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ABSTRACT
Machine learning is becoming a key technology to make systems
smarter and more powerful. Unfortunately, training large and ca-
pable ML models is resource-intensive and requires high opera-
tional skills. Serverless computing is an emerging paradigm for
structuring applications to benefit from on-demand computing re-
sources and achieve horizontal scalability while making resources
easier to consume. As such, it is an ideal substrate for the resource-
intensive and often ad-hoc task of training deep learning models
and has a strong potential to democratize access to ML techniques.
However, the design of serverless platforms makes deep learning
training difficult to translate efficiently to this new world. Apart
from the intrinsic communication overhead (serverless functions
are stateless), serverless training is limited by the reduced access
to GPUs, which is especially problematic for running deep learn-
ing workloads, known to be notoriously demanding. To address
these limitations, we present KubeML, a purpose-built deep learn-
ing system for serverless computing. KubeML fully embraces GPU
acceleration while reducing the inherent communication overhead
of deep learning workloads to match the limited capabilities of
the serverless paradigm. In our experiments, we are able to out-
perform TensorFlow for smaller local batches, reach a 3.98x faster
time-to-accuracy in these cases, and maintain a 2.02x speedup for
commonly benchmarked machine learning models like ResNet34.
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1 INTRODUCTION
Deep learning (DL) has emerged as a disruptive force to traditional
services and business logic. It has not only enabled exciting appli-
cations like large language models [8, 37] or self-driving cars [6],
but has also expanded the boundaries of what we considered solv-
able through software — it enabled solving problems that were
previously thought impossible [11]. This progress has been largely
driven by advances in hardware technology, which enabled deep
learning models to significantly increase their performance by lever-
aging the combined power of compute and data. However, as we
continue to tackle increasingly complex problems, how long can
we accommodate the necessary compute for training?
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Deep learning training is getting increasingly more challenging
due to ever-increasing model sizes [32] and the corresponding in-
crease in the need for training data (e.g., 175 Billion parameters
for GPT-3 [8]). While the usual approach to training deep learn-
ing models is to reserve a cluster of machines in the cloud, this
requires accurate knowledge of the resources necessary to train
well in advance, which is challenging to estimate and often leads
to over-provisioning of resources [3]. Even worse, the resources
that provide the most benefit to deep learning training are signif-
icantly overprovisioned, with datacenter GPUs averaging under
20% utilization [10].

As a way to democratize access to the resource-intensive task
of training deep learning models, serverless computing promises a
low burden of adoption and the inherent agility and scalability of
the cloud, with tremendous potential to contribute to the common
good. Not only can it achieve horizontal scalability [24], but it also
promises to do so while reducing management overhead, improv-
ing utilization, and cost efficiency. As such, it has the potential to
make the training of ML models more accessible but also much
more sustainable. However, the design and the stateless nature of
serverless platforms are difficult to translate to the world of dis-
tributed machine learning and leverage the inherent advantages of
fine-grained on-demand cloud resource sharing.

Serverless deep learning training is intrinsically challenging,
as it requires overcoming (1) the limited compute capabilities of
serverless functions, (2) and the communication overhead intrin-
sic to training in distributed settings [15]. For the former, deep
learning workloads require access to accelerators (GPUs), which is
currently not supported in serverless environments. For the latter,
deep learning workloads can run for hours or even days, in contrast
to traditional serverless workloads, which are typically short-lived
and have moderate resource requirements. Given the difficulty of
these challenges, no effective solution has been proposed, and even
though serverless is a highly appealing choice, few studies have
even considered serverless deep learning training.

To address the aforementioned challenges, we create a purpose-
built serverless machine learning system –KubeML– that embraces
GPU acceleration while optimizing for the communication over-
head intrinsic to deep learning serverless workloads. In our ex-
periments, we are able to outperform TensorFlow [1], especially
with smaller local batches while allowing for higher resource den-
sity. Specifically, KubeML reaches a 3.98x faster time-to-accuracy
with small batch sizes, and maintains a 2.02x speedup between the
top results of both platforms for commonly benchmarked machine
learning models like ResNet34. By enabling hardware-accelerated
serverless functions and mitigating the communication overhead
through design and optimization, we show that serverless could
become the go-to medium for training deep models in the cloud.
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Table 1: Categorization of existing work based on (1) commu-
nication overhead, (2) GPU acceleration.

