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ABSTRACT

In-context learning (ICL) achieves remarkable performance in various domains
such as knowledge acquisition, commonsense reasoning, and semantic under-
standing. However, its effectiveness deteriorates significantly in emotion detec-
tion tasks, particularly in fine-grained emotion recognition. The reasons behind
this decline still remain unclear. In this paper, we explore the underlying reasons
of ICL’s suboptimal performance through the lens of prototype theory. Our in-
vestigation reveals that ICL aligns with the principles of prototype theory when
applied to fine-grained emotion recognition tasks. According to prototype theory,
effective emotion recognition requires: Referencing well-represented emotional
prototypes that are similar to the query emotions, and making predictions based
on the closest emotional similarity. Building on this insight, ICL has three main
shortcomings: (i) It uses oversimplified single-emotion labels for prototypes, lead-
ing to inaccurate emotion representation. (ii) It references semantically similar but
emotionally distant prototypes. (iii) It considers all emotion categories as candi-
dates, leading to interference from irrelevant emotions and inaccurate predictions.

To address these shortcomings, we propose an Emotion Context Learning method
(E-ICL) for fine-grained emotion recognition. E-ICL first employs a dynamic
soft-label strategy to create multi-dimensional emotional labels for accurate pro-
totype representation. It then selects emotionally similar prototypes as refer-
ences for emotion prediction. Finally, it uses an emotion exclusion strategy to
eliminate interference from dissimilar emotions by selecting similar emotions as
candidates, resulting in more robust and accurate predictions. Note that our ap-
proach is implemented with the aid of a plug-and-play emotion auxiliary model,
requiring no additional training. Extensive experiments conducted on fine-grained
emotion datasets—EDOS, Empathetic-Dialogues, Empatheticlntent, and GoE-
motions—demonstrate that E-ICL significantly outperforms existing methods in
emotion prediction performance. Moreover, even when the emotion auxiliary
model accounts for less than 10% of the LLMs’ capacity, E-ICL consistently
boosts LLM performance by over 4% across multiple datasets.

1 INTRODUCTION

Achieving human-like intelligence necessitates that machines understand and interpret nuanced hu-
man emotions. Fine-grained emotion recognition (Liew & Turtlel [2016; |Abdul-Mageed & Ungar,
2017) aims to identify a wide range of subtle emotion categories in queries, making it a crucial
component in various downstream tasks such as empathetic dialogue systems (Rashkin et al.,[2019
Sabour et al. 2022; [Li et al., [2022} 2020} |Yang et al., |2023b; [Zhao et al., [2022)), sentiment anal-
ysis (Wang et al.l 2016} [Schuff et al. 2017; |Guzman & Maalej, 2014), and emotional support
systems (Saha et al) [2021; [2022; [Peng et al.l 2022} [Tu et al., 2022)). Earlier studies developed
small-scale models to identify fine-grained emotions in given queries (Kim et al.||2021b; Majumder
et al., 2020; | Xie et al., 2019; [Majumder et al., 2019; Ghosal et al.,|2019). While these approaches
were successful to some extent, they often lacked flexibility and generalizability, being limited by
the emotions and knowledge contained within specific datasets. Recent advances about in-context
learning (ICL) has shown promising performance across a wide range of tasks by prompting large
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Figure 1: Tllustration of prototype theory and its key steps. (a) Prototype theory: Queries closer
to the prototype are more easily classified accurately. (b) Key steps: Three steps when applying
prototype theory to fine-grained emotion recognition, including prototype construction, prototype
selection, and emotion prediction. Moreover, for detailed definitions of key terms like demonstration
and example, please refer to Section El

language models (LLMs) to interpret queries alongside relevant demonstrations (Rae et al., 2021}
Liu et al.l 2021} [Yang et al., 2023a; (Xiao et al., 2023; [Liu et al., 2021; Rubin et al., 2021} [Fu et al.,
2022), exhibiting remarkable flexibility and generalizability. However, ICL still struggles with fine-
grained emotion recognition with poor performance (Zhao et al.l [2023 [Schaaff et al.| |2023}; [Yang
et al.,|2024¢; |Qian et al., [2023)). Furthermore, its performance declines even more when the demon-
strations used are less relevant (Xu et al., 2024} [Liu et al.l [2021). For example, randomly selected
demonstrations from the training dataset perform worse than semantically relevant ones, and demon-
strations outside the training dataset fare even worse.

We conduct pilot experiments to explore the reasons behind ICL’s suboptimal performance in fine-
grained emotion recognition (Details shown in Appendix [A). We construct 9,728 samples from the
emotion recognition datasets, each consisting of a query accompanied by demonstrations. We then
prompt LLMs to predict fine-grained emotion categories for queries. The results reveal that queries
with higher semantic similarity to the demonstrations exhibited better performance, as shown in Fig-
ure[T(a). Interpreting the demonstrations as emotion prototypes, this finding suggests that ICL aligns
with prototype theory (Roschl |1978; Kamp & Partee, 1995, [Hampton| 2006), i.e., the closer a query
is to its corresponding prototype, the more accurately it can be recognized. According to proto-
type theory, accurate emotion identification requires selecting the emotionally closest prototype for
a given query and predicting the query’s emotion based on emotional similarity. As shown in Figure
[[[b), it involves three critical steps: (i) Constructing prototypes with accurate emotion representa-
tion. (ii) Choosing emotionally most similar prototype to serve as a reference. (iii) Predictining the
query’s emotion by assessing its emotional similarity with the chosen prototype. However, existing
ICL exhibit limitations in all three of these steps:

(i) Emotion Representation of Prototypes. ICL tends to use single emotion labels to repre-
sent the emotions of demonstrations (i.e., prototypes), which oversimplifies the complexity
of emotional states. For example, labeling the demonstration “This news makes me excited
and anticipatory” merely as “excited” fails to capture the full range of emotions expressed.

