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ABSTRACT

Fine-tuning large language models (LLMs) for alignment with human preferences
have become a key factor in the success of models like ChatGPT and Gemini,
which are now integral to mainstream use. Many effective techniques are based on
Reinforcement Learning from Human Feedback (RLHF), yet are challenging and
expensive to implement. Direct Preference Optimization (DPO) offers an accessi-
ble alternative by simplifying the objective, but can exhibit random ranking accu-
racy and requires a frozen reference model. In this paper, we develop a fast and an
even more lightweight DPO based algorithm — CVX-DPO —- that operates on a
single GPU. The key to achieving this is leveraging the convex optimization re-
formulation of neural networks, which eliminates the dependence on copying the
reference model and is robust against hyperparameter tuning. CVX-DPO can be
trained to global optimality in polynomial time. We use the Alternating Direction
Method of Multipliers (ADMM) to solve this optimization problem in order to
increase parallelization efficiency, and implement our methods in JAX to lift the
memory constraints across experiments. We experiment on three datasets, includ-
ing one synthetically generated educational dataset, to demonstrate the efficacy of
our novel algorithm in a real world setting. CVX-DPO outperforms traditional
DPO in user preference generation when tested on human subjects, despite being
trained on one single RTX-4090 GPU.

1 INTRODUCTION

Language models have been trained on increasingly large amounts of data to capture semantic lan-
guage patterns. The current paradigm is a combination of pre-training and fine-tuning these LMs to
achieve aligned user preferable responses. Reinforcement learning from human feedback (RLHF)
(Stiennon et al., 2020; Ouyang et al., 2022; Christiano et al., 2017; Wang et al., 2023) has demon-
strated impressive results to achieve alignment, and utilizes a three step approach of: supervised
fine-tuning, reward model training, and policy optimization. However this complexity presents sev-
eral optimization and resource challenges in its multi-stage approach. Recently, the DPO (Rafailov
et al., 2024) algorithm proposes a simpler and more computationally lightweight alternative to align-
ing LMs for user preferred responses. DPO reparametrizes the reward function instead of learning
an explicit reward model and incorporates this into the Bradley-Terry ranking objective (Bradley
& Terry, 1952). Although simpler, this also yields the following drawbacks: requiring a reference
model to stabilize training incurs additional memory and computational costs, there exists a mis-
match between the reward optimized in training and the log-likihood optimized during inference.
Recent work (Chen et al., 2024; Meng et al., 2024) have shown that models trained with DPO exhibit
random ranking accuracy even after extensive training. The SimPO (Meng et al., 2024) algorithm
employs an implicit reward formulation that directly aligns with the generation metric, eliminating
the need for a reference model yielding a more effective yet memory efficient approach. However
this also introduces additional hyperparameters, and the authors note that the strategy is crucially
dependent on extensive hyperparameter tuning to achieve optimal performance.

In this paper, we introduce CVX-DPO, a novel fast and lightweight framework for preference fine-
tuning small language models. Our approach is based on stacking a convex two-layer neural network
classifier on top of a pre-trained model. Moreover, we propose a new objective based on fine-
tuning the convex network’s last layer. Unlike the original DPO objective, this new objective is a
much smaller convex optimization problem that can be trained to global optimality. As the convex
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network and the fine-tuning objective are both convex, they can be solved using algorithms for
convex optimization in a scalable and near-hyperparameter-free manner. In particular, to train the
convex network, we combine the ADMM algorithm (Boyd et al., 2011) with GPU acceleration to
facilitate fast training. In addition, we leverage JAX (Bradbury et al., 2018) and its Just-In-Time-
Compilation (JIT) feature to lower our CVX-DPO code to fast machine code. As a result, using
only one RTX-4090, CVX-DPO can fine-tune GPT-2 medium within a few minutes. Indeed, all
of the experiments in this work were performed on a single RTX-4090 GPU. Despite the hardware
limitation, CVX-DPO enjoys fast train times — less than one hour and, in some instances, only
several minutes.

Thanks to its lightweight computational and memory footprint, CVX-DPO provides an important
step forward in developing efficient ways of aligning LLMs to human preferences that are more
accessible in academic settings. This helps to further democratize AI systems for wider audiences
and improve optimization techniques in this area. In order to assess the efficacy of our method, we
create a synthetic Educational-Tutor conversational dataset, and evaluate on 25 human volunteers
via survey to understand ”preference”.

Contributions. Our main contributions can be summarized as follows:

• We introduce a novel CVX-DPO algorithm in section 4 which reformulates the traditional
non-convex DPO loss for more stable training.

• Our theoretical convergence guarantees in section 4.3 prove that we can train CVX-DPO
to global optimality in polynomial time.

• CVX-DPO offers faster convergence and is extremely VRAM efficient. Our algorithm
also mitigates the crucial dependence on tuning hyperparameters for achieving optimal
performance exhibited in methods such as DPO and SimPO. These results are validated
with extensive experiments and human evaluation.

• We develop a custom conversational dataset to simulate a real world setting, which features
diverse topics and varying turns of phrase.

