses. We summarize the procedure of the LET paradigm in Algorithm 1.

The traditional training objective for M is to minimize the cross-entropy loss, i.e., the negative log-
likelihood (NLL) of the target tokens over the training dataset. For a given sequence x, this loss is
formulated as:

LNLL = −
T∑

t=1

logPM
(
xt | x<t

)
. (1)

This loss measures how well the model M predicts the token xt at each step t; a lower value
indicates more accurate predictions.

In contrast to standard pretraining, knowledge distillation (KD) is a classical approach in which a
smaller (or less capable) student model is trained to match the output probability distributions of a
larger teacher model. As discussed in detail in Section C, in the context of language modeling, given
a pretrained teacher model T producing soft predictions PT (xt | x<t), the KD loss is defined as

LKD = −
T∑

t=1

∑
v∈V

PT (v | x<t) logPM(v | x<t), (2)

where V denotes the vocabulary and v indexes individual tokens. This objective minimizes the
cross-entropy between the teacher’s and the student’s predicted distributions.

Consider an input token sequence x = [x1, x2, . . . , xT ] of length T , where each token xt belongs to
the vocabulary V . Let

e1:T = [e1, e2, . . . , eT ], et ∈ Rd

denote the corresponding token embeddings, with d being the embedding dimension. These embed-
dings are processed by two models: a target model M and a small pretrained model T . Let LM
and LT denote the total number of Transformer layers in M and T , respectively. The hidden states
after the final layer of T and after the k-th layer of M are:

h
(LT )
T = F (LT )

T ◦ F (LT −1)
T ◦ · · · ◦ F (1)

T (e1:T ),

h
(k)
M = F (k)

M ◦ F (k−1)
M ◦ · · · ◦ F (1)

M (e1:T ),
(3)
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Algorithm 1 Late-to-Early Training

1: Input: Training dataset D; target model M; small pretrained model T ; initial projection weight
λ0; projection stop step Sstop

2: Output: Pretrained target model M
3: for each minibatch x ∼ D do
4: Forward x through M and T to obtain hidden representations
5: Compute standard loss LNLL from M
6: Retrieve h

(k)
M from layer k of M and h

(LT )
T from the final layer of T

7: if dT ̸= dM then
8: Project h(k)

M to match h
(LT )
T

9: else
10: Use h

(k)
M directly to align with h

(LT )
T

11: end if
12: Normalize hidden states and compute projection loss Lproj = − h̃

(k)⊤
M h̃

(LT )
T

13: Update projection weight λ = λ0 ·max
(
0,

Sstop−s
Sstop

)
, where s is the current training step

14: Compute total loss Ltotal = LNLL + λLproj
15: Backpropagate and update parameters of M
16: end for

where F (l) denotes the transformation implemented by the l-th Transformer layer, and 1 ≤ k ≤
LM. For clarity, we illustrate the case of a single token: h(LT )

T ∈ RdT and h
(k)
M ∈ RdM represent

the hidden states from T and M, respectively. When dT ̸= dM, a projection is applied before
alignment (details in Appendix G). The representations are then normalized, and the projection loss
is defined as the negative cosine similarity between them:

Lproj = − h̃
(k)⊤
M h̃

(LT )
T = −

(
h
(k)
M

∥h(k)
M ∥

)⊤(
h
(LT )
T

∥h(LT )
T ∥

)
. (4)

To control the influence of this auxiliary alignment term during training, we introduce a weight λ
that decays linearly to zero:

Ltotal = LNLL + λLproj = LNLL + λ0 ·max

(
0,

Sstop − s

Sstop

)
Lproj. (5)

where λ0 is the initial projection loss weight, s is the current training step, and Sstop is the step at
which λ decays to zero. This formulation implements the late-to-early-layer learning mechanism in
the LET paradigm.

In the early stage of training, λ is relatively large, allowing the model to leverage additional rep-
resentational guidance from the model T . As training progresses, λ gradually decays according to
a predefined schedule, ensuring that the model focuses on optimizing the primary objective LNLL.
Overall, LET incorporates both late-to-early-layer learning and late-to-early-step learning into LLM
pretraining, thereby promoting faster convergence and better generalization, as demonstrated by the
experimental results in Section 3.

3 EMPIRICAL ANALYSIS

In the following paragraph, we empirically studied the proposed LET with various settings.

3.1 EXPERIMENTAL SETUP

Model Architecture Our models are based on the LLaMA architecture. We adopt RMSNorm
and SwiGLU activations (Zhang & Sennrich, 2019; Shazeer, 2020; Touvron et al., 2023), and all
models are trained using BF16 precision. In our experiments, the models T are drawn from the OPT
family (Zhang et al., 2022), the Pythia family (Biderman et al., 2023), and the SmolLM family (Allal
et al., 2025). Detailed model hyperparameters are summarized in Section F.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Results on downstream evaluation datasets used in Groeneveld et al.. We report accuracy
scores for each task and the average across all datasets, with the best score per model size boldfaced.
Notably, in the 1.4B scale setting, LET not only achieves higher final accuracy, but also exceeds the
baseline’s average performance while requiring less than 67% of the training steps even with 10×
smaller model T . Here, LET (67%) denote models trained with 67% of the total training steps,
using our proposed LET.

.
ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino. BoolQ Avg.

Model Size = 1.4B
Baseline 17.8 44.2 28.6 24.1 26.0 61.5 73.3 51.4 47.9 41.6
RKD 18.0 42.9 27.7 24.8 26.3 62.4 63.7 52.3 54.8 41.4
SALT 18.1 45.5 28.5 24.5 26.3 64.0 73.6 52.7 52.9 42.9
LET(67%) 17.8 45.7 28.1 23.8 26.6 64.6 72.2 52.6 51.1 42.5
LET 18.3 45.3 28.4 24.9 26.8 64.4 74.0 53.0 57.3 43.6

Model Size = 7B
Baseline 19.4 45.6 29.3 25.5 28.0 63.3 74.5 52.7 51.4 43.3
RKD 19.8 41.6 28.8 26.5 30.8 61.3 63.9 51.4 55.6 42.2
SALT 19.1 46.8 30.5 27.4 30.6 62.1 76.0 52.9 56.9 44.7
LET(67%) 18.4 45.9 29.5 27.0 29.7 61.8 74.1 51.4 57.3 43.9
LET 20.0 47.4 29.8 28.6 31.4 65.3 76.7 54.4 55.9 45.5

Data We pretrain our models on The Pile dataset, a large-scale, diverse, and high-quality English
text corpus designed for training large language models (Gao et al., 2020). It contains approximately
825 GB of text from 22 different sources, and our experiments use approximately 20 billion tokens.

