Under review as a conference paper at ICLR 2025

CVX-DPO: FAST RESOURCE CONSTRAINED PREFER-
ENCE LEARNING VIA CONVEX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) for alignment with human preferences
have become a key factor in the success of models like ChatGPT and Gemini,
which are now integral to mainstream use. Many effective techniques are based on
Reinforcement Learning from Human Feedback (RLHF), yet are challenging and
expensive to implement. Direct Preference Optimization (DPO) offers an accessi-
ble alternative by simplifying the objective, but can exhibit random ranking accu-
racy and requires a frozen reference model. In this paper, we develop a fast and an
even more lightweight DPO based algorithm — CVX-DPO —- that operates on a
single GPU. The key to achieving this is leveraging the convex optimization re-
formulation of neural networks, which eliminates the dependence on copying the
reference model and is robust against hyperparameter tuning. CVX-DPO can be
trained to global optimality in polynomial time. We use the Alternating Direction
Method of Multipliers (ADMM) to solve this optimization problem in order to
increase parallelization efficiency, and implement our methods in JAX to lift the
memory constraints across experiments. We experiment on three datasets, includ-
ing one synthetically generated educational dataset, to demonstrate the efficacy of
our novel algorithm in a real world setting. CVX-DPO outperforms traditional
DPO in user preference generation when tested on human subjects, despite being
trained on one single RTX-4090 GPU.

1 INTRODUCTION

Language models have been trained on increasingly large amounts of data to capture semantic lan-
guage patterns. The current paradigm is a combination of pre-training and fine-tuning these LMs to
achieve aligned user preferable responses. Reinforcement learning from human feedback (RLHF)
(Stiennon et al.} 20205 |Ouyang et al., 2022} (Christiano et al., 2017; |Wang et al., 2023) has demon-
strated impressive results to achieve alignment, and utilizes a three step approach of: supervised
fine-tuning, reward model training, and policy optimization. However this complexity presents sev-
eral optimization and resource challenges in its multi-stage approach. Recently, the DPO (Rafailov
et al.,2024])) algorithm proposes a simpler and more computationally lightweight alternative to align-
ing LMs for user preferred responses. DPO reparametrizes the reward function instead of learning
an explicit reward model and incorporates this into the Bradley-Terry ranking objective (Bradley
& Terry, [1952)). Although simpler, this also yields the following drawbacks: requiring a reference
model to stabilize training incurs additional memory and computational costs, there exists a mis-
match between the reward optimized in training and the log-likihood optimized during inference.
Recent work (Chen et al.|[2024; Meng et al., 2024) have shown that models trained with DPO exhibit
random ranking accuracy even after extensive training. The SimPO (Meng et al.| [2024)) algorithm
employs an implicit reward formulation that directly aligns with the generation metric, eliminating
the need for a reference model yielding a more effective yet memory efficient approach. However
this also introduces additional hyperparameters, and the authors note that the strategy is crucially
dependent on extensive hyperparameter tuning to achieve optimal performance.

In this paper, we introduce CVX-DPO, a novel fast and lightweight framework for preference fine-
tuning small language models. Our approach is based on stacking a convex two-layer neural network
classifier on top of a pre-trained model. Moreover, we propose a new objective based on fine-
tuning the convex network’s last layer. Unlike the original DPO objective, this new objective is a
much smaller convex optimization problem that can be trained to global optimality. As the convex
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network and the fine-tuning objective are both convex, they can be solved using algorithms for
convex optimization in a scalable and near-hyperparameter-free manner. In particular, to train the
convex network, we combine the ADMM algorithm (Boyd et al., 2011) with GPU acceleration to
facilitate fast training. In addition, we leverage JAX (Bradbury et al., [2018)) and its Just-In-Time-
Compilation (JIT) feature to lower our CVX-DPO code to fast machine code. As a result, using
only one RTX-4090, CVX-DPO can fine-tune GPT-2 medium within a few minutes. Indeed, all
of the experiments in this work were performed on a single RTX-4090 GPU. Despite the hardware
limitation, CVX-DPO enjoys fast train times — less than one hour and, in some instances, only
several minutes.

Thanks to its lightweight computational and memory footprint, CVX-DPO provides an important
step forward in developing efficient ways of aligning LLMs to human preferences that are more
accessible in academic settings. This helps to further democratize Al systems for wider audiences
and improve optimization techniques in this area. In order to assess the efficacy of our method, we
create a synthetic Educational-Tutor conversational dataset, and evaluate on 25 human volunteers
via survey to understand “’preference”.

Contributions. Our main contributions can be summarized as follows:

* We introduce a novel CVX-DPO algorithm in section 4] which reformulates the traditional
non-convex DPO loss for more stable training.

* Our theoretical convergence guarantees in section .3| prove that we can train CVX-DPO
to global optimality in polynomial time.

* CVX-DPO offers faster convergence and is extremely VRAM efficient. Our algorithm
also mitigates the crucial dependence on tuning hyperparameters for achieving optimal
performance exhibited in methods such as DPO and SimPO. These results are validated
with extensive experiments and human evaluation.

* We develop a custom conversational dataset to simulate a real world setting, which features
diverse topics and varying turns of phrase.