(i) Prototype Selection. ICL often selects prototypes based on semantic rather than emotional
similarity, resulting in prototypes with limited emotional relevance. For example, the pro-
totype “This news makes me anticipatory” provides little emotional insight for the query
“This news makes me sad,” even if they share semantic similarities.

(iii)) Emotion Prediction. According to prototype theory, robust and nuanced emotion pre-
diction requires focusing on emotions most similar to the prototype while eliminating in-



Under review as a conference paper at ICLR 2025

terference from dissimilar emotion types. In contrast, ICL treats all emotion categories
as potential candidates, making it difficult to exclude irrelevant emotions, which leads to
unstable and imprecise predictions.

To address the above limitations, we propose Emotional In-Context Learning (E-ICL) for fine-
grained emotion recognition. E-ICL follows the three key steps of prototype theory to enhance
emotion prediction: First, it applies a dynamic soft-labeling strategy to assign multiple emotion
categories to demonstrations, constructing accurate emotional prototypes. Second, E-ICL choses
emotionally similar examples as reference prototypes, rather than relying on semantic similarity.
Finally, E-ICL employs an exclusion-based prediction strategy. It eliminates the interference of
dissimilar emotions to prototypes, then guides LLMs to consider more similar emotions when pre-
dicting the query’s emotion. Importantly, E-ICL achieves this through a plug-and-play emotion-
capable auxiliary model, requiring no additional training. This design significantly enhances the
method’s flexibility and applicability.

We conduct extensive experiments on four fine-grained emotion recognition datasets: EDOS (We-
livita et al., 2021)), Empathetic-Dialogues (ED) (Rashkin et al.l [2019), EmpatheticIntent (EI) (We-
livita & Pul 2020), and GoEmotions (GE) (Demszky et al.l 2020). The experimental results demon-
strate that compared to ICL, E-ICL guides LLMs to perceive fine-grained emotions more accurately
with the assistance of different emotion-capable auxiliary models. Furthermore, more analyses show
that E-ICL exhibits stable performance across different auxiliary models and LLMs. Notably, even
when the performance of the auxiliary model is 10% lower than that of LLMs, the proposed method
still enhances LLMs with a 4% higher performance than ICL on multiple datasets, indicating its
stable advantage.

To sum up, our contributions are as follows: (i) To the best of our knowledge, we are the first to dis-
cover that In-Context Learning (ICL) aligns with prototype theory. This insight us to identify ICL’s
limitations in fine-grained emotion recognition tasks and propose E-ICL as a solution. (ii) We im-
prove ICL’s demonstration construction by developing strategies for retrieving emotionally similar
examples and constructing dynamic soft labels, offering a new approach to demonstration construc-
tion. (iii) We introduce an exclusive emotion prediction strategy, enhancing the robustness and
accuracy of emotion recognition. (iv) Experiments show that E-ICL exhibits an stable advantage in
fine-grained emotion recognition across multiple datasets.

2 RELATED WORK

Fine-grained Emotion Recognition. The goal of the fine-grained emotion recognition task (FER)
is to detect subtle emotion categories in the query (Liew & Turtle, [2016; Abdul-Mageed & Ungar,
2017). As emotions are primarily influenced by situational and cognitive factors (Gross et al., 2014
Siemer et al.l 2007} Moors et al.| |2013), existing works have mainly explored these two aspects and
can be divided into situation-based models and cognition-based models. Situation-based Models
mainly detect the subtle emotions implied in the query, without considering additional cognition
information. These Models have explored word-level emotions (Li et al.| [2020; Kim et al., [2021bj
Yang et al.;, 2023bj; Wang et al.,2024)), mixed emotions (Majumder et al.,|2020; Lin et al.,|2019)), and
sentence-level emotions (Xie et al., 2019; Majumder et al., 2019; |Ghosal et al.| [2019)). Cognition-
based models mainly enhance emotions through additional cognitive factors. These models have
explored aspects such as emotion causes (Gao et al., [2021}; [Kim et al., 2021a), and commonsense
knowledge (Sabour et al., [2022; |Li et al.| [2020; Yang et al., 2024a:b). Both types of models have
played an important role in the FER. However, these models are trained on specific datasets, lim-
ited by the corresponding data, and require certain computational resources and training time. In
contrast, we explore the FER task through In-Context Learning, without consuming computational
resources and training time.

