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Abstract

Transformers have achieved state-of-the-art performance in the fields of Computer
Vision (CV) and Natural Language Processing (NLP). Inspired by this, architectures
have come up in recent times that incorporate transformers into the domain of
graph neural networks. Most of the existing Graph Transformers either take a
set of all the nodes as an input sequence leading to quadratic time complexity
or they take only one hop or k-hop neighbours as the input sequence, thereby
completely ignoring any long-range interactions. To this end, we propose Structure
Aware Transformer on Graphs (SATG), where we capture both short-range and
long-range interactions in a computationally efficient manner. When it comes
to dealing with non-euclidean spaces like graphs, positional encoding becomes
an integral component to provide structural knowledge to the transformer. Upon
observing the shortcomings of the existing set of positional encodings, we introduce
a new class of positional encodings trained on a Neighbourhood Contrastive Loss
that effectively captures the entire topology of the graph. We also introduce a
method to effectively capture long-range interactions without having a quadratic
time complexity. Extensive experiments done on five benchmark datasets show that
SATG consistently outperforms GNNs by a substantial margin and also successfully
outperforms other Graph Transformers.

1 Introduction

Graph structured data has found extensive utility across diverse domains, including but not limited to
molecular networks, citation networks, and the analysis of relationships within social media. Within
a multitude of these domains, Graphs have emerged as the singularly indispensable or even optimal
approach for both representing and comprehending complex data patterns. The inherent intricacies
of Graphs, stemming from their unique topology and intricate structural nuances, contribute to the
challenges associated with deriving meaningful insights from the copious information embedded
within their structure and node attributes. Developing efficacious methodologies to extract this wealth
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of knowledge optimally presents a formidable task.

A pre-eminent solution to address the intricacies of graph data structures has been the utilization of
Message Passing Graph Neural Networks (MP-GNNs). Among the earliest incarnations of Graph
Neural Networks (GNNs) is the work proposed by |Gori et al.| [2005]]. Contemporary advancements
have led to the introduction of a plethora of GNN variants, some grounded in convolutional
mechanisms for information aggregation, while others leverage attention-based mechanisms.
Nonetheless, a common foundational operation across these approaches involves the aggregation of
information from immediate neighbors (one-hop) to facilitate the learning of node representations.
Despite their pervasive adoption, GNNs are not without limitations. One primary challenge pertains
to their capacity to capture long-range dependencies |/Alon and Yahav|[2020]. Additionally, issues
such as over-smoothing |Yang et al.|[2020] and over-squashing [Topping et al.|[2021]] further constrain
their effectiveness. However, recent research endeavors|[Huang et al.|[2020], Di Giovanni et al.| [2023]]
have yielded promising techniques that effectively mitigate the challenges of over-smoothing and
over-squashing, leading to successfully alleviating them to a substantial extent if not completely.

In the domains of Natural Language Processing (NLP) and Computer Vision, the efficacy of
Transformers [Vaswani et al.|[2017] in achieving cutting-edge performance is well-established. In
stark contrast to convolutional methodologies, Transformers operate without a rigid inductive bias
dictating the aggregation of information from localized neighborhoods. The distinctive characteristic
of Transformers lies in their inherent flexibility in information aggregation. This flexibility emerges
from their encoding process, where the boundaries of information aggregation are dynamically
determined by the properties of the input. The calculated attention weights govern the weighting
assigned to the aggregation of information from various tokens within the input sequence. As a result,
the scope of information aggregation remains adaptable, contingent upon the specific characteristics
of the input sequence that is fed into the Transformer’s encoder. Motivated by these advantages
of transformers, there have been several endeavors to transplant this robust architecture into the
realm of graph-based representation learning. The fundamental difference is that graph as a data
structure has extremely complicated properties regarding their topology and structure. Embedding
such intricate properties within the Euclidean space and subsequently channeling them into the
transformer framework is not straightforward. The efficacy of the transformer in any downstream
task linked to graph data hinges upon its ability to comprehensively capture the underlying structural
and topological intricacies intrinsic to the graph. This is inherently accomplished by the attention
mechanism, which inherently integrates semantic relationships among nodes.