• Our open source JAX code base is provided for further experimentation and research, in-
cluding methods for both Pytorch (Paszke et al., 2019) and FLAX (Kidger & Garcia, 2021)
models.

2 RELATED WORK

Fine-tuning large language models (LLMs) that better align to human preferences can be approached
through three distinct strategies. Initial algorithms of zero-shot and few-shot in-context learning
(Xian et al., 2017) relies on prompt engineering. Although this method is able to improve the
performance of LLMs to produce desired outputs and does not require fine-tuning, it is not able
to tackle complex tasks. More sophisticated learning methods use reinforcement learning to align
model outputs with user preferences. The most successful classes (such as RLHF and RLAIF (Lee
et al., 2023)) have been able to create conversational LLMs such as ChatGPT. However despite
their impressive performance, these methods are extremely complex, requires humans in the loop,
and requires significant computational resources. Therefore the authors of DPO developed a simple
yet performant learning algorithm to directly optimize to human preferences, without explicit reward
modeling. The official implementation of DPO references four 80GB A100s, which reduces the bar-
rier to training LLMs. Nevertheless, multi-GPU systems are still out of reach for many researchers
in academia. In addition, DPO introduces certain hyperparameters that need careful tuning.

Bengio et al. (2005) have previously shown that it is possible to characterize the optimization prob-
lem for neural networks as a convex program. Pilanci & Ergen (2020) further developed exact
convex reformulations of training a two-layer ReLU neural network. The core of this representation
lies in semi-infinite duality theory, and was derived in ? to show that two-layer neural networks
with ReLU activations and weight decay regularization may be re-expressed as a linear model with
a group one penalty and polyhedral cone constraints. This is a step towards achieving globally
optimal networks and interpretable results. This yields both practical benefits in implementation,
and theoretical advantages in analyzing the optimization of the non-convex landscape of NNs. This
framework is most efficient on two-layer NNs, and on small scale datasets such as CIFAR-10 or
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MNIST (Mu & Gilmer (2019)). In order to apply this method to the area of LLMs where large data
is paramount, we seek better solutions for scalability.

To practically solve this convex optimization problem, Bai et al. (2018) have proposed an approach
based on the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011). ADMM
offers several attractive advantages, such as its robustness against hyperparameter selection, linear
decomposability for distributed optimization, and immunity to vanishing/exploding gradients. The
successful application of ADMM in solving optimization problems across a wide range of domains
has been well studied. This includes diverse fields such as control theory (Li et al. (2017)), maximum
a posteriori (MAP) inference problems (Lu & Lü (2019)), computational biology and finance (Costa
& Kwon (2020)). The natural parallelization aspects of ADMM seem to make it particularly suitable
to deep learning problems. Therefore we aim to integrate the convex reformulations of NNs with
DPO. Our goal is to have the convex model provide clear signals to the DPO loss, thus leveraging
the faster convergence to obtain LLMs of better quality.

3 CONVEX NEURAL NETWORKS

In this section, we review convex neural networks, which sets the stage for our introduction of the
Convex DPO (CVX-DPO) algorithm.

3.1 TWO-LAYER RELU NETWORKS

Given an input x ∈ Rd, the classic two-layer ReLU network is given by:

f(x) =

m∑
j=1

(Θ1jx)+θ2j , (1)

where Θ1 ∈ Rm×d, θ2 ∈ Rm are weights of the first and last layer respectively, and (·)+ =
max{·, 0} is the ReLU activation function.

Given targets y ∈ Rn, the network in equation 1 is trained by minimizing the following non-convex
loss function:

min
Θ1,θ2

ℓ (fΘ1,θ2(X), y) +
β

2

m∑
j=1

(
||Θ1j ||22 + (θ2j)

2
)
, (2)

where ℓ : Rn 7→ R is the loss function, X ∈ Rn×d is the data matrix, and β ≥ 0 is the regularization
strength. Solving equation 2 is challenging due to the non-convexity of the objective. The optimizer
often needs meticulous tuning of hyperparameters to ensure successful training. Such tuning is
expensive, since it requires many iterations of running the optimizer across multiple hyperparameter
configurations in a grid search to obtain good performance. This dramatically contrasts with the
convex optimization framework, where algorithms come with strong convergence guarantees and
involve minimal hyperparameters. Fortunately, it is possible to maintain the expressive capabilities
of ReLU neural networks while still enjoying the computational advantages of convex optimization.

3.2 CONVEX REFORMULATION

Pilanci & Ergen (2020) have shown equation 2 admits a convex reformulation, which makes it possi-
ble to avoid the inherent difficulties of non-convex optimization. Significantly, the reformulation has
the same optimal value as the original non-convex problem, provided m ≥ m∗, for some m ≥ n+1.
Therefore, nothing is lost in reformulating equation 2.

Pilanci & Ergen (2020)’s convex reformulation is based on enumerating the actions of all possible
ReLU activation patterns on the data matrix X . These activation patterns act as separating hyper-
planes, which essentially multiply the rows of X by 0 or 1, and can be represented by diagonal
matrices. For fixed X , the set of all possible ReLU activation patterns may be expressed as

DX =
{
D = diag (1(Xv ≥ 0)) : v ∈ Rd

}
.