System Communication GPU acceleration
PyWren [17] ✗ ✗

Numpywren [33] ✗ ✗

Locus [31] ✗

Cirrus [9] ✗

Siren [38] ✗

lambdaDNN [41] ✗

LambdaML [15] ✗

GPU ESCF[19] ✗

OSCAR [29] ✗

2 RELATED WORK & MOTIVATION
In the field of serverless ML, the problem of inference and model
serving has received the most attention so far [2, 4, 14], with model
training solutions being proposed more recently. In contrast, few
works have been proposed exploiting GPU resources in a server-
less environment, with only a few efforts having looked into the
problem.

Proposed work, showcased in Table 1, (1) take advantage of
serverless functions as a way to parallelize data processing work-
flows, whereas others (2) include ML or exploit GPU resources. For
the former (1), for example, PyWren [17] offers a high level API to
run map-reduce jobs on top AWS Lambda, using S3 for data I/O
and event coordination. Numpywren [33] extends PyWren with
optimizations for linear algebra operations. Similarly, Locus [31]
also extends PyWren and explores the compromises between using
slow (S3) or fast storage (Redis) for intermediate outputs in terms
of performance.

For the latter (2), Cirrus [9] is designed as an extension of Py-
Wren [17] and provides support for end-to-end ML workflows; the
authors design a custom-made parameter server for maintaining
the reference model and use S3 [27] for datasets, but do not test
deep learning. Alternatively, Siren [38] uses S3 for all storage and fo-
cuses more on precise resource management and cost optimization.
Similarly, lambdaDNN [41] highlights function allocation optimiza-
tion, improving on the aforementioned systems (here, the authors
use ZeroMQ to exchange parameter updates). Most recently, Lamb-
daML [15] studies more in depth the dichotomy of pure-FaaS vs
hybrid deployments for serverless ML, and proposes an end-to-end
ML framework also incorporating deep learning using PyTorch [30].
However, none of the aforementioned systems are able to leverage
GPU acceleration, and Jiang et al. [15] show that a single GPU
instance is much faster and cheaper than multiple CPU lambdas.

Kim et al. [19] propose a serverless platform that uses IronFunc-
tions coupled with NVIDIA-Docker to expose GPU resources to
containers. Alternatively, OSCAR [29] uses serverless functions to
allow clients to use remote GPUs as if they were local GPUs. OS-
CAR uses Kubernetes, Open-FaaS as their serverless platform, and
rCUDA to virtualize and expose GPUs. Nevertheless, none of these
solutions consider deep learning or distributed machine learning.

3 GPU ACCELERATION AND
COMMUNICATION

Based on the characteristics of serverless applications and the con-
text of DL training, we identify the key characteristics for KubeML,
and focus on performance and usability: (1) utilization of GPU
resources and (2) efficient communication model.

To enable GPU access for functions, we implement KubeML
to run on Kubernetes, using NVIDIA-Docker to support GPUs.
KubeML can train on multi-GPU (single-node) clusters as well as
on multiple nodes without requiring any changes to the code. Next,
to achieve strong convergence guarantees with limited communi-
cation overhead, we use a synchronous algorithm which combines
characteristics from Elastic Averaging SGD (EASGD) [42] (synchro-
nizing after multiple batches) with convergence properties from
synchronous methods. Functions are deployed in multiple contain-
ers spread across machines in a cluster, having to communicate
through the network. The characteristics of cloud networks [36]
further increase the pressure to reduce communication but doing
so without considering the model properties can negatively affect
the convergence of the distributed training process [40].

3.1 Utilization of GPU resources
We implement KubeML on Kubernetes with multiple components
to implement the distributed training as serverless functions. As
shown in Figure 1, KubeML relies on different components to per-
form functions ranging from management operations to storage
and tracking the training process. To enable straightforward inter-
action, all components expose a REST API, and communicate with
each other using HTTP and JSON.
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the Fission components for tasks like triggering a cer-
tain number of functions to run in parallel or manage
deployed functions.

• Fission-Function. Serverless functions in the shape
of pods are deployed in this namespace. We provide a
custom Python environment built on top of nvidia-cuda
to allow for GPU usage, with the dependencies needed
to train neural networks such as PyTorch already in-
stalled. Fission pods are triggered from the KubeML
components to run the user code, which is loaded at
runtime.