In-Context Learning. In-Context Learning (ICL) improves LLMs’ performance by learning from
constructed demonstrations, circumventing the time and computational costs associated with fine-
tuning. One part of ICL enhances LLMs by breaking down the reasoning steps of demonstrations
into sub-steps and enabling LL.Ms to complete tasks by following these sub-steps (Wei et al., 2022;
Hendrycks et al.| 2021} |[Kazemi et al., 2022)). This type of ICL has demonstrated satisfactory results
in tasks such as arithmetic, commonsense, and symbolic reasoning (Rae et al.| 2021). However,
these methods involve a high cost of manual construction, and for some tasks, the objectives cannot
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be directly decomposed into sub-process problems. Another part of ICL, i.e., retrieval-based ICL,
mitigates this shortcoming by retrieving relevant demonstrations from training datasets. Retrieval-
based ICL primarily retrieves demonstrations that are similar to the query in terms of words (Rubin
et al., 2021 |Agrawal et al., 2022} [Luo et al., |2023)), semantics (Li & Qiu} 2023} [Liu et al., 2021}
Yang et al., 2023a; [X1ao et al., 2023} |Liu et al.,2021)), structures (Levy et al.,[2022), or other relevant
aspects (Fu et al.| 2022; |Gonen et al., 2022} |Drozdov et al., |2022). Most of these methods rely
on the semantics between the query and the demonstrations. Owing to the potential for semantic
similarity to result in emotion misunderstanding issues, we propose an emotion-similarity-based
retrieval approach and integrate it with an exclusionary emotion prediction mechanism to facilitate
more accurate emotion prediction.

3 PRELIMINARIES

Problem Formulation. We formalize the fine-grained emotion recognition task as follows: given a
query @, the objective is to construct an effective prompt that guides a large language model (LLM)
to accurately predict the fine-grained emotion category C expressed in (). Here, () represents a
sample in the test dataset, and C' denotes one of V. fine-grained emotion categories C.

Conceptual Clarification. To elucidate our methodology more effectively, we clarify several key
concepts. In our work, we equate prototypes with demonstrations. A demonstration comprises
multiple example-label pairs, where examples are samples drawn from the training set. Their rela-
tionship is depicted as follows:

demonstrations = prototypes = [example-labely, ..., , example-label;] (1)

4 METHOD

Overview. Our proposed E-ICL is an in-context learning method that constructs and references
emotionally accurate prototypes (i.e., demonstrations) for exclusionary emotion prediction, assisted
by an auxiliary model. As shown in Figure [2] E-ICL consists of the following three steps: (i) Pro-
totype Construction (Section .1). E-ICL employs a dynamic soft-label construction strategy to
build prototypes (demonstrations) with accurate emotional representations. (ii) Prototype Selec-
tion (Section4.2). It utilizes an emotion-similar example retrieval strategy to select prototypes that
are emotionally closer to the query as references. (iii) Emotion Prediction (Section 4.3). It cat-
egorizes the query’s emotions into those similar and dissimilar to the prototypes. It then prompts
LLMs to prioritize similar emotions while excluding the interference of dissimilar emotions, thereby
accurately predicting the emotion. Notably, the entire steps are facilitated by an emotion auxiliary
model without requiring model training, thus enabling efficient emotion prediction while minimiz-
ing computational resources and time demands.

Emotion Auxiliary Model. We leverage emotion probabilities and emotion vectors generated from
an emotion auxiliary model RoBERTaj;77  to enhance LLMs. Specifically, for an input Input €
{Dsest, Dirain}, we utilize RoBERTale;’;Ze to generate the corresponding emotion probabilities P
and emotion vector V.

P,V = RoBERTa;"?. (Input), 2)

large

where P € RNe and V € R7%8. The emotion probabilities P are used to construct dynamic soft
labels and implement the exclusionary emotion strategy, while the generated vector V' is used to
retrieve emotion-similar examples.

4.1 PROTOTYPE CONSTRUCTION

Dynamic Soft Label Construction. In line with prototype theory, we regard demonstrations as
emotional prototypes. Previous approaches (Li & Qiu} [2023; [Liu et al., 2021)) only assign a single
deterministic emotion label to the demonstrations. However, emotions are often complex and multi-
faceted in linguistic expression (Larsen & McGraw, [201 1} |Crivelli & Fridlund, 2019} [Trampe et al.,
2015)), thus such oversimplified labeling fails to capture this complexity, resulting in an inaccurate
representation of emotional prototypes. To address this, we propose a dynamic soft label construc-
tion strategy. Specifically, we first employ the emotion auxiliary model to predict the emotions e;

m;
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Figure 2: Overview of E-ICL. (1) E-ICL begins with a dynamic soft-label construction strategy
to endow prototypes (demonstrations) with accurate emotional representations. (2) It then employs
an emotion-similar retrieval strategy to select prototypes that are most emotionally relevant to the
query. (3) Finally, it combines these prototypes with an exclusionary emotion prediction strategy
to achieve robust and accurate predictions. Note that the entire steps, aided by the ROBERTaj 7,
emotion auxiliary model, require no additional training.

and their corresponding probabilities py,. for each sample s;,, € Dypain; We then select the top
k1 emotions with the highest probabilities. Different samples have varied predicted emotions and
probabilities, allowing for a more dynamic and nuanced emotion representation.

p’;’h ) v;’h = ROBERTG?;Z;&(ST”'L' )’ (3)
efa pf = Topkl (efm ) pfm )7 (4)

where p? ,p; € P,i € [1,ki],ef € C, m; € ng. nq is the number of samples in the training set.
Topg, is a ranking function that selects the top ks optimal emotions by their probabilities. k; is a
hyperparameter.