The cardinality of DX grows as |DX | = O (r(n/r)r), where r := rank(X) Pilanci & Ergen (2020).
Given Di ∈ DX , the set of vectors v for which (Xv)+ = DiXv, is given by the following convex
cone: Ki = {v ∈ Rd : (2Di − I)Xv ≥ 0}.
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Unfortunately, DX has exponential size Pilanci & Ergen (2020), which makes the convex reformu-
lation based on a complete enumeration of DX impractical. We can work with a subset of patterns
based on sampling P patterns from DX to obtain a tractable convex reformulation. This leads to the
following subsampled convex reformulation Mishkin et al. (2022); Bai et al. (2023):

min
(vi,wi)Pi=1

ℓ

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

||vi||2 + ||wi||2

s.t. vi, wi ∈ Ki ∀i ∈ [P ].

(3)

Although equation 3 is based on subsampling patterns in the convex reformulation, it can be shown
under reasonable conditions that equation 3 still has the same optimal solution as equation 2 Mishkin
et al. (2022). Moreover, the recent work of Kim & Pilanci (2024) shows that even when they do not
agree, the difference is negligible. Therefore, we can confidently work with the tractable convex
program in equation 3.

In this paper, we set ℓ to the mean-square error loss. The recent work Bai et al. (2018) has shown in
this case that by adding slack variables, equation 3 can be written as:

min
v,s,u
||Fu− y||22 + β||v||2,1 + I≥0(s) s.t. u = v, Gu = s (4)

Here, the matrix F ∈ Rn×2dP is block-wise constructed by DiX terms.

4 CONVEX DPO

In this section, we introduce the Convex DPO (CVX-DPO) algorithm.

4.1 OUR APPROACH

In standard DPO, the goal is to obtain a good policy that is aligned with human user preferences.
To do this, DPO initializes the policy network πθ with the weights of a pre-trained network. It then
aligns the policy model by solving the optimization problem:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
. (5)

The optimization problem in equation 5 is a large-scale non-convex optimization, which can be
challenging to solve.

To remove this challenge, we propose to replace πθ with a convex two-layer model. Specifically,
we take a pre-trained model fθpre(x) and stack a two-layer convex neural network gcvx

Θ1,θ2
on top to

serve as a binary classifier. gcvx
Θ1,θ2

is then trained by solving the convex optimization problem in
equation 4. Letting θ = (θpre,Θ1, θ2), the resulting policy is then given by:

πcvx
θ (y|x) := 1

1 + exp
(
−ygcvx

Θ1,θ2

(
fθpre(x)

)) .
However, rather than do preference optimization with the weights of the entire model gcvx

Θ1,θ2
◦ fθpre ,

we freeze the weights of fθpre and freeze Θ1 in gcvx
Θ1,θ2

. We then finetune θ2, the weights of the last
layer of gcvx

Θ1,θ2
, by solving the following modified DPO optimization problem:

min
θ2

LCVX-DPO(π
cvx
θ2 ) := −E(x,yw,yl)∼D

[
log σ

(
β log

πcvx
θ2

(yw|x)
πref(yw|x)

− γ

)]
. (6)

What is the advantage of solving equation 6 over equation 5. The answer is computational tractabil-
ity, as the following proposition shows equation 6 is convex.
Proposition 1. The optimization problem in equation 6 may be written as:

min
θ2

E(x,yw,yl)∼D
[
log
(
1 + exp

(
−βywθT2 (Θ1fθpre(x))+ − γ

))]
. (7)

Moreover, it is convex as equation 7 is a logistic regression problem in θ2.

4
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Theorem 1 shows that LCVX-DPO is convex. Thus, we can solve it to global optimality in polynomial
time using efficient gradient-based optimizers.

We refer to procedure we have just described as the Convex Direct Preference Optimization (CVX-
DPO) algorithm.

4.2 CONVEX DPO ALGORITHM

Algorithm 1 Convex DPO (CVX-DPO)
Require: Dataset (x, yw, yl), Pre-trained model fθpre(x), penalty parameter ρ > 0

Train πcvx
θ to obtain (Θ1, θ2) by solving equation 4 using ADMM(ρ) (Algorithm 2).

Freeze weights of the first layer Θ1

Finetune weights of second layer θ2 by solving the convex minimization problem:

min
θ2

E(x,yw,yl)∼D
[
log
(
1 + exp

(
−βywθT2 (Θ1fθpre(x))+ − γ

))]
. ▷ Solve with AdamW

return (Θ1, θ2).

We formally present the pseudocode for CVX-DPO in algorithm 1. As described above, we first
train a two-layer convex network on top of a pre-trained model. Once this is done, we obtain the
policy model by solving a convex logistic regression problem using AdamW.

The key to making CVX-DPO efficient is using ADMM to train πcvx
θ , which we now discuss in

detail.

