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ABSTRACT

Controllable image generation is a fundamental problem in machine learning and
computer vision. Attribute-guided generative models enable explicit control over
image content using labeled attributes, but often struggle to disentangle individual
attributes and mitigate unwanted correlations—for example, adding eyeglasses
may inadvertently alter a person’s perceived age. In this work, we propose a
novel attribute-guided generative framework designed to address these challenges.
Our method learns a mask-based representation for each attribute label, encour-
aging disentanglement by limiting each attribute’s influence to a small subset of
the representation dimensions, while still preserving the information necessary
to represent the label. To address attribute correlations, we incorporate classical
causal discovery techniques to model inter-attribute dependencies and introduce a
causal conditioning strategy that explicitly reduces undesirable correlations. Im-
portantly, we provide theoretical guarantees showing that our method can recover
the latent generative factors associated with individual attributes. Extensive experi-
ments on diverse datasets demonstrate that our framework substantially improves
attribute-level controllability and interpretability, outperforming existing baselines
on attribute-guided image generation tasks.

1 INTRODUCTION

Controllable image generation has become a central focus in generative modeling, enabling appli-
cations such as photo editing, creative content design, and data augmentation. Unlike traditional
generative models that produce arbitrary images from random noise, controllable models guide the
generation process using high-level semantic cues, allowing outputs to better reflect user intent.

Conditional generative models enable such control by conditioning image synthesis on auxiliary
inputs such as class labels (Karras et al., 2020; 2022; Dhariwal & Nichol, 2021; Peebles & Xie, 2023),
textual prompts (Rombach et al., 2022; Esser et al., 2024; Labs, 2024b; Betker et al., 2023; Ramesh
et al., 2022; Saharia et al., 2022), or structural signals like depth maps (Zhang et al., 2023; Zhao
et al., 2023). In particular, text-to-image generation has advanced rapidly in recent years, driven by
large-scale training and powerful diffusion-based architectures. Large-scale models such as Stable
Diffusion (Rombach et al., 2022; Esser et al., 2024) have demonstrated impressive flexibility, visual
quality, and semantic richness, generating diverse and realistic images directly from natural language
prompts. These models currently represent the state of the art in open-ended conditional generation.

However, natural language can sometimes introduce ambiguity due to its contextual and subjective
nature. Descriptions like "slightly smiling" or "partially bald" may be interpreted inconsistently
across models or prompts, which can limit reliability in scenarios that require precise and repeatable
control (see Table.3 and Fig.4). In this context, attribute-guided generation offers a complementary
alternative by using explicit, structured supervision. Attribute-based models provide more consistent
control over specific visual features, which is particularly useful in applications where interpretability,
and fine-grained controllable generation are important.

Nonetheless, attribute-guided generative modeling introduces two critical challenges: disentangle-
ment and eliminating unwanted correlations.

Firstly, given attribute labels, a key challenge is how to ensure the generative model learns disentangled
representations for individual attributes. It is essential to ensure that modifications of one attribute
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do not unintentionally influence others; for instance, changing a background attribute should not
inadvertently alter other attributes like dog identity (see Fig. 5). Although recent advancements in
Generative Adversarial Networks (GANs) (Hou et al., 2024; Dobler et al., 2022; Zhang et al., 2024),
diffusion models (Yu et al., 2024; Peebles & Xie, 2023; Ma et al., 2024), and autoregressive models
(Tian et al., 2024; Sun et al., 2024; Wu et al., 2024) have exhibited strong generative performances,
these methods are primarily class-conditioned and are not explicitly optimized for fine-grained
attribute disentanglement. Consequently, they offer limited support for precise, interpretable control
over individual attributes. Several efforts have been made to generate images with specific attributes
(Shen et al., 2020; Patashnik et al., 2021; Li et al., 2024). However, these approaches lack theoretical
guarantees that the discovered directions in the latent space consistently correspond to the intended
target attributes.

Secondly, attribute labels often exhibit inherent correlations within training datasets. For instance,
attributes such as eyeglasses and age are frequently correlated, making independent generation
challenging. Prior works, like InterfaceGAN (Shen et al., 2020), attempt to mitigate such correlations
by projecting attribute vectors onto orthogonal directions. However, this approach presupposes
independence between attribute subspaces and relies on linear classifiers, which may inaccurately
reflect complex attribute correlations and inadvertently result in unwanted modifications (Chen et al.,
2022) (see first column in Fig. 3). Thus, a significant question remains: How can generative models
effectively isolate and eliminate these correlations to facilitate truly independent and robust attribute
manipulation?

Our Contribution. In this paper, we propose an attribute-guided visual generative model that
addresses two key challenges in controllable image generation: representation disentanglement and
attribute correlation elimination. We begin by explicitly modeling the underlying data-generating
process and introduce a mask-based representation learning method for attribute disentanglement.
Specifically, we incorporate learnable masks into the representation learning process to ensure that
each attribute label influences only a minimal subset of the representation dimensions, while still
retaining all the information necessary to represent the label.

To further reduce unwanted correlations among attributes, we leverage classical causal discovery
methods to infer the causal structure within the label space. Using this structure, we introduce a novel
causal conditioning technique that learns attribute-specific representations conditioned only on their
causal parents, thereby isolating each attribute’s influence more effectively.

Importantly, we provide theoretical guarantees showing that our model can accurately recover latent
factors uniquely associated with individual attributes. Extensive experiments on attribute-guided
generation tasks demonstrate that our method significantly outperforms existing baselines in both
controllability and visual quality.

2 RELATED WORK

Causal Representation Learning The goal of causal representation learning (CRL) is to reconstruct
the true generation process of the data (Schölkopf et al., 2021). It can be viewed as a combination
of disentanglement (Hyvärinen et al., 2023), representation learning (Bengio et al., 2013), and
causal discovery (Spirtes et al., 2001; Glymour et al., 2019). Identifiability plays an important role
in CRL. When the distributions of the estimation model and real data are matched, the learned
latent variable is shown to be an invertible transformation of the true factor, i.e., the estimation only
contains the information about the true factor (we call the variable identifiable). Learning concepts
for compositional image generation is highly related to CRL as the identifiability helps achieve many
desirable properties of the estimation model, such as robustness to outliers. For instance, CRL has
been shown to be effective in many downstream classification tasks (Brehmer et al., 2022; Mitrovic
et al., 2020; Wang et al., 2022; Lu et al., 2021). Recently, it has been shown that CRL can improve
large language models Rajendran et al. (2024). In this paper, we present a framework for identifiable
latnt variables and explore how CRL benefits attribute-guided image generation.
Attribute-guided Generation and Controllable Generation. Attribute-guided image generation
is a key task in controllable image synthesis. Early methods build on conditional GANs (Mirza, 2014),
generating images conditioned on class or attribute labels. Augmentation-aware GANs like DiffAug
(Zhao et al., 2020), AugGAN (Hou et al., 2024), and ANDA (Zhang et al., 2024) improve training
robustness by incorporating data augmentations and reducing label leakage. Causality-inspired
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Figure 1: Overview of our mask-based framework for attribute-guided image generation (see Sec-
tion 3.1 for details). Given noise samples ϵ from a prior distribution N (0, I), the model generates
an attribute-invariant representation z̃c and attribute-specific representations z̃i, which may contain
redundant information. A learnable mask mi is applied to modulate the contribution of each attribute
Ti, ensuring minimal influence from the attribute label Ti to inputs. All masked representations ẑi
are combined and passed into the generator ĝ to synthesize the output image x̂.