* Our open source JAX code base is provided for further experimentation and research, in-
cluding methods for both Pytorch (Paszke et al.,2019) and FLAX (Kidger & Garcial, 2021
models.

2 RELATED WORK

Fine-tuning large language models (LLMs) that better align to human preferences can be approached
through three distinct strategies. Initial algorithms of zero-shot and few-shot in-context learning
(Xian et al) [2017) relies on prompt engineering. Although this method is able to improve the
performance of LLMs to produce desired outputs and does not require fine-tuning, it is not able
to tackle complex tasks. More sophisticated learning methods use reinforcement learning to align
model outputs with user preferences. The most successful classes (such as RLHF and RLAIF (Lee
et al., 2023)) have been able to create conversational LLMs such as ChatGPT. However despite
their impressive performance, these methods are extremely complex, requires humans in the loop,
and requires significant computational resources. Therefore the authors of DPO developed a simple
yet performant learning algorithm to directly optimize to human preferences, without explicit reward
modeling. The official implementation of DPO references four 80GB A100s, which reduces the bar-
rier to training LLMs. Nevertheless, multi-GPU systems are still out of reach for many researchers
in academia. In addition, DPO introduces certain hyperparameters that need careful tuning.

Bengio et al.|(2005) have previously shown that it is possible to characterize the optimization prob-
lem for neural networks as a convex program. |Pilanci & Ergen| (2020) further developed exact
convex reformulations of training a two-layer ReLU neural network. The core of this representation
lies in semi-infinite duality theory, and was derived in ? to show that two-layer neural networks
with ReLU activations and weight decay regularization may be re-expressed as a linear model with
a group one penalty and polyhedral cone constraints. This is a step towards achieving globally
optimal networks and interpretable results. This yields both practical benefits in implementation,
and theoretical advantages in analyzing the optimization of the non-convex landscape of NNs. This
framework is most efficient on two-layer NNs, and on small scale datasets such as CIFAR-10 or
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MNIST (Mu & Gilmeri (2019)). In order to apply this method to the area of LLMs where large data
is paramount, we seek better solutions for scalability.

To practically solve this convex optimization problem, Bai et al.|(2018) have proposed an approach
based on the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.| [2011). ADMM
offers several attractive advantages, such as its robustness against hyperparameter selection, linear
decomposability for distributed optimization, and immunity to vanishing/exploding gradients. The
successful application of ADMM in solving optimization problems across a wide range of domains
has been well studied. This includes diverse fields such as control theory (Li et al.|(2017)), maximum
a posteriori (MAP) inference problems (Lu & Lii| (2019)), computational biology and finance (Costa
& Kwon|(2020)). The natural parallelization aspects of ADMM seem to make it particularly suitable
to deep learning problems. Therefore we aim to integrate the convex reformulations of NNs with
DPO. Our goal is to have the convex model provide clear signals to the DPO loss, thus leveraging
the faster convergence to obtain LLMs of better quality.

3 CONVEX NEURAL NETWORKS

In this section, we review convex neural networks, which sets the stage for our introduction of the
Convex DPO (CVX-DPO) algorithm.

3.1 TwoO-LAYER RELU NETWORKS

Given an input € R?, the classic two-layer ReLU network is given by:
m

f@) = (O1;7) 165, (1
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where ©; € R™*4 0, € R™ are weights of the first and last layer respectively, and (-); =
max{-, 0} is the ReLU activation function.

Given targets y € R", the network in equation [I]is trained by minimizing the following non-convex

loss function:
m
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where £ : R™ — R is the loss function, X € R™*4 is the data matrix, and B > 0is the regularization
strength. Solving equation [2]is challenging due to the non-convexity of the objective. The optimizer
often needs meticulous tuning of hyperparameters to ensure successful training. Such tuning is
expensive, since it requires many iterations of running the optimizer across multiple hyperparameter
configurations in a grid search to obtain good performance. This dramatically contrasts with the
convex optimization framework, where algorithms come with strong convergence guarantees and
involve minimal hyperparameters. Fortunately, it is possible to maintain the expressive capabilities
of ReLU neural networks while still enjoying the computational advantages of convex optimization.

3.2 CONVEX REFORMULATION

Pilanci & Ergen|(2020) have shown equation@] admits a convex reformulation, which makes it possi-
ble to avoid the inherent difficulties of non-convex optimization. Significantly, the reformulation has
the same optimal value as the original non-convex problem, provided m > m™*, for some m > n+1.
Therefore, nothing is lost in reformulating equation [2}

Pilanci & Ergen| (2020)’s convex reformulation is based on enumerating the actions of all possible
ReLU activation patterns on the data matrix X. These activation patterns act as separating hyper-
planes, which essentially multiply the rows of X by 0 or 1, and can be represented by diagonal
matrices. For fixed X, the set of all possible ReLU activation patterns may be expressed as

Dy = {D = diag (1(Xv > 0)) : v € R?}.