4.2.1 EFFICIENTLY TRAINING THE CONVEX POLICY NETWORK VIA ADMM

Algorithm 2 ADMM for Convex ReLU Networks
Require: penalty parameter ρ

repeat
uk+1 ≈ argminu

{
1
2∥Fu− y∥2 + ρ

2∥u− vk + λk∥22 +
ρ
2∥Gu− sk + νk∥2

}
▷ Use CG[

vk+1

sk+1

]
= argminv,sβ∥v∥2,1 + 1(s ≥ 0) + ρ

2∥u
k+1 − v + λk∥2 ▷ Primal update

λk+1 ← λk + γα

ρ (uk+1 − vk+1) ▷ Dual λ update
νk+1 ← νk + γα

ρ (Guk+1 − sk+1) ▷ Dual ν update
until convergence

To train πcvx
θ , we solve the optimization problem in equation 4 with the Alternating Direction Method

of Multipliers (ADMM) Boyd et al. (2011). Our choice of ADMM for solving equation 4 is pred-
icated on three important properties: 1) It possesses a robust convergence guarantee, 2) it is insen-
sitive to hyperparameter settings, and 3) it is highly amenable to hardware acceleration. For the
moment, we focus on 2) and 3). We return to 1) in Section 4.3.

Algorithm 2 formally presents ADMM for solving eq. (4). The main work consists of the first two
lines, where two subproblems must be solved. The remaining lines only require vector addition and
one matrix-vector product. The structure of these subproblems is what makes ADMM so compatible
with hardware accelerators. The uk+1-subproblem is simply a regularized least-squares problem.
This can be readily solved with the Conjugate Gradient (CG) algorithm, which only requires highly
parallelizable matrix-vector products (matvecs) with the dense matrices F and G. GPUs excel at
accelerating matvecs and other linear algebraic primitives. This is further amplified by using JAX’s
JIT compilation feature, which enables us to compile CG for solving the uk+1-subproblem, leading
to very fast solve times. Moreover, this problem can be solved inexactly and ADMM will still
converge. Thus, the linear solve is not a bottleneck. The (vk+1, sk+1) subproblem corresponds to
the proximal operator for the group Lasso and has an analytic solution that may be computed in
O(dP ) time.

5
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The other advantage of ADMM is that it only has one hyperparameter ρ > 0, to which its conver-
gence is relatively insensitive. Indeed, in contrast to gradient methods, we shall see in theorem 2 that
ADMM converges for any ρ > 0. Thus, ρ does not require aggressive tuning in order for ADMM to
yield good performance. Moreover, ρ > 0 can automatically be tuned using a technique known as
residual balancing (Boyd et al., 2011). This is a common technique for setting ρ in existing ADMM
solvers (Stellato et al., 2020; Schubiger et al., 2020; Diamandis et al., 2023).

4.3 CONVEX-DPO: CONVERGENCE GUARANTEES

As CVX-DPO solves convex optimization problems, it immediately inherits the rich convergence
theory associated with convex optimization algorithms. We begin with the following result: ADMM
converges ergodically at an O(1/k)-rate.
Theorem 2 (Convergence of ADMM for equation 4). Let {δk}k≥1 be some summable sequence.
Run Algorithm 2 and suppose at each iteration the computed uk+1 satisfies:∥∥∥∥uk+1 − argminu

{
1

2
∥Fu− y∥2 + ρ

2
∥u− vk + λk∥22 +

ρ

2
∥Gu− sk + νk∥2

}∥∥∥∥ ≤ δk.

Then after K iterations, the output of ADMM algorithm 2 satisfies:

∥FūK − y∥2 + β∥v̄K∥2,1 + 1(s̄K ≥ 0)− p⋆ = O(1/K),∥∥∥∥[I2dPG
]
ūK −

[
v̄K

s̄K

]∥∥∥∥ = O(1/K).

The proof follows from general convergence results for ADMM and is provided in the supplement.
Theorem 2 shows that ADMM converges ergodically to the global minimum of equation 4 at an
O(1/k)-rate. Moreover, this is guaranteed for any ρ > 0 and when the u-subproblem is solved
inexactly. Consequently, ADMM’s convergence is very robust. This stand

The Convex-DPO minimization objective in equation 7 is smooth, convex, and has a Lipschitz
continuous gradient. The latter property follows as the logistic loss has a Lipschitz continuous
gradient. Thus, we can apply Accelerated Gradient Descent (AGD) (Nesterov, 1983; d’Aspremont
et al., 2021), which has the worst-case optimal convergence rate, to solve equation 7.
Theorem 3 (Efficient minimization of CVX-DPO loss eq. (7)). Suppose we run AGD to solve equa-
tion 7. Then after k iterations, the output θk2 satisfies:

LCVX-DPO(π
cvx
θk
2
)−min

θ2
LCVX-DPO(π

cvx
θ2 ) = O(1/k2).

Theorem 3 shows we can train the CVX-DPO loss to global optimality in polynomial time. This
contrasts greatly with DPO, which is non-convex and lacks convergence guarantees. Moreover,
tuning the optimizer in DPO can be difficult, resulting in poor performance (Meng et al., 2024). As
full-gradient methods like AGD are expensive for large-scale training, we used AdamW (Loshchilov
& Hutter, 2017) in this paper. Unfortunately, AdamW does not inherit this guarantee. But we have
found it works well in our setting without tuning. In future work, we would like to explore variance-
reduced stochastic gradients like in Frangella et al. (2024), which can be as computationally efficient
as Adam, but come with much stronger convergence guarantees.

