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ABSTRACT

General-purpose large language models (GLLMs) like GPT-4 and LLaMA have
demonstrated exceptional performance across a wide range of tasks. However, their
performance often falls short in domain- or task-specific applications, where deeper,
specialized knowledge is essential, while maintaining general knowledge remains
crucial for handling broader, unseen tasks. Post-training has been widely applied to
make LLMs specialized, typically consisting of multiple stages, including Domain-
Adaptive Pre-Training (DAPT) and Supervised Fine-Tuning (SFT). In this work,
we conduct a comprehensive study on three key aspects of post-training taking
Finance as a target domain: (1) the distinct roles of DAPT and SFT in post-training,
(2) strategies to mitigate knowledge forgetting across stages, and (3) evaluation
methods that capture both general and domain-specific capabilities.
Our results show that DAPT and SFT require distinct training objectives, joint train-
ing of DAPT and SFT is essential for maintaining stage knowledge and encouraging
knowledge transfer across stages, and replay mechanisms are critical for preventing
forgetting. Evaluation should encompass general, seen, and unseen tasks for a
complete assessment. Based on these insights, we developed a Joint-and-Replay
post-training recipe and built LLaMA3-8B-Fin, a smaller yet more powerful state-
of-the-art financial LLM trained through post-training. Despite its smaller size,
LLaMA3-8B-Fin surpasses larger models like GPT-4o and LLaMA3.1-70b on both
seen and unseen financial tasks while retaining general knowledge, demonstrating
that a well-structured post-training can “expand the web” of capabilities in smaller
LLMs, enabling them to outperform much larger models.

Figure 1: The model built with Joint-and-Replay post-training, LLaMA3-8B-Fin (red), “expands the
web” of its base model, LLaMA3-8b-Instruct (blue), achieving better performance in finance-specific
tasks (on both seen and unseen during SFT) while retaining general skills without forgetting (on both
standard and instruction-following benchmarks). While it is smaller, it outperforms significantly
larger models, such as GPT-4o and LLaMA3.1-70b-Instruct. More details can be found in Section 8.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In recent years, we have witnessed the rise of General-purpose Large Language Models (GLLMs),
such as GPT-4 (OpenAI, 2023), Claude (Anthropic, 2024), PaLM (Chowdhery et al., 2023), and
LLaMA (Llama, 2024), to name a few. These models demonstrate impressive capabilities across a
wide range of tasks. However, when it comes to real-world applications, these GLLMs often fall short.
Many critical use cases often require domain-expert LLMs, such as those used in legal (Colombo
et al., 2024), medical (Chen et al., 2023), or financial (Li et al., 2023) contexts. Task-specific
LLMs, fine-tuned for particular objectives like code generation (Roziere et al., 2023) or retrieval-
augmented generation (Nguyen et al., 2024), and personalized LLMs (Salemi & Zamani, 2024) that
customize interactions tailored to individual users, demand models that go beyond generalization
and are optimized for specific domains. Moreover, knowledge is constantly evolving, and a pre-
trained LLM can become outdated shortly after deployment. Continuously injecting up-to-date,
specialized knowledge into these models is crucial. Additionally, as GLLMs scale in size, their
computational overhead becomes prohibitively high, making them impractical and costly to deploy
at scale. Therefore, specialized LLMs not only offer better performance but also provide a more
efficient, scalable solution for addressing complex, dynamic challenges.

To develop an effective domain specialized LLM, two primary goals must be met: (1) injecting deeper,
domain-specific knowledge to enhance expertise in specialized tasks, and (2) maintaining strong
general-purpose capabilities. This is crucial because domain-specific data is usually insufficient to
cover general knowledge, leading to difficulties when end tasks require a combination of specialized
and general knowledge (e.g., tasks not seen during supervised fine-tuning). We call the training
process to achieve these goals as post-training. Starting from a GLLM, post-training involves
additional training with above goals in mind. Although prior work has explored various aspects of
post-training, most approaches merely involve additional pre-training on specialized data (Xie et al.,
2023a), or rely on the traditional LLM framework where a single pre-training stage is followed by
task-specific fine-tuning via classifiers (Ke et al., 2023). Some approaches simply regard post-training
the same as continual learning, without considering the stage dependencies that are unique to modern
LLM pre-training or the restrictions on access to pre-training data (Colombo et al., 2024). These
approaches are insufficient to meet the increasing complexity of today’s LLM applications.

In this paper, we focus on GLLMs that undergo multi-stage training (i.e., instruction-tuned GLLMs)
and multi-stage post-training, which includes Domain-Adaptive Pre-Training (DAPT) and domain-
specific Supervised Fine-Tuning (SFT). DAPT aims to learn the background knowledge from raw text,
while SFT focuses on instruction learning. Instead of naively training sequentially with specialized
data, we investigate critical research questions, including (1) distinct roles of DAPT and SFT, (2)
approaches for mitigating forgetting, and (3) effective evaluation methods for post-training systems.
To explore these, we conduct targeted experiments. For (1), we perform ablations on training pipeline,
examining sequential versus joint training and the impact of different loss functions across stages.
For (2), we investigate replay-based techniques (Rebuffi et al., 2017), such as mixing general and
domain-specific data, and modular-based approaches like parameter-efficient fine-tuning or PEFT (Hu
et al., 2021) to mitigate forgetting. For (3), we explore the evaluation strategies that can evaluate both
the domain-specific knowledge and general knowledge in the LLM.