Within the ambit of introducing structural insight to transformers, three primary methodologies
have emerged: positional encodings, node sampling strategies, and explicit biases. While the
vanilla transformer [Vaswani et al.|[2017]] employs sinusoidal functions for positional encodings,
the graph domain lacks a canonical grid, impeding the derivation of mathematical functions to
compute positional encodings. Consequently, a multitude of alternatives have been explored, such as
Laplacian eigenvectors |[Kreuzer et al.|[2021]], Nguyen et al.|[2021]],|Chen et al.|[2022] and random
walk probabilities [Dwivedi et al.|[2021]], Ma et al.| [2023]]. Despite their prevalence, Laplacian
eigenvectors face notable limitations due to challenges in eigenvalue multiplicity, eigenvector sign
ambiguity, and normalization issues.

However, a crucial observation often overlooked in extant research is that the dot product of positional
encodings between two nodes should inherently quantify their structural relation. In other words,
nodes with strong structural ties should yield high dot product values for their positional encodings.
To transcend the constraints of current positional encoding approaches and to embrace this pivotal
observation, we introduce a novel class of positional encodings trained via the Neighborhood
Contrastive Loss (NCE loss). This incorporation of loss-driven positional embeddings aims to
effectively encapsulate the intricate topology of the entire graph within the positional embedding
space.

In addition to positional encodings, an avenue for integrating structural biases into the transformer
architecture lies in node sampling. The reason behind node sampling is pivotal in determining



the input sequence for the transformer. This critical step dictates the ensemble of nodes from
which a given reference node will accumulate information. In the context of Message Passing
Neural Networks (MPNNSs), this node ensemble is often constrained to the immediate or one-hop
neighbors. Early endeavors in graph transformers |Ying et al.[[2021]], Dwivedi and Bresson|[2020],
Dwivedi et al.| [2021]], Kreuzer et al.|[2021] initially adopted a simplistic approach, embedding
all N graph nodes into a single extend input sequence. This methodology, however, manifests a
series of drawbacks, most notably its quadratic time complexity in relation to the total node count V.
Given these limitations, contemporary research endeavors have culminated in more refined sampling
methodologies, such as Random Walks, Ego-Graphs, and substructure sampling. But, even these
methods have some drawbacks especially linked to the efficiency, thoroughness, and uniformity of
sampling, because non-uniform and non-superficial sampling of random walks or ego-graphs leads to
a substantial loss of information.

A recent and notably efficient sampling technique is exemplified in |Chen et al.| [2022], wherein a
distinct input sequence is crafted for each node. In this schema, the input token ¢ aggregates node
features from ¢th hop neighbors. This strategy, serving as a sampling mechanism, exhibits remarkable
efficiency while incurring minimal information loss - a notable departure from preceding techniques.
Nonetheless, a drawback surfaces in the form of disregarding long-range interactions beyond K hops,
where K + 1 represents the input sequence’s length - an aspect determined by a hyper-parameter. We
propose an innovative sampling approach that extends and improves upon the framework delineated
by |Chen et al.|[2022]. Our sampling strategy further endeavors to encapsulate long-range interactions
surpassing the K'th hop, augmenting the efficient capture of short-range interactions, all without
having a negative impact on time complexity.

The primary contributions of our research encompasses:

* Introduction of an innovative category of positional encodings, designed and trained via
a neighborhood contrastive loss mechanism. This strategic development is meticulously
crafted to facilitate the embedding space’s comprehensive representation of graph topology.

* A sampling strategy, influenced by the pioneering work of |(Chen et al.| [2022]], enhanced
by the incorporation of an additional token. This augmentation significantly bolsters the
transformer’s capacity to capture long-range interactions, all the while without taking a toll
on the computational complexity.

* A series of extensive experiments conducted across five distinct datasets, which empirically
validate the superiority of our Structure Aware Transformer on Graphs (SATG) when
contrasted with both Message Passing Graph Neural Networks (MP-GNNs) and prevailing
graph transformer models.