Pretraining Setting We follow the hyperparameter configuration for The Pile dataset from Rawat
et al. (2024). Specifically, we use a total batch size of 2048 and an input sequence length of 1280.
All experiments are conducted on 32 NVIDIA A100 80GB GPUs. We employ the AdamW opti-
mizer (Loshchilov & Hutter, 2017) and a cosine learning rate schedule, with a linear warmup during
the first 10% of training steps and a decay to 10% of the peak learning rate thereafter. Following the
Groeneveld et al. setup, the peak learning rate is set to 4× 10−4 for 1B scale models and 3× 10−4

for 7B scale models. For more details, please refer to Appendix B.

Evaluation We evaluate one-shot performance on the nine downstream test datasets used in
Groeneveld et al.; Gu et al. (2024). For more details on these tasks, please refer to Appendix K.
Additionally, we report the language modeling loss on a test set from The Pile.

Baseline Setting We compare the proposed LET paradigm with both the traditional causal lan-
guage modeling approach (referred to as the Baseline in this paper), SALT Rawat et al. (2024) and
Reverse Knowledge Distillation (RKD). For more details, please refer to Appendix B.

3.2 MAIN RESULTS

LET Improves Downstream Task Performance We empirically evaluate the effectiveness of our
proposed LET paradigm by pretraining language models with 1.4B and 7B parameters and assessing
their downstream task performance on the evaluation datasets used in Groeneveld et al.. Additional
experimental results and discussions are provided in Appendix D. As shown in Table 1, LET consis-
tently outperforms the baseline on the majority of tasks across both scales, yielding higher average
accuracy with a notable margin. These findings demonstrate that integrating both late-to-early-layer
learning and late-to-early-step learning into LLM pretraining can effectively enhance generalization
across downstream applications. Furthermore, in the 1.4B parameter configuration, LET employs a
small pretrained model T that is an order of magnitude smaller (10×) than the target model M, yet
it still achieves substantial performance gains over the baseline.

Compared to LET, RKD shows clear limitations when the model T is significantly smaller than the
target model; specifically, it underperforms the baseline in both the 1.4B and 7B settings. RKD’s

5
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results also exhibit certain patterns. For instance, it performs relatively well on tasks such as ARC-c
and LAMB, indicating stronger reasoning abilities. However, on tasks like SciQ, which involve
multiple-choice question answering in the science domain, RKD’s performance is markedly lower
than that of other methods. This suggests that while the distillation process may strengthen certain
specific capabilities, it can also considerably hinder the model’s overall learning effectiveness.

From Table 1, it is evident that RKD struggles when the teacher model is significantly smaller than
the student model; specifically, it underperforms the baseline in both the 1.4B and 7B model settings.
The results of RKD also exhibit certain patterns—for example, it performs relatively well on tasks
such as ARC-c and LAMB, demonstrating strong reasoning ability. However, on tasks like SciQ,
which focuses on multiple-choice question answering in the science domain, RKD’s performance
is substantially lower than that of other methods. This suggests that while the distillation process
may reinforce certain capabilities in the student model, it can also significantly impede the model’s
overall learning capacity.
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Figure 2: Language modeling performance of LET across three different vocabulary settings. We
evaluate the perplexity of models trained with different vocabulary: SmolLM, OPT, and Pythia. For
fair comparison (Gao et al., 2020), each subplot uses the same vocabulary. The results demonstrate
that LET consistently achieves lower perplexity across all three settings.

LET Improves Language Modeling To comprehensively assess the effectiveness of LET, we
evaluate not only the average performance on nine downstream tasks, but also the language mod-
eling perplexity on the test split of The Pile (Gao et al., 2020). For representation alignment in the
1.4B target model M, we use three distinct small pretrained models T at approximately 125–160M
scale (OPT-125M, Pythia-160M, and SmolLM-135M). As shown in Figure 2, each subfigure uses
a consistent vocabulary across M and T . Despite using different small pretrained models, LET
consistently reduces test perplexity, in line with the performance improvements observed in down-
stream tasks. This confirms the robustness of LET in enhancing modeling capability, irrespective of
the tokenization scheme employed. Moreover, different small pretrained models have varying im-
pacts: although their sizes are similar, substantial differences in architecture (see Appendix F) lead
to different learned representations and, consequently, distinct training dynamics in M. Among
these, using SmolLM as T yields the best overall performance.

LET Accelerates Training In addition to improving performance, LET also significantly accel-
erates training. As shown in Table 1, LET attains higher performance while requiring less than two-
thirds of the training steps needed to surpass the baseline. This represents a substantial speedup,
even when T is an order of magnitude (10×) smaller than M. A similar pattern is observed in
Figure 2, where LET achieves lower test perplexity during training across three different vocabular-
ies. These results demonstrate LET’s effectiveness in accelerating convergence for both language
modeling and generalization across diverse tasks. Furthermore, LET not only facilitates efficient
pretraining for LLMs, but also exhibits strong cross-domain performance. For additional results on
cross-domain generalization, such as time series classification, please refer to Section E.

3.3 ABLATION STUDY AND ANALYSIS

More diverse layer-wise alignment experiments In our proposed late-to-early-layer learning
paradigm, we use the late-layer representations of a small pretrained model T to align the earlier-
layer representations of the target model M during training. This approach has shown strong empir-
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ical performance. To systematically assess the impact of different alignment strategies, we conduct a
series of ablation experiments with diverse layer alignment configurations. Specifically, we consider
six variants: L2E, L2M, L2L, where the last layer of T aligns with the early, middle, or last layer of
M, respectively; and M2E, M2M, M2L, where a middle layer of T aligns with the early, middle,
or last layer of M, respectively. In both the 1B scale and 7B scale settings.
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Figure 3: Comparison of six layer-wise alignment strategies on average downstream task perfor-
mance in one-shot evaluation. The proposed LET paradigm, corresponding to L2E, achieves the
highest average performance across all downstream tasks, outperforming all alternative strategies.
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Figure 4: Comparison of six layer-wise alignment strategies on language modeling performance,
measured as test perplexity on the test split of The Pile dataset. Both M2E and L2E maintain robust
performance throughout training, with L2E yielding the lowest final perplexity among all strategies.