RQ1: What is the role of DAPT and SFT in post-training?
- DAPT uses next-token prediction, while SFT needs instruction masking added. §5.1
- Both DAPT and SFT contribute to improvements. §5.2
- Joint training with DAPT and SFT yields better results than sequential training. §5.3
RQ2: How to mitigate forgetting in post-training?
- Two types of forgetting phenomena observed between GLLM and post-training: general knowledge and stage-specific knowledge

(e.g., the instruction-following knowledge from SFT stage). §6.1
- Negligible forgetting observed within the post-training stage. §6.1
- Replay-based approaches are most effective, especially with a mix of general, in-domain, DAPT, and SFT data. §6.2
- Modular approaches like PEFT help prevent forgetting but are less effective than full model fine-tuning. §6.2
RQ3: How to evaluate post-training?
- Evaluate general capabilities using standard and instruction-following benchmarks. §7
- Evaluate in-domain performance using seen and unseen tasks (“seen” refers to task types covered during SFT). §7

Table 1: Summary of research questions and corresponding key findings.
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Figure 2: Conceptual overview of naive post-training and Joint-and-Replay post-training. Circles
indicate the knowledge learned on each stage. Grey color refer to the stages that are outside of
post-training. Red and purple colors indicate DAPT and SFT stages in post-training respectively. The
original GLLM undergoes multiple stages, here we consider only initial pre-training (IPT) and SFT.
The uncolored segment indicates the amount of forgetting.

Table 1 summarizes our key findings with respect to the research questions. Notably, we find that
DAPT and SFT play complementary roles in enhancing post-training performance, with joint training
of the two stages yielding better results than sequential training. We also identified two types of
forgetting: the first involving general knowledge, and the second concerning stage-specific knowledge
(e.g., instruction-following skills learned during SFT). To mitigate these forgettings, replay, which
involves mixing additional general data with domain-specific data shown to be particularly effective.

Building on these insights, we propose a new training recipe, Joint-and-Replay Post-training, as
shown in Fig. 2. Starting from a GLLM, naive post-training introduces two additional sequential
stages. The first is DAPT, aimed at extending the pre-trained knowledge with domain-specific
knowledge, but this may lead to forgetting general and stage-specific knowledge (missing pieces
are shown in the grey circles). Similarly, domain-specific SFT broadens task learning within the
domain but may further forget general task knowledge, though some forgotten stage knowledge
might be re-learned in this stage (larger missing piece in initial pre-training (IPT) while smaller
missing piece in general SFT). To overcome these challenges, Joint-and-Replay post-training jointly
trains DAPT and SFT with appropriate mixture ratios to mitigate stage-specific knowledge. It also
mixes the domain-specific data with general data to mitigate general knowledge forgetting. For
loss computation, it masks the instruction part in the SFT data. To demonstrate the effectiveness
of Joint-and-Replay post-training, we conduct post-training on the popular financial domain as a
case study, resulting a new financial LLM, LLaMA3-8B-Fin. Extensive experiments show that
LLaMA3-8B-Fin is a new state-of-the-art LLM in financial domain. Despite its smaller size, it
outperforms much larger models, such as GPT-4o and LLaMA3.1-70b, on both seen and unseen
finance-related tasks, while also showing no degradation on general benchmark tasks (Fig. 1).

In summary, our key contributions include:

• To our knowledge, this is the first comprehensive analysis of post-training using contemporary
LLMs, addressing key research questions and identifying critical factors that influence post-
training’s effectiveness.

• Based on insights from above analysis, we propose Joint-and-Replay post-training, an effective
training recipe that incorporates replay of both stage-specific and general knowledge data, along
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with joint training of post-training stages. Additionally, we present a comprehensive evaluation
protocol that accounts for both general and domain-specific capacities for post-training.

• To demonstrate the effectiveness of our training recipe, we built LLaMA3-8B-Fin, a state-of-the-art
financial LLM that, despite its smaller size, outperforms much larger models in the financial domain
and exhibits no forgetting of general capacities. This highlights that, with our training recipe,
expanding the knowledge of an LLM is highly achievable, and a smaller LLM can be better than
significantly larger models.

2 RELATED WORK

Continual learning and catastrophic forgetting. Post-training is closely related to continual
learning, which focuses on learning a sequence of tasks sequentially without forgetting (Chen &
Liu, 2018; McCloskey & Cohen, 1989; Van de Ven & Tolias, 2019; Mai et al., 2022; Aljundi
et al., 2019). Typical approaches include regularization-based methods that regularize parameter
updates to preserve important parameters (Kirkpatrick et al., 2016; Seff et al., 2017); modular-based
methods that dynamically modify the architecture (Serrà et al., 2018; Wortsman et al., 2020); and
replay-based method that recall previous experiences (Rebuffi et al., 2017; Wang et al., 2020). One
might mistakenly view post-training as a form of continual learning with just two tasks—one being
pre-training and the other post-training. However, there are significant differences between the two.
First, foundational pre-training and post-training should not be simply considered as two tasks in a
sequence, as they consist of multiple stages. post-training aims to preserve both general pre-trained
knowledge and stage-specific knowledge within a GLLM, rather than focusing on task-specific
knowledge (Lopez-Paz & Ranzato, 2017; Wortsman et al., 2020; Shin et al., 2017; Serrà et al., 2018;
Zeng et al., 2019; Rebuffi et al., 2017). Second, unlike continual learning, post-training often cannot
access the original pre-training data, making it impossible to compute the statistics that continual
learning typically relies on (Varshney et al., 2022; Huang et al., 2021; Shen et al., 2019; Liu et al.,
2019; de Masson d’Autume et al., 2019; Wang et al., 2020; Li et al., 2022; Wang et al., 2022b;a).
Third, while the tasks in continual learning are typically independent or loosely related (Wang et al.,
2021; Zhao et al., 2022; Jin et al., 2021), post-training involves strong task dependencies. The tasks
progress from GLLM, to DAPT, and then to SFT, becoming increasingly aligned with the final task
as the stages advance. These distinctions make continual learning methods unsuitable for direct
application to post-training.