Subsequently, We generate dynamic soft labels by combining predicted emotions with ground-truth
labels, weighted by a hyperparameter «, so we have:

k1
v, = 1L —a) p; ife; = Ground-Truth Label,and i,j € [1,k1] (5)
ap; Others, j € [1, k1]

By combining emotions e; with their corresponding probabilities p}, we obtain the dynamic soft
label [,,,, for the sample s,,,. Incorporating the sample s,,, and its dynamic soft labels [,,,, we
derive the prototype d,,,, with more accurate emotion representation.

lmi - (61,]9/1)69(62,]9/2)@---@(62‘,]?2)7 (6)
dmi = (Smi7lmi)7 (7)

where & represents the concatenation operator, used to concatenate multiple label-probability pairs.

4.2 PROTOTYPE SELECTION

Emotion-Similar Example Retrieval. Although previous ICL approaches select semantically sim-
ilar prototypes, they can still be emotionally incongruent or even contradictory to the query, which
ultimately adversely affects prediction accuracy (Rosch & Mervis, [1975; Smith & Mindal 2002;
Minda & Smith}, 2001). To address this problem, we employ the emotion auxiliary model to retrieve
emotion-similar examples. Specifically, we map the query ¢; € Dyest and a sample S,,, € Dirgin

into vectors using ROBERTa;;¢ . and calculate their similarity score o; via the cosine function.
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We then rank the samples according to these similarity scores, and select the top ks highest-scoring
samples as the emotion-similar examples s;:

Pqi»Vq; = ROBERTG%?ZG (Qi)’ 3
om; = Cosine(vg,,v,, ), M; € ng, C))
s] :Topk2(017027"'70mi)7j S [17k2]7 (10)

where vy, , vy, € R7%®, represent the emotion vector representations of the query ¢; and the sample
Sm,» respectively. Topy, is a ranking function that selects the top ko optimal examples, with ko as
a hyperparameter. Combining the selected examples s; and the constructed dynamic soft labels [;,
we obtain the prototypes d,, as follows:

dj = (Sj,li)7 (11)
dg, = (dy ©da @ ... B dy,). (12)

4.3 EMOTION PREDICTION

Candidate Emotion Division. Previous studies (Yang et al.| [2023a}; Xiao et al.| [2023) attempt to
predict emotions directly from a large set of categories. These approaches makes the choices made
by LLMs abrupt, often resulting in suboptimal predictions. In contrast, when humans face complex
choices, they tend to first eliminate unlikely options and then carefully consider the remaining possi-
bilities (Tversky & Shafir, [1992; [Dhar,|1997; Shafir et al.,|1993; [Payne et al., 1993). Inspired by this
human decision-making process, we adopt an exclusionary emotion prediction strategy to enhance
emotion prediction.

Our strategy begins by dividing the emotion categories into “possible” and “impossible” sets. To
achieve this, we apply the emotion auxiliary model to predict the query’s emotions. We then select
the top k3 emotions with the highest probabilities and consider them as possible emotions, which
we place in the set Sp,s. The remaining emotions are considered as impossible emotions and are
placed in the set S;;,p, S0 we have:

€; = Top,(eq;,Pq.), 0 € [1, k3], (13)
gi € Sp087 Simp U Spos = 07 Simp N Spos = ®7 (14)

where ¢€;,e4, € C,pg, € P. €4, and py, are the emotion categories and probabilities predicted by
the auxiliary model for the query ¢;, respectively. e; represents the similar emotions. T'opy, is a
selection function, and k3 is a hyperparameter.

Exclusionary Emotion Prediction. Based on the above information, we predict fine-grained emo-
tions in an exclusion-based strategy. Specifically, we prompt LLMs to comprehend the query and
prototype, prioritizing emotions from the possible emotion set S, before considering other emo-
tions for prediction. The emotions in this set are similar to those expressed in the query, while the
latter are similar to the prototype emotions. Indirectly, the emotions in the possible emotion set
are likely to exhibit a high similarity to the prototype emotions. Subsequently, by combining the
prototype and the highly similar candidate emotion set, we effectively eliminate interference from
irrelevant emotions, thereby achieving more accurate and robust prediction of the query’s emotion.