The outcomes of our research underscore the compelling advancements achieved through our devised
positional encodings, sampling strategy refinement, and the resulting SATG model. These contri-
butions collectively substantiate the efficacy and applicability of our approach, showcasing notable
performance enhancements over established MP-GNNs and existing graph transformer architectures.

2 Background

2.1 Problem Formulation

Given an unweighted and undirected attributed graph G = (V, E), where V' = {v1, vz, , v, }, and
n = |V, its graph structure information can be represented as an adjacency matrix A € R™*"™ and
D represents the diagonal degree matrix. The normalized adjacenecy matrix is expressed as A=
D=1/2AD~1/2 here A denotes adjacency matrix with self-loops and D denotes the corresponding
degree matrix. Every node v € V is associated with a feature vector =, € X, here X € R"*9 is the
feature matrix that describes the node attributes and d is the dimension of the node feature vector.
Given we are performing a node classification task, we have a labeled node set denoted by V; and an
unlabelled node set denoted by V,,. In this case, let Y € R™*¢ be the label matrix, where c is the
number of classes. Our task is that given labels Y7;, we must predict the labels Yy, for the unlabelled
nodes.



2.2 Graph Neural Network

Graph Neural Networks (GNNs) have firmly established their role as the preferred architectural
framework for the manipulation of data structured in graph form. The genesis of GNNs can be traced
back the pioneering work of |Scarselli et al.| [2008]], heralding their inception. Drawing inspiration
from the achievements of Convolutional Neural Networks (CNNs), the Graph Convoltional Network
(GCN) was introduced by |Kipf and Welling|[2016] in 2017. GCN’s operational paradigm involves
aggregating information from immediate one-hop neighbors, employing a simplified first-order
approximation of spectral convolution as elucidated by |Defferrard et al.|[2016]. Subsequent to this
landmark development, a diverse array of GNN iterations emerged within the research landscape, as
evidenced by contributions such as those by [Hamilton et al.|[2017]] and [Casanova et al.|[2018]].

In spite of the extensive integration of GNN5s for processing graph-structured data, the fundamental
message passing schema itself is not devoid of limitations. In the context of GCNs, where neigh-
borhood aggregation and feature transformation are conjoined in a single step, the potential for
encountering over-smoothing is inherent. This challenge has prompted the exploration of novel
methodologies to address the concern of over-smoothing, giving rise to innovative approaches, as
showcased by |Gasteiger et al.| [2018]] and [Wu et al.|[2019].

2.3 Transformer

The transformer was initially widely used in the domain of Natural Language Processing (NLP).
The Encoder of the Transformer contains a sequence of layers where each layer consists of two
components, multi-head self-attention (MSA) and position-wise feed-forward network (FFN). Let
H € R"*% be the input to the self-attention module where n is the number of tokens, and d is the
hidden dimension. This input H is projected into three matrices Q, K, V, using Wg € RéX4x Wy €
RIxdx Wy, € R4¥4v  the self attention is then calculated as:

Q=HWqy,K=HWg,V=HWy (1

T

Q
Attn(H) = softmax( ) )
Vg
The role of this attention matrix is to capture the pair-wise semantic similarity between the tokens in
the input sequence.

2.4 Graph Transformer

Recent times have witnessed a surge in endeavors to extend the application of Transformers to
encompass non-Euclidean structures as Graphs. Nonetheless, adopting a simplistic approach of
conveying node features as input tokens to the transformer proves inadequate, engendering a
considerable loss of structural insight by treating nodes as an unordered set and disregarding their
interconnecting edges. Early endeavors within this domain, as exemplified by |Ying et al.| [2021]],
Dwivedi and Bresson| [2020]], [Dwivedi et al.|[2021]], center around bundling all nodes within a single
input sequence. However, this approach carries its own array of limitations, notably yielding a
quadratic time complexity.