Post-training. Post-training has been widely adapted to GLLM to board domains, such as code (Ni-
jkamp et al., 2022), medical (Luo et al., 2023), law (Colombo et al., 2024), mathematics (Azerbayev
et al., 2023), multi-lingual (Chen et al., 2024) and finance (Xie et al., 2023a; Writer, 2024) and tasks
such as function calling (Zhang et al., 2024), retrieval augmented generation (Nguyen et al., 2024; Ke
et al., 2024) and LLM-as-a-judge (Wang et al., 2024). While many domain-specific or task-specific
LLMs have been developed, with most following the standard post-training process (often includ-
ing SFT, and optionally DAPT and RLHF). Some focus on domain-specific or task-specific data
curation (Yang et al., 2024), auxiliary tasks (Wang et al., 2024), mixture ratio (Que et al., 2024),
data-efficiency (Xie et al., 2023b) or hyper-parameters (Parmar et al., 2024). However, none have
extensively investigated what constitutes an effective training recipe. Recently, Jiang et al. (2024)
proposed “pre-instruction-tuning”, where documents and QA pairs are trained together, similar to
our joint DAPT and SFT training. However, their focus is primarily on QA tasks, and they do not
evaluate general capabilities. In this work, we not only propose a post-training recipe that achieves
state-of-the-art performance for financial LLMs, but more importantly, we also conduct a thorough
investigation into various research questions related to post-training.

3 PROBLEM SETUP

Consider a GLLM that has undergone pre-training across F stages, typically Initial Pre-Training (IPT),
Supervised Fine-Tuning (SFT), and Preference Learning. We represent the multi-stage pre-training
as:

θi := argmin
θ

Li(θ,Di|θ<i), (1)
where Li denotes the loss at stage i ∈ {1,2, . . . ,F}, Di represents the training data for that stage,
and θ<i captures the model parameters trained in all previous stages. Post-training further trains the
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LLM on top of the final pre-trained model θF . Similar to pre-training, post-training can also consist
of C additional stages, typically mirroring the structure of the pre-training stages:

θF+j := argmin
θ

LF+j(θ,DF+j |θ<F+j), (2)

where j ∈ {1,2, . . . ,C}. During post-training, it is a practical assumption that the model does not
have access to the original pre-training data. In some cases, proxy data may be available, but this
lack of access is a key factor contributing to pre-trained knowledge forgetting. Since pre-training
consists of multiple stages, each with a distinct focus, post-training stages may cause forgetting
of knowledge specific to earlier pre-training stages. For instance, Domain Adaptive Pre-Training
(DAPT) during post-training may lead to forgetting knowledge from the SFT stage of pre-training,
such as the model’s instruction-following abilities.

3.1 STAGES IN POST-TRAINING

As shown in Eq. 2, post-training can include multiple stages. In this work, we focus on the two most
common stages: DAPT and SFT.

Domain-adaptive Pre-training (DAPT). The goal of DAPT stage is to learn domain-specific
background knowledge so that later stages can leverage. Typically, unsupervised data (raw text) is
used in this stage and the training uses the next token prediction loss:

LDAPT = −
Tx∑
t=1

logPθ(xt|x<t)− λreplay ·
Tr∑
t=1

logPθ(x
r
t |xr

<t). (3)

Here, xt and xr
t indicate the token at position t in the in-domain and replay input sequences,

respectively. Tx and Tr indicate the total number of tokens in an example from the domain-specific
data and replay data, respectively. λreplay is a weighting factor for the replay loss, where “replay”
refers to additional data that is mixed with domain-specific data to mitigate forgetting of general
knowledge. Since we typically do not have access to the pre-training data, the replay data is usually
guessed to be similar to the pre-training data, such as general domain data from Wikipedia. If we
do not apply any replay (λreplay = 0), the Eq. 3 is reduced to simple next token prediction on the
domain-specific data.

Supervised Fine-tuning (SFT). Another important post-training stage is SFT, which is aimed to gain
domain-specific instruction following ability. While it is generally agreed that SFT data is supervised
consisting of instruction and answer (or user turn and asssitant turn if in chat format), there is no
agreement on the optimal training loss1. There is, though, a growing agreement that the instruction
part should be masked out during training. To investigate the impact of masking versus non-masking,
we formulate a general form as:

LSFT = −
Tx∑
t=1

MtlogPθ(xt|x<t)− λreplay ·
Tr∑
t=1

MtlogPθ(x
r
t |xr

<t), (4)

where Mt indicates the token mask: Mt = 1 means the token is included in the loss and Mt = 0
indicates it is masked out. If Mt = 1,∀t, then Eq. 4 is reduced to Eq. 3. If Mt = 0 for the instruction
part, Eq. 4 becomes an instruction mask loss, i.e., excludes the instruction (or user term) in the loss
computation.

4 EXPERIMENTAL SETUP

4.1 DATASETS TO STUDY POST-TRAINING

To explore the three research questions in Table 1, it is essential to prepare datasets that consist of
DAPT, SFT, and the corresponding replay data. We use the popular financial domain as our case
study. Specifically, we collected large-scale datasets and divided them into four sections: DAPT-Gen
(general domain DAPT data), DAPT-In (in-domain DAPT data, specifically from the financial
domain), and similarly, SFT-Gen and SFT-In. We further combined the general and in-domain

1To give an example, Ouyang et al. (2022); Zhou et al. (2024) use next token prediction, whereas Touvron
et al. (2023) applies masking to the instruction part in the SFT loss.
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Stage Type Task Datasets Size

DAPT General Raw text

NaturalInstr

3.2B

PromptSource
Math
Aqua
CREAK
Esnli
Qasc
Soda
Strategy-qa
UnifiedSKG
GSM8K
ApexInstr
DMMath
Dialogstudio

Finance Raw text Fineweb-fin 3.7B

SFT

General

Math word Orcamath 200K
Math Metamath 395K
Instruction-follow SelfInstruct 82K
Augmented FLAN Slimorca 518K
Code instruction MagicoderEvol 111K
Conversation Ultrachat 208K
Conversation Sharegpt 90K
Math rationale Mathinstruct 262k

Finance

Relation Classification Finred 27.6K

Entity Recognition NER-cls 13.5K
NER 511

Headline Classification Headline-cls 82.2K

Sentiment Classification Sentiment-cls 47.6K
Sentiment-train 76.8K

(a) DAPT and SFT data.