5 EXPERIMENTS

We experiment with 4 models (DistilGPT, GPT2, GPT2-M, FLAX-GPT2) on 3 datasets. Our goal
is to examine the effectiveness of DPO to train a small language model on one GPU, and to see if we
can make the process even more cost effective by providing more signal with the ADMM optimized
convex neural network.

5.1 DATASETS

This study explores three datasets: both synthetically generated and well-established datasets to be
consistent with previous work. Each dataset is selected to offer a different qualitative assessment of

6
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the methodology. We format each dataset into ”prompt”, ”chosen”, ”rejected” labels to be consistent
with the original DPO paper. Appendix B contains examples of the training dataset, as well as
generated samples. In each case we follow the DPO dataset of preferences format withD be defined
as follows: D = {x(i), y

(i)
w , y

(i)
l }Ni . Where y

(i)
w is the ”chosen” output and y

(i)
l is the ”rejected”

output. The key difference in our custom preference data generation strategy is that we utilize
only the natural conversational data between two agents. Therefore we select the first utterance as
”prompt”, then the following response as ”chosen” with the next following responses as ”rejected”.
This has the following advantages: eliminates the need to prompt an external LLM to generate
the rigid chosen-rejected dataset format expected by DPO, naturally keeps the dataset in the same
distribution since all samples occur within the same conversation, allows greater ease of using vast
conversational datasets without complex processing and selection.

• IMDb Sentiment Generation This dataset contains a collection of positive and negative
movie reviews from IMDb (Tripathi et al. (2020)) for the task of controlled sentiment gen-
eration. This is selected as the baseline dataset for all methods, to be consistent with the
original DPO paper and verify mode implementations. In this case x is the title of a movie,
and y is the generated positive sentiment, which should also accurately reflect the movie.

• Educational Tutor Dataset This is a custom generated task-orientated dataset in an edu-
cational setting. Please see Appendix B for data samples. In each conversation we create
4000 dialogue prompts with GPT-3.5 (Achiam et al. (2023)) then use 2 instances of agents
to simulate conversations a student studying for a quiz and a tutor assisting. The dataset
is formatted as Prompt, Agent 1, Agent 2, Agent 1, etc. We then create the DPO dataset
with y

(i)
w as the completion immediately following the agent query, and y

(i)
l of the alterna-

tive agent’s generation 2 steps forwards from the guests query. The creation of this dataset
serves 2 purposes: Since real world applications often provide limited or unlabeled data, we
are interested in how well human preferences can be optimized with a simulated real world
dataset in a well-defined hospitality setting. Secondly, since this is the smallest of our three
datasets, we are interested in the possibility of aligning LMs to human preference with very
little data as described by the authors of Zhou et al. (2024). We prompt the student agent to
ask questions across the following areas of study: math, science, history, literature, art, ge-
ography, biology, physics, chemistry, music, mythology, astrology, literature, philosophy,
and chess.

• Stanford-SHP This is the largest dataset in our experiments, and is selected to stress test
the memory and speed performance of our models on the setup described in section 5.2.
The Stanford-SHP (Ethayarajh et al. (2022)) is a dataset of 385K collective human pref-
erences over responses to questions in 18 different subject areas. This dataset also serves
to generate preferable responses to prompts, however due to the slow iteration and sam-
ple during eval limits, we are more interested in how it affects our systems compute and
qualitative generative output performance.

5.2 EXPERIMENTAL DETAILS

Throughout all experiments we use DistilGPT2(Li et al., 2021), GPT2 (Radford et al., 2019), GPT2-
Medium architecture, and FLAX-GPT2 as the policy model. CVX-DPO does not require a reference
model for stability, and instead use the convex neural network (NN) to signal the model parameters
towards ”chosen” log probabilities. Our selection of GPT based policy models is due to its versatility
to run in both JAX and Pytorch frameworks, while utilizing a small number of 82 million parameters
in the form of DistilGPT2. This architecture in particular retains approximately 97% of GPT-2’s
language understanding skills despite its reduced size. All experiments are run singularly on Ubuntu
22.04 with one RTX-4090, CUDA 12.6 and Jax 0.4.33. Maximum training time reached 2.15 hours
on the Stanford-SHP with the DPO loss, while minimum training time occurred with the custom
Educational-Tutor dataset in supervised fine-tuning mode of approximately 2min. We keep the
same learning rate and configurations as the official DPO implementation.

5.3 DPO WITH CONVEX-NN FEEDBACK

In this section we describe the model implementations and benchmarked methods of this work.
For each model, we train and evaluate on the Educational Tutor Dataset, then the IMDb Sentiment

7
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dataset as described in section 5.1. The Stanford-SHP dataset is only trained and evaluated on the
JAX-DPO re-implementation of the official source code by (Rafailov et al., 2024). All other source
code, including all JAX code, is custom coded by the authors of this project. During evaluation,
metrics and training loss are monitored on Weights and Biases (Jocher et al. (2021)), validated with
custom implemented functions for measuring TFLOPs and VRAM, then during human evaluation
we sample from our frozen and custom trained models.