• KubeML. Where the main components of KubeML
reside. We will cover them in detail in Section 3.3.

• Monitoring. KubeML by default exposes metrics and
statistics to Prometheus8, which are then aggregated
and displayed in Grafana9. Users can follow the progress
of training jobs in terms of loss, accuracy and through-
put.

3.3 KubeML Components
As shown in Figure 2, KubeML relies on di�erent components
to perform functions ranging from management operations
to storage and tracking the training process. In this section
we provide an in-depth explanation of each component and
its task. To enable straightforward interaction, all compo-
nents expose a REST API, and communicate with each other
using HTTP and JSON.

Controller. The controller in KubeML acts as a gateway
to the system, exposes the KubeML API and acts as a proxy
towards other components in requests. The Controller API
exposes several endpoints to create, delete and modify sev-
eral resource types in the system:

• /train Receives the speci�cations for a training task.
Each train task can be con�gured with parameters
such as the batch size, learning rate, dataset, function
name, target accuracy, etc. These requests are then
validated and forwarded to the scheduler.

• /infer Receives an inference request, holding the
function name and the data to be used as input to
the network. This request is also forwarded to the
scheduler.

• /dataset Handles dataset creation and deletion. The
dataset upload is done through a multipart upload
to handle big datasets e�ciently. In these cases, the
controller acts as a reverse proxy and forwards the
request to the storage service, which processes and
stores the data in a prede�ned format.

• /history Retrieves the history of a training job, that is,
the summary of the performance of the job throughout
the training process. This includes accuracy and loss

8h�ps://prometheus.io/
9h�ps://grafana.com/
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Figure 2. Structure of KubeML divided into di�erent names-
paces based on functionality

per epoch, parallelism, duration, etc. for all epochs of
the job.

Scheduler. The KubeML scheduler receives requests to
start a training job or perform an inference request. The
scheduler is in charge of starting tasks and scaling or down-
scaling them according to the current state of the system
and a speci�c policy.

The current policy is reactive, based on throughput and
response time. The scheduler allocates a start parallelism to
a task, and after every epoch the task sends its parameters
such as elapsed time and throughput to the scheduler. The
scheduler then optimistically increases the parallelism until
the throughput of a task stops improving, e�ectively using
a hillclimbing approach. In case the throughput of the task
suddenly drops under a certain threshold, the parallelism is
scaled down. This is done to address the possibility of multi-
ple tasks running concurrently on the system and having to
reduce resource usage to �t all of them.

Parameter Server. The parameter server receives the spec-
i�cation of training tasks from the scheduler and starts a new
Train Job for each. The Parameter Server creates a separate
managed pod in charge of maintaining the reference model
for each submitted job. Instead of sharding parameters by
name, it shards them by task, so each has its own dedicated
pod to update its parameters. It forwards the updates from

4

Figure 1: Structure of the KubeML implementation; the plat-
form is divided into different namespaces based on function-
ality.
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KubeML uses a data-parallel approach to accelerate training,
which means that a replica of the network is initialized with the
same weights as the reference model in each iteration, and trained
on a different subset of the data. The functions then synchronize the
models again and continue the training process. Users can reuse
the same code they would use to train the network locally and
upload it to the Kubernetes cluster with the help of the CLI. All
main cloud providers offer their own hosted Kubernetes platform,
which effectively makes migrating to a different provider trivial,
with the same code and deployments being entirely transferable
between clouds, and configurable to run in on-premise clusters.
Moreover, Kubernetes also allows for local testing of applications,
with tools such as MicroK8s [5] or kind [39], developed to enable
deploying applications into a test environment and test them lo-
cally. We choose Fission [21] as our serverless platform because
of its extensibility and its focus on performance [28]. Fission runs
atop Kubernetes and implements the serverless paradigm using
Kubernetes primitives. PyTorch code is wrapped using our custom
made Python library, which provides a simple interface allowing
using the same local code. We take advantage of PyTorch only us-
ing as much GPU memory as needed for training to allow multiple
serverless functions to be allocated in the same GPU. With small
models, a large fraction of the GPU resources remain unused, so
this approach will increase resource utilization as well as improve
performance without additional hardware resources.