Oqi = LLM(Qia dq,- > Sp057 Szmp) (15)

5 EXPERIMENTS

Emotion Auxiliary Model and Datasets. To validate E-ICL, we conduct experiments using dif-
ferent emotion auxiliary models, ROBERTaj; 7, on various datasets Dyype, including EDOS (We-
livita et al., |2021), Empathetic-Dialogues (ED) (Rashkin et al., [2019), EmpatheticIntent (EI) (We-
livita & Pu, 2020), and GoEmotions (GE) (Demszky et al., 2020). Here, emo € {FEI,GE}, and
type € {EI,GE,ED,EDOS}. Note that our goal is to verify the performance of E-ICL with-
out fine-tuning, so the auxiliary model used during inference should not have been fine-tuned on
the respective dataset, i.e., emo # type. Simultaneously, the emotion categories predicted by the
auxiliary model do not fully align with those of the datasets, rendering the exclusion strategy inap-
plicable. To address this issue, we adjust the datasets according to the emotion auxiliary model. For
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El

Table 1: Results on the datasets when using the emotion auxiliary model RoOBERTa; ;. . .

EDOS ED GE
LLM Models Acc F1 Acc F1 Acc F1

- RoBERTaZ 5171 5256 4896 4831 24.78 19.64

large
Zero-Shotg 25.79 25.10 41.73 36.70 27.65 27.67
Claude-haiku ICL 36.79 38.61 4947 47.01 36.6 33.04
E-ICL 5423 52.78 5398 49.2 38.05 36.80
Zero-Shot 346 34.14 364 29.82 33.17 29.70
ChatGPT-turbo ICL 39.14 40.04 42.87 4143 41.37 32.81
E-ICL 5445 5437 51.56 4932 46.1 37.19

example, for the RoOBERTa”L ge Auxiliary model (Welivita & Pu, 2020) and the GoEmotions dataset,
we first identify the emotion categories they have in common. Then, we select data from GE that

falls within these common emotion categories for experimentation. After this adjustment, the avail-

able datasets for the RoOBERTa/?. ge Auxiliary model are GE, ED, and EDOS, with 19, 32, and 41
GE

emotion categories, respectively. For the RoBERTa;;" . I]auxiliary model, the available datasets are
El, ED, and EDOS, with 19, 17, and 19 emotion categories, respectively.

Evaluation Metrics. We utilize accuracy and macro-F1 for evaluating the methods, following the
conventional approach. Accuracy measures the proportion of correctly predicted samples over the
total samples. Macro-F1 is the harmonic mean of precision and recall, comprehensively consider-
ing both metrics. It accounts for the F1 score of each class and exhibits robustness against class
imbalance.

Baselines. E-ICL leverages emotion auxiliary models to enhance the performance of large lan-
guage models (LLMs) on fine-grained emotion recognition tasks. To validate the proposed method,

we first employ the emotion auxiliary models ROBERTaﬁ{,ge and ROBERTaﬁ*;‘Ege as baselines.

RoBERTa/;! . and RoBERTaf;” = are RoBERTa models fine-tuned on the EI and GoEmotions
emotion datasets, respectively. Secondly, we also select different large language models, namely
ChatGPT3-turbo and Claude3-haiku, as baselines. On these LLMs, we construct zero-shot and se-

mantic similarity-based ICL, denoted as Zero-Shot and ICL, respectively.

Implementation Details. Experimental details are provided in Appendix

6 RESULTS AND ANALYSIS

6.1 MAIN RESULTS

Table [1| presents the results using the RoOBERTa”’large emotion auxiliary model. E-ICL signifi-
cantly outperforms Zero-Shot and ICL methods, particularly on datasets with fine-grained emotions
like EDOS and ED. This suggests E-ICL’s superior ability to perceive and recognize nuanced emo-
tions in queries. E-ICL also shows substantial improvements over the ROBERTa”/[arge model
across all datasets. Notably, while the emotion auxiliary model’s performance varies considerably
between datasets, E-ICL maintains consistent performance, indicating greater robustness.

Tableshows results using the RoBERTalC;Ege emotion auxiliary model. E-ICL significantly outper-
forms baselines on the EDOS dataset, demonstrating its advantage in fine-grained emotion recog-
nition. ChatGPT-based E-ICL surpasses baselines on both ED and EDOS datasets, proving its ef-
fectiveness. However, Claude-based E-ICL doesn’t show a clear advantage on these datasets. We
attribute this to noise in the datasets, such as mixed English and Chinese characters in the EI dataset.
This noise leads to inaccurate dynamic soft labels and eliminated emotion categories from the emo-
tion auxiliary model. Additionally, Claude exhibits lower robustness compared to ChatGPT (detailed
in Appendix [C). Consequently, the less robust Claude-based E-ICL underperforms when faced with
noisy data.

1https ://huggingface.co/mrm8488/roberta-large-bne-finetuned-go_
emotions—es
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Table 2: Results on the datasets when using the emotion auxiliary model RoBERTaifge.