Baseline The baseline model is DistilGPT2 with supervised fine-tuning loss. In subsequent DPO
settings, we initiate from the saved model of the SFT baseline for each model.

DPO Method Next we train and evaluate on the traditional DPO model. The reference model is
essentially frozen, and we optimize the policy model with the DPO loss. Rafailov et al. (2024)
provide in-depth analysis on the mechanics of DPO. This step is significantly more memory and
time intensive than the baseline model. Naive implementations of the DPO model in Pytorch are
not able to complete training on our dataset due to compute limitations of the experiment setting in
section 5.2. Therefore we re-implement this train loop in JAX, remove Fully-sharded-data-parallel
(FSDP), and rewrite utilities to load our custom features. The addition of the reference model to
stabilize training incurs both memory and compute costs which are significant.

SimPO Method This is a recent reference-free method that has shown to outperform DPO on several
metrics. However the introduction of the additional hyperparameter is crucial to its success, and thus
results in longer training time.

CVX-DPO Algorithm Our novel algorithm builds on prior work, where we have seen that the
combination of the convex ReLU NN implemented with ADMM in JAX is able to handle datasizes
such as ImageNet (Recht et al. (2019)) and IMDb and yields faster convergence with solutions of
better quality. We are motivated by the DPO objective, which treats the policy optimization task
as a binary classification with cross-entropy problem. Therefore, what if we can speed up the
optimization of the DPO loss by giving it auxiliary signal with the convex-NN model?

In observing the DPO loss, we note that the main component is the inner log ratio between the policy
model and the reference model, and then difference in log ratios between ”chosen” and ”rejected”.
We conjecture that by extracting the hidden features as the policy model optimizes, we should be
able to leverage the convex-admm method to solve the binary classification problem. The output
of the convex model provides optimal weights and classification metrics, therefore we label all
”chosen” = 1 and all ”rejected” = 0 in training to optimize for user preferences. This convex block
is then added into the training loop of the DPO training pipeline, and used to optimize DPO’s BCE
style loss by giving strong reward signal feedback.

The official implementation of DPO uses RMSProp (Shi & Li (2021)), which is seen to be as per-
formant as Adam Kingma & Ba (2014) but more memory efficient since it requires less storage
variables. However we note that the integration of the convex-DPO algorithm can provide advan-
tages such as robustness against hyperparameter tuning and faster convergence. This aims to push
the DPO loss towards a more globally optimal solution even faster. Please see Appendix C for
performance plots.

5.4 EVALUATION BENCHMARKS

his is because human preference is hard to define, and recent work of Celikyilmaz et al. (2020) has
shown that often humans will prefer simply the longer generated output without reason. Therefore
we qualitatively evaluate our output with the 25 human participants. This is also in order to be
consistent with existing literature of the seminal DPO paper. We structure evaluation as follows:

• vary temperature hyperparameter (T ) from 0.1 to 0.4.
• for each temperature, in each of the 3 models listed in section 5.3 above, we input the same

12 prompts. For example, a prompt might be ”What is the structure of a Shakespearean
sonnet?”

• each of the models generate a response, which is shuffled into a multiple choice survey, and
sent to 25 human volunteers

• We record each human’s preferences in selection, and vary the sequence of model generated
output in multiple choice questions in order to mitigate human bias.

8
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Figure 1: DPO Validation Loss without Ref Model Figure 2: DPO-Convex Training Loss

Table 1: Feedback from 25 Human Volunteers
FST DPO CVX-DPO

IMDb (Win rate) 1 3 4
Education (Win rate) 0 3 3
IMDb Avg Win % 72.2% 62.5% 68.5
Education Avg Win % 0 68.7% 83.3%

Table 5.5 summarizes the average performance of each model. The Educational Tutor response
survey section asked users to select the response that was the most HELPFUL and HUMAN, as if
the participants were studying for a quiz with a tutor. This is the most meaningful response, since it
utilizes our alternating preference dataset generating technique.

We also measure the speed and stability of training, as well as the robustness to hyperparameter
tuning on the convex setting.

Finally we observe training time, loss achieved (see below), and difference in scalability between
frameworks.

5.5 RESULTS

In this section we compare the results of the 3 models discussed in section 5.3. Although we perform
ablation studies with varying 0.1 < T < 0.4. The baseline model is consistently the fastest to train,
although it consistently demonstrates the highest amount of repetition in its output. This is further
validated in our human feedback survey, where the baseline model won on only one out of thirteen
questions.

The DPO-Convex model shows the most stable training performance. Despite variances in hyper-
parameters such as temperature, data size, batch size, this model was consistently able to stably and
quickly decrease in loss. Figures 1 and Figure 2 show the training performance of the DPO-Convex
model without any tuning of hyperparameters.

Table 5.5 summarizes the results of the human feedback survey, and shows both win rate and the
average preference of each model. The average preference is calculated as the percentage of each
model’s win rate divided by the number of times it won. We provide the average preference percent-
age as a metric since it gives better signal as to how preferred a model was. For example, the baseline
FST model only won on one question, but was strongly preferred in that case by most humans. The
Educational Tutor dataset saw an equal win-rate count between the DPO model and DPO-Convex
model, but humans had stronger preference to the answers of DPO-Convex (83.3%).