Serverless functions are translated into the minimum entity
of Kubernetes clusters, Pods, which can be described as a self-
contained group of containers, all sharing common storage and
network resources. Within a Fission function we find two contain-
ers. The environment is the container in which the function code
will be executed. Initially the environment is nothing else than a
generic Docker container with dependencies installed and a REST
API. When a function is invoked, the container is specialized to
serve a particular function, and will be used for that function alone
until it is idle and its resources can be returned. The fetcher is in
charge of loading the appropriate user code when a function is
invoked through a trigger and specializing the environment, which
loads the code provided and executes the main function. Generally,
multiple instances of these pods are deployed simultaneously to
serve requests in parallel and in isolation for a specific function
type.

3.2 Overcoming the communication overhead
The traditional serverless programming model is most advanta-
geous for conveniently parallel applications, where functions can
proceed without having mutual data dependencies that require
communication and coordination between the functions, unlike
map-reduce jobs [14]. While simple and elegant, the model im-
poses noticeable limitations when developing applications with
more strict communication needs. Serverless functions are not
directly addressable and cannot be in a server role for communica-
tion which in practice means that functions cannot communicate
with each other without an intermediate system to exchange in-
formation and/or synchronize execution. Storage platforms like
S3, key-value stores like Redis, or application-specific parameter

servers have been used in the past to facilitate inter-function com-
munication. However, accessing these external components must
be done through the network, which introduces extra latency in
the application.

In distributed deep learning, the need for communication arises
specifically from the need to periodically synchronize the model
weights across workers to replicate the sequential behavior of
families of algorithms like Stochastic Gradient Descent (SGD). To
achieve this, two popular ways of syncing the models are adding
the gradients and applying the global updates or model averag-
ing. In terms of strictness, we can differentiate algorithms which
force all workers to wait for each other before proceeding, like
bulk-synchronous (BSP) algorithms, and others that slightly relax
(stale-synchronous) or completely relax worker synchronization
(asynchronous parallel). Further, communication can be influenced
by the synchronization frequency: traditionally, synchronous al-
gorithms like sync-SGD (S-SGD), synchronize the workers after
each iteration or batch, but there are other more flexible options
such as Local SGD, which only synchronizes after k iterations, or
one-shot averaging, which reduce the communication overhead by
diminishing the number of synchronization points.

Consequently, to dimish the communication overhead, we use
Local SGD [25, 34, 43, 44], also known as K-AVG SGD or Parallel
SGD. In Local SGD, each worker trains for multiple iterations before
syncing with the reference model, with the number of iterations
before syncing commonly referred to as k. This parameter k rep-
resents a balance between exploration (each worker exploring a
concrete region of the loss space) with big k and exploitation (all
workers exploring the same region of the loss space) with small
k. For merging the models into a single reference model, instead
of aggregating the gradients like in other solutions, we take the
approach of performing synchronous model averaging [20]. During
the sync step, the models from all of the workers are averaged
to obtain the new reference model, which effectively reduces the
communication overhead by a factor of k compared to synchronous
SGD.

For exchanging model weights, a popular choice of topology is
the parameter server architecture [13], in which one or multiple
masters hold the weights of the model. These weights can option-
ally be sharded across multiple instances to increase throughput
and for workers to pull and push their updated weights from them.
Alternatives to the parameter server architecture include inherently
more peer-to-peer topologies like AllReduce [16] in which workers
are typically organized in a tree or ring configuration. None of the
two options, however, are trivial to implement for a serverless setup
because commercial platforms neither support creating collocated
server images nor running functions that easily communicate with
each other. KubeML is built around a parameter server architecture
since in our setup we have control over the underlying Kubernetes
cluster. Our server, however, also provides other critical services to
the system, like centrally storing the training data in a MongoDB
instance (given its performance on read operations) or using Re-
diAI [7] as a high performance storage for the reference model and
the function models during training. Further, our system ensures
fault tolerance by continuously monitoring the state of the running
functions to reprovision new functions in case of failures. Addition-
ally, since KubeML needs to be able to host concurrent jobs from
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different users, one key property of the platform is proper isolation.
The server therefore creates the different jobs in new pods isolated
from the rest of the system’s components. Furthermore, it creates
a separately managed pod that maintains the reference model for
each submitted job. Instead of sharding parameters by name, it
shards them by task, so each has its dedicated pod to update its
parameters.