From Figure 3, we can draw two main observations. First, using the middle-layer representations of
T for alignment consistently yields weaker performance compared to using the final-layer represen-
tations, as evidenced by M2E, M2M, and M2L underperforming all of L2E, L2M, and L2L. Second,
among all configurations that use the late layer of T for alignment, L2E demonstrates superior per-
formance and robustness.

As illustrated in Figure 4, the L2E alignment strategy demonstrates superior robustness compared
to alternative approaches. This stability is evident from the perplexity trajectories observed after the
alignment phase: while all non-L2E strategies show varying degrees of perplexity increase immedi-
ately post-alignment, L2E maintains consistent performance. This robustness advantage suggests a
more seamless integration between the alignment objective and the underlying language modeling
capability. Moreover, L2E achieves the lowest perplexity among all approaches and correspondingly
delivers the highest average performance across downstream tasks, further indicating its effective-
ness as an alignment strategy.

These empirical results further validate the effectiveness of our late-to-early-layer learning design,
in which late-layer representations from the small pretrained model T guide the formation of infor-
mative early-layer representations within the target model M. Consistent with the design rationale
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of LET, the robustness of L2E can be attributed to its alignment strategy: by mapping the represen-
tations of T to the early layers of M, the subsequent layers retain sufficient capacity to adapt and
refine these representations through the learning dynamics of training. This structural configuration
becomes increasingly important as training progresses, since M gradually gains capability and may
eventually surpass T in overall performance, thereby diminishing the relative strength of the align-
ment representations from T . The remaining layers after early alignment act as a buffer, enabling
the seamless integration and progressive refinement of representations provided by T . The trends
observed in Figure 4 provide further empirical support for this explanation.
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Figure 5: Average downstream task performance (left) and test perplexity on the The Pile dataset
(right) evaluated under different λ values: 0.01, 0.1, 0.3, 1.0, and 3.0. “Baseline” denotes training
with standard causal language modeling, whereas all other configurations employ the proposed LET
paradigm with different λ.

Effect of hyperparameter λ on performance In previous experiments, we adopted λ = 0.1 as
the default setting. To further investigate the effect of the hyperparameter, we conducted additional
evaluations across multiple values, specifically λ ∈ {0.01, 0.1, 0.3, 1.0, 3.0}. The average down-
stream task performance for each setting is shown in Figure 5. As illustrated, when λ exceeds 0.1,
performance consistently drops, indicating that larger values induce excessive alignment of the tar-
get model M to the representations of the small pretrained model T (see Figure 6), which in turn
hampers learning from data. Conversely, setting λ = 0.01 yields performance above the baseline
but still below that achieved with λ = 0.1, suggesting that alignment is insufficient at this lower
value and thus limits the effective utilization of representations from T .
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Figure 6: Cosine similarity between the late-layer representations of the small pretrained model T
and the early-layer representations of the target model M under varying λ values.

Figure 5 and Figure 6 together indicate that λ = 0.1 achieves an optimal balance, as both excessively
large and small values result in suboptimal performance. In addition, Figure 6 reveals the following:
(1) higher λ values correspond to higher average cosine similarity, reflecting stronger alignment
between M and T ; (2) representation similarity increases steadily throughout training, regardless of
the λ setting; and (3) despite varying λ by an order of magnitude, similarity curves remain relatively
stable, suggesting that even small λ values can provide effective alignment. Overall, λ = 0.1 offers a
well-balanced trade-off between aligning with T and acquiring new knowledge from data, resulting
in optimal performance on both downstream tasks and language modeling perplexity.
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LET-1.4B Achieves Superior Performance
over Baseline-3B As shown in Figure 7,
LET-1.4B achieves higher performance than
Baseline-3B, despite having fewer parameters.
This result indicates that the proposed LET
paradigm enables the model to learn more effec-
tively from limited training data. LET achieves
this by effectively leveraging the representa-
tions learned by the model T to guide align-
ment in the target model T , thereby improving
learning efficiency. This improved efficiency
allows models to generalize better with con-
strained data, making LET particularly valuable
in resource-limited settings.
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Figure 7: A comparison of average down-
stream task performance across different train-
ing paradigms and model sizes.

4 DISCUSSION

In this section, we discuss the potential limitations and future directions of our work.

Limitations First, in order to ensure a fair comparison of wall-clock training time, we provide a
detailed analysis of the throughput for each method. Due to space constraints, the detailed through-
put results are provided in Table 4 in the Appendix F. As shown in the table, the throughput of our
LET approach is slightly lower than that of the baseline. Second, while our extensive experiments
provide strong evidence for the effectiveness and efficiency of the proposed LET paradigm, empir-
ical evaluations are primarily conducted on models with 1.4B, 3B, and 7B parameters, trained on
datasets comprising up to 20B tokens, due to computational resource limitations. Further scaling of
both model size and training data is needed to fully demonstrate the scalability of the LET paradigm.

Future Work and Discussion First, LET is only applied during the early stages of training. As
training progresses and more data is processed, the computational overhead introduced by LET be-
comes increasingly negligible. Additionally, although RKD achieves marginally higher throughput,
its final performance remains substantially inferior to that of LET. Notably, although the baseline
achieves 1.078× the throughput of LET during the early training phase, our LET paradigm attains a
1.6× speedup in convergence, which more than compensates for the modest reduction in throughput.
Furthermore, when scaling from a 1.4B model to a 7B model, the size of the small teacher model
increases by more than an order of magnitude (from SmolLM-135M to SmolLM-1.7B), yet the re-
sulting decrease in throughput remains minimal. This demonstrates that LET is not only efficient
but also highly scalable. Second, further validation on larger models, such as those with 70B param-
eters or more and on substantially larger datasets (e.g., datasets containing 1T tokens) is warranted
for thoroughly assessing the practical applicability of LET in real-world settings.