The cardinality of Dx grows as [Dx| = O (r(n/r)"), where r := rank(X) Pilanci & Ergen|(2020).
Given D, € Dy, the set of vectors v for which (Xv); = D;Xuw, is given by the following convex
cone: K; = {v € R%: (2D; — I) Xv > 0}.
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Unfortunately, Dx has exponential size |Pilanci & Ergen| (2020), which makes the convex reformu-
lation based on a complete enumeration of Dy impractical. We can work with a subset of patterns
based on sampling P patterns from Dx to obtain a tractable convex reformulation. This leads to the
following subsampled convex reformulation Mishkin et al.| (2022); Bai et al.| (2023):

P P
=1

(vi,wi) g i=1 =
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Although equation [3|is based on subsampling patterns in the convex reformulation, it can be shown
under reasonable conditions that equation[3|still has the same optimal solution as equation 2JMishkin
et al.| (2022). Moreover, the recent work of Kim & Pilanci| (2024) shows that even when they do not
agree, the difference is negligible. Therefore, we can confidently work with the tractable convex
program in equation 3]

In this paper, we set £ to the mean-square error loss. The recent work [Bai et al.|(2018) has shown in
this case that by adding slack variables, equation [3|can be written as:

gnSiIilL||Fufy||g+B||vH271 +1I50(s) st.u=v, Gu=s 4)

Here, the matrix F' € R"*24” j5 block-wise constructed by D; X terms.

4 CoNVEX DPO
In this section, we introduce the Convex DPO (CVX-DPO) algorithm.

4.1 OUR APPROACH

In standard DPO, the goal is to obtain a good policy that is aligned with human user preferences.
To do this, DPO initializes the policy network my with the weights of a pre-trained network. It then
aligns the policy model by solving the optimization problem:

mo(ywlz) 7o (yi|)
7Tref(ywkc) to 7Tref(yllx))] .

The optimization problem in equation [3] is a large-scale non-convex optimization, which can be
challenging to solve.

LDPO(WQ; 7Tref) = _]E(m,yw,yl)ND |:10g0' (/B IOg (5)

To remove this challenge, we propose to replace g with a convex two-layer model. Specifically,

we take a pre-trained model fj () and stack a two-layer convex neural network 96, ¢, O top to

serve as a binary classifier. gg~ , is then trained by solving the convex optimization problem in
equation 4] Letting 0 = (0pre, O1, 2), the resulting policy is then given by:

1
14 exp (—ygﬁ_)vf,gg (fe,,re(l“)))
CVX

However, rather than do preference optimization with the weights of the entire model gg* 4, © fo,.
we freeze the weights of fy . and freeze ©; in 96, g, We then finetune 0, the weights of the last

CVX

layer of gg p,, by solving the following modified DPO optimization problem:

CVX

™o (yle) =

min Leyxppo(mg) = —E logo | Blog M — (6)
0 - 02 (@, Yw,y1)~D et (Y |2) .

What is the advantage of solving equation |6 over equation[5] The answer is computational tractabil-
ity, as the following proposition shows equation[6]is convex.

Proposition 1. The optimization problem in equation[6|may be written as:
n;in E 2,y )~ [108 (1 + exp (—Byubs (O1fg,.(2))+ —7))] - )
2

Moreover, it is convex as equation[/|is a logistic regression problem in 5.
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Theoremﬂ] shows that Lcyx.ppo is convex. Thus, we can solve it to global optimality in polynomial
time using efficient gradient-based optimizers.

We refer to procedure we have just described as the Convex Direct Preference Optimization (CVX-
DPO) algorithm.

4.2 CONVEX DPO ALGORITHM

Algorithm 1 Convex DPO (CVX-DPO)

Require: Dataset (7, 4w, ¥1), Pre-trained model fy, (), penalty parameter p > 0
Train 7™ to obtain (61, #2) by solving equation 4| using ADMM(p) (Algorithm 2).
Freeze weights of the first layer O
Finetune weights of second layer 6, by solving the convex minimization problem:

min By, )~ [log (14 exp (=Byut (O1 fo(x))+ —7))] - > Solve with AdamW

return (©1, 05).

We formally present the pseudocode for CVX-DPO in algorithm [I] As described above, we first
train a two-layer convex network on top of a pre-trained model. Once this is done, we obtain the
policy model by solving a convex logistic regression problem using AdamW.

The key to making CVX-DPO efficient is using ADMM to train 75", which we now discuss in
detail.

4.2.1 EFFICIENTLY TRAINING THE CONVEX POLICY NETWORK VIA ADMM

Algorithm 2 ADMM for Convex ReLU Networks
Require: penalty parameter p

repeat
uf! ~ argming, {3||Fu — y|?> + &|lu — v* + X¥[3 + 2| Gu — s + v*||?} > Use CG
k41
v . .
k1| = argmin, Bllvllz1 +1(s > 0) + Llluktt — v 4 AR > Primal update
AFFL 4 A Ao (gD — bt > Dual A update
AR LS %”(Gu’“rl s > Dual v update

until convergence

To train "™, we solve the optimization problem in equation[d with the Alternating Direction Method
of Multipliers (ADMM) |Boyd et al.[|(2011). Our choice of ADMM for solving equation {4|is pred-
icated on three important properties: 1) It possesses a robust convergence guarantee, 2) it is insen-
sitive to hyperparameter settings, and 3) it is highly amenable to hardware acceleration. For the
moment, we focus on 2) and 3). We return to 1) in Section[d.3]