4 EVALUATION
To evaluate our system, we test it on a multi-GPU server. We test
its performance during training tasks against TensorFlow, using
small and medium sized networks on a variety of datasets. With
these experiments we intend to study the viability of using Local
SGD to train networks of different parameter sizes, and whether the
increased parallelism of the training process can have a degrading
effect on the convergence of the network.

4.1 Experimental Setup
Platform. For our multi-GPU server, we use a machine configu-
ration with 2 NVIDIA RTX 2080 Ti and two 32-core AMD EPYC2
CPUs with SMT-2 enabled (128 hardware threads in total). As a
system baseline, we compare the performance of our system against
TensorFlow. We use the version 2.2 of TensorFlow and in all ex-
periments use the MirroredStrategy to distribute the training load
between both GPUs. The MirroredStrategy is an implementation
of data parallel synchronous training, where the global batch is
divided among the GPUs, which synchronize after each forward
pass to keep a common view of parameters.

Models & Datasets. We use several networks representing com-
mon baselines and a variety of network sizes and architectures. We
use the LeNet5 [23] as an example of a small network and train
it using the MNIST dataset for written character recognition. To
test the performance on bigger and deeper networks, we use the
Resnet34 [12]. We use the CIFAR10 dataset [22], consisting of 50K
train and 10K test images with 10 classes. Additionally, we train
ResNet32 [12] to assess the performance for longer training tasks
and the effect of the parameter k on the convergence and the final
results achieved.

Metrics. In our comparison against TensorFlow, our main metric
is Time-To-Accuracy (TTA), defined as the time it takes for the
validation accuracy to reach a certain amount. To settle on this
amount for each of the networks, we train both until consistently
reaching a plateau in terms of validation accuracy. We show these
results in Figure 2, with the baselines for each network being: 99%
for LeNet and 70% for the ResNet34. We also compare both systems
by the final train and validation loss reached during training.

Hyperparameters. For the comparison with TensorFlow, we
apply minimal transformations on the data and keep the hyperpa-
rameters fixed to avoid any possible difference in configuration.
We compare both systems based on the per-worker or local batch.
When training the LeNet, the learning rate is fixed at 0.01, while
for the ResNet34 we fix it at 0.1. Both networks use a weight de-
cay of 0.0001. As for dataset transformations, we standardize each
datapoint feature-wise on both systems. For the optimizer, we use
SGD with the learning rate and weight decay explained above, and
a momentum of 0.9.
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and a momentum of 0.9.

Metrics. In our comparison against TensorFlow, our main
metric is Time-To-Accuracy (TTA), de�ned as the time it takes
for the validation accuracy to reach a certain amount. To
settle on this amount for each of the networks, we train both
until consistently reaching a plateau in terms of validation
accuracy. We show these results in Figure 6, with the base-
lines for each network being: 99% for LeNet and 70% for the
ResNet34. We also compare both systems by the �nal train
and validation loss reached during training.

5.2 Performance
In Figure 4 we compare the results obtained when training
on the LeNet, all batches reported correspond to the local
batch size of each worker. For KubeML, we provide the best
results achieved with the best parameter combination in
terms of parallelism and k.

As a �rst particularity of the results, all of the optimal
parameter combinations for KubeML use a : = 1, meaning
that functions train locally for the entire duration of an epoch
and only synchronize once before continuing the training
process. As can be seen in Figure 4a, the performance im-
provement has a tight relationship with the batch size. With
bigger local batch sizes TensorFlow performs better than
KubeML in terms of TTA. With smaller batches however,
we see that KubeML outperforms TensorFlow and is 1.41x
faster with a batch of 32, and 2.75x faster to the target ac-
curacy with a local batch of 16. In these two cases, the best
result is achieved with a parallelism of 8, that is, 4 models
per GPU, showing that Local SGD is able to converge faster
and without a loss in accuracy even with multiple workers
scheduled per GPU.

Another relevant insight is the relationship between the
train and the validation loss summarized in Figures 4b and
4c. We can see that even though KubeML consistently per-
forms worse that TensorFlow in terms of train loss, it often
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Figure 2: TensorFlow convergence over time.