models such as CausalGAN (Kocaoglu et al., 2017) explicitly model label dependencies via causal
graphs, but scale poorly with many attributes due to their need to generate full label distributions
using auxiliary GANs. In contrast, our method leverages causal structure only for representation
learning, avoiding this complexity. We compare our approach to CausalGAN both theoretically
and empirically in the appendix. Latent-based approaches guide attribute control by manipulating
latent representations. Some methods generate latents from attribute labels (Li et al., 2023; Suwała
et al., 2024; Nie et al., 2021), while others learn attribute directions in latent space (Shen et al.,
2020; Wu et al., 2021; Ling et al., 2021). InterfaceGAN (Shen et al., 2020), for instance, uses linear
SVM boundaries for manipulation. In diffusion-based models, WPlus (Li et al., 2024) incorporates
StyleGAN latents into the sampling process, while ConceptSlider (Gandikota et al., 2024) uses paired
data to train LoRA-based adapters (Hu et al., 2022). Other methods enable attribute control via text
prompts (Patashnik et al., 2021; Wei et al., 2023; Huang et al., 2023).

3 ATTRIBUTE-GUIDED CAUSAL IMAGE GENERATION

Given a set of images x and their corresponding attribute labels {Ti}mi=1—obtained from pretrained
attribute classifiers, advanced multimodal large models (Hurst et al., 2024; Yang et al., 2024), or in
cases with weak or missing labels as discussed in Appendix B—our goal is to develop a generative
model that produces high-fidelity images faithfully aligned with the specified attributes. An overview
of the proposed approach is shown in Fig. 1.

To achieve this, we address two fundamental challenges:

Problem 1: Learning disentangled representations. To effectively model and manipulate multiple
attributes, it is essential to learn disentangled representations for each attribute that isolate the underly-
ing latent factors of variation specific to their corresponding labels. Without proper disentanglement,
representations can become entangled, resulting in unintended changes to unrelated features. For
example, modifying the shoe type from flat to heels may also change the color, as illustrated in the
last row of Fig. 5 (first two columns).

Problem 2: Mitigating unintended influence from correlated attributes. Attribute labels in real-
world datasets often exhibit causal or spurious correlations. These dependencies can cause changes
in one attribute to inadvertently influence others. For example, the attributes age and eyeglasses are
commonly correlated—older individuals are more likely to wear glasses. Consequently, setting the
eyeglasses attribute from 0 to 1 may unintentionally alter the apparent age in the generated image (see
Fig. 2(a)). This entanglement poses a major challenge for fine-grained, controllable image generation.

3.1 LEARNING DISENTANGLED REPRESENTATIONS VIA MASKING

To address both challenges—disentangling representations and mitigating unwanted correlations—it
is essential to reconsider how attribute labels are incorporated into generative models. In particular,
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(a) Without causal modeling. (b) Causal modeling
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Step 1: causal discovery Step 2: apply causal condition
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Figure 2: The Necessity of Causal Modeling. Modifying eyeglasses (E) without accounting for the
causal relationship with age (A) can unintentionally change age-related features. By first discovering
the causal direction between A and E, and then applying causal conditioning, we can add eyeglasses
without affecting perceived age (see Section 3.2).

we begin by analyzing why standard approaches to conditional generation often fail to produce
properly disentangled representations.

A common approach to attribute-guided generation treats attribute labels as class indicators and
trains a class-conditioned generative model. For example, given a random noise vector ϵ and an
attribute label vector T, one can train a conditional generative adversarial network (GAN) using the
formulation x = G(ϵ,T), where G is the generator. However, such models tend to learn entangled
representations of the attributes in T. As a result, modifying a single attribute may lead to unintended
changes in other attributes (see Fig. 5). Moreover, these models offer no theoretical guarantees that
the learned latent factors align with the true, independent sources of variation in the data.

Data generating process. To address these limitations, we aim to learn a separate latent representa-
tion for each attribute Ti. Without proper constraints, many models can fit the data distribution but
still produce entangled representations. To reduce this ambiguity, we assume the data is generated
according to the following process:

zi := f1i (ϵi)Ti + f0i (ϵi)(1−Ti);

x := g(zc, z1, z2, . . . , zm),
(1)

where ϵi is sampled from a prior distribution such as N (0, I), , and f1i , f0i are transformation
functions associated with the i-th label. In this formulation, zc represents the attribute-invariant
component shared across all labels (e.g., the orientation of a human face). Each zi ∈ Rdi is the
latent representation for attribute Ti ∈ {0, 1}, with dimensionality di. For simplicity, we denote the
complete latent code as z = (zc, z1, z2, . . . , zm).

Estimation model. Informed by the underlying data generation process, we first construct an
attribute-invariant representation corresponding to the true latent factor zc from Eq. 1:

z̃c = f̂c(ϵi), (2)

where f̂c is a shared function across all attribute labels. As a result, the output z̃c carries no information
about any specific attribute label Ti (step 1b in Fig. 1).

Next, we construct an initial attribute-specific representation for each label Ti:

z̃i = f̂1i (ϵi)Ti + f̂0i (ϵi)(1−Ti), (3)

where z̃i captures information specific to the attribute Ti (step 1a in Fig. 1). However, the amount of
information each attribute conveys may vary significantly—for instance, the attribute age is likely
to encode more complex features than smile. Moreover, if z̃i has high dimensionality, it may
inadvertently influence the representations learning of other attributes, such as z̃j for Tj , leading to
undesired changes when only Ti is intended to be modified.

To address this, we propose a mask-based estimation model. Specifically, we introduce a learnable
mask mi for each attribute Ti and compute the final representation for attribute Ti as:

ẑi = mi ⊙ z̃i + (1−mi)⊙ z̃c, (4)
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where⊙ denotes element-wise multiplication (step 2 in Fig. 1). This formulation enables us to control
the degree to which each attribute affects the representation. For example, if mi = 1, then ẑi = z̃i,
meaning all elements of ẑi are influenced by attribute Ti. Conversely, if mi = 0, then ẑi = z̃c,
which is attribute-invariant and ensures that modifying Ti has no effect on the output.