More recent advancements, as seen in|Chen et al.| [2022]], Zhao et al.|[2021]], [Zhang et al.| [2020],
tackle this quandary by embracing efficient sampling strategies. Prominent methodologies encompass
the utilization of Random Walks |Zhang et al.|[2020]], Ego-Graphs|Zhao et al.| [2021]], and Sampled
Sub-Structures Zhao et al.| [2023]]. A distinctive sampling approach, introduced by (Chen et al.| [[2022]],
capitalizes on Neighbourhood Features Aggregation. In this schema, each node is treated as a distinct
sequence, wherein sequence tokens encapsulate the aggregated features of neighboring nodes. This
innovative perspective not only facilitates the exploitation of mini-batch training, a boon when faced
with resource limitations, but also caters to the overarching necessity of preserving structural context.

Positional Encoding represents another pivotal facet of Transformers. While sinusoidal functions
prove effective for Positional Encodings in Euclidean contexts, the Graph scenario necessitates
Positional Encodings capable of encapsulating structural intricacies. This demand has yield a



repertoire of choices for Positional Encodings encompassing Laplacian Eigen Vectors, Random
Walk Probabilities, Node Degree, and Learnable Positional Encodings, among others. Each class of
Positional Encodings harbors distinct merits and limitations, paving the way for a nuanced selection
based on the specific application context.

2.5 Contrastive Learning

Contrastive learning serves as a ubiquitous technique within the realm of self-supervised learning,
as evident in prior works such asYou et al.|[2020, |2021]]. Moreover, the versatility of contrastive
learning extends to supervised scenarios, exemplified by the research of [Khosla et al.|[2020].

In the domain of natural language processing, |Gunel et al.| [2020] harness supervised contrastive
learning to enhance the pre-training of expansive language models through auxiliary tasks. The
application of self-supervised learning is not restricted to language processing alone, but also extends
to graph learning, as detailed in|Liu et al.|[2022], where a comprehensive overview of the subject can
be gleaned.
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Figure 1: Proposed Architecture of SATG

3 THE PROPOSED METHOD

This section contains the details of the proposed approach and has three sub-sections, the first
one explains the details about the proposed Positional Encodings, the second one deals with Node
Sampling and the third one deals with capturing Long Range Interactions.

3.1 Positional Encodings

When applying the Transformer architecture to graph data structures, the inclusion of positional
encoding assumes a pivotal role in furnishing structural insights. The absence of positional encoding
renders attention scores solely reliant on the semantic similarity of node features - a suboptimal
approach for weighting information aggregation. Thus, the core impetus behind introducing
Positional Encoding lies in capturing intricate structural nuances and explicitly integrating this
information within the Transformer architecture.



A prevalent choice for Positional Encoding in numerous studies involvles Laplacian Eigen Vectors.
Despite their widespread popularity, these encodings are accompanied by inherent drawbacks.
Kreuzer et al.| [2021]] expounds upon the limitations and uncertainties associated with utilizing
Laplacian Eigen Vectors as Positional Encodings, alongside suggesting potential remedies for
addressing these complexities. The drawbacks of Laplacian Eigen Vectors primarily encompass
Eigen Value Multiplicities, Sign Invariance, and Normalization.

Certain works have adopted the node degree as a determinant for positional encoding. In compre-
hending the foundational mechanics of the transformer, one must gain a detailed understanding of
the information aggregation process. The computation of aggregation weights hinges upon the dot
product of linear transformations involving final node features - comprising raw node attributes in
conjunction with positional encodings. In light of this foundational operation, the imperative arises to
select positional encodings in a manner that yields a dot product between the encodings of two nodes
capable of encapsulating their relative structural association. By extension, nodes exerting strong
structural influence should yield a substantial dot product between their positional encodings, and
conversely. This criterion serves as a fundamental guideline governing positional encoding selection.
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Figure 2: Structure and Global Context Capture in SATG

With this selection criterion delineated, a conspicuous solution emerges - one that aligns with the
specified requisites. This solution entails training positional encodings using a contrastive loss
framework, where positive samples represent proximate neighbors and negative samples denote
distant non-neighbors. From the spectrum of Contrastive losses, the Neighbourhood Contrastive Loss
(NCE) emerges as our chosen paradigm.

i Yig eap(sim(zi, 2)/7)
Zszl exp(sim(z;, z)/T)

l; = —log 3)

here sim indicates the cosine similarity and 7 denotes the temperature parameter. Here we have the
option of choosing the hyper-parameter r as we chose the r-hop neighbours as the positive sample in
the loss.