5 CONCLUSION

This paper presents Late-to-Early Training (LET), a novel paradigm that transforms the vast com-
putational investments already made by the community into a driving force for building stronger
LLMs, ensuring that these expensive resources are maximally utilized. Unlike conventional knowl-
edge distillation, which typically relies on substantially larger teacher models, thereby incurring
significant memory overhead and may not enable the student to outperform its teacher, LET can ex-
ploit much smaller pretrained models to iteratively enhance the capabilities of larger target models.
LET introduces two core mechanisms late-to-early-step learning and late-to-early-layer learning,
which achieve faster convergence and superior performance without imposing architectural con-
straints. Extensive experiments across models with 1.4B to 7B parameters validate the effectiveness
of LET. Overall, LET offers a pratical pathway for advancing next-generation LLMs, guiding lan-
guage model development toward a more resource efficient trajectory.
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This work focuses on accelerating the training of LLMs. Although gains in training efficiency may
have broader societal implications, we think none of them must be specifically discussed here.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of this work. All models and datasets used are publicly
available. Section 3.1 and Appendix B provide a complete description of the experimental setup,
including model architectures, training hyperparameters. To further facilitate verification, our source
code for training, and evaluation will be made publicly available upon publication.
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A STATEMENT ON THE USE OF LLMS

In preparing this manuscript, we employed LLMs for linguistic refinement, including identifying
and correcting typographical errors and minor grammatical issues, as well as rephrasing sentences
to improve clarity and overall readability. LLMs were not involved in the formulation of research
ideas, methodological design, experimental execution, data analysis, or the interpretation of results.

B EXPERIMENTAL SETTINGS AND DETAILS

This section provides comprehensive experimental settings and implementation details to facilitate
full reproducibility of our work.

Training Hyperparameters For the experimental configuration, we employed a total batch size of
2048 with an input sequence length of 1280 tokens, resulting in approximately 2.62 million tokens
per step. We used The Pile dataset with all copyrighted content removed and define the third layer
of M as the early layer in all configurations. The training setup was adapted based on model size.
For the 1.4B parameter model, we utilized a per-GPU batch size of 16 with a gradient accumulation
factor of 4. In contrast, for the larger 7B parameter model, we reduced the per-GPU batch size to
4 while increasing gradient accumulation to 16 to accommodate memory constraints. Both models
shared common hyperparameters: we applied the AdamW optimizer with β1 = 0.9 and β2 = 0.999,
a weight decay of 0.01, and a maximum gradient norm of 1.0 for gradient clipping. The learning
rate varied by model size: 4×10−4 for the 1.4B parameter model and 3×10−4 for the 7B parameter
model, with both utilizing a cosine learning rate schedule for optimization.

Evaluation and Benchmark For model evaluation, we assessed our models using nine down-
stream tasks (used in OLMo). The task suite includes Hellaswag (Zellers et al., 2019), Wino-
grade (Levesque et al., 2012), LAMBADA (Paperno et al., 2016), OpenbookQA (Mihaylov et al.,
2018), ARC-easy/challenge (Clark et al., 2018), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017),
BoolQ (Clark et al., 2019). Regarding perplexity measurements on The Pile dataset, we conducted
evaluations at regular intervals of 500 training steps, corresponding to approximately 1.3 billion to-
kens of training. For downstream task assessments, we saved checkpoints throughout the training
process and evaluated them using the EleutherAI evaluation harness framework (Gao et al., 2021).
To optimize evaluation efficiency, we use automatic batch size detection within the evaluation har-
ness to identify the maximum supported batch size for each model configuration. Consistent with
our training setup, all evaluations were performed on NVIDIA A100 80GB GPUs.

Baseline Setup For RKD and SALT experiments, we follow the parameter settings from Rawat et al.
(2024) and employ the same small pretrained model as in LET. Unless otherwise specified, we use
SmolLM2 (referred to as SmolLM for brevity) as the small model in this paper, with SmolLM-135M
for the 1.4B model and SmolLM-1.7B for the 7B model.

C RELATED WORK

In this section, we review existing works relevant to LET in details.

C.1 KNOWLEDGE TRANSFER

Traditional knowledge distillation and its variants Traditional knowledge distillation
(KD) (Hinton et al., 2015; Romero et al., 2014) involves transferring knowledge from a larger, well-
trained teacher model to a smaller student model by minimizing the difference between their output
distributions. KD methodologies can be systematically categorized into two principal approaches:
logits-based and hint-based techniques. The former operates at the level of output logits. Con-
versely, hint-based methodologies focus on aligning intermediate representations. Model including
DistillBERT (Sanh et al., 2019), DistillBiLSTM (Tang et al., 2019), MINILLM (Gu et al., 2023),
MiniMA (Zhang et al., 2023) and MixKD (Liang et al., 2020) adhere to the logits-based distilla-
tion paradigm. In contrast, models such as TinyBERT (Jiao et al., 2019), MobileBERT (Sun et al.,
2020), MiniLM (Wang et al., 2020), TED (Liang et al., 2023), MetaDistil (Zhou et al., 2021), and
AD-KD (Wu et al., 2023b) implement hint-based techniques to establish correspondence between
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intermediate representations of the teacher and student models. In the domain of computer vision,
Touvron et al. (2021) achieved competitive results by having the student learn from the teacher
through attention. To address training efficiency, He et al. (2022) introduced the KDEP framework
for efficient pre-training by aligning feature. Chen et al. (2022) proposed a two-stage approach to
improve data efficiency. Recent work has advanced the theoretical understanding of KD by demon-
strating that the projector enables relational gradients for the student model (Miles & Mikolajczyk,
2024). In parallel, orthogonal projection has proven highly effective, yielding significant enhance-
ments in object detection and image generation (Miles et al., 2024). Most KD approaches focus on
scenarios where the teacher model is larger than the student model. In contrast, our work investi-
gates the reverse setting. This setup provides a pathway toward developing next-generation models
that aim to balance strong performance with improved memory efficiency and throughput.