Finally, as shown in the final step of Fig. 1, we input all the masked representations into a generator g̃
to produce the output image x̂:

x̂ = g̃(z̃c, z̃1, z̃2, . . . , z̃m) (5)
= ĝ(ẑ1, ẑ2, . . . , ẑm). (6)

Following the conditional GAN framework, we employ a discriminator D and perform adversarial
training between the generator and discriminator to match the data distribution as:

Ladv = E(x,T )∼pdata [logD(x, T )] + Ez∼p(z), T∼p(T ) [log (1−D(x̂, T ))] . (7)

To prevent each attribute from exerting excessive influence, we apply ℓ1 sparsity regularization to the
masks, encouraging each to affect only a small number of representation dimensions:

Lsparsity =

m∑
i=1

∥mi∥1. (8)

Full Objective. Our overall objective for training the attribute-guided generative model is:

Lfull = Ladv + λsparsityLsparsity, (9)

where λsparsity is a hyperparameter that balances the adversarial loss and the sparsity regularization.

3.2 REMOVING UNWANTED RELATION WITH CAUSAL MODELING

EA

1
1
0
0

E | A=1
A

E | A=0

1
1
0
1

1
1
0
0

1
1
0
0

0
0
0
1

𝜀

Dependent

Labels.
Transformed

Labels. 𝐴 ⊥ ε

Causal

Conditioning

Table 1: Example of Causal Conditioning. After
deciding the causal direction between A and E,
we use the two columns E|A = 0, E|A = 1 to
act as surrogate of the unknown noise variable ε.
Then we can change ε to add eyeglasses without
affecting A since A and ε are independent.

While our mask-based estimation model enables
learning disentangled representations with inde-
pendent attribute labels where Ti ⊥ Tj∀i,j , in
practice, these labels are often causally related,
which can lead to unintended side effects when
modifying a single attribute. For example, al-
though the attributes age A and eyeglasses
E are causally linked, we may wish to modify
eyeglasses without altering the perceived
age. Without explicit causal modeling, such
changes can inadvertently affect age, as illus-
trated on the left side of Fig. 2.

This problem arises because age (denoted A)
is a parent node of eyeglasses (denoted E).
According to causal reasoning principles (Pearl,
2009), intervening on a child node (e.g., modi-
fying E) should not influence its parent A. Vio-
lating this principle often results in unnatural or
implausible generations. Therefore, it is crucial to incorporate causal reasoning into the generative
process—particularly when both precise attribute control and natural image generation are desired.

To this end, we adopt a two-step strategy (right side of Fig. 2): first, we discover the causal structure
among attributes; then, we modify the model’s conditioning mechanism to respect this structure.

Step 1: Discovering the causal structure and direction. To ensure causally consistent generation,
we first identify the causal relationships between attributes (e.g., determine whether A → E or
E → A). To reduce human efforts, we can apply automatic causal discovery algorithms such as the
PC algorithm (Spirtes et al., 2001). If the output of the causal discovery method contains unoriented
edges (as can occur with PC), we can resolve these using domain-specific background knowledge.
The details of the causal discovery approach used in our experiments are provided in Appendix E.
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Step 2: Causal conditioning. Suppose we have determined a causal relationship A→ E, represented
by the structural causal model

E := fE(A, ε),

where ε is an exogenous noise variable independent of A, and fE is an unknown deterministic
function. This formulation implies that A and E are dependent due to their shared causal mechanism.

To vary E without altering A, we would ideally intervene on ε, as it directly influences E and is
independent of A. However, since ε is unobserved, we approximate its influence by considering
the conditional distributions P (E | A = 0) and P (E | A = 1). These conditionals capture the
variability in E that arises solely from ε when A is fixed. Therefore, they serve as surrogates for the
unobserved noise: knowing A and a realization from P (E | A) is sufficient to determine E through
the structural equation fE , and variation within each conditional reflects only the contribution of ε.

Summary. Based on this analysis, our causal modeling strategy proceeds as follows (illustrated in
Fig. 2(b)). Given a set of attribute labels (e.g., left in Table 1), we first use causal discovery algorithms
to infer the directionality of causal edges. Then, we replace each child node E with its corresponding
conditional variables E|A = 0 and E|A = 1. After this transformation, we can train a conditional
generative model following the approach outlined in the previous section.

3.3 IDENTIFIABILITY GUARANTEE FOR THE UNDERLYING LATENT FACTORS

In this section, we present identifiability guarantee for the underlying latent factors that correspond to
the attribute labels. Specifically, we show that our estimation model recovers the true latent variables
zi up to an invertible transformation under some conditions. The key idea is to leverage sufficient
variability across activating f1i and deactivating functions f0i to identify the true latent factors. The
formal version and proof are in Appendix F.
Theorem 1 (Identifying latent factors with a generative model (Informal)). Consider the data
generating process in Eq. equation 1. Suppose the noise distribution has a smooth positive density,
and the generating, activation, and deactivation functions are smooth and invertible onto their images.
Further assume that the activation and deactivation mechanisms f1i and f0i differ in a sufficiently
strong way, in the sense that for i = 1, . . . ,m and every ϵi,(

pϵi
(f1i )

′

)′

̸=
(

pϵi
(f0i )

′

)′

,

so that they cannot induce the same effect on the distribution. In addition, for each latent factor
zi, there exist attribute labels T(k) and T(l) that differ only in the i-th entry, ensuring sufficient
variation to isolate its effect. Then any generative model that assumes the same process, satisfies these
conditions, and matches the observed distribution recovers the true latent variables zi, i = 1, . . . ,m
up to an invertible transformation for each attribute Ti.

This identifiability result holds for both independent and dependent attribute labels. In the dependent
case, causal conditioning relies on the exogenous noise ε, independent of the target attribute, rather
than on the parent label it depends on. Theorem 1 is central to disentangled representation learning
for attribute-guided image generation. With the identifiability guarantee, when our estimation method
matches the data likelihood, the model recovers the underlying latent factors, which are inherently
disentangled. This property enables a variety of downstream tasks, including controllable image
generation and smooth interpolation.

4 EXPERIMENTS

In this section, we evaluate our proposed method. Section 4.1 describes the experimental setup,
Section 4.2 presents results on datasets with independent attributes, and Section 4.3 reports results on
datasets with causally related attributes.