EDOS ED EI
Acc F1 Acc F1 Acc F1
- RoBERTa;" . 4325 43.63 40.64 40.07 4124 41.67

Zero-Shot ~ 4287 37.83 5322 5181 53.64 50.57

LLM Models

Claude-haiku ICL 55.73 529 61.81 58.88 67.85 64.81
E-ICL 62.16 57.74 62.08 5799 66.16 62.04

Zero-Shot 54.72  50.66 57.62 5537 5781 5424

ChatGPT-turbo ICL 56.99 5433 58.18 56.27 61.49 5528
E-ICL 604 57.00 6085 57.65 63.05 5991

6.2 ANALYTICAL EXPERIMENTS

Ablation Studies. Figure [3| presents ablation studies using the RoBERTagi'?ge emotion auxiliary
model on the ED, EDOS, and GE datasets. Here, w/o DSL, w/o ESE, and w/o EEP represent the
absence of dynamic soft label construction (Section [4.1]), emotion-similar example retrieval (Sec-
tion[4.2)), and exclusionary emotion prediction strategies (Section .3), respectively. For the EDOS
and ED datasets, removing any module decreases model performance, demonstrating that all three
components contribute to accurate fine-grained emotion recognition. Conversely, on the GE dataset,
removing DSL and EEP improves performance compared to the complete model. This is attributed
to the dataset’s significant noise, including mixed Chinese and English text and emoticons. Such
noise leads the emotion auxiliary model to generate inaccurate dynamic soft labels and incorrectly
eliminated emotions, resulting in suboptimal model performance.

L__|E-ICL [ JEICL
60 1 L__|w/oDSL & EEP | |wloDSL & EEP
_ _ wlo DSL & ESE wio DSL & ESE
O e A w/o DSL 60 4 w/o DSL
40+ S ull
3 g a0 L
T T
> — >
2 L
@ @
£ 20 £
20
T 0 T T T
Acc(EDOS)F1(EDOS) Acc(ED) FL(ED) Acc(GE) F1(GE) Acc(EDOS)FL(EDOS) Acc(ED) FL(ED) Acc(GE) F1(GE)
(a) Claude-haiku (ROBERTaf,,.) (b) ChatGPT-turbo (ROBERTaf )

Figure 3: Ablation experiments when using the emotionn auxiliar model RoBERTa” ! ge-

Verifying the Contribution of Emotion Auxiliary Model to Dynamic Soft Labels. We investigate
the impact of parameter o on model performance. o determines the weight of emotion probabilities
predicted by the emotion auxiliary model in dynamic soft labels. A higher « indicates greater influ-
ence from the auxiliary model. We examine two scenarios: one where the auxiliary model’s emotion
capability exceeds the LLM’s, and another where it’s weaker (details in Appendix [D). Figure ffa)
illustrates the former case, while Figure d[b) shows the latter. When assisted by a strong emotion
auxiliary model, the emotion auxiliary models consistently enhance LLM performance, with mini-
mal sensitivity to « variations. This is because only modulates emotion intensities (p}) in dynamic
soft labels (equation[6), not emotion types (e;). Since the emotion types already accurately represent
the prototype of the example, they remain uninfluenced by a. However, when paired with a weaker
auxiliary model, performance initially increases and then decreases as o grows. This primarily oc-
curs because the emotion types produced by the weaker auxiliary model are not highly accurate.
A moderate consideration of the auxiliary model’s judgments can lead to improved performance,
whereas excessive reliance may be affected by the inaccurate judgments of the emotion auxiliary
model.
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Figure 4: Results of E-ICL experiments across varying « values. Parenthetical elements indicate

(dataset, emotion auxiliary model, LLM type). C and G denote Claude-haiku and ChatGPT, respec-
tively.

Impact of Dynamic Soft Label Quantity. We assess the impact of varying the number of dynamic
soft labels on E-ICL, with results shown in Figure[5] We categorize the experiments into two groups
based on the emotional capability of the auxiliary models used, from high to low. Figure [5(a)
depicts E-ICL results using auxiliary models with stronger emotional capability, while Figure @b)
shows those with weaker capability. Comparing the two groups, we observe that as the number of
soft labels increases: (1) The performance of the stronger capability group initially decreases, then
improves. (2) The weaker capability group reaches a peak (or starts at a peak) before declining.
These findings suggest that a moderate number of dynamic soft labels enhances emotion prediction
in E-ICL. However, when emotion auxiliary models underperform compared to LLMs, increasing
the number of emotion types for prototype representation reduces accuracy. This is due to the
potential for misrepresentation when using an excessive number of emotion categories. For example,
representing a prototype that inherently contains three emotions with ten emotion types can lead to
inaccurate characterization. This misrepresentation ultimately degrades E-ICL performance.
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Figure 5: Experimental results of E-ICL based on different k7, where N is the number of emotion
categories in the dataset.

Impact of Candidate Emotion Quantity. We evaluate the impact of varying the number of can-
didate emotions (k3) on the exclusionary emotion prediction strategy. The experiments are divided
into two groups based on the emotional capability of the auxiliary models: Figure [6(a) shows re-
sults from stronger emotion auxiliary models, while Figure [[b) depicts those from weaker ones.
The experimental results show that considering partial emotion categories instead of all categories
during the prediction process leads to better performance on most datasets. This demonstrates the
effectiveness of the exclusionary emotion prediction strategy.
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Figure 6: Experimental results of E-ICL based on different k3, where N is the number of emotion
categories in the dataset.