Weak to strong The idea that weaker models can enhance stronger ones has been explored in
various forms, with the concept of weak-to-strong generalization formalized by Burns et al. (2023).
They demonstrated that fine-tuning a strong pretrained model on labels generated by a weaker model
consistently yields performance surpassing that of the weak supervisor, terming this phenomenon
weak-to-strong generalization. Earlier work laid the groundwork for this concept. For instance,
work like (Furlanello et al., 2018) showed that in computer vision and language modeling tasks,
student models can outperform equivalently sized teacher models without requiring a larger teacher,
suggesting inherent robustness in knowledge transfer. In language modeling (Qin et al., 2021; Lee
et al., 2023; Rawat et al., 2024) has highlighted the potential and limitations of leveraging weaker
models to assist the training of larger models. Within the Mix of Experts (MoE) paradigm, various
studies have undertaken significant explorations (He et al., 2024; Liew et al., 2025). Notably, Liew
et al. (2025) advances our understanding by identifying empirical scaling laws that characterize
the relationship between performance and both dataset size and model configuration. While these
works provide valuable insights, they often focus on small-size models (fewer than 1B parameters)
or settings where the student is only marginally larger than the teacher with similar architecture.
In contrast, our study involves architecture-agnostic student models scaling up to 7B parameters,
with the student can be up to 10× larger than the teacher. Moreover, we focus on reusing released
open-source models in the community. These models have consumed significant computational
resources during their initial pretraining, yet are often underutilized when training new models. Our
approach aims to leverage these existing assets more effectively, providing a resource-efficient path
for improving larger models using smaller, accessible ones.

C.2 TRAINING ACCELERATION METHODS

Two lines of research have been particularly active in accelerating language model training: data
selection and model growth. Data selection aims to improve training efficiency by improving the
quality and diversity of the data used during pretraining (Lin et al., 2024; Li et al., 2023; Liu et al.,
2023b). Recent progress has been made in both offline and online selection strategies. Offline
methods (Xie et al., 2023a; Tirumala et al., 2023; Xia et al., 2024; Xie et al., 2023b) typically involve
pre-filtering or reweighting data before training, whereas online methods (Lin et al., 2024; Xia et al.;
Chen et al., 2023) dynamically adjust the data distribution during training. Recent work (Gu et al.,
2024) revisits data selection from the perspective of optimal control, offering new theoretical insights
into selection dynamics. Model growth, initially explored in the 1990s (Fahlman & Lebiere, 1989;
Fahlman, 1990; Gutstein et al., 2008), was significantly advanced by Net2Net (Chen et al., 2015),
which introduced function-preserving expansions along both the width and depth dimensions. This
paradigm has been extended in several directions. Bert2Bert (Chen et al., 2021), Lemon (Wang et al.,
2023), StackedBERT (Gong et al., 2019), LiGO (Wang et al.) and other related methods (Du et al.;
Samragh et al., 2024) focuses on width expansion, depth expansion, or learning-based mapping.

These methods effectively improve model convergence efficiency, but they still require carefully de-
signed depth and width expansion strategies, which increase the overall complexity, particularly
given the growing number of attention variants and the potential need for additional data pre-
processing or complex online selection strategies. LET is orthogonal to these approaches and instead
leverages a small pretrained model to accelerate the early stage of model training.
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D SUPPLEMENTARY EMPIRICAL RESULTS

This section provides supplementary empirical results on LLMs, including additional 1B-scale
results, detailed comparisons with RKD, analysis of stopping thresholds, and experiments using
LLaMA 3.2 1B as the model T .

Additional experiments with 1B-scale models In Section 3.2, we presented results using
SmolLM-135M (Allal et al., 2025) as model T . Here, we further extend our investigation by pre-
training a 1.4B model with OPT-125M Zhang et al. (2022) and Pythia-160M (Biderman et al., 2023)
as the models T , following the same experimental setup described previously 3.1. As shown in Fig-
ure 8, despite the T being significantly smaller than the target model and differing in architecture, we
still observe substantial improvements and faster convergence. These results highlight the robust-
ness of our proposed L2E paradigm, which consistently delivers strong performance across different
choices of models T .
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Figure 8: A comparison of average downstream task performance when using Pythia-160M and
OPT-125M as the model T . Here, ”LET-opt125m” and ”LET-pythia160m” represent the use of the
LET paradigm with OPT-125M and Pythia-160M as the small models T respectively.

Downstream task comparisons with RKD In Section 3.2, we compared the final average down-
stream task performance of RKD with the baseline and our L2E paradigm. In this section, we
provide further insight by examining how the average downstream task performance evolves during
training when using the RKD. As shown in Figure 9, RKD consistently underperforms compared
to the baseline on both 1.4B and 7B models. This observation aligns with the findings of Lee
et al. (2023); Rawat et al. (2024). The former, based on experiments with 67M-size models, found
that knowledge distillation can degrade performance when the teacher model is at least 0.78 times
smaller than the student model. The latter primarily focused on 1.5B and 2.8B models and similarly
observed that RKD underperforms the baseline. Moreover, we also observe that the performance
degradation of the RKD method is more pronounced on the 7B scale compared to the 1.4B scale.

These results further underscore the performance advantage of our proposed L2E paradigm, which
achieves up to 1.6× speedup and a 5.13% improvement in performance even when the model T
is 10× smaller than the target model M. While the work (Lee et al., 2023; Rawat et al., 2024)
was highly valuable and provided inspiration for subsequent research, we believe that as language
models become increasingly powerful and are trained on ever-growing datasets, even much smaller
models T can still provide useful guidance during the early stages of training. The results in Figure 9
support this analysis.

Experiments and analysis of Different Sstop Values To gain preliminary insights into the choice
of Sstop, we conducted experiments by setting Sstop to 1500 and 3000, respectively. As shown in
Figure 10, when training reaches around 5B tokens, using Sstop = 3000 yields better performance.
This can be attributed to the gradually decreasing λ schedule described in Section 2: with a larger
Sstop, the alignment strength remains higher for a longer period during the early stages of training,
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Figure 9: A comparison of average downstream task performance between RKD, Baseline, and
LET paradigm at both 1.4B and 7B model scales. We used SmolLM-135M and SmolLM-1.7B as
the models T , respectively.

which is beneficial for initial learning. However, as training progresses and the student model, being
much larger, develops a greater capacity to capture complex knowledge, continued alignment with
a much smaller teacher model can actually hinder further improvement. The results in Figure 10
support this analysis.

Ultimately, we choose Sstop = 1500, which yields better final performance while reducing overall
training time. For a more detailed discussion on wall-clock training time, please refer to Section 4.
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Figure 10: A comparison of average downstream task performance using different stopping thresh-
olds in the LET paradigm. In this experiment, Sstop = 1500 and Sstop = 3000 represent implemen-
tations of the LET paradigm where alignment was terminated after 1500 and 3000 steps respectively.