Type Task Datasets Size
General Various MMLU.... —

Finance

FPB 970
FiQA SA 235Sentiment Classification
FOMC 496

Entity Recognition NER 98
ESG issue Classification MLESG 300
Rumour Detection M&A 500

Summarization EDTSUM 2K
ECTSUM 495

QA Openformat Finance Bench 150

Stock Movement Predict
SM-Bigdata 1.47K
SM-ACL 3.72K
SM-CIKM 1.14K

Fraud Detection CRA-CCF 2.28K
CRA-CCFraud 2.1K

Credit Scoring
German 200
Astralian 139
LendingClub 2.69K

Distress Identidication Polish 1.74K
Taiwan 1.37K

Claim Analysis ProtoSeguro 2.38K
TravelInsurance 2.53K

Tabular QA TATQA 1.67K

(b) Evaluation data. We use 11 standard bench-
marks for general knowledge, including MMLU,
AI2-ARC, PIQA, Social-IQA, GSM8K, MathQA,
TriviaQA, Nq-open, Hellaswag, Winogrande, and
Openbookqa.

Table 2: Training and evaluation datasets used in post-training. Dataset sizes in DAPT are measured
in tokens, while SFT and evaluation sizes are based on the number of samples.

data to create DAPT-Mix and SFT-Mix2. Table 2 provides details on each section along with our
evaluation set. For DAPT-In, we select finance-related data from FineWeb (Penedo et al., 2024)
based on URLs. For DAPT-Gen, we curate a diverse range of tasks to ensure it represents the broad
knowledge of a GLLM. The same strategy was applied to SFT-Gen. In the evaluation, only two task
types (sentiment classification and named entity recognition) has been seen in the SFT data, and these
are highlighted in grey. While it is possible that some general tasks training data (e.g., GSM8K)
overlap with DAPT-Gen, we ensured that no evaluation data was seen during DAPT-Gen training.
Unlike previous work (Luo et al., 2023; Colombo et al., 2024; Azerbayev et al., 2023; Xie et al.,
2023a), which focused primarily on in-domain seen tasks, we also evaluated on general tasks and
unseen in-domain tasks to provide a more comprehensive assessment of LLM performance.

4.2 POST-TRAINING AND EVALUATION

Our post-training starts from LLaMA3-8-instruct, and performs DAPT and SFT on top of this base
model. We focus on 0-shot performance (i.e., no in-context sample is given), as it directly reflects
the effectiveness of the parametric knowledge embedded in the LLM. We use llm-eval-harness3

to conduct the evaluation experiments. For general tasks, we employ the default setting in the
package. For finance-specific tasks, we employ exact match for classification tasks (e.g., sentiment
classification) and Rouge-1 score for generation tasks (e.g., summarization). All numbers reported are
based on the average of three random seeds. The average results of all tasks within the corresponding
section are reported and we left the detailed results of individual task to the Appendix B. The usage
of chat-format and hyper-parameters can also be found in the Appendix A.

5 WHAT IS THE ROLES OF DAPT AND SFT IN POST-TRAINING?

5.1 SFT NEEDS INSTRUCTION MASKING ADDED

As discussed in Section 3.1, the primary difference between DAPT and SFT lies in the data: DAPT
uses raw text, while SFT uses supervised task data. In modern LLMs, all tasks are unified in a
generative format, with the model performing next-token prediction. Technically, DAPT and SFT

2No sampling is performed but simply combines the in-domain data and general domain data in Table 2. We
leave investigating the optimal mixture ratio for future work.

3https://github.com/EleutherAI/lm-evaluation-harness
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could use the same loss function. However, a common scenario is having significantly more DAPT
data than SFT data, with the expectation that SFT should focus more on task-specific learning.
We compared the performance of SFT with and without masking the instruction part in Table 3.

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instruct 51.65 63.16 39.94
SFT (w/o instr mask) — 73.69 52.08
SFT (instr mask) 50.10 81.49 49.92

Table 3: Effectiveness of the insturction mask in
SFT.

We can see that using instruction masking sig-
nificantly improves performance on seen tasks
but results in lower performance on unseen
tasks, with the improvement on seen tasks being
more pronounced. This suggests that SFT with
instruction masking focuses heavily on task-
specific knowledge, while without instruction
masking, the model retains more general knowl-
edge, which benefits unseen tasks. We also ob-
served that for SFT without instruction masking, a chat-format is necessary; otherwise, the model
tends to produce unreasonable outputs4.

5.2 BOTH DAPT AND SFT CONTRIBUTE TO IMPROVEMENT IN SEQUENTIAL POST-TRAINING

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instruct 51.65 63.16 39.94
SFT 50.10 81.49 49.92
DAPT → SFT 54.84 81.05 56.50

Table 4: Effectiveness of SFT and DAPT. Results
are average over all the tasks in the corresponding
section as shown in Table 2.

While we focus on multi-stage post-training,
there are work that focus on only one-stage ap-
proach (Cheng et al., 2024b;a; Xie et al., 2023a).
Although a one-stage approach is appealing for
mitigating forgetting across stages and can be
more directly aligned with end-tasks (if known
in advance), it may lose some transferable in-
formation across stages. We are particularly
interested in the necessity of employing multi-
stage post-training. Table 4 compares the base
(llama3-8b-instruct), SFT (with instruction mask), and DAPT → SFT (sequential training). The
results show that while SFT improves over the base model, adding DAPT before SFT further out-
performs SFT, especially on unseen tasks. This demonstrates that DAPT provides transferable
background knowledge to SFT, enabling further improvements. We also observe improvement on
general tasks. This is understandable as DAPT may contain the training data of some general tasks.
For seen tasks, adding DAPT performs comparably to SFT, which is expected since seen tasks
primarily benefit from the targeted improvements brought by SFT.