Algorithm [2| formally presents ADMM for solving eq. (). The main work consists of the first two
lines, where two subproblems must be solved. The remaining lines only require vector addition and
one matrix-vector product. The structure of these subproblems is what makes ADMM so compatible
with hardware accelerators. The u**!-subproblem is simply a regularized least-squares problem.
This can be readily solved with the Conjugate Gradient (CG) algorithm, which only requires highly
parallelizable matrix-vector products (matvecs) with the dense matrices F' and G. GPUs excel at
accelerating matvecs and other linear algebraic primitives. This is further amplified by using JAX’s
JIT compilation feature, which enables us to compile CG for solving the u***-subproblem, leading
to very fast solve times. Moreover, this problem can be solved inexactly and ADMM will still
converge. Thus, the linear solve is not a bottleneck. The (v**!, s*+1) subproblem corresponds to
the proximal operator for the group Lasso and has an analytic solution that may be computed in
O(dP) time.
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The other advantage of ADMM is that it only has one hyperparameter p > 0, to which its conver-
gence is relatively insensitive. Indeed, in contrast to gradient methods, we shall see in theorem 2] that
ADMM converges for any p > 0. Thus, p does not require aggressive tuning in order for ADMM to
yield good performance. Moreover, p > 0 can automatically be tuned using a technique known as
residual balancing (Boyd et al.,|2011). This is a common technique for setting p in existing ADMM
solvers (Stellato et al.,|2020; Schubiger et al., 2020; Diamandis et al.| 2023)).

4.3 CONVEX-DPO: CONVERGENCE GUARANTEES

As CVX-DPO solves convex optimization problems, it immediately inherits the rich convergence
theory associated with convex optimization algorithms. We begin with the following result: ADMM
converges ergodically at an O(1/k)-rate.

Theorem 2 (Convergence of ADMM for equation . Let {0i}x>1 be some summable sequence.
Run Algorithmand suppose at each iteration the computed u*+1 satisfies:

. 1
w1 — argmin,, {2||Fu —yl* + g”u — P A3+ gHGu — 5"+ uk||2}H < Oy

Then after K iterations, the output of ADMM algorithm 2] satisfies:
IFa" —y|? + Bllo" |20 + 1(5% 2 0) —p* = O(1/K),

[ 2] oo

The proof follows from general convergence results for ADMM and is provided in the supplement.
Theorem |2 shows that ADMM converges ergodically to the global minimum of equation 4| at an
O(1/k)-rate. Moreover, this is guaranteed for any p > 0 and when the u-subproblem is solved
inexactly. Consequently, ADMM’s convergence is very robust. This stand

The Convex-DPO minimization objective in equation [/ is smooth, convex, and has a Lipschitz
continuous gradient. The latter property follows as the logistic loss has a Lipschitz continuous
gradient. Thus, we can apply Accelerated Gradient Descent (AGD) (Nesterov, |1983}; |d’ Aspremont;
et al| [2021)), which has the worst-case optimal convergence rate, to solve equation |7}

Theorem 3 (Efficient minimization of CVX-DPO loss eq. (7). Suppose we run AGD to solve equa-
tionl?] Then after k iterations, the output 0% satisfies:

Levx-pro(m gg") - I%in Levxpro(mg,) = O(1/ k?).
2

Theorem [3] shows we can train the CVX-DPO loss to global optimality in polynomial time. This
contrasts greatly with DPO, which is non-convex and lacks convergence guarantees. Moreover,
tuning the optimizer in DPO can be difficult, resulting in poor performance (Meng et al., 2024). As
full-gradient methods like AGD are expensive for large-scale training, we used AdamW (Loshchilov
& Hutter, 2017) in this paper. Unfortunately, AdamW does not inherit this guarantee. But we have
found it works well in our setting without tuning. In future work, we would like to explore variance-
reduced stochastic gradients like in|Frangella et al.|(2024)), which can be as computationally efficient
as Adam, but come with much stronger convergence guarantees.

5 EXPERIMENTS

We experiment with 4 models (DistilGPT, GPT2, GPT2-M, FLAX-GPT2) on 3 datasets. Our goal
is to examine the effectiveness of DPO to train a small language model on one GPU, and to see if we
can make the process even more cost effective by providing more signal with the ADMM optimized
convex neural network.

5.1 DATASETS

This study explores three datasets: both synthetically generated and well-established datasets to be
consistent with previous work. Each dataset is selected to offer a different qualitative assessment of
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the methodology. We format each dataset into ’prompt”, ’chosen”, “rejected” labels to be consistent
with the original DPO paper. Appendix [B| contains examples of the training dataset, as well as
generated samples. In each case we follow the DPO dataset of preferences format with D be defined
as follows: D = {z(®, o, yl(l)}fv. Where 3\ is the “chosen” output and yl(l) is the “rejected”
output. The key difference in our custom preference data generation strategy is that we utilize
only the natural conversational data between two agents. Therefore we select the first utterance as
“prompt”, then the following response as “chosen” with the next following responses as “rejected”.
This has the following advantages: eliminates the need to prompt an external LLM to generate
the rigid chosen-rejected dataset format expected by DPO, naturally keeps the dataset in the same
distribution since all samples occur within the same conversation, allows greater ease of using vast
conversational datasets without complex processing and selection.