4.1 SETUP

Datasets. We evaluate our method on two types of datasets: those with independent attribute labels
and those with dependent attribute labels. For datasets with independent attributes, we construct
four settings. In AFHQDog (Choi et al., 2020), we use a vision-language model (Team, 2024) to
annotate three binary attributes: whether the dog’s background is green, whether its ears are perked,
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Method AFHQDog ZAPPOS ColorMNIST LSUNBedroom
StyleGAN2-ADA (Karras et al., 2020) 10.03 42.95 110.56 28.06
MultiClassGAN (Dobler et al., 2022) 9.57 4.48 109.88 16.13

AugGAN (Hou et al., 2024) 13.73 4.45 17.79 10.30
ANDA (Zhang et al., 2024) 9.82 4.81 101.57 39.36

Ours (λsparsity = 0) 10.47 4.15 16.36 17.75
Ours 9.25 3.96 4.32 8.09

Table 2: FID scores across multiple independent attribute-guided datasets. Lower is better.

Method Eyeglasses
DINO ↑ ID ↑ Acc ↑ L1 ↓ Disen ↓

InterfaceGAN 0.85 0.61 0.63 0.11 4.19
StyleCLIP 0.88 0.63 0.90 0.07 3.31

WPlus 0.85 0.77 0.91 0.09 4.16
ConceptSlider 0.80 0.74 0.92 0.06 2.82
SD3.5-Large 0.60 0.43 1.00 0.19 4.66
Flux.1.dev 0.72 0.48 1.00 0.12 3.98

SANA 0.78 0.49 0.97 0.11 3.26
Ours 0.95 0.78 0.96 0.04 2.53

Attr Method DINO ↑ Acc ↑ Disen ↓

Beard
ConceptSlider 0.90 0.67 3.15

SANA 0.83 1.00 4.49
Ours 0.93 1.00 2.86

Chubby
ConceptSlider 0.93 0.75 2.39

SANA 0.80 0.84 4.77
Ours 0.96 1.00 1.96

Smile
ConceptSlider 0.96 0.97 1.68

SANA 0.87 1.00 4.30
Ours 0.98 1.00 1.57

Table 3: Results on Attribute Modification for Face Image Generation.

and whether its mouth is open. In ZAPPOS (Yu & Grauman, 2014), we use two sets of attributes:
(1) shoe type (flat vs. heels) and (2) category (sandals, slippers, or shoes). For ColorMNIST, we
generate labels for three attributes: background color, digit thickness, and digit color. In LSUN
Bedroom (Yu et al., 2015), we extract 10 binary room attributes using a visual question answering
(VQA) model. For the case of dependent attributes, we use the FFHQ dataset (Karras et al., 2019),
where attributes exhibit strong correlations. We apply a pretrained CELEBA classifier to annotate 37
facial attributes. The dataset is used at a resolution of 512× 512.

Implementation, Baselines, and Metrics. We develop our method based on the StyleGAN2-ADA
code (Karras et al., 2020). We provide our code and implementation details in the supplementary
material. For independent attribute image generation evaluation, we benchmark our approach
against state-of-the-art GAN methodologies, including StyleGAN2-ADA (Karras et al., 2020),
MulticlassGAN (Dobler et al., 2022), AugGAN (Hou et al., 2024), and ANDA (Zhang et al., 2024).
While we considered including diffusion models in our comparative analysis,1 their computational
requirements proved prohibitively expensive for our experimental framework. We use the standard
Frechet Inception Distance (FID) to measure the divergence between generated data and training
data. For causal-related attribute generation, we compare with InterfaceGAN (Shen et al., 2020),
StyleCLIP (Patashnik et al., 2021), WPlus (Li et al., 2024), and ConceptSlider (Gandikota et al.,
2024), SD3.5-Large (Esser et al., 2024), Flux.1.dev (Labs, 2024a), and SANA (Xie et al., 2024).
We measure the performance with ArcFace ID (Deng et al., 2019) similarity between the generated
paired faces, DINO (Caron et al., 2021) similarity, accuracy with pretrained classifier, and L1 distance
between the generated paired images. Following InterfaceGAN (Shen et al., 2020), we also perform
a re-scoring disentanglement analysis, which evaluates how other attributes change when an edit is
applied to a target attribute. We refer to this metric as Disen.

4.2 RESULTS WITH INDEPENDENT ATTRIBUTES

Table 2 reports FID scores on four benchmark datasets—AFHQDog, ZAPPOS, ColorMNIST, and
LSUN—comparing our method (with and without sparsity regularization) against strong GAN
baselines. Our full model consistently achieves the lowest FID across all datasets, demonstrating its
effectiveness in generating high-quality, attribute-controlled images. We provide visual comparisons
of generated samples in Appendix.A.

1training diffusion models on the AFHQ dataset at 64×64 resolution requires approximately 768 V100 GPU
hours (Karras et al., 2022)
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Figure 3: Generation Results After Attribute Modification. WPlus (Li et al., 2024) and Con-
ceptSlider (Gandikota et al., 2024) fail to account for correlations between eyeglasses and other
attributes, often producing entangled outputs, e.g., WPlus tends to increase the apparent age when
adding eyeglasses. While InterfaceGAN (Shen et al., 2020) attempts to mitigate such correlations
using orthogonal projection, its reliance on a linear classifier can yield inaccurate attribute directions.
As a result, it may fail to correctly add eyeglasses and still affect age-related features. In contrast,
our method modifies only the target attribute while preserving correlated features, thanks to our
mask-based design and causal conditioning framework.

4.3 RESULTS WITH CAUSALLY-RELATED ATTRIBUTES

Attribute-guided Generation as a Complement to Text-to-Image Models Recent text-to-image
(T2I) models have demonstrated impressive performance. However, attribute-guided generation
remains a valuable complement, particularly when precise and smooth generation or editing is
required. As shown in Table 3, state-of-the-art T2I models achieve strong instruction-following
capabilities (evidenced by high target edit accuracy). Nevertheless, even minor modifications to the
text prompt (e.g., a single word) can cause drastic changes in the output, as reflected in the low DINO,
ID, L1, and Disen scores. Furthermore, we prompted GPT to enumerate 10 variations of facial size
and hair and then generated corresponding images. As illustrated in Fig. 4, even subtle changes in the
prompt often lead to identity loss and unsmooth interpolations.

Comparisons. Quantitative results are reported in Table 3, and qualitative results are shown in Fig. 3.
Our method achieves the best performance in attribute-controlled image generation, particularly in
challenging cases with correlated attributes. For instance, the eyeglasses attribute is known to
be strongly correlated with age (Shen et al., 2020). InterfaceGAN (Shen et al., 2020) attempts to
mitigate this issue using orthogonal projection, but the linear boundary obtained by its classifier is
often inaccurate, leading to unsatisfactory results (see Fig. 3). More recent methods such as WPlus (Li
et al., 2024) and ConceptSlider (Gandikota et al., 2024), built on the Stable Diffusion v1.4 backbone,
improve upon InterfaceGAN but still fail to account for attribute correlations. As a result, modifying
one attribute (e.g., eyeglasses) often causes unintended changes in others, such as age or pose.