5.3 JOINT TRAINING WITH DAPT AND SFT IMPROVES

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instruct 51.65 63.16 39.94
SFT 50.10 81.49 49.92
DAPT(full) → SFT 54.84 81.05 56.50
DAPT(down) → SFT 51.16 79.37 57.83
DAPT (full) + SFT 53.62 72.15 55.59
DAPT (down) + SFT 52.65 81.00 62.23

Table 5: Effectiveness of joint training and sequen-
tial training. “Full” indicates full data while “down”
indicate data that is down-sampled. “→” indicates
sequential training and “+” indicates joint training.

Since the introduction of Instruct-GPT (Ouyang
et al., 2022), the 3-stage post-training process
(Section 3) has become a widely accepted stan-
dard. However, we challenge this convention
by evaluating both joint (DAPT + SFT) and se-
quential (DAPT → SFT) pipelines of DAPT and
SFT. We also experimented with down-sampling
DAPT to balance it with SFT, aiming to pre-
vent distraction from excessive DAPT data. Ta-
ble 5 shows the comparison. Sequential training
significantly improves performance on unseen
tasks compared to SFT alone, and joint train-
ing with down-sampling yields further improve-
ments. This suggests that joint training facili-
tates better knowledge transfer between DAPT and SFT. We can also see that DAPT (full) + SFT
performs significantly worse on in-domain tasks compared to DAPT (down) + SFT. This suggests
that too much DAPT data may have an adverse effect on performance, as it can distract from the

4Since our general tasks evaluation requires non-chat-format (as chat-format is too flexible for evaluations
with fixed metrics), we could not report general task performance for SFT without instruction masking (“—” in
the Table 3). We leave human and LLM-as-a-judge evaluations for future work.
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primary goal (i.e., following instructions to solve tasks)5. We do note that DAPT (down) + SFT
underperforms DAPT (full) → SFT. This is understandable as DAPT (full) contains more data, that
could benefit general tasks. Additionally, SFT may dilute the general-task benefits gained from DAPT.
However, DAPT (down) + SFT achieves the best overall balance.

6 HOW TO MITIGATE FORGETTING IN POST-TRAINING?

This section looks into the forgetting in post-training, i.e., the LLM should perform reasonably well
on the learned skills. This can be measured by the performance drop in the general domain. Due
to the computation limits, we use a subset of training and evaluation datasets to gain observations.
Specifically, for SFT-Gen, we down-sampling it to be the same size as SFT-In, and evaluate only
the first 8 tasks in Table 2. As a result, the results in this section are not directly comparable with
Section 5.

6.1 FORGETTING IN POST-TRAINING

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instr 51.65 63.16 47.63
DAPT-In 47.64 59.93 36.11
DAPT-Gen 54.03 49.42 45.62
DAPT-Mix 51.33 53.57 46.51
DAPT-In → SFT-Mix 50.30 69.91 42.06
DAPT-Gen → SFT-Mix 56.54 62.33 51.74
DAPT-Mix → SFT-Mix 55.25 68.85 51.04

Table 6: Effectiveness of joint training and sequen-
tial training.

General and stage knowledge forgetting be-
tween GLLM and post-training. Since we
do not have access to the original pre-training
data, forgetting becomes an inevitable issue. Be-
yond general knowledge in GLLMs, we also
need to address forgetting at different stages.
For example, after DAPT in post-training, the
model may forget how to follow instructions,
as this capability is acquired during the SFT
stage in pre-training. This stage mismatch can
lead to stage-specific forgetting. In Table 6, we
illustrate both types of forgetting. In the first
section (rows 2-4), we apply only DAPT to an
instruction-tuned LLM, and observe a significant performance drop on finance tasks. This suggests
that the model has forgotten how to solve the tasks, or more specifically, how to follow instructions, as
the knowledge learned in the SFT stage has been lost. In the second section (rows 5-7), we apply SFT
after DAPT, leading to improvements across all cases, as the model regains its instruction-following
ability. We also observe that DAPT-In performs well on seen tasks but forgets general and unseen
tasks, while DAPT-Gen excels on general and unseen tasks but performs worse on seen tasks. The best
results are achieved with DAPT-Mix and SFT-Mix. These findings indicate that using only in-domain
data causes forgetting of general knowledge, and replay is crucial to prevent such forgetting.

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instr 51.65 63.16 47.63
DAPT-In → SFT-Gen 48.04 66.05 46.13
DAPT-Gen → SFT-In 54.15 58.42 42.36
DAPT-Mix → SFT-In 56.57 70.25 53.45
DAPT-Mix → SFT-Gen 57.48 61.75 48.94

Table 7: Negligible forgetting when DAPT and
SFT are mimatched.

Negligible forgetting within post-training
stages. We have observed stage-mismatch for-
getting between GLLM and post-training. Given
that post-training itself involves multiple stages,
we are curious whether forgetting also occurs
within post-training stages. Table 7 presents re-
sults when DAPT and SFT are mismatched (e.g.,
one with general domain data while the other
with financial domain data). We observe that
DAPT consistently improves the corresponding
tasks (DAPT-In enhances performance on in-domain seen tasks, and DAPT-Gen improves general
tasks), regardless of the SFT stage. This suggests that SFT does not induce forgetting of DAPT
knowledge, as the stages within post-training is more transferable to one another.