More Analysis. To further explore E-ICL, we conduct case studies, as detailed in Appendix E}
Concurrently, we analyze the robustness of different LLMs to the introduced noise, as detailed in

Appendix [C]

7 DISCUSSION

Conclusion. This paper revealed that In-context learning (ICL) aligns with prototype theory for fine-
grained emotion recognition. Based on prototype theory, we proposed Emotion In-Context Learn-
ing (E-ICL), which improved ICL using three steps: E-ICL first employs dynamic soft labeling to
construct prototypes with more accurate emotion representations. It then retrieves examples with
emotions similar to the query as reference prototypes. Finally, E-ICL utilizes an exclusionary emo-
tion prediction strategy to eliminate interference from emotion types dissimilar to the prototypes,
identifying the most similar emotions as candidates for predicting the query emotion. Experimental
results and analysis have demonstrated that E-ICL achieves significant advantages on fine-grained
recognition without requiring additional computational resources and training time.

Limitations. This paper has the following limitations: (i) Based on prior research (Xu et al.| [2024;
Liu et al.,[2021])), ICL is likely to conform to prototype theory across a broader range of tasks as well.
(i1) While semantically similar example-label pairs to the query may not be the optimal choice for a
wider range of tasks, we did not explore this aspect in our study. (iii) The exclusionary prediction
strategy benefits ICL’s accurate and robust judgments by avoiding interference from irrelevant cat-
egories, and it is likely applicable to multi-classification tasks. However, due to resource and time
constraints, we do not further explore these limitations in this paper.

Future Work. In the future, we will investigate the following: (i) Explore whether ICL conforms
to prototype theory in more tasks; (ii) Explore better methods for constructing example-label pairs;
(iii) Study the applicability of the exclusionary prediction strategy in more tasks.
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A PILOT EXPERIMENTS

We conduct experiments on four fine-grained emotion recognition datasets: EDOS, Empathetic-
Dialogues, EmpatheticIntent, and GoEmotions. The results are shown in Figure Taking
Empathetic-Dialogues as an example, we first construct eight sets of examples, with each set con-
taining five example-label pairs. Second, we treat the constructed example-label pairs as demonstra-
tions and map them into vectors using RoBERTa,,,.;.. Subsequently, for each demonstration, we
select 1216 queries based on similarity scores. We then assemble the demonstrations and queries as
inputs to prompt the LLMs for emotion prediction. To eliminate interference from different LLMs,
we perform experiments on both ChatGPT-turbo and Claude-haiku.

0.6
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T T 1
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Results on ChatGPT-turbo Results on Claude-haiku

Figure 7: Results of the pilot experiment, where the red line represents the similarity between the
example and the query, and the blue line denotes the ICL’s emotion accuracy.
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Table 3: Comparisons between ROBERTa”Z  and LLMs on different datasets, where positive

large
values indicate ROBERTa/"! g outperforming LLMs, and negative values indicate the opposite.
. EDOS ED GE
Comparison

Acc  Macro-F1 Acc  Macro-F1  Acc  Macro-F1
RoBERTaZZ vs. Claude 25.92 27.46 7.23 11.61 -2.87 -8.03

large

ROBERTa”. vs. ChatGPT 17.11 18.42 12.56 18.49 -8.39 -10.06

large

B IMPLEMENTATION DETAILS

In our experiments, we employ two emotion auxiliary models, RoBERTa{ﬂ . and RoBERTaﬁlfge,
with the former being used for validation on the GE, ED, and EDOS datasets, while the latter is used
for EI, ED, and EDOS. During the construction of the instance-label pairs, the example number is
set to ko = 5. Meanwhile, the fusion weight for the soft labels is & = 0.2. Additionally, the number
of soft labels k; and the number of impossible emotions k; are influenced by variations in data,
emotion auxiliary models, and LLMs. Consequently, we provide a detailed analysis and discussion

of these factors in section

C APPENDIX: ROBUSTNESS ANALYSIS OF LLMS

To validate the robustness of LLMs to E-ICL, we conduct the following experiments. First, we select
Model RoBERTaﬁfge as the emotion auxiliary model. Since this model performs relatively poorly
on the respective EDOS, ED, and EI datasets, it will introduce more noise, which is beneficial for
robustness experiments. Next, we select different numbers of candidate emotions to validate the
robustness of Claude-haiku and ChatGPT-turbo. The experimental results are shown in Figure 3.
The x-axis represents the number of candidate emotions, and the y-axis represents the metric values.
As shown in Figure[8] as the number of candidate emotions (and noise) increases, the metric values
of Claude-haiku fluctuate significantly, while those of ChatGPT-turbo remain stable within a certain
range. This indicates that ChatGPT-turbo is more robust to the noise introduced by E-ICL.

D APPENDIX: GROUPED ANALYSIS OF EMOTION AUXILIARY MODELS

As shown in Tables [3]and ] the emotion auxiliary models exhibit different performance across dif-
ferent datasets. Ignoring these differences and directly analyzing the experiments would lead to un-
reliable results. To investigate their impact, we divide the emotion auxiliary models into two groups:
(a) those that significantly outperform LLMs, and (b) those that underperform LLMs. Specifically,
we find that when using RoBERTa/?. ge on the EDOS and ED datasets, its performance is signif-
icantly better than Claude-haiku and ChatGPT-turbo, while on the GE dataset, it underperforms
compared to them. Therefore, we categorize the experiments based on ROBERTa. ge and con-
ducted on the EDOS and ED datasets as the (a) group experiments, while the experiments on the ED
dataset are categorized as the (b) group experiments. Simultaneously, we adopt the same approach
to divide the experiments based on ROBERTa{;”" . Since ROBERTaf;” . does not significantly out-
perform LLMs on the EDOS, ED, and GE datasets, we categorize its experiments as the (b) group.
When conducting parameter analysis experiments, due to the performance differences between the
emotion auxiliary models and LLMs, the (a) group experiments and (b) group experiments exhibit
different characteristics. This division of experiments better shows the impact of the emotion auxil-

iary models.