Ablation Study We also provide a qualitative ablation study on the effectiveness of the proposed
sparsity constraint and causal modeling component (quantitative results are included in the supple-
mentary material) in Fig. 3. Without the sparsity constraint, the eyeglasses attribute tends to
affect too many input elements, resulting in numerous unintended changes in the generated images.
Without causal modeling, although sparsity helps preserve some attribute disentanglement, modifying
eyeglasses still causes undesirable effects—such as making the person appear older. In contrast, our
full method consistently achieves better disentanglement, enabling precise control over individual
attributes while minimizing unintended alterations.

Smooth Interpolation To thoroughly evaluate attribute control capabilities, we perform interpolation
by gradually varying the attribute values, with results shown in Fig. 4. The strong baseline Concept-
Slider (Gandikota et al., 2024) achieves interpolation by adjusting the corresponding LoRA scale.
However, we find that ConceptSlider exhibits a sudden change issue: it either produces irrelevant
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Figure 4: Comparison of Interpolations for Attribute Control. The baseline method (Gandikota
et al., 2024) exhibits a sudden-change phenomenon: at low control strengths, it introduces unintended
modifications to other attributes (e.g., changes to the mouth in the first row), followed by an abrupt
activation of the target attribute accompanied by additional, undesired alterations. In contrast, our
method achieves smooth and continuous interpolations, consistently modifying only the intended
attribute throughout the process. More interpolation results are provided in the Appendix.A.

modifications at low scales or abruptly introduces the target attribute along with undesired changes. In
contrast, our method progressively and consistently applies the target attribute as the value increases,
without affecting other attributes in the output images. This highlights the superiority of our approach
in scenarios where precise, fine-grained control is essential for attribute-guided image generation.

Extension to text-to-image models Beyond the GAN framework, our general masking prin-
ciples can also be applied to text-to-image models. As an example, we extend the Flux.1-dev
model (Labs, 2024a) in a way that mirrors our GAN implementation. In GANs, we introduce attribute-
specific and attribute-invariant representations, and apply a sparse mask to limit their influence.

Method Acc↑ Disen↓
Vanilla Finetune 1.00 6.38
+Time-mask 0.94 4.81
+Causal Modeling 1.00 2.46

Table 4: Results on Flux.1-dev for
adding eyeglasses.

In diffusion models, these masks can be interpreted over
timesteps: we begin with attribute-invariant prompts (e.g., hu-
man face) at early timesteps and switch to the attribute-specific
prompt (e.g., human face with eyeglasses) at the minimal
timestep necessary to ensure the attribute is generated. For
causal conditioning, instead of relying on a single attribute
prompt (e.g., eyeglasses), we condition on pairs of prompts
(e.g., young, eyeglasses and old, eyeglasses), consistent with
our GAN formulation. We find that these two extensions al-
ready yield substantial improvements over vanilla LoRA training. A limitation of the current T2I
extension to the GAN framework is that it is fully controlled by text inputs, which results in a lack
of support for smooth interpolation, similar to SANA (Xie et al., 2024) as shown in Fig. 4; more
sophisticated methods may be explored in future work.

5 LIMITATIONS, DISCUSSION, AND CONCLUSION

Although our method achieves strong performance across various attribute-guided image generation
tasks, it still faces certain limitations. One notable challenge is generating complex or uncommon
compositions from limited training data. This difficulty is partly due to our reliance on StyleGAN2-
ADA, which has known limitations in handling uncurated or compositionally complex data (Sauer
et al., 2022). Addressing this issue remains an important direction for future work.

In this paper, we proposed an attribute-guided image generation framework that tackles two main
challenges: disentangling attribute-specific representations and reducing the impact of correlated
attributes. Our method is based on a principled data-generating assumption and uses a mask-
based mechanism to limit each attribute’s influence. To handle label correlations, we incorporate
causal discovery and introduce a causal conditioning strategy to remove unwanted dependencies.
Experiments across multiple datasets show that our approach consistently outperforms existing
baselines in controllability, disentanglement, and image quality.
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Appendix for “Attribute-Guided Image Generation with Causally
Disentangled Representation”

Use of large language models (LLMs). We use LLMs only to detect typos and refine wording in
the paper; they are not involved in the idealization process.

SUMMARY OF THE APPENDIX

In this appendix, we provide additional details and results to support the main paper:

• Section A presents additional generated samples and interpolation results using the strong
baseline ConceptSlider (Gandikota et al., 2024).

• Section B discusses how our method can be extended to handle scenarios where attribute
labels are not available.

• Section C provides a more comprehensive overview of related work.

• Section D presents comparisons with CausalGAN (Kocaoglu et al., 2017), including both
causal analysis and empirical evidence demonstrating that our method is more data-efficient
and produces higher-quality interventional samples.

• Section E shows the full causal graph used in our approach.

• Section F provides the proof of the identifiability results stated in the main paper.

• Section G includes implementation details of our method. We also provide the training code
in the supplementary files.

• Section H presents both qualitative and quantitative ablation results, further supporting the
effectiveness of the proposed method.

A MORE EMPIRICAL RESULTS

AugGAN (Hou et al., 2024) ANDA (Zhang et al., 2024) Ours

Figure 5: Attribute-Guided Generation Results. Each row illustrates sequential attribute modi-
fication using our method. (a) MNIST: progressive changes in digit thickness, background color,
and foreground color. (b) AFHQDog: step-by-step addition of perked ears, an open mouth, and a
green background. (c) ZAPPOS: transformation across footwear types—from sandals to shoes to
slippers—with added heels. Baseline methods, including ANDA (Zhang et al., 2024) and AugGAN
(Hou et al., 2024), often introduce unintended artifacts, such as color shifts during shoe transforma-
tions. In contrast, our method preserves precise attribute control, highlighting the effectiveness of our
method.
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Comparison with ConceptSlider We provide additional generated samples in Fig. 6. Interestingly,
the baseline ConceptSlider (Gandikota et al., 2024) often fails to generate the intended attributes
when faced with rare combinations. For example, it fails to add a beard to a female face, instead
altering the lip color (first row). Moreover, when using the same strength parameter, ConceptSlider
sometimes produces overly heavy beards or no beard at all, indicating that each sample may require
its own carefully tuned hyperparameter. This inconsistency suggests that the baseline method is less
reliable for controllable, attribute-guided generation. When attempting to generate chubby faces, it
either changes the identity of the original subject (fifth row) or introduces irrelevant modifications,
such as altering clothing color (fourth row). In contrast, our method successfully generates the target
attributes—even in uncommon scenarios like beards on female faces—while preserving unrelated
features and faithfully modifying only the intended attribute.