6.2 MITIGATE THE FORGETTING

Replay-based approach. We have identified two types of forgetting that need to be addressed.
As shown in Table 6, DAPT-Mix and SFT-Mix significantly reduce general knowledge forgetting.
Furthermore, in Table 5, we observe that joint DAPT and SFT further improve performance, as there

5An interesting follow-up question is determining the optimal mixture ratio. We leave this for future work.
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is no single isolated stage in post-training that can induce stage knowledge forgetting. These findings
suggest that replaying data is both effective and essential for preventing forgetting in post-training.

Setting General Seen
Finance

Unseen
Finance

LLaMA3-8b-instr 51.65 63.16 47.63
SFT (FT) 51.20 68.31 41.31
SFT (LoRA) 50.57 68.55 42.36
DAPT (FT) → SFT (LoRA) 50.78 65.28 47.70
DAPT (LoRA) → SFT (LoRA) 50.92 66.20 50.72
DAPT (FT) → SFT (FT) 55.25 68.85 51.04

Table 8: Effectiveness of PEFT. “FT” indicates full fine-
tuning.

Modular-based approach. Another popu-
lar method for preventing forgetting is the
modular-based approach, which allocates
specific parameters or models to particular
tasks or domains. In our case, we use the
widely adopted PEFT method, LoRA (Hu
et al., 2021), with a rank size of 128. While
LoRA has been shown to be effective for
task-specific fine-tuning, we are interested
in its utility within the post-training frame-
work. In Table 8, we compare full fine-
tuning with LoRA for both SFT and DAPT+SFT. We observe that SFT (LoRA) performs similarly
to SFT (FT), consistent with prior findings that LoRA is effective for task adaptation. We also find
that DAPT (LoRA) further improves performance over SFT. However, these gains are still smaller
compared to full model fine-tuning. This suggests that while PEFT is useful for both preventing
forgetting and learning domain-specific knowledge, full fine-tuning yields even better results.

7 HOW TO EVALUATE POST-TRAINING?

As mentioned in the Introduction, post-training has two key objectives: to inject deeper, domain-
specific knowledge into the LLM, and to preserve general knowledge so the model can effectively
handle unseen tasks. This necessitates an evaluation framework that goes beyond in-domain seen
tasks. Throughout our experiments, we divided our evaluation into two parts: (1) general capacities
and (2) in-domain capacities. For (1), we included general standard benchmarks, and we will also
include a general instruction-following benchmark in the following sections. These give us a more
complete picture of the model’s ability to prevent forgetting. For (2), we included both seen and
unseen tasks, providing a comprehensive view of the model’s performance across diverse tasks and
its generalization ability.

8 JOINT-AND-REPLAY POST-TRAINING

Based on the insights from Sections 5-7, we develop Joint-and-Replay post-training, illustrated in
Figure 2. Unlike naive post-training, which sequentially trains on domain-specific knowledge, we
mix general and domain-specific data in both the DAPT and SFT stages to prevent forgetting of
general knowledge (λreplay = 1 in Eq. 3 and 4). To further mitigate stage-specific forgetting and
encourage transfer between stages, we jointly train DAPT and SFT (LJoint-and-Relay = LDAPT + LSFT).
Additionally, we down-sample the DAPT data to avoid distractions from an overemphasis on DAPT.
DAPT employs next-token prediction, while SFT adds an instruction mask (Mt = 0 for the instruction
part in LSFT in Eq. 4). To extensively evaluate our model, besides those already in Section 4.2, we
further evaluate our model on MT-bench (Zheng et al., 2023)6, a popular benchmark to assess the
general instruction-following ability.

We apply Joint-and-Replay post-training to post-train the LLaMA3-8b-instruction model on the
financial domain, resulting in LLaMA3-8B-Fin. We compare this post-trained model against three
different categories of baselines: (1) general LLMs, including GPT-4o (OpenAI, 2023), LLaMA3.1-
70b-instruct (Llama, 2024), Mistral-Nemo-instruct (Jiang et al., 2023), LLaMA3.1-8b-instruct (Llama,
2024), and Phi-3.5-mini-instruct (Abdin et al., 2024), representing a range of sizes from 3.8B to
large-scale models like GPT-4o; (2) domain-specific LLM, including the finance-specific Palmyra-
Fin-32k (Writer, 2024), a recent state-of-the-art financial LLM7; (3) post-training base model,

6We use GPT-4 as the judge model and apply single-answer grading mode.
7We note that there are additional financial LLMs available, such as FinMa (Xie et al., 2023a) based on

LLaMA2, Finance-LLM (Cheng et al., 2024b) based on LLaMA3-base and FinLLaVA (Xie et al., 2024) focuses
on multi-modality and not publicly available. However, they are either significantly smaller in scale, based on
less advanced LLMs compared to our model or not publicly available. In our preliminary experiments, these
models performed considerably worse than both our model and the baselines. Therefore, we have only included
the SoTA financial LLM in our comparisons.
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LLaMA3-8b-instruct (Llama, 2024). This allows us to evaluate whether our post-training process can
effectively “expand the web”, i.e., enhance the base model’s capabilities in the target domain while
preserving its general skills and preventing forgetting.

Category Model Size

General Capacities In-domain Capacities

Standard
Benchmark

Instruction
Following
Benchmark

Seen Unseen

Domain-specific LLM Palmyra-Fin-32K 70B 58.41 6.52 64.10 52.70

General LLMs

GPT-4o N/A — — 65.41 55.79
LLaMA3.1-instruct 70B 61.70 9.14 64.68 43.17
Mistral-Nemo-instr 12B 53.58 8.70 60.42 44.96
LLaMA3.1-instruct 8B 51.89 8.33 62.01 33.61
Phi-3.5-mini-instruct 3.8B 55.43 — 61.31 47.01

Post-train base model LLaMA3-instruct 8B 51.65 8.35 63.16 39.94
Post-trained model LLaMA3-8B-Fin 8B 52.65 8.39 81.00 62.23

Table 9: Overall performances across all sections. Results are averaged over all the tasks in the
corresponding section as shown in Table 2. “—” indicates that the evaluation could not be run
due to lack of package support or the requirement for a non-chat format. For instruction following
benchmark, we use MT-bench first-turn score.