E APPENDIX: CASE STUDY

To demonstrate the advantages of E-ICL, we conduct a case study. The analysis results are shown
in Table 5] The query of the 1st case expresses the emotion of “caring.” The Zero-Shot method
cannot accurately perceive this fine-grained emotion. In-context learning (ICL) predicts the query’s
emotion by retrieving and understanding semantically similar examples. However, the emotions of
the semantically similar examples are diverse, such as “agreeing,” “caring,” and “grateful.” Due to
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Figure 8: Experimental results of RoBERTalelf?ge based E-ICL on different k3, where N is the number
of emotion categories in the dataset.

Table 4: Comparison between ROBERTaZY and LLMs on different datasets, where positive values

large
indicate RoBERTagfge outperforming LLMs, and negative values indicate the opposite.
Comparison EDOS ED El
Acc Macro-F1 Acc  Macro-F1 Acc  Macro-F1
RoBERTaﬁl;Ege vs. Claude 0.38 5.8 -12.58 -11.74 -12.4 -8.9
RoBERTalCZ;’fge vs. ChatGPT -11.47 -7.02 -16.98 -15.3 -16.57 -12.57

the difficulty in distinguishing among various emotions, ICL fails to accurately judge the emotion
of the query, leading to an incorrect prediction of “encouraging.” In contrast, E-ICL predicts the
emotion of the query by retrieving and understanding examples with similar emotions, accurately
predicting the query’s emotion as “caring.”

In the second case, the query expresses the emotion of “jealous.” Similarly, the Zero-Shot method
cannot accurately perceive this subtle emotion type. In the ICL method, the retrieved examples
semantically similar to the query have diverse emotions, making it difficult for the LLM to accurately
determine the emotion type based on these examples. In contrast, E-ICL retrieves three examples

with similar emotions, enabling the LLM to make a more accurate prediction combined with these
examples.
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Table 5: Two case study of E-ICL and Benchmarks.

Query Hi , Tommy . I'm delivering a gift to Addie that’s going to help get her back on
track. Emotion: Caring
Methods E-ICL ICL Zero-Shot
Example 1 | When Mr Winters died | It’s your turn, mum .</s>I | —
they didn’t have a replace- | know! Emotion: Agreeing
ment. I decided I'm going
to rescue these poor kids.
Emotion: Caring
" Example 2 | My grandmother’s not do- | Hey,  there, Josey ! [-
ing so wel, so [ took a year | </s>We’re going to Santo
off from school to help her | Rio! Emotion: Excited
out. Emotion: Caring
"~ Example 3 | Pancho has a good heart. | Good morning, Mr. Stark | -~~~
He feeds his little pet. | . </s>I brought you some
Emotion: Caring homemade cookies. Emo-
tion: Caring
" Example 4 | We came to the prisoners. | T have something for you. | -~~~
Emotion: Caring You’ll be heard at Sala-
manca University . </s>
In a week! Emeotion: An-
ticipating
" Example 5 | We built Graciela’s ca- | There you go, free sweets | —
sitas for abandoned women | up for grabs. All you’'ve
and children who needed | got to do is get them out of
a place to stay. Emeotion: | the tube . </s>We placed
Sentimental everything needed within
reach. Emotion: Grateful
Prediction | Caring Encouraging Hopeful
Query I think she wants all the women around her to look fat. Emotion:
Methods E-ICL ICL Zero-Shot
Example 1 | All the women are around | Everybody , listen ! Mr | —
me in my office all day | Anderson wants his team
long, she’s jealous over | to play us. </s>A Japan-
some foreign country | America All-Star game!
I’ve never been to before. | Emotion: Anticipating
Emotion:
" Example 2 | Kimura . Jealousy makes | Natasha tries to get me out | —
me feel much younger. | here once a week. Emo-
Emotion: tion: Annoyed
" Example 3 | Do you think my body is | Sanga ... Come and see | -
beautiful ? </s>I hate | her son do this . Emetion:
beautiful bodies . Emo- | Proud
tion: Disgusted
" Example 4 | See those beauties ? | According to my source, | —
</s>Know them ? Nope | he’s your gigolo . </s>I
</s>1 wish! The one | thought that men were the
in red is hot. Emetion: | only ones who wanted to
Hopeful own women. But even
young women have their
personal toys. Emotion:
"~ Example 5 | They look like they’re dar- | He says he’s waitin” forthe | -~~~
ing each other to move in. I | presents. Emotion: Antic-
hate that when a guy comes | ipating
up to hit on you while his
friends watch. Emeotion:
Prediction Annoyed Disgusted
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