Interpolation Comparison We present the interpolated samples in Fig. 7. Similar to the re-
sults shown in the main paper, the baseline ConceptSlider (Gandikota et al., 2024) suffers from a
sudden-change phenomenon, where the target attribute appears abruptly and is often accompanied
by unintended modifications. For example, it suddenly adds a heavy beard to a female face while
also altering the eyes (second row). In another case, it modifies unrelated attributes during interpola-
tion—for instance, the clothing of the boy changes as the strength of the "smile" attribute increases
(ninth row). In contrast, our method achieves smooth and gradual interpolation between the absence
and presence of the target attribute, while preserving all other attribute values.

B LEARNING WITHOUT ATTRIBUTE LABELS

Our method, as introduced in the main paper, relies on access to attribute labels. With these labels, our
model can disentangle the underlying concepts associated with each attribute. However, in real-world
scenarios, such labels may not always be available. In this section, we propose solutions to address
this limitation and demonstrate that our model can also learn attribute labels jointly when they are
not provided.

First, we relax the requirement for detailed attribute labels and instead assume access to class labels
only. We then introduce an auxiliary labeler network that takes the class label as input and predicts
the corresponding attribute labels. This labeler network is trained jointly with our main model. To
regularize the predictions and encourage sparsity—we apply an additional ℓ1 penalty to the estimated
attribute labels. In other words, we expect the predicted attribute labels to be sparse.

We find that this simple design is effective on several datasets. As shown in Fig. 8, our method is
capable of learning meaningful attribute labels, such as digit color and shape, directly from data and
class labels. Furthermore, Fig. 9 demonstrates that our method can also discover distinct concepts in
more challenging datasets—for example, learning both painting styles and subjects using only class
labels and image data.

Second, we explore the most challenging setting, where only image data are available, and no labels
(class or attribute) are provided. Since we have shown success in learning attribute labels with only
class supervision, we propose extending our approach to the fully unsupervised case using clustering
techniques. For example, (Liu et al., 2020) demonstrated that it is possible to cluster images during
GAN training. We suggest adapting their method to cluster samples and estimate attribute labels in
conjunction with our model. We leave this extension as a promising direction for future work.

C RELATED WORK

Causally-aware Generative Models CausalGAN (Kocaoglu et al., 2017) proposes to build a causal
generative following the causal graph. For example, if X → Z ← Y , then it employs three neural
networks for each node and the input of neural network of Z consists of the outputs of neural network
for node X and node Y . CausalVAE (Yang et al., 2021) assumes that there exists underlying causal
structure among the latent variables and add a causal layer to learn such information. (Wen et al.,
2022) employs CausalGAN for tabular data generation while supporting part of the causal graph.
CGNN (Goudet et al., 2018) learns causal graph and the functions by minimizing the divergence
between the generated data and real data. DECAF (Van Breugel et al., 2021) reconstructs each
variable with its parents as conditioning and generates fair synthetic data. (Moraffah et al., 2020)
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ConceptSlider (Gandikota et al., 2024) Ours
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Figure 6: Comparisons of Attribute-Guided Generation. The baseline method, ConceptSlider
(Gandikota et al., 2024), often fails to generate beards for uncommon attribute combinations, such as
a girl with a beard. Additionally, we observe that ConceptSlider sometimes produces overly heavy
beards or exaggerated smiles—even when using the same strength parameter—while in some cases it
fails entirely. These inconsistencies suggest that the method is unreliable for controllable generation.
In contrast, our approach accurately recovers the latent factors corresponding to the target attribute
labels, enabling faithful modification of the desired attribute without affecting unrelated features.

assumes the Structural Causal Model (SCM) is linear and proposes to learn the causal graph with
GAN. CNF (Javaloy et al., 2024) recovers the causal model with normaling flow given causal ordering
information. CGN (Sauer & Geiger, 2021) assumes that images are generated by four components:
shape, texture, background and composer and train a conditional GAN with corresponding labels.
CAGE (Bose et al., 2022) examines the causal relationship between a pair of variables using potential
outcome framework and generates counterfactual images.
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Beard

ConceptSlider

Ours
Chubby

ConceptSlider

Ours
Smiling

ConceptSlider

Ours

Figure 7: Interpolation Comparisons. The baseline method, ConceptSlider (Gandikota et al., 2024),
exhibits a sudden-change phenomenon: at lower strength values, there is little to no effect, but beyond
a certain threshold, it introduces abrupt and excessive changes—including alterations to unrelated
attributes. In contrast, our method demonstrates more stable and controlled behavior, gradually
modifying only the target attribute as the strength increases.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: We can learn the attribute labels (denoted by L) jointly with our model when attribute
labels are not given. On this MNIST dataset, we are able to learn the digit shape labels and digit
colors from data.
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L0 activated

L1 activated

L2 activated

L3 activated

L4 activated

Figure 9: We can learn the attribute labels (denoted by L) jointly with our model when attribute
labels are not given. On this artist dataset, we successfully disentangle different concepts, e.g.,
human face and painting style. For example, L1 denotes the human face attribute and L2 denotes the
Van-Gogh painting style.
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Nonlinear ICA Nonlinear ICA is a challenging ill-posed problem because the latent variables are
generally not identifiable without any assumptions (Hyvärinen & Pajunen, 1999). Existing works
resolve this issue by leveraging sufficient variability on the distribution of latent variables to obtain
identifiability, where the distributions are indicated by auxiliary variables such as time indices and
domain indices (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020).
Another line of works impose restrictions on the mixing function including certain function classes
(Hyvärinen & Pajunen, 1999; Taleb & Jutten, 1999; Gresele et al., 2021; Buchholz et al., 2022) and
sparse mixing function (Zheng et al., 2022).

D CAUSALGAN AND CAUSAL CONDITIONING

CausalGAN also assumes that there exists a causal relationship among the attribute labels. To
capture this, it introduces an additional causal controller to model the joint distribution of the labels.
Specifically, suppose a causal graph X → Q← Y . CausalGAN first generates X and Y using neural
networks x = fx(zx) and y = fy(zy), respectively. It then generates q = fq(x, y, zq), where zx, zy ,
and zq are latent variables. In other words, it requires using n separate neural networks to model the
causal generation process when there are n attribute labels. Finally, all generated attribute labels are
concatenated and fed into the discriminator to match the distribution of real labels.