Superiority of LLaMA3-8B-Fin. Table 9 shows the overall performance across both general and
in-domain capacities. In general, LLaMA3-8B-Fin outperforms other baselines, including much
larger general LLMs and even large LLMs specifically designed for the financial domain, all while
maintaining strong general capacities. We give detailed observations below.

(1) LLaMA3-8B-Fin shows the greatest improvement on seen task. We observe a huge improve-
ment on seen tasks, approximately 20%. This is expected as our SFT has similar tasks. What is
surprising, however, is that our model outperforms the carefully designed financial LLM, Palmyra,
by a large margin. It highlights the power of targeted training in LLMs and reinforces the idea
that post-training not only boosts performance but can make even smaller models exceptionally
well-suited for their specialized areas.

(2) LLaMA3-8B-Fin also improves significantly on unseen tasks. Despite having only 2 seen
task types in our SFT training data, we still achieve around a 10% improvement on a diverse set of
unseen tasks. Moreover, while the large domain-specific LLM manages to outperform its same-size
counterpart (LLaMA3.1-Instruct-70B), our model demonstrates further significant improvement.
This suggests that even with limited in-domain seen data, the model can transfer its learning to unseen
tasks. It highlights the importance of our well-designed training recipe, ensuring the model retains
general knowledge while adapting to domain-specific needs.

(3) LLaMA3-8B-Fin maintains general learned skills in its base model. A key consideration
in post-training is whether the model retains previously learned general skills. Our model per-
forms similarly to the base model (i.e., LLaMA4-Instruct-8B) on both standard benchmarks and
instruction-following tasks. This demonstrates that our replay mechanism effectively preserves gen-
eral knowledge and stage knowledge. This aspect is often overlooked by domain-specific practitioners
(we can see the large domain-specific LLMs (Palmyra-Fin-32K) suffer from severe forgetting on the
standard and instruction-following benchmark, compared to its same-size counterpart). While we do
note that our model performs worse than some larger models, this is understandable. We anticipate
that our training recipe can similarly extend the capabilities of larger LLMs.

9 CONCLUSION

Post-training has been widely used in the community to adapt the LLMs, yet a comprehensive analysis
remains lacking. In this work, we provide such a timely analysis and propose an effective training
recipe, Joint-and-Replay post-training, based on the insights gained from our study. We demonstrate
significant improvements in the financial domain, a critical and widely studied area. Notably, we
demonstrate that “expanding the web” of an LLM is not only achievable but also highly effective.
Our results show that a smaller, domain-specialized LLM can surpass the performance of much larger
models. This opens up the exciting possibility that, with the right training recipe, smaller yet better,
specialized models can be developed. In the future, we plan to explore a diverse set of domains and
expand our analysis to the RLHF stage.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin et al. Phi-3 technical report: A highly capable language model locally on your phone,
2024. URL https://arxiv.org/abs/2404.14219.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), NeurIPS, 2019.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/ModelCardC laude3.pdf, 2024.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yutao Zhu, Jinhao Jiang, Yingqian Min,
Wayne Xin Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Ruihua Song, Jun Xu, Xu Chen, Rui Yan,
Zhewei Wei, Di Hu, Wenbing Huang, and Ji-Rong Wen. Towards effective and efficient continual
pre-training of large language models, 2024. URL https://arxiv.org/abs/2407.18743.

Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
et al. Meditron-70b: Scaling medical pretraining for large language models. arXiv preprint
arXiv:2311.16079, 2023.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3), 2018.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. Instruction
pre-training: Language models are supervised multitask learners, 2024a. URL https://arxiv.
org/abs/2406.14491.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading
comprehension. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=y886UXPEZ0.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro,
Andre FT Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, et al. Saullm-7b: A
pioneering large language model for law. arXiv preprint arXiv:2403.03883, 2024.

Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2407.18743
https://arxiv.org/abs/2406.14491
https://arxiv.org/abs/2406.14491
https://openreview.net/forum?id=y886UXPEZ0
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig,
Xi Victoria Lin, Wen-tau Yih, and Srinivasan Iyer. Instruction-tuned language models are better
knowledge learners. arXiv preprint arXiv:2402.12847, 2024.

Xisen Jin, Bill Yuchen Lin, Mohammad Rostami, and Xiang Ren. Learn continually, generalize
rapidly: Lifelong knowledge accumulation for few-shot learning. In Findings of the Association
for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
16-20 November, 2021, 2021.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. In International Conference on Learning Representations (ICLR),
2023.

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Bridging
the preference gap between retrievers and llms. arXiv preprint arXiv:2401.06954, 2024.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, 2016.

Guodun Li, Yuchen Zhai, Qianglong Chen, Xing Gao, Ji Zhang, and Yin Zhang. Continual few-shot
intent detection. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo
Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi,
Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee,
Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), Proceedings of the 29th International
Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October
12-17, 2022, 2022.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–382, 2023.

Tianlin Liu, Lyle Ungar, and João Sedoc. Continual learning for sentence representations using
conceptors. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), 2019.

Llama. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NIPS, 2017.

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie.
Biomedgpt: Open multimodal generative pre-trained transformer for biomedicine. arXiv preprint
arXiv:2308.09442, 2023.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation. 1989.