4.2 Performance
Figure 3 showcases the results obtained when training on LeNet,
where all batches reported correspond to the local batch size of
each worker. For our system, we provide the best results achieved
with the best parameter combination in terms of parallelism and k.
All of the optimal parameter combinations for KubeML use a k =
∞, meaning that functions train locally for the entire duration of
an epoch and only synchronize once before continuing the train-
ing process. We observe that the performance improvement has
a tight relationship with the batch size: with bigger local batch
sizes TensorFlow performs better than KubeML in terms of TTA.
With smaller batches however, we see that KubeML outperforms
TensorFlow and is 1.41x faster with a batch of 32, and 2.75x faster
to the target accuracy with a local batch of 16. In these two cases,
the best result is achieved with a parallelism of 8, that is, 4 models
per GPU, showing that Local SGD is able to converge faster and
without a loss in accuracy even with multiple workers scheduled
per GPU.

Another relevant insight is the relationship between the train
and the validation loss, also showcased in Figure 3. We see that even
though our system consistently performs worse that TensorFlow
in terms of train loss, it often results in a lower validation loss. This
finding could corroborate the findings of Lin et al. [25], where the
authors discuss that the local updates of Local SGD inject noise to
the training dynamics, resulting in a convergence to flatter minima
than traditional SGD. These flat minima are characterized by a
better generalization than the sharp minima reached with other
methods [18].
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Figure 4: Training Performance Comparison of ResNet34

The benefits of using Local SGD should be accentuated when
training bigger networks whose communication step takes a con-
siderable amount of time when compared to the computing step,
and this is the exact trend observed using ResNet34 as shown in
Figure 4. With regards to the TTA, our system is consistently equal
or better performing than TensorFlow, with the same improvement
we saw with the LeNet taking place with small batches. With a
local batch of 32, our system is 3.98x faster to 70%. Additionally, if
we take into consideration only the best results from each system
b = 128 for KubeML and b = 256 for TensorFlow), our system is still
2.02x faster to the target accuracy. Analyzing the losses in Figure 4,
we reach the same conclusion as before. KubeML overfits less and
generalizes better than TensorFlow.

Resource Utilization. Another important factor when training
neural networks on GPUs is the utilization of resources. GPUs are
expensive resources [26], and fitting one model per GPU often
results in poor utilization, leading to a waste of both hardware
and economic resources [20]. Our system makes multiple functions
share the same GPU by means of the parallelism setting to improve
resource usage. We evaluate how our system affects the usage of
resources for the networks used previously.
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Figure 8. Performance on ResNet32 when varying : , the
number of forward passes between synchronizations

The results can be seen in Figure 8, where we plot the con-
vergence against the time with di�erent values of the syn-
chronization period : . As was discussed in previous sections,
we see again the pattern of better results being obtained
when synchronizing once per epoch (: = 1), which not only
accelerates convergence but also makes it more stable with
fewer oscillations of the accuracy value, and a higher �nal
accuracy of roughly 90%. More frequent synchronization
results in a noisier convergence and a lower �nal accuracy

5.4.1 The Issue with Optimizer State. In these experi-
ments with ResNet32 we use SGD without momentum, de-
spite common practice when training on a single machine
including a momentum value of 0.9. This is due to a com-
mon problem when training in a distributed environment
using stateful optimizers. Unlike traditional SGD, which sim-
ply performs a step towards the direction of the negative
gradient based on the statistics of a single iteration, other
optimizers have their own state, which holds statistics of
updates in previous iterations with the aim of accelerating
the convergence. This is the case of more complex optimiz-
ers such as Adam [24] and its variants, but also SGD with
momentum.

With the optimizer having its own state to help conver-
gence, training in a distributed setting has to take care not
only of the model weights being carried to be updated and
used in the next iteration, but also the optimizer state should
be carried to mimic local training. The problem of optimizer
state has been studied previously and some solutions have
been proposed, such as using block momentum [9, 43] which
divides momentum in a global part and a local part that is
reset at the start of each iteration. An alternative solution
involves averaging the optimizer state in conjunction with
the model weight [46].

None of these solutions were, however, studied in a server-
less setting. With function containers or VMs not guaranteed
to be the same as used in previous epochs, carrying a global
momentum and saving the current state for the next iteration
proves di�cult to manage.

Figure 9. E�ect of Momentum when Training with SGD

The simplest approach of resetting the optimizer state, or
saving the previous state su�er from similar issues. Being
at a di�erent point in the loss space after model averaging,
it often leads to taking steps in a suboptimal direction. We
see this in Figure 9. Far from improving convergence, us-
ing momentum results in noisier updates after merging the
models and a much lower �nal accuracy, which makes state-
ful optimizers not advantageous in general without extra
optimizations in serverless environments.