6 ANALYSIS AND DISCUSSION

Since we use smaller datasets on the DistilGPT2 Li et al. (2021) model, we expected to see a certain
amount of repetition in the output. This is most prominent in the baseline FST model. For example,
the prompt ”How can I check in? The answer is yes. I can’t....”. Although we vary T and its effect

9
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Figure 3: DPO with convex wins with T=0.1

on perplexity from 0.001 to 2.01 in steps of 0.3, the baseline FST does not increase in performance
and is consistent in its repetition (as seen in C).

The DPO model needed approximately double the amount of time to train as the baseline FST model.
However the DPO model notably generated varying degrees of creativity in the same prompt as
temperature varied. We note that the DPO model instances that won on the human feedback survey
were all instances where T < 0.4. This is in contrast to our conjecture that higher temperature
will produce more desirable results with DPO since humans prefer more creative output. We also
note that since our generated dataset is in a Hotel-Concierge setting, it’s possible humans prefer
more consistency versus creativity. In the two sample questions posed to our human volunteers,
it is clearly seen that the baseline model shows repetition, but the DPO model is preferred with
T = 0.601. The DPO-Convex model tends to generate longer responses. However this might be
attributed to its capacity for faster training.

The DPO-Convex model showed the most stable training performance. While training on one GPU
and without compromising dataset size, loss was able to consistently go down regardless of vary-
ing hyperparameters. This agrees with our conjecture that adding the convex feedback increases
robustness, and eliminated the need to continue with further hyperparameter tuning in experiments
with the DPO-convex model. Please see Appendix C for training plots. In human feedback, both
DPO and the DPO-Convex model were almost equally preferred. We attribute this to small sample
size of questions and volunteers, and realize the significance and difficulty of evaluating preference
generation. This direction leaves room for more future work.

7 CONCLUSION

In this work we introduce CVX-DPO, a novel algorithm for preference learning using convex opti-
mization. This significantly improves the robustness and speed of convergence of the convex auxil-
iary signal with the DPO objective. The resulting algorithm is more robust to hyperparameter tuning
(such as learning rate), and allows fast iteration with preferable output on minimal VRAM consump-
tion. The ADMM solve method provides further speed, efficiency, and parallelism. We implement
our methods in JAX and run experiments run on one GPU for speed and better memory efficiency.
Our custom generated synthetic dataset of the Educational Tutor setting simulates real world con-
versational data with turns of phrase, as opposed to many preference learning datasets which sample
acute ”chosen” and ”rejected” responses to a single prompt. We validate the efficacy of our fast
lightweight pipeline against 25 human volunteers, with promising results. Thus we hope this work
can reduce the barrier for entry even more for individual researchers and for various educational
purposes, and take a step towards democratizing the large language model regime.

Limitations and Future Work Future work will involve running our JAX experiments on TPUs
or GPU clusters. Since JAX and ADMM were developed with easy parallelization in mind, more
performant scaling results should be explored where we can handle even more data.

10
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8 REPRODUCIBILITY STATEMENT

Our JAX code base is available for reproducibility, with configurations to replicate experiments. We
provide both the original custom generated 4000 conversations in the Educational Tutor dataset, as
well as the preference alignment version with the alternating strategy. All other datasets utilized are
publicly available, and we adhere to the original DPO hyperparameters to ensure consistency. It is
suggested to replicate our experiments on NVIDIA GPUs with Ubuntu version 22.04, JAX version
0.4.33, CUDA 12.6, NVIDIA Drivers 560 and above.

9 ETHICS STATEMENT

Our main objective in this work is to make preference alignment in language models more easily
accessible to individual researchers, students, and the more general populace. We strongly believe
that taking a small step towards democratizing research in language model capabilities is also a
meaningful step towards and ethical AI future. We hope this work can assist more individuals to be
both interested in LMs, and also support more educational purposes.

AUTHOR CONTRIBUTIONS

All authors contributed equally on this work.

ACKNOWLEDGMENTS

To be omitted for the time being in acknowledgement of anonymity during review.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jianchao Bai, Jicheng Li, Fengmin Xu, and Hongchao Zhang. Generalized symmetric admm for
separable convex optimization. Computational optimization and applications, 70(1):129–170,
2018.

Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Efficient global optimization of two-layer relu
networks: Quadratic-time algorithms and adversarial training. SIAM Journal on Mathematics of
Data Science, 5(2):446–474, 2023.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex
neural networks. Advances in neural information processing systems, 18, 2005.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799, 2020.

Angelica Chen, Sadhika Malladi, Lily H Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and
Kyunghyun Cho. Preference learning algorithms do not learn preference rankings. In Advances
in Neural Information Processing Systems, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Giorgio Costa and Roy H Kwon. Generalized risk parity portfolio optimization: An admm approach.
Journal of Global Optimization, 78(1):207–238, 2020.