The idea behind choosing contrastive loss as the backbone for generating positional embedding was
to craft a method such that we can capture the entire topology of the graph in a Euclidean embedding
space. By using this contrastive loss we are able to ensure that the dot product between the positional
encodings quantifies the relative structural relation between the nodes.

3.2 Input Sequence Sampling

Determining the optimal input sequence for the transformer constitutes a pivotal juncture, as this
step dictates the nodes from which a specific node draws its information aggregation. Early works,
as evidenced by |Ying et al.| [2021]], [Dwivedi and Bresson| [2020]], Dwivedi et al.[[2021]], Kreuzer|
et al.|[2021], initially adopted the straightforward approach of coalescing all N nodes into a singular
input sequence. However, this methodology clearly falls short of being the most effective means of
handling input sequences, given its imposition of quadratic time complexity in relation to the node



count V.

The realm of Message Passing Graph Neural Networks (MP-GNNs) thrives on aggregating messages
solely from immediate one-hop neighbors. Thus, merely incorporating one-hop neighbors as input
tokens would be incongruous, effectively equating the scenario to that of MP-GNNs. A prevalent
sampling strategy involves employing Random Walks and utilizing these sequences of random
walks as input data, as observed in the work of [Zhang et al.| [2020] and [Nguyen et al.| [2021]].
Nonetheless, this approach carries its own caveats, particularly concerning the efficacy of random
walk sampling. Sub-optimal sampling, devoid of uniformity and comprehensiveness, can lead
to substantial information loss, thus impeding thorough information aggregation with potential
repercussions on downstream task performance.

In a similar vein, |Zhao et al.|[2021] adopts ego-graphs as input sequences, effectively encountering
the same issues that afflict random walk-based approaches. Here again, the uniformity and
comprehensiveness of ego-graph sampling prove pivotal. Our approach aligns closely with the
strategy elucidated by |Chen et al.|[2022]. Rather than treating each node as token within an expansive
input sequence, we craft a unique input sequence for every individual node. This strategic shift
introduces a distinctive facet - each node is associated with an individual input sequence. This
novel perspective extends the capability of training the transformer model on extensive datasets in a
mini-batch fashion, a feature not possible when nodes are treated as tokens within a monolithic input
sequence.

To understand the formation of an input sequence for a given node v , let us define its k-hop neighbour
as any node u satisfying the condition
d(u,v) =k 4)

here d is the shortest-path distance between node u and node v. Now before moving to aggregating
features we concatenate the raw node attributes with the positional encodings trained on the Neigh-
bourhood Contrastive Loss. The modified feature vector for a node v is represented by H (v), and
defined as :

H(v) = F(v) || P(v) Q)

here F'(v) is the raw node attribute of node v and P(v) is the positional encoding vector associated
with node v and || represents the concatenation operator.

zk = ZH(u) where d(u,v) = k. (6)

The input sequence for node v would look like S, = (20, z},...,2%). Here K is a hyper-parameter.

3.3 Capturing Long-Range Interactions

By embracing the aforementioned sampling strategy, we stand poised to proficiently capture
information encompassing the K-hop neighborhood. However, interactions involving nodes situated
beyond the K -hop realm invariably elude this approach. While a seemingly straightforward solution
involves setting a substantially large value for K, this recourse proves suboptimal - both from
computational efficiency and performance perspectives. We present an innovative remedy to this
quandary, devised to circumvent any escalation in the sampling’s time complexity.