Causal Perspective. CausalGAN (Kocaoglu et al., 2017) aims to model the full causal generative
process of the attribute labels. This involves learning the causal relationships between all pairs of
variables. For instance, the causal controller in CausalGAN can be used to measure the influence of
ancestors on a given node. However, such an approach demands large amounts of training data to
accurately learn these dependencies—a point we validate through experiments.

In contrast, our method focuses only on modeling the causal relationships from parent nodes to a
given attribute, which is sufficient for handling the correlations in the data. For example, generating
eyeglasses may inadvertently increase the perceived age, even though the true causal direction is
age → eyeglasses. Our causal conditioning approach is therefore simpler (requiring no separate
pretraining) and more data-efficient.

Empirical Comparison. CausalGAN was originally implemented on a smaller causal graph with
around 10 variables using the CelebA-64×64 dataset (162,770 images). For a fair comparison in our
setting, we re-implemented CausalGAN using the StyleGAN architecture. However, we found that
the 70,000 samples available in the FFHQ-512×512 dataset were insufficient to model the complex
causal relationships among the 37 attribute labels.

We trained the causal controller for 100 epochs using the recommended WGAN-GP loss. By the
end of training, the outputs of the causal controller appeared nearly binary, matching the format
of the real data. However, due to the limited training data and stochastic noise introduced by the
controller, it often generated combinations of attribute labels that never occurred in the training set.
As a result, when these unrealistic labels were used to train the full CausalGAN, the discriminator
easily distinguished between real and fake samples, causing training to collapse prematurely. As
shown in Fig.10, it collapses quickly.

To fully compare our causal condition with the causal controller, we introduce another version of
CausalGAN in our setting. Specifically, we still use real labels during training to avoid failure, i.e.,
the trained model will be StyleGAN2-ADA. After training, we apply the causal controller to see if
we are able to sample some interventional images. And we term this new model as CausalGAN+.
We present the results in Fig. 11. We observe that CausalGAN+ introduce unnecessary changes to
the images when we only want to change a single attribute.

E CAUSAL DISCOVERY

We perform causal discovery on the FFHQ attribute labels and the causal graph is shown in Figure 12.
Specifically, we use the PC algorithm (Spirtes et al., 2001) and the BOSS algorithm (Andrews et al.,
2023), the latter being designed to efficiently handle large numbers of variables and dense graphs.
We first apply the PC algorithm to obtain an initial causal graph, then use BOSS to verify its structure.
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Figure 10: CausalGAN requires a large amount of training data to model complex causal relationships
among a greater number of attribute labels. We train its causal controller on the FFHQ dataset, but it
fails to fully match the distribution of attribute labels. Moreover, due to the randomness introduced
by noise in the causal controller, it generates combinations of labels that never appear in the training
data. As a result, CausalGAN quickly fails during the subsequent image generation training.

If both algorithms produce the same edge, we treat it as reliable. In practice, we find that PC outputs
generally align well with human domain knowledge. While some edges remain unoriented, our goal
is not to develop a new causal discovery algorithm, but simply to obtain enough structural information
to guide controllable image generation. In ambiguous cases, we follow established practice in applied
causal modeling by incorporating minimal domain knowledge to resolve uncertain directions.

F PROOF OF IDENTIFIABILITY THEORY

Theorem 1 (Identifying latent factors with a generative model (Formal)). Consider the data gener-
ating process defined in Eq. equation 1 that satisfies the following assumptions:

• A1 (Smooth and positive density): The density pϵi is smooth and positive everywhere.

• A2 (Diffeomorphism): The generating function g, activation function f1i , and deactivating
function f0i are C2-diffeomorphisms onto their corresponding images.

• A3 (Latent factor regularity): The activating function f1i differs sufficiently from the de-
activating function f0i , and each latent factor is of dimensionality one. Specifically, for
i = 1, . . . ,m and every ϵi, we have(

pϵi
(f1i )

′

)′

̸=
(

pϵi
(f0i )

′

)′

,

where the derivative (·)′ is taken w.r.t. ϵi.

• A4 (Variability): For each latent factor zi, there exist two attribute labels, denoted as T(k)

and T(l), that differ only in the i-th entry.

Then, for a generative model that assumes the same generative process, satisfies the assumptions
above, and matches the data distribution, it identifies the true latent variables zi, i = 1, . . . ,m up to
an invertible transformation for each attribute Ti.

Proof. To ligthen the notation, let z = (zc, z1, z2, . . . , zm) and z̃ = (z̃c, z̃1, z̃2, . . . , z̃m). We
then have x = g(z) and x̂ = g̃(z̃). Applying the change-of-variable formula with matched data
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Figure 11: Comparison of controllable image generation. We first fix the random noise and generate
girl images. Then we activate the mustache, goatee and baldness concepts for each method. The
StyleGAN2-ADA is unable to generate female with mustache images. While the CausalGAN is able
to add such attributes, we observe significant unnecessary changes. In contrast, our method is able to
change the target attributes only.

distribution yields
px̂ = px

pg̃(z̃) = pg(z)

pg−1◦g̃(z̃) vol Jg−1 = pz vol Jg−1

ph(z̃) = pz.

Here, Jg−1 denotes the Jacobian matrix of function g−1 and h = g−1 ◦ g̃ is the function from z to z̃.
Applying the change-of-variable formula again, we have

p(z̃) = p(z)|det Jh|.
where Jh denotes the Jacobian matrix of function h. Since z̃ and z consist of independent latent
variables, we obtain

p(z̃c)

m∏
i=1

p(z̃i) = p(zc)

m∏
i=1

p(zi)|det Jh|. (10)

Consider latent variable z̃i where i = 1, . . . ,m. By Assumption A4, there exist two attribute labels,
denoted as T(k) and T(l), that differ only in the i-th entry. Without loss of generality, suppose
T

(k)
i = 1 and T

(l)
i = 0; if this is not the case, we can swap T(k) and T(l). Denote the corresponding

density functions for these two attribute labels by p(k)(z̃), p(k)(z) and p(l)(z̃), p(l)(z), respectively.
Substituting these density functions into Eq. (10) implies

p(k)(z̃c)

n∏
i=1

p(k)(z̃i) = p(k)(zc)

n∏
i=1

p(k)(zi)|det Jh|. (11)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Male

5_o_Clock_Shadow

Young

Wearing_Lipstick

Arched_Eyebrows
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Figure 12: Causal discovery result on the FFHQ attributes labels.
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p(l)(z̃c)

n∏
i=1

p(l)(z̃i) = p(l)(zc)

n∏
i=1

p(l)(zi)|det Jh|. (12)

Taking quotients of Eqs. (11) and (12), we have

p(k)(z̃i)

p(l)(z̃i)
=

p(k)(zi)

p(l)(zi)
.