* IMDb Sentiment Generation This dataset contains a collection of positive and negative
movie reviews from IMDb (Tripathi et al.[(2020)) for the task of controlled sentiment gen-
eration. This is selected as the baseline dataset for all methods, to be consistent with the
original DPO paper and verify mode implementations. In this case z is the title of a movie,
and y is the generated positive sentiment, which should also accurately reflect the movie.

* Educational Tutor Dataset This is a custom generated task-orientated dataset in an edu-
cational setting. Please see Appendix [B]for data samples. In each conversation we create
4000 dialogue prompts with GPT-3.5 (Achiam et al.|(2023)) then use 2 instances of agents
to simulate conversations a student studying for a quiz and a tutor assisting. The dataset
is formatted as Prompt, Agent 1, Agent 2, Agent 1, etc. We then create the DPO dataset
with yl(,f ) as the completion immediately following the agent query, and yl(’) of the alterna-
tive agent’s generation 2 steps forwards from the guests query. The creation of this dataset
serves 2 purposes: Since real world applications often provide limited or unlabeled data, we
are interested in how well human preferences can be optimized with a simulated real world
dataset in a well-defined hospitality setting. Secondly, since this is the smallest of our three
datasets, we are interested in the possibility of aligning LMs to human preference with very
little data as described by the authors of Zhou et al.| (2024). We prompt the student agent to
ask questions across the following areas of study: math, science, history, literature, art, ge-
ography, biology, physics, chemistry, music, mythology, astrology, literature, philosophy,
and chess.

 Stanford-SHP This is the largest dataset in our experiments, and is selected to stress test
the memory and speed performance of our models on the setup described in section [5.2]
The Stanford-SHP (Ethayarajh et al.| (2022))) is a dataset of 385K collective human pref-
erences over responses to questions in 18 different subject areas. This dataset also serves
to generate preferable responses to prompts, however due to the slow iteration and sam-
ple during eval limits, we are more interested in how it affects our systems compute and
qualitative generative output performance.

5.2 EXPERIMENTAL DETAILS

Throughout all experiments we use DistilGPT2(Li et al.,[2021)), GPT2 (Radford et al.,[2019), GPT2-
Medium architecture, and FLAX-GPT?2 as the policy model. CVX-DPO does not require a reference
model for stability, and instead use the convex neural network (NN) to signal the model parameters
towards “chosen” log probabilities. Our selection of GPT based policy models is due to its versatility
to run in both JAX and Pytorch frameworks, while utilizing a small number of 82 million parameters
in the form of DistilGPT2. This architecture in particular retains approximately 97% of GPT-2’s
language understanding skills despite its reduced size. All experiments are run singularly on Ubuntu
22.04 with one RTX-4090, CUDA 12.6 and Jax 0.4.33. Maximum training time reached 2.15 hours
on the Stanford-SHP with the DPO loss, while minimum training time occurred with the custom
Educational-Tutor dataset in supervised fine-tuning mode of approximately 2min. We keep the
same learning rate and configurations as the official DPO implementation.

5.3 DPO wiTH CONVEX-NN FEEDBACK

In this section we describe the model implementations and benchmarked methods of this work.
For each model, we train and evaluate on the Educational Tutor Dataset, then the IMDb Sentiment
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dataset as described in section [5.1] The Stanford-SHP dataset is only trained and evaluated on the
JAX-DPO re-implementation of the official source code by (Rafailov et al.| 2024). All other source
code, including all JAX code, is custom coded by the authors of this project. During evaluation,
metrics and training loss are monitored on Weights and Biases (Jocher et al.|(2021))), validated with
custom implemented functions for measuring TFLOPs and VRAM, then during human evaluation
we sample from our frozen and custom trained models.

Baseline The baseline model is DistilGPT2 with supervised fine-tuning loss. In subsequent DPO
settings, we initiate from the saved model of the SFT baseline for each model.

DPO Method Next we train and evaluate on the traditional DPO model. The reference model is
essentially frozen, and we optimize the policy model with the DPO loss. |Rafailov et al.| (2024)
provide in-depth analysis on the mechanics of DPO. This step is significantly more memory and
time intensive than the baseline model. Naive implementations of the DPO model in Pytorch are
not able to complete training on our dataset due to compute limitations of the experiment setting in
section Therefore we re-implement this train loop in JAX, remove Fully-sharded-data-parallel
(FSDP), and rewrite utilities to load our custom features. The addition of the reference model to
stabilize training incurs both memory and compute costs which are significant.

SimPO Method This is a recent reference-free method that has shown to outperform DPO on several
metrics. However the introduction of the additional hyperparameter is crucial to its success, and thus
results in longer training time.

CVX-DPO Algorithm Our novel algorithm builds on prior work, where we have seen that the
combination of the convex ReLU NN implemented with ADMM in JAX is able to handle datasizes
such as ImageNet (Recht et al.| (2019)) and IMDb and yields faster convergence with solutions of
better quality. We are motivated by the DPO objective, which treats the policy optimization task
as a binary classification with cross-entropy problem. Therefore, what if we can speed up the
optimization of the DPO loss by giving it auxiliary signal with the convex-NN model?