5.5 Resource Utilization
Another important factor when training neural networks
on GPUs is the utilization of resources. GPUs are expensive
resources, and �tting one model per GPU often results in
poor utilization, leading to a waste of both hardware and
economic resources [25]. KubeML makes multiple functions
share the same GPU by means of the parallelism setting to
improve resource usage.

We evaluate how KubeML a�ects the usage of resources
for the networks used in previous sections. The results are
plotted in Figure 10.

(a) LeNet (b) ResNet34

Figure 10. GPU utilization comparison between TensorFlow
and KubeML with di�erent number of workers

As can be seen, with more workers per GPU, the perfor-
mance increases for LeNet, especially with smaller batches.
This could be due to being easier interleaving small tasks
on the GPU, reaching 6x better utilization than TensorFlow.
With bigger networks however, although observing that
same improvement with small batches, KubeML stays on
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As can be seen, with more workers per GPU, the perfor-
mance increases for LeNet, especially with smaller batches.
This could be due to being easier interleaving small tasks
on the GPU, reaching 6x better utilization than TensorFlow.
With bigger networks however, although observing that
same improvement with small batches, KubeML stays on
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Figure 5: GPU utilization comparison between TensorFlow
and our system with different number of workers.

We showcase our results in Figure 5, and observe that with more
workers per GPU, the performance increases for LeNet, especially
with smaller batches. This could be because interleaving small tasks
on the GPU is more effective, reaching 6x better utilization than
TensorFlow. However, with bigger networks, although observing
that same improvement with small batches, KubeML stays on the
same utilization level as TensorFlow. A cause for this could be the
added communication time resulting from a bigger model (order of
seconds for ResNet34 versus less than 10ms for LeNet) counteract-
ing the throughput gains with more workers, since the addition of
extra workers also adds extra communication overhead [35].

5 DISCUSSION & CONCLUSION
Deep learning training is getting increasingly more challenging
due to ever-increasing model sizes and the corresponding increase
in the need for training data. Tackling increasingly complex prob-
lems calls for more and more compute, as well as better ways to
leverage it. Whether massive scale machine learning will become
mission-critical enough for organizations to afford the best avail-
able hardware, or if it will fully tilt towards commoditization and
the cloud remains to be seen. However, one thing is clear: for the
majority of machine learning models, the cloud is and will remain
to be an appealing solution due to its agility and scalability.

One solution to mitigate the resource-intensive nature of deep
learning training is through the adoption of serverless computing
— a paradigm which promises improved efficiency, no management
overhead, and horizontal scalability. However, training deep learn-
ing models using serverless computing involves several challenges,
as the high computational requirements of such workloads do not
translate efficiently to this new world. To move toward a viable so-
lution, we create a purpose-build platform –KubeML– that tackles
these challenges.

KubeML extends the existing PyTorch programming model with
support for serverless access to GPUs while accounting for the
communication overhead between the functions typically encoun-
tered in the context of deep learning training. Our architecture
is capable of handling common machine learning problems and
outperforms TensorFlow on the same hardware in terms of training
time and scalability. While the GPU scheduling is still a prototype
and does not yet provide full virtualization of the accelerators, the
design of KubeML is geared towards a high degree of multi-tenancy
and thereby an increase of the utilization of these powerful but ex-
pensive resources. KubeML currently runs on Kubernetes and can
therefore be easily deployed to cloud-hosted Kubernetes clusters.
It does not run on commodity serverless platforms like Amazon
Lambda, though. The most obvious reason is the current lack of
GPU support.

A serverless cloud for distributed deep learning would also have
to allow the collocation of serverless functions with centralized
services (like our enhanced parameter server). The critical aspect of
that is to have the ability to do so without sacrificing locality, which
would further aggravate the issue of communication overhead. Ad-
ditionally, capabilities like RDMA support can further reduce the
communication latency for bulk transfers and make alternative
architectures like AllReduce more competitive. While access to
such capabilities and fine-grained control over them are currently
not state-of-the-art and would require a rethinking of how to offer
such capabilities without breaking the high-level abstraction of
serverless functions, the growing interest in leveraging the server-
les paradigm for deep learning makes it likely that more tailored
solutions will enter the market in the near future.
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