LLaMA 3.2 1B as the model T for 7B-scale model We presented results on the 7B model using
SmolLM-1.7B in Section 2. To enable a broader empirical analysis and further evaluate the gener-
alizability of our LET paradigm on 7B models, we conduct additional experiments in this section
using Llama-3.2-1B as the model T .

As shown in Figure 11, applying the LET paradigm to the 7B model also yields significant accel-
eration and noticeable improvements in final performance. Although the final performance gain is
smaller than that observed when using SmolLM-1.7B, the acceleration ratio remains similarly high.
We attribute this to the larger parameter size of SmolLM-1.7B, which enables stronger language
modeling capabilities and thus provides more effective alignment representations.
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Figure 11: Average performance of the 7B model on downstream tasks (left) and perplexity on test
split of The Pile dataset (right). The LET-Llama 3.2 1B model is trained using our proposed
LET paradigm and leverages Llama-3.2-1B as the model T . In contrast, the baselines are trained
using standard causal language modeling. Both models have 7B parameters and share the Llama-
3.2-1B vocabulary.

Table 2: Comparison of accuracy between baseline (Qwen-0.5B) and LET across various datasets.
Our experimental setup is to add alignment losses at a depth of 6 (24 in total).

Dataset Qwen-0.5B LET (Ours)

EthanolConcentration 25.8% 28.8%
FaceDetection 59.2% 66.9%
Handwriting 23.0% 33.2%
HreatBeat 66.8% 75.0%
JapaneseVowels 83.9% 95.7%
PEMS-SF 45.5% 62.5%
SelfRegulationSCP1 69.6% 85.5%
SelfRegulationSCP2 50.0% 53.9%
SpokenArabicDigits 99.3% 99.7%
UWaveGestureLibrary 67.5% 82.2%

Comparison with SALT Table 1 presents a comparison between LET and SALT under identical
hyperparameter configurations. SALT employs a two-stage training paradigm controlled by a hyper-
parameter nKD: KD is applied for the first stage, followed by standard training. For fair comparison,
we set nKD = Sstop to align with our experimental configuration. Our empirical results show that
LET achieves superior performance with the same token budget, indicating better robustness to large
model scale discrepancies. Furthermore, LET exhibits stable training dynamics, contrasting with the
severe fluctuations reported in SALT’s curves (Rawat et al., 2024).

In summary, our extensive empirical analyses in both Section 3 and this section consistently demon-
strate the effectiveness and efficiency of our proposed LET.

E TIME SERIES EXPERIMENTS

The applicability of LET extends beyond LLMs. To demonstrate its versatility, we evaluate LET
on time series classification tasks. As demonstrated in Table 2, we evaluated LET on a diverse
set of time series datasets, including EthanolConcentration, FaceDetection, Handwriting, Heart-
beat, JapaneseVowels, PEMS-SF, SelfRegulationSCP1, SelfRegulationSCP2, SpokenArabicDigits,
and UWaveGestureLibrary (Wang et al., 2024). The results indicate that LET significantly outper-
forms the baseline, which involved fine-tuning Qwen-0.5B on the respective tasks. Furthermore, the
model T is the TimesNet (Wu et al., 2023a), specifically pre-trained on a subset of these time se-
ries datasets (EthanolConcentration, FaceDetection, Handwriting, Heartbeat, JapaneseVowels, Sel-
fRegulationSCP1, and UWaveGestureLibrary). These empirical findings strongly validate both the
generalizability and effectiveness of LET.
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F LM ARCHITECTURE AND THROUGHPUT

In this section, we detail the model configurations and training efficiency of our experiments.

Table 3: LM architecture comparison

.

Hidden
size

Intermediate
size

Num
layers

Num
heads Activation

Attention
variant

1B scale setting
OPT-125M 768 3072 12 12 Relu Full
Pythia-160M 768 3072 12 12 Gelu Full
SmolLM2-135M 576 1536 30 9 Silu GQA
Ours-1B 2048 5461 24 32 SwiGLU Full

7B scale setting
SmolLM2-1.7B 2048 8192 24 32 Silu GQA
Llama3.2-1B 2048 8192 16 32 Silu GQA
Ours-7B 4096 11008 32 32 SwiGLU Full

Table 4: Training Efficiency and Resource Consumption Comparison. Throughput Ratio is defined
as the throughput of the corresponding method divided by the baseline throughput. Wall-Clock
Ratio and Peak-VRAM Ratio are defined in the same way.

Method
Throughput

(token/s)
Throughput

Ratio ↑
Wall-Clock

Ratio ↓
Peak-VRAM

Ratio ↓
1.4B Model

Baseline 224.2k 1.000 1.000 1.000
RKD 211.1k 0.9415 1.0621 1.1742
SALT 221.5k 0.9880 1.0122 1.1742
LET 220.8k 0.9848 1.0154 1.1544

7B Model

Baseline 105.9k 1.000 1.000 1.000
RKD 98.3k 0.9282 1.0773 1.0946
SALT 104.3k 0.9849 1.0153 1.0946
LET 104.2k 0.9839 1.0163 1.0944

Table 3 summarizes the architectural configurations of the models used in our empirical analysis.
Remarkably, the LET paradigm achieves significant improvements despite substantial architectural
heterogeneity among these models. The differences span several dimensions, including hidden size,
intermediate size, number of layers, number of attention heads, activation functions, and attention
mechanisms. For example, activation functions vary across models, including ReLU (Nair & Hin-
ton, 2010), GeLU (Hendrycks & Gimpel, 2016), SiLU (Elfwing et al., 2018), and SwiGLU (Shazeer,
2020). Similarly, the attention variants include “Full,” which denotes standard multi-head atten-
tion (Vaswani et al., 2017), and “GQA” referring to Grouped Query Attention (Ainslie et al., 2023).