In observing the DPO loss, we note that the main component is the inner log ratio between the policy
model and the reference model, and then difference in log ratios between “chosen” and “rejected”.
We conjecture that by extracting the hidden features as the policy model optimizes, we should be
able to leverage the convex-admm method to solve the binary classification problem. The output
of the convex model provides optimal weights and classification metrics, therefore we label all
”chosen” = 1 and all rejected” = 0 in training to optimize for user preferences. This convex block
is then added into the training loop of the DPO training pipeline, and used to optimize DPO’s BCE
style loss by giving strong reward signal feedback.

The official implementation of DPO uses RMSProp (Shi & Li| (2021)), which is seen to be as per-
formant as Adam Kingma & Ba| (2014) but more memory efficient since it requires less storage
variables. However we note that the integration of the convex-DPO algorithm can provide advan-
tages such as robustness against hyperparameter tuning and faster convergence. This aims to push
the DPO loss towards a more globally optimal solution even faster. Please see Appendix [C| for
performance plots.

5.4 EVALUATION BENCHMARKS

his is because human preference is hard to define, and recent work of |Celikyilmaz et al.|(2020) has
shown that often humans will prefer simply the longer generated output without reason. Therefore
we qualitatively evaluate our output with the 25 human participants. This is also in order to be
consistent with existing literature of the seminal DPO paper. We structure evaluation as follows:

* vary temperature hyperparameter (7") from 0.1 to 0.4.

» for each temperature, in each of the 3 models listed in section[5.3|above, we input the same
12 prompts. For example, a prompt might be "What is the structure of a Shakespearean
sonnet?”

* each of the models generate a response, which is shuffled into a multiple choice survey, and
sent to 25 human volunteers

* We record each human’s preferences in selection, and vary the sequence of model generated
output in multiple choice questions in order to mitigate human bias.
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Figure 1: DPO Validation Loss without Ref Model Figure 2: DPO-Convex Training Loss

Table 1: Feedback from 25 Human Volunteers
DPO | CVX-DPO

IMDb (Win rate) 1 3 4
Education (Win rate) 0 3 3
IMDb Avg Win % 72.2% | 62.5% 68.5

Education Avg Win % 0 68.7% 83.3%

Table [5.5] summarizes the average performance of each model. The Educational Tutor response
survey section asked users to select the response that was the most HELPFUL and HUMAN, as if
the participants were studying for a quiz with a tutor. This is the most meaningful response, since it
utilizes our alternating preference dataset generating technique.

We also measure the speed and stability of training, as well as the robustness to hyperparameter
tuning on the convex setting.

Finally we observe training time, loss achieved (see below), and difference in scalability between
frameworks.

5.5 RESULTS

In this section we compare the results of the 3 models discussed in section[5.3] Although we perform
ablation studies with varying 0.1 < T" < 0.4. The baseline model is consistently the fastest to train,
although it consistently demonstrates the highest amount of repetition in its output. This is further
validated in our human feedback survey, where the baseline model won on only one out of thirteen
questions.

The DPO-Convex model shows the most stable training performance. Despite variances in hyper-
parameters such as temperature, data size, batch size, this model was consistently able to stably and
quickly decrease in loss. Figures[I]and Figure[2]show the training performance of the DPO-Convex
model without any tuning of hyperparameters.

Table @ summarizes the results of the human feedback survey, and shows both win rate and the
average preference of each model. The average preference is calculated as the percentage of each
model’s win rate divided by the number of times it won. We provide the average preference percent-
age as a metric since it gives better signal as to how preferred a model was. For example, the baseline
FST model only won on one question, but was strongly preferred in that case by most humans. The
Educational Tutor dataset saw an equal win-rate count between the DPO model and DPO-Convex
model, but humans had stronger preference to the answers of DPO-Convex (83.3%).

6 ANALYSIS AND DISCUSSION

Since we use smaller datasets on the DistilGPT2 |Li et al.|(2021)) model, we expected to see a certain
amount of repetition in the output. This is most prominent in the baseline FST model. For example,
the prompt "How can I check in? The answer is yes. I can’t....”. Although we vary T and its effect
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What is the structure of a Shakespearean sonnet? LD Copy

@ What is the structure of a
Shakespearean sonnet?

@ The sonnet is a series of letters written
by Shakespeare's son, Henry II. The
letters are written in a series of letters,
each of which is
Asonnet is a poem that is composed of
a number of lines, usually in the form of
a sonnet. The sonnet is composed of a

29.4%

Figure 3: DPO with convex wins with T=0.1

on perplexity from 0.001 to 2.01 in steps of 0.3, the baseline FST does not increase in performance
and is consistent in its repetition (as seen in[C).

The DPO model needed approximately double the amount of time to train as the baseline FST model.
However the DPO model notably generated varying degrees of creativity in the same prompt as
temperature varied. We note that the DPO model instances that won on the human feedback survey
were all instances where 7' < 0.4. This is in contrast to our conjecture that higher temperature
will produce more desirable results with DPO since humans prefer more creative output. We also
note that since our generated dataset is in a Hotel-Concierge setting, it’s possible humans prefer
more consistency versus creativity. In the two sample questions posed to our human volunteers,
it is clearly seen that the baseline model shows repetition, but the DPO model is preferred with
T = 0.601. The DPO-Convex model tends to generate longer responses. However this might be
attributed to its capacity for faster training.