Theo Diamandis, Zachary Frangella, Shipu Zhao, Bartolomeo Stellato, and Madeleine Udell. Ge-
nios: an (almost) second-order operator-splitting solver for large-scale convex optimization. arXiv
preprint arXiv:2310.08333, 2023.

Alexandre d’Aspremont, Damien Scieur, Adrien Taylor, et al. Acceleration methods. Foundations
and Trends® in Optimization, 5(1-2):1–245, 2021.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-
usable information. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, 2022.

Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell. Promise: Preconditioned
stochastic optimization methods by incorporating scalable curvature estimates. Journal of Ma-
chine Learning Research, 25(346):1–57, 2024.

Glenn Jocher, Alex Stoken, Jirka Borovec, Liu Changyu, Adam Hogan, Ayush Chaurasia, Laurentiu
Diaconu, Francisco Ingham, Adrien Colmagro, Hu Ye, et al. ultralytics/yolov5: v4. 0-nn. silu ()
activations, weights & biases logging, pytorch hub integration. Zenodo, 2021.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in jax via callable pytrees and filtered
transformations. arXiv preprint arXiv:2111.00254, 2021.

Sungyoon Kim and Mert Pilanci. Convex relaxations of relu neural networks approximate global
optima in polynomial time. In International Conference on Machine Learning, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Jun Li, Hongfu Liu, Yue Wu, and Yun Fu. Convergence analysis and design of multi-block admm
via switched control theory. arXiv preprint arXiv:1709.05528, 2017.

Tianda Li, Yassir El Mesbahi, Ivan Kobyzev, Ahmad Rashid, Atif Mahmud, Nithin Anchuri, Habib
Hajimolahoseini, Yang Liu, and Mehdi Rezagholizadeh. A short study on compressing decoder-
based language models. arXiv preprint arXiv:2110.08460, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.
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A PROOFS OF MAIN RESULTS

A.1 PROOF THAT CONVEX DPO LOSS IS CONVEX.

Recall the CVX-DPO objective is given by:

min
θ2
− E(x,yw,yl)∼D

[
log σ

(
β log

πcvx
θ2

(yw|x)
πref(yw|x)

− β log
πcvx
θ2

(yl|x)
πref(yl|x)

)]
.

For CVX-DPO, we have that

πcvx
θ2 (yw|x) =

1

1 + exp
(
−yw(θT2 x̃)

) ,
where x̃ = (Θ1x)+. Using this expression for πcvx

θ2
(yw|x), we find

β log
πcvx
θ2

(yw|x)
πref(yw|x)

− β log
πcvx
θ2

(yl|x)
πref(yl|x)

= β log

(
πref(yl|x)
πref(yw|x)

πcvx
θ2

(yw|x)
πcvx
θ2

(yl|x)

)

= β log

(
πref(yl|x)
πref(yw|x)

πcvx
θ2

(yw|x)
1− πcvx

θ2
(yw|x)

)
= β log

(
ρref(x) exp

(
ywθ

T
2 x̃
))

= β log(ρref(x)) + βyw
(
θT2 x̃

)
From this last display and the definition of the sigmoid function, it immediately follows that:

log σ

(
β log

πcvx
θ2

(yw|x)
πref(yw|x)

− β log
πcvx
θ2

(yl|x)
πref(yl|x)

)
= − log(1 + exp

(
−βyw

(
θT2 x̃

)
− β log(ρref(x))

)
.

Thus, using the last display and the definitions of x̃ and ρref(x), the Convex DPO objective may be
rewritten as:

min
θ2

E(x,yw,yl)∼D

[
log

(
1 + exp

(
−βywθT2 (Θ1x)+ + β log

πref(yw|x)
πref(yl|x)

))]
.

We see that the Convex DPO objective is a logistic regression problem in θ2, and thus is convex.

B EXAMPLES OF DATA AND TRAINING

Figure 4: Example of custom generated Educational Tutor conversation dataset

C PERFORMANCE PLOTS

Please see the following images for performance plots.
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Figure 5: Training for DPO naive

Figure 6: Larger image of training for DPO as discussed above

Figure 9: FST baseline resistant to varying T, consistently repeats output

D HUMAN EVALUATION

We have 25 human volunteers selecting their most preferred generated output. The survey is con-
ducted as a total of 13 questions, across 2 datasets (5.1), with output generated by each of the three
models discussed in 5.3. Further details of survey human evaluation is summarized in 5.5. The raters
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Figure 7: Sample of training for DPO-Convex

were Stanford students (from graduate to Ph.D.), University of Toronto students (Ph.D.), Google
Software Engineers, and medical practitioners in Veterinary science. We gratefully acknowledge
the contribution of each of our human subjects, listed in random order: Anna Goldie, Kevin Nam,
Zhong Wei Dang, Shaun Benjamin, Sera Benjamin, Yue Benjamin, Noriyuki Shintoku, Jenny Song,
Zachary Frangella, Stephen Sapperton, Mary Habib, Scarlet Arreola Barrones, Farhis Kordi, Adam
Wong, Jia Yu, Tong Zhang, Juan Jaramillo, and Trevor Germain.
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Figure 8: Sample of Survey to Human Subjects
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