Xuan-Phi Nguyen, Shrey Pandit, Senthil Purushwalkam, Austin Xu, Hailin Chen, Yifei Ming, Zixuan
Ke, Silvio Savarese, Caiming Xong, and Shafiq Joty. Sfr-rag: Towards contextually faithful llms.
arXiv preprint arXiv:2409.09916, 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

12

https://arxiv.org/abs/2407.21783


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Jupinder Parmar, Sanjev Satheesh, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro.
Reuse, don’t retrain: A recipe for continued pretraining of language models. arXiv preprint
arXiv:2407.07263, 2024.
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A HYPER-PARAMETERS

Chat-format. Chat-format is important for chat-based LLMs. Since our evaluation is not LLM-as-
a-judge (except for MT-bench), our results can be sensitive to the chat-format. To prevent bias, we
employ both chat-format and non-chat-format for all experiments and report the better result between
the two options.

LLM Hyperparameters. We set the max length to 8K and pack the samples to make full use of the
length capacity. We stop training when the performance on held-out evaluation increases by less than
1 (typically, DAPT stops around 30K steps and SFT around 11K steps). The decoding temperature is
set to 0.0 for deterministic outputs. The learning rate is 5e-6 for SFT and joint training, and 1e-5 for
DAPT. The warmup ratio is set to 0.1, and gradient checkpointing is applied. All experiments are
conducted on 16 A100 40G GPUs.

B INDIVIDUAL RESULTS

Table 9 already showed the average results across general and in-domain capacities. In this section,
we present the individual results for all tasks. Table 10 shows the individual results for in-domain
tasks. We observe that LLaMA3-8B-Fin outperforms the baseline on 6 out of 12 tasks, with 4 of
those being unseen tasks. It is important to note that many of the baseline LLMs are much larger
than our model. Compared to our base model (LLaMA3-Instruct-8B), we perform better on all tasks
except OpenQA and stock movement prediction, where in OpenQA we are only slightly behind (by
less than 1%). These results indicate that our approach is highly effective. We also notice that for
Tabular QA, larger models significantly outperform smaller models, including our base. This suggests
that our base model is not strong with tabular data, and naturally we also perform worse on this task.
We anticipate that increasing the model size could help improve performance in this particular task.

Category Model Size Sent
Analysis NER Rumour

Detect Summ Fraud
Detect

Distress
Ident

Claim
Analy

ESG
Classify

Open
QA

Stock
Pred

Credit
Scoring

Tabular
QA

Domain-specific LLM Palmyra-Fin-32K 70B 0.6737 0.5429 0.6260 0.2751 0.4378 0.9554 0.4924 0.3967 0.2375 0.5474 0.5826 0.5145

General LLMs

GPT-4o N/A 0.7287 0.4302 0.7380 0.2703 0.3827 0.7399 0.8915 0.4567 0.2744 0.5344 0.5719 0.6857
LLaMA3.1-instruct 70B 0.7081 0.4626 0.8220 0.2657 0.1407 0.7874 0.0228 0.4167 0.2630 0.5531 0.4933 0.6966
Mistral-Nemo-instr 12B 0.6395 0.4984 0.8520 0.2509 0.5396 0.3509 0.4446 0.3267 0.2384 0.5444 0.4479 0.5266
LLaMA3.1-instruct 8B 0.6561 0.5122 0.8420 0.2415 0.1343 0.2317 0.1007 0.3600 0.2010 0.5365 0.3568 0.5506
Phi-3.5-mini-instruct 3.8B 0.6862 0.3937 0.7540 0.2775 0.6480 0.5576 0.5038 0.3833 0.2108 0.4195 0.4571 0.5097

Post-train base model LLaMA3-instruct 8B 0.6920 0.4503 0.8260 0.2371 0.2432 0.0872 0.4842 0.3633 0.2436 0.5567 0.4828 0.5342
Post-trained model LLaMA3-8B-Fin 8B 0.8383 0.7251 0.8620 0.2721 0.7687 0.9243 0.9674 0.3933 0.2338 0.5362 0.5645 0.5454

Table 10: Individual results for in-domain capacities. Seen task types are highlighted in grey

Table 11 shows the individual results for general capacities. For general capacities, it is expected that
larger models outperform us, as our base model is much smaller. The main focus here is to compare
our model with the base model, LLaMA3-Instruct-8B. The results are mixed, and the overall average
(as shown in Table 9) is quite similar. This suggests that our model exhibits little to no forgetting.

Category Model Size MMLU AI2
ARC PIQA Social

IQA GSM8K MathQA Trivia
QA

NQ
Open

Hella
swag

Wino
grande

Openbook
QA

MT
Bench

Domain-specific LLM Palmyra-Fin-32K 70B 0.7708 0.7734 0.8166 0.5133 0.7407 0.5152 0.5228 0.1114 0.6484 0.7388 0.2740 6.5156

General LLMs

GPT-4o N/A —
LLaMA3.1-instruct 70B 0.8219 0.7875 0.8324 0.5123 0.5572 0.5578 0.7071 0.1936 0.6521 0.7916 0.3740 9.1438
Mistral-Nemo-instr 12B 0.6594 0.7382 0.8107 0.5154 0.3086 0.393 0.5868 0.1271 0.6329 0.7498 0.372 8.7000
LLaMA3.1-instruct 8B 0.6775 0.7196 0.7998 0.4928 0.2563 0.3943 0.5178 0.1789 0.5916 0.7411 0.3380 8.3250
Phi-3.5-mini-instruct 3.8B 0.6851 0.7604 0.8020 0.5742 0.6725 0.4127 0.3650 0.1089 0.5891 0.7474 0.3800 —

Post-train base model LLaMA3-instruct 8B 0.6389 0.7215 0.7835 0.4872 0.3351 0.4204 0.5105 0.1507 0.5765 0.7190 0.3380 8.3500
Post-trained model LLaMA3-8B-Fin 8B 0.6186 0.7224 0.8020 0.4980 0.4079 0.4137 0.4886 0.1460 0.6071 0.7253 0.3620 8.3875

Table 11: Individual results for general capacities.
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