As shown in Table 4, we compare throughput, wall-clock time, and peak VRAM across methods.
Notably, LET achieves lower peak VRAM than other methods requiring auxiliary models when
training with large batch sizes. This efficiency stems from LET’s focus on learning representations in
T rather than the larger logit space, thereby reducing memory overhead. It is worth noting that both
LET and SALT only require auxiliary models during the early training phase, resulting in minimal
impact on wall-clock time and throughput compared to the baseline. While LET exhibits slightly
higher wall-clock time than SALT, its lower peak VRAM under large batch training demonstrates
considerable potential for scaling.
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G HIDDEN STATES ALIGNMENT

In this section, we provide a detailed description of the projection component in section 2.

In our LET framework, the hidden states extracted from the model M and the model T may differ
in their hidden dimensionality. Specifically, let h(k)

M ∈ RB×S×dM and h
(L)
T ∈ RB×S×dT denote the

hidden representations at layer k of the M and the final layer L of the T , respectively, where B is
the batch size, S is the sequence length, and dM, dT are the hidden dimensions.

When dM ̸= dT , we apply an projection operation to the hidden state h
(k)
M to align dimension

with that of the T . Concretely, we apply linear interpolation along the hidden dimension for each
token position independently. That is, for each token index i ∈ {1, . . . , S} and each sample in
the batch, the student representation vector h(k)

M,i ∈ RdM is interpolated to produce h̃
(k)
M,i ∈ RdT .

This operation treats the hidden dimension as a 1D information. The interpolation formula for each
interpolated coordinate j ∈ {0, . . . , dT − 1} is:

h̃
(k)
M,i,j = (1− βj) · h(k)

M,i,⌊uj⌋ + βj · h(k)
M,i,⌊uj⌋+1, (6)

where the source index uj = j · dM−1
dT −1 and βj = uj − ⌊uj⌋. This procedure preserves endpoint

alignment. After that, the representations h̃
(k)
M and h

(L)
T are normalized and compared using the

cosine similarity loss:

Lproj = −
S∑

i=1

h̃
(k)⊤
M,i h

(L)
T ,i

∥h̃(k)
M,i∥ · ∥h

(L)
T ,i∥

. (7)

This alignment ensures that the cosine similarity loss can be computed, even when the model M
and T have different hidden dimensions.

H LOGSUM LOSS SETTING

Our LET design (Section 2) employs cosine similarity as the measure of similarity between the
normalized representations of model M and model T . Here, we investigate alternative alignment
objectives to assess potential performance improvements.

Given that models M and T exhibit substantial differences in capacity in our setting, we note
that the logsum loss demonstrates promising performance when applied to models with significant
capacity gaps (Miles & Mikolajczyk, 2024). Motivated by this observation, we investigate the effect
of replacing cosine similarity with logsum loss in the LET.

As shown in Table 5, employing logsum loss consistently outperforms the Baseline, RKD, and
SALT, and further improves upon LET. We attribute the effectiveness of logsum loss to its tendency
to emphasize regions where representations between T and M diverge significantly, which provides
explicit guidance by directing model M to prioritize learning features with the largest discrepancies,
which may be particularly beneficial for efficiently aligning the larger model M with the pre-trained
smaller model T during early training stages.

I THEORETICAL ANALYSIS

We provide a theoretical analysis of why LET promotes smoother optimization landscapes compared
to non-early layer alignment. To facilitate analytical tractability, we focus on a simplified setting: a
deep linear network, where the representation dimension is set to d for both model M and model T .

I.1 SETUP

We begin by specifying the notation that will be used in the subsequent analysis and proofs.
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Table 5: Comparison of average downstream task performance under 1-shot setting. LET-LogSum
denotes LET with logsum loss, LET-CCA indicates LET using Canonical Correlation Analysis
(CCA) for representation alignment, and LET† represents the tokenizer-mismatch setting where
the model T uses OPT tokenizer while target models M use SmolLM tokenizer.

Method Avg. Performance Relative Gain

Comparison Methods
Baseline 41.6 -
RKD 41.4 -0.2
SALT 42.9 +1.3

Our Methods
LET-LogSum 43.7 +2.1
LET-CCA 42.7 +1.1
LET† 42.3 +0.7
LET 43.6 +2.0

Consider a model M with L layers defined by:

h(l+1) = W (l)h(l), l = 0, 1, . . . , L− 1 (8)

Here, h(0) = x ∈ Rd denotes the input, W (l) ∈ Rd×d are the weight matrices, and h(L) is the
output. We define θ(l) = vec(W (l)) ∈ Rd2

as the vectorized parameters of layer l, and Θ =

(θ(0)⊤, . . . , θ(L−1)⊤)⊤ ∈ RLd2

as the complete parameter vector.

The total training objective is:

Ltotal(Θ) = LNLL(Θ) + λ · Lproj(Θ) (9)

where LNLL and Lproj are defined as in Section 2. Our analysis focuses primarily on Lproj to
explicitly isolate the structural impact of the alignment depth, as the task loss LNLL remains a
shared component across different settings.

I.2 HESSIAN STRUCTURE ANALYSIS

We analyze the curvature properties of the loss landscape using the Hessian matrix.

For the alignment loss at layer k:

∂Lproj

∂θ(j)
= 0, ∀ j ≥ k. (10)

This arises because the representation h(k) depends on the parameters {W (0), . . . ,W (k−1)}.

The Hessian of model M

Hproj =
∂2Lproj

∂Θ ∂Θ⊤

exhibits a structured block form

Hproj =

(
H

(0:k)
proj 0
0 0

)
, (11)

where H
(0:k)
proj ∈ Rkd2×kd2

corresponds to parameters in layers 0, . . . , k − 1. For any i and j ≥ k,

∂2Lproj

∂θ(i)∂θ(j)⊤
=

∂

∂θ(i)

(
∂Lproj

∂θ(j)

)⊤

=
∂

∂θ(i)
0⊤ = 0, (12)

and, by symmetry of the Hessian, blocks with i ≥ k are also zero.
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I.3 CURVATURE BOUND VIA FROBENIUS NORM

We employ the Frobenius norm ∥ · ∥F as a measurable proxy for the curvature magnitude. Recalling
that the spectral norm, denoted as ∥ · ∥2, which dictates the Lipschitz smoothness constant, is upper-
bounded by the Frobenius norm (i.e., ∥A∥2 ≤ ∥A∥F ), it follows that establishing a tighter bound on
the Frobenius norm implicitly constrains the maximal curvature.