Here, we used the definition that p(z̃c) and p(zc) are invariant across different attribute labels, as well
as the assumption that Tk and Tl differ only in the i-th entry. Now suppose j ̸= i. Taking first-order
derivative w.r.t z̃j in the equation above yields

0 =
∂

∂z̃j

(
p(k)(zi)

p(l)(zi)

)
=

∂

∂zi

(
p(k)(zi)

p(l)(zi)

)
∂zi
∂z̃j

=
p(l)(zi)

∂p(k)(zi)
∂zi

− p(k)(zi)
∂p(l)(zi)

∂zi

p(l)(zi)2
∂zi
∂z̃j

.

By Assumption A1, p(l)(zi)2 ̸= 0. Therefore, we have

0 =

(
p(l)(zi)

∂p(k)(zi)

∂zi
− p(k)(zi)

∂p(l)(zi)

∂zi

)
∂zi
∂z̃j

=

(
p(f0i (ϵi))

∂p(f1i (ϵi))

∂zi

− p(f1i (ϵi))
∂p(f0i (ϵi))

∂zi

)
∂zi
∂z̃j

=

(
p(ϵi)

∣∣∣∣∂f0i (ϵi)∂ϵi

∣∣∣∣−1
∂p(f1i (ϵi))

∂zi

− p(ϵi)

∣∣∣∣∂f1i (ϵi)∂ϵi

∣∣∣∣−1
∂p(f0i (ϵi))

∂zi

)
∂zi
∂z̃j

.
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Multiply both sides by
∣∣∣∂f1i (ϵi)∂ϵi

∣∣∣ ∣∣∣∂f0i (ϵi)∂ϵi

∣∣∣ yields

0 =

(
∂p(f1i (ϵi))

∂zi

∣∣∣∣∂f1i (ϵi)∂ϵi

∣∣∣∣
− ∂p(f0i (ϵi))

∂zi

∣∣∣∣∂f0i (ϵi)∂ϵi

∣∣∣∣ )p(ϵi) ∂zi∂z̃j

=

(
∂p(f1i (ϵi))

∂ϵi
sgn

(
∂f1i (ϵi)

∂ϵi

)
− ∂p(f0i (ϵi))

∂ϵi
sgn

(
∂f0i (ϵi)

∂ϵi

))
p(ϵi)

∂zi
∂z̃j

=

(
∂

∂ϵi

(
p(ϵi)

∣∣∣∣∂f1i (ϵi)∂ϵi

∣∣∣∣−1
)
sgn

(
∂f1i (ϵi)

∂ϵi

)

− ∂

∂ϵi

(
p(ϵi)

∣∣∣∣∂f0i (ϵi)∂ϵi

∣∣∣∣−1
)
sgn

(
∂f0i (ϵi)

∂ϵi

))

· p(ϵi)
∂zi
∂z̃j

=

(
∂

∂ϵi

(
p(ϵi)

(
∂f1i (ϵi)

∂ϵi

)−1
)

− ∂

∂ϵi

(
p(ϵi)

(
∂f0i (ϵi)

∂ϵi

)−1
))

p(ϵi)
∂zi
∂z̃j

=

((
pϵi
(f1i )

′

)′

−
(

pϵi
(f0i )

′

)′
)
pϵi

∂zi
∂z̃j

,

where sgn(·) is the sign function and the derivative (·)′ is taken w.r.t. ϵi. By Assumptions A1 and A3,
we have ((

pϵi
(f1i )

′

)′

−
(

pϵi
(f0i )

′

)′
)
pϵi ̸= 0,

which implies
∂zi
∂z̃j

= 0.

For each zi, since we are able to perform the above procedure for each z̃l where l ̸= i and z̃c, each zi
is solely a function of z̃i, i.e., zi = hi(z̃i). This implies that, the row of the Jacobian matrix ∂z

∂z̃ that
corresponds to zi has only one nonzero entry for i = 1, . . . ,m. Denote by z̃[m] = (z̃1, . . . , z̃n) and

z[m] = (z1, . . . , zn). The above derivation indicates ∂z[m]

∂z̃c
= 0. Since h is a diffeomorphism and ∂z

∂z̃

is of full rank, the matrix ∂z[m]

∂z̃[m]
must also be of full row rank because ∂z[m]

∂z̃c
= 0. This indicates that

hi is invertible, i.e., z̃i = h−1
i (zi). Therefore, z̃i is solely a function of zi.

G IMPLEMENTATION DETAILS

We provide the training code in the supplementary material. Our method is built upon StyleGAN2-
ADA (Karras et al., 2020), with our main empirical contribution focused on a redesign of the mapping
network used in StyleGAN2-ADA. In traditional StyleGAN-based approaches, Gaussian noise and a
class embedding are jointly processed by an MLP to produce an entangled latent representation in the
W space.

For each attribute Ai, we employ a two-layer MLP to transform an input noise vector ϵi into an
activated or deactivated concept representation. These outputs are then concatenated to form a latent
vector z, yielding a new latent space Z instead of the conventionalW space.
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Ours (w/o sparsity) Ours (w/o causal) Ours

Figure 13: Qualitative Ablation Results. Without sparsity and causal modeling, the output images
suffer more distortions when we want to add eyeglasses only.

At the beginning of training, we set the dimensionality of each attribute representation to 20. Ad-
ditionally, we introduce a learnable mask mi for each attribute to allow the model to select the
relevant dimensions for each concept. To promote sparsity, we apply an L1 regularization on the
mask, typically using a sparsity weight of λsparsity = 0.1.

H MORE ABLATION RESULTS

We present the qualitative ablation results in Fig. 13. Without sparsity, the generated outputs
exhibit noticeable distortions, such as changes in hairstyle and apparent age. Adding spar-
sity regularization mitigates these issues by reducing unintended attribute alterations. How-
ever, due to the strong dependency between age and eyeglasses, adding eyeglasses still results
in an older appearance, highlighting the necessity of causal modeling. In contrast, our full
method successfully generates eyeglasses without affecting other attributes in the output image.

Method Eyeglasses
DINO ↑ ID ↑

Ours, W/O Sparsity 0.935 0.730
Ours, W/O Causal 0.943 0.734

Ours 0.953 0.775

Table 5: Ablation Results. Sparsity helps pre-
serve unrelated attributes, while causal modeling
enhances identity preservation.

We also report the quantitative results in Table 5.
Incorporating sparsity improves the similarity
score by discouraging changes to unrelated at-
tributes. Nevertheless, due to the strong corre-
lation between eyeglasses and age, fully disen-
tangling these attributes remains challenging. In
contrast, introducing the causal modeling mod-
ule leads to a substantial improvement in identity
similarity, highlighting the importance of causal
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modeling for faithful and controlled attribute
manipulation.
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