The DPO-Convex model showed the most stable training performance. While training on one GPU
and without compromising dataset size, loss was able to consistently go down regardless of vary-
ing hyperparameters. This agrees with our conjecture that adding the convex feedback increases
robustness, and eliminated the need to continue with further hyperparameter tuning in experiments
with the DPO-convex model. Please see Appendix [C|for training plots. In human feedback, both
DPO and the DPO-Convex model were almost equally preferred. We attribute this to small sample
size of questions and volunteers, and realize the significance and difficulty of evaluating preference
generation. This direction leaves room for more future work.

7 CONCLUSION

In this work we introduce CVX-DPO, a novel algorithm for preference learning using convex opti-
mization. This significantly improves the robustness and speed of convergence of the convex auxil-
iary signal with the DPO objective. The resulting algorithm is more robust to hyperparameter tuning
(such as learning rate), and allows fast iteration with preferable output on minimal VRAM consump-
tion. The ADMM solve method provides further speed, efficiency, and parallelism. We implement
our methods in JAX and run experiments run on one GPU for speed and better memory efficiency.
Our custom generated synthetic dataset of the Educational Tutor setting simulates real world con-
versational data with turns of phrase, as opposed to many preference learning datasets which sample
acute “chosen” and “rejected” responses to a single prompt. We validate the efficacy of our fast
lightweight pipeline against 25 human volunteers, with promising results. Thus we hope this work
can reduce the barrier for entry even more for individual researchers and for various educational
purposes, and take a step towards democratizing the large language model regime.

Limitations and Future Work Future work will involve running our JAX experiments on TPUs
or GPU clusters. Since JAX and ADMM were developed with easy parallelization in mind, more
performant scaling results should be explored where we can handle even more data.

10
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8 REPRODUCIBILITY STATEMENT

Our JAX code base is available for reproducibility, with configurations to replicate experiments. We
provide both the original custom generated 4000 conversations in the Educational Tutor dataset, as
well as the preference alignment version with the alternating strategy. All other datasets utilized are
publicly available, and we adhere to the original DPO hyperparameters to ensure consistency. It is
suggested to replicate our experiments on NVIDIA GPUs with Ubuntu version 22.04, JAX version
0.4.33, CUDA 12.6, NVIDIA Drivers 560 and above.

9 ETHICS STATEMENT

Our main objective in this work is to make preference alignment in language models more easily
accessible to individual researchers, students, and the more general populace. We strongly believe
that taking a small step towards democratizing research in language model capabilities is also a
meaningful step towards and ethical Al future. We hope this work can assist more individuals to be
both interested in LMs, and also support more educational purposes.
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A PROOFS OF MAIN RESULTS

A.1 PROOF THAT CONVEX DPO Loss 1s CONVEX.

Recall the CVX-DPO objective is given by:

| ), )]
min — E, ~p |logo | Blog ———— — Blog —=——~ ]| .
2D (@0 31)~D |: 8 (ﬁ s Wref(yw|x) B & ﬂ—ref(yl‘x)

For CVX-DPO, we have that
1
1+ exp (—yw(012))’

oy (Yw|T) =

where & = (©1) 4. Using this expression for 74.*(y.,|[7), we find

,ﬂ.CVX x ,7.‘.CVX x 7TCVX T
B log 65 (yw| ) . B IOg 05 (yl ‘ ) _ ﬁ log Wref(yl ‘37) chvx(y’w‘ )
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From this last display and the definition of the sigmoid function, it immediately follows that:

o (Yuw| ) T (yi] )
1 log _02 W7 gy, 02 AT
087 <B ©8 ﬂ © 71'ref(yl|-r)

7Tref(ywlx) ) T log(l +exp (7ﬂyw (agj) N 510g(pref(:c))) :

Thus, using the last display and the definitions of Z and pyf(x), the Convex DPO objective may be
rewritten as:

. T Tret (Yo 7)
min Ky, gy~ {k)g (1 e <_ﬁyw92 (©12)+ + Flog Tret(Y1]) ))} '

We see that the Convex DPO objective is a logistic regression problem in 5, and thus is convex.

B EXAMPLES OF DATA AND TRAINING

ne triphosphate (ATP) through a process called cellular respiration.
b 3 dria are alsoi

Figure 4: Example of custom generated Educational Tutor conversation dataset

C PERFORMANCE PLOTS

Please see the following images for performance plots.
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Figure 5: Training for DPO naive
loss/train
gpt2_nocvx &
420
400
380
320
Step
280
2k 4k 6k 8k
Figure 6: Larger image of training for DPO as discussed above
temperature  prompt generated_text
tensor(0.0010) How can I check in? How can I check in?The answer is yes. I can't. I can't. I can't. I can't. I can't. I can't.
tensor(©.0010) Is room service available? Is room service available?The answer is yes. The service is available for all ages. The ser
tensor(0.0010) What is the weather like today? What is the weather like today?The weather is so cold that it's hard to see the sun. The we
tensor(0.0010) Is there a swimmiing pool? Is there a swimmiing pool?”
tensor(0.0010) Do you have valet parking? Do you have valet parking?The answer is yes. It's a good idea to have a parking lot in your
tensor(0.0010) Do you have a gym? Do you have a gym?The answer is yes. It's a gym that's not a gym. It's a gym that's not a g
tensor(0.0010) Are you pet friendly? Are you pet friendly?The answer is yes
tensor(0.0010) Where is the nearest park? Where is the nearest park?The park is a little bit of a mystery, but it's worth a look. The