For a block matrix

M =

(
A 0
0 0

)
,

its Frobenius norm of the block matrix is identical to that of the upper-left block:

∥M∥F = ∥A∥F .
This follows directly from the definition, since

∥M∥2F =
∑
i,j

|Mij |2 =
∑
i,j∈A

|Aij |2 = ∥A∥2F .

We adopt the simplified deep linear network setting where all layers share the same structure. Let
H(i,j) denote the Hessian block corresponding to the second derivatives with respect to θ(i) and θ(j).
To derive an analytical upper bound, and for analytical tractability, we postulate a uniform bound on
the Frobenius norms of all Hessian blocks. Specifically, we assume there exists a constant C > 0
such that for all layer pairs i, j < L, the Hessian blocks satisfy

∥H(i,j)∥F ≤ C.

Utilizing the established Hessian block structure together with the block matrix norm property,

∥Hproj∥2F = ∥H(0:k)
proj ∥

2
F =

k−1∑
i=0

k−1∑
j=0

∥H(i,j)∥2F ≤ k2C2,

and taking square roots gives the bound.

From the curvature upper bound ∥Hproj(k)∥F ≤ k C, it follows immediately that, for k1 < k2 < L,
the theoretical upper bound on the total curvature for alignment at depth k1 is smaller than that for
alignment at depth k2. This indicates that, within our bounding analysis, earlier alignment layers
admit smaller upper bounds on curvature than later ones.

In summary, under the simplified deep linear network model and the uniform Hessian block bound
assumption, our analysis shows that LET incurs a smaller theoretical upper bound on the additional
curvature cost, thereby preserving more of the original optimization landscape than non-early align-
ment and ultimately yielding a smoother landscape. Extending beyond this simplified setting, we
empirically validate in Section 3 that the smooth optimization landscape induced by LET is consis-
tently observed in modern model architectures.

J FAILURE MODE ANALYSIS AND LAYER SELECTION STRATEGIES

In this section, we investigate scenarios where LET exhibits limitations and examine the impact of
layer selection strategies on final performance.

When employing GPT-2 (Radford et al., 2019) as the small model T , LET underperforms the base-
line. As shown in Table 6, we evaluate three configurations: LET-GPT2-Small pairs LET with
GPT-2 Small as T , LET-GPT2-Medium uses GPT-2 Medium, and RKD employs GPT-2 Small. The
results reveal a progressive improvement from RKD to LET-GPT2-Small to LET-GPT2-Medium,
though all variants underperform the baseline. We attribute this degradation to the potentially lower
quality of GPT-2’s training data (with a cutoff of late 2017) compared to modern language models.
Consequently, GPT-2’s representations fail to provide effective alignment signals. Notably, LET
consistently outperforms RKD, demonstrating superior robustness to model quality.

Aligning the final layer of T with earlier layers of M, specifically the third layer, yields optimal
performance gains. As illustrated in Figure 12, we use SmolLM-135M as T and evaluate different
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Method Avg. ∆

Baseline 41.6 –
RKD 39.2 -2.4
LET-GPT2-Small 40.7 -0.9
LET-GPT2-Medium 41.1 -0.5

Table 6: Average 1-shot performance across
downstream tasks when employing GPT-2
variants as the small model T , which was
pre-trained on data up to late 2017.

42.8 43 43.2 43.4 43.6 43.8

L3-F3

L1-F5

L1-F3

L1-F1

43.3

43.4

43.6

43.2

Avg. Performance

Figure 12: Impact of layer selection strategies

pairing strategies, where L1-F1 denotes aligning the last layer of T with the first layer of M, with
analogous notation for other layer pairs. The results demonstrate that L1-F3 achieves the best per-
formance, which suggests that the first layer may primarily encode input-specific information. The
inferior performance of L1-F5 compared to L1-F3 indicates that the third layer strikes an optimal
balance for representation alignment.

K DESCRIPTIONS OF EVALUATION TASKS

We briefly describe each downstream evaluation task used in our experiments, which are intended
to help interpret the one-shot performance results reported in the main experiment section 3.

HellaSwag (HS) (Zellers et al., 2019): A commonsense reasoning benchmark where the model needs
to choose the most plausible sentence to follow a given context from options. The task is designed
to be adversarial against language models through counter-intuitive distractors.

Winogrande (Wino.) (Levesque et al., 2012): A coreference resolution benchmark that evaluates the
model’s ability to resolve pronouns in sentences requiring commonsense knowledge. It is based on
the Winograd schema challenge, scaled up in size and difficulty.

LAMBADA (LAMB) (Paperno et al., 2016): A word prediction task where the model needs to pre-
dict the final word of a passage. The passages are filtered to require broad contextual understanding
beyond the last sentence.

OpenbookQA (OBQA) (Mihaylov et al., 2018): A multiple-choice question answering task that
combines a small “open book” of science facts with commonsense reasoning. The model must
integrate both explicit knowledge and inference.

ARC (ARC-c and ARC-e) (Clark et al., 2018): A science question answering benchmark divided
into two subsets. The “easy” (ARC-e) set consists of questions that can often be answered with
simple reasoning or basic science knowledge, while the “challenge” (ARC-c) set includes more
difficult questions requiring complex inference or broader background knowledge.

PIQA (Bisk et al., 2020): A physical common sense reasoning task involving everyday scenarios.
The model must select the more plausible solution among candidates for completing an action.

SciQ (Welbl et al., 2017): A science multiple-choice QA dataset with questions crowd-sourced
and aligned to middle school science curricula. The task requires a mixture of factual recall and
reasoning.

BoolQ (Clark et al., 2019): A binary (yes/no) question answering task over short passages. The
model must decide whether the answer to the question is entailed by the given passage.

25


	Introduction
	Methodology
	Empirical Analysis
	Experimental setup
	Main Results
	Ablation Study and Analysis

	Discussion
	Conclusion
	Statement on the Use of LLMs
	Experimental Settings and Details
	Related work
	Knowledge transfer
	Training acceleration methods

	Supplementary Empirical Results
	Time Series Experiments
	LM Architecture and Throughput
	Hidden States Alignment
	LogSum Loss Setting
	Theoretical Analysis
	Setup
	Hessian Structure Analysis
	Curvature Bound via Frobenius Norm

	Failure Mode Analysis and Layer Selection Strategies
	Descriptions of Evaluation Tasks