tensor(0.0010) Can I request late checkout?  Can I request late checkout?The answer is yes. I have no idea. I have no idea what the pric
tensor(0.0010) Do you have airport transfers? Do you have airport transfers?The airport is a great place to go. It is a great place to go

tensor (.3010) How can I check in? How can I check in?The answer is yes. I can't. I can't. I can't. I can't. I can't. I can't
tensor (.3010) Is room service available? Is room service available?The answer is yes. The service is available for all ages. The ser
tensor(©.3010) What is the weather like today? What is the weather like today?The weather is so cold that it's hard to see the sun. The we
tensor(0.3010) Is there a swimmiing pool? Is there a swimmiing pool?”

tensor (.3010) Do you have valet parking? Do you have valet parking?The answer is yes. It's a good idea to have a parking lot in your
tensor (0.3010) Do you have a gym? Do you have a gym?The answer is yes. It's a gym that's not a gym. It's a gym that's not'a g
tensor (0.3010) Are you pet friendly? Are you pet friendly?The answer is yes

tensor (0.3010) lhere is the nearest park? where is the nearest park?The park is a little bit of a mystery, but it's worth a look. The

tensor(0.3010) Can I request late checkout?  Can I request late checkout?The answer is yes. I have no idea. I have no idea what the pric
tensor(0.3010) Do you have airport transfers? Do you have airport transfers?The airport is a great place to go. It is a great place to go

tensor (0.6010) How can I check in? How can I check in?The answer is yes. I can't. I can't. I can't. I can't. I can't. I can't

tensor(0.6010) Is room service available? Is room service available?The answer is yes. The service is available for all ages. The ser
tensor(0.6010) What is the weather like today? What is the weather like today?The weather is so cold that it's hard to see the sun. The we
tensor (.6010) Is there a swimmiing pool? Is there a swimmiing pool?”

tensor (.6010) Do you have valet parking? Do you have valet parking?The answer is yes. It's a good idea to have a parking lot in your
tensor (.6010) Do you have a gym? Do you have a gym?The answer is yes. It's a gym that's not a gym. It's a gym that's not a g
tensor (.6010) Are you pet friendly? Are you pet friendly?The answer is yes.

tensor (.6010) Where is the nearest park? where is the nearest park?The park is a little bit of a mystery, but it's worth a look. The
tensor(0.6010) Can I request late checkout?  Can I request late checkout?The answer is yes. I have no idea. I have no idea what the pric
tensor (0.6010) Do you have airport transfers? Do you have airport transfers?The airport is a great place to go. It is a great place to go
tensor (0.9010) How can I check in? How can I check in?The answer is yes. I can't. I can't. I can't. I can't. I can't. I can't

Figure 9: FST baseline resistant to varying T, consistently repeats output

D HUMAN EVALUATION

We have 25 human volunteers selecting their most preferred generated output. The survey is con-
ducted as a total of 13 questions, across 2 datasets (5.1), with output generated by each of the three
models discussed in[5.3] Further details of survey human evaluation is summarized in[5.3] The raters
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loss/train
— DPO_distilgptedu =

Figure 7: Sample of training for DPO-Convex

were Stanford students (from graduate to Ph.D.), University of Toronto students (Ph.D.), Google
Software Engineers, and medical practitioners in Veterinary science. We gratefully acknowledge
the contribution of each of our human subjects, listed in random order: Anna Goldie, Kevin Nam,
Zhong Wei Dang, Shaun Benjamin, Sera Benjamin, Yue Benjamin, Noriyuki Shintoku, Jenny Song,
Zachary Frangella, Stephen Sapperton, Mary Habib, Scarlet Arreola Barrones, Farhis Kordi, Adam
Wong, Jia Yu, Tong Zhang, Juan Jaramillo, and Trevor Germain.
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Hi what's the difference between SiLU and RelLU activation?

|_|:| Copy

@ SiLU is a type of light-emitting diode
(LED) that is used in many consumer
electronics. It is a type of light-em

@ SiLU is a type of activation that occurs
when the cell is activated by a specific
type of signal. ReLU is a type of
activation that occurs when

@ SiLU is a type of activation. Is a type of
activation. Is a type of activation.

Why is the Smith-Morra gambit effective when black plays the Sicilian? |_|:| Copy

@ The Sicilian is a very good defensive
team, and they have a lot of good
players. They have a lot of good players,

@ The Smith-Morra gambit is effective
when black plays the Sicilian, but it is
not effective when white plays the
Sicilian.

@ The Sicilian is very effective against.

How does photosynthesis work in plants? Can it work in humans? |_|:| Copy

@ Can it work in humans? The answer is
yes, but it's not clear how. The answer is
that photosynthesis is a process that
plants use to produce energy.

@ Photosynthesis is the process by which
plants. By which plants. By which plants.

@ Photosynthesis is the process by which
plants use light energy to convert carbon
dioxide (CO 2 ) into oxygen. Plants use
photosynthesis to convert sunlight into
energy”

Figure 8: Sample of Survey to Human Subjects
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