We propose a solution to this issue in such a way that there is no increase in the time complexity
of sampling. Within the input sequence tailored for each node, we introduce an additional token
appended at the sequence’s terminus. This supplemental token embodies the aggregated features of
nodes positioned beyond the K-hop vicinity relative to the reference node. Calculating this token’s
value can be executed with remarkable efficiency. By precomputing and caching the summation of
modified features for all N nodes, this summation remains accessible for all nodes. Consequently, for
each node the summation of its tokens (within its sequence) can be subtracted from the precomputed
total sum, yielding the summation of modified features associated with nodes surpassing the K -hop
boundary. The introduction of this supplementary token within the input sequence extends the model’s



Table 1: Evaluation Results

Approach Cora citetseer Pubmed Photo Computer
GCN 80.1+0.5 67.9+0.5 78.9£0.7 92.70 £0.20 89.65 £ 0.52
GAT 83.0£0.7 72.5£0.7 79.0+0.3 93.87£0.11 90.78 =0.13
SAN 74.02+1.01 70.64+094 86.22+0.43 9486+0.1 89.83+£0.16
Graphormer  72.85+0.76 66.21 £0.83 OOM 92.74+£0.14 OOM
NAGphormer 91.11£0.32 79.55+0.73 89.70+0.19 95.49+0.11 91.224+0.14
SATG(Ours) 91.90+0.27 80.80+£0.41 89.85+£0.14 96.41+0.11 92.36+0.17

capacity to encapsulate prospective long-range global interactions. Remarkably, this augmentation is
achieved without any compromise on the front of time complexity. In scenarios where the appended
token fails to provide salient information, its associated attention weight dwindles to zero. However,
when this token conveys meaningful insights, a marked enhancement in performance is discernible -
a testament to the value it introduces.

As previously highlighted, our approach not only emphasizes the performance of the algorithm but
also its scalability. By leveraging a neighborhood aggregation sampling approach, we’ve significantly
narrowed the attention scope from N2 nodes to a mere K nodes. This results in the computational
complexity of our attention mechanism being reduced to O(K? x N * d) from the original O(N?),
where d denotes the feature dimension. Moreover, the aggregation operations involved in generating
input tokens can be performed offline, enhancing the efficiency. Hence, the overall complexity of
our technique is O(K? * N * d). This linear time complexity ensures that our method, SATG, is
well-equipped to manage larger graphs efficiently leading to a scalable graph learning architecture.

4 EXPERIMENTS

4.1 Experimental Settings
4.1.1 Datasets

: We performed extensive experiments on 5 public benchmark datasets including 3 citation networks,
A citation network where each node represents a paper and an edge represents a citation between
those papers. The citation networks used are Cora(consists of 2708 nodes, and each node belongs to
one of 7 classes, 5429 edges, and the node feature size is 1433), citetseer(consists of 3312 nodes, and
each node belongs to one of 6 classes, 4732 edges, and the node feature size is 3703) , and the other
two being A-Photo and A-Computer. On all the mentioned datasets, we have used 60%/20%/20%
train/val/test random splits.

4.1.2 Baselines

: We conduct a comprehensive comparison of our proposed Structure Aware Transformer on Graph
(SATG) against a set of five sophisticated baseline models. This lineup encompasses:

* Two full batch Graph Neural Networks (GNNs), namely Graph Convolutional Network
(GCN) Kiptf and Welling| [2016]] and Graph Attention Network (GAT) |Velickovic et al.
[2017].

» Three distinct graph transformers, namely Self-Attention Network (SAN) |Kreuzer et al.
[2021]], Graphormer |Ying et al.|[2021] and Nagphormer Chen et al.|[2022].

4.2 Evaluation

For experiments, we conduct 10 runs and report the average results of these 10 runs with the
corresponding standard deviation. The results for all the 5 datasets have been reported in Table 1.
Upon observing the results it is clear that SATG consistently outperforms MP-GNNs by a substantial
margin thereby proving the fact that fundamental message-passing GNNs are not the most optimal
way of dealing with graph data-structures. SATG also outperforms all the graph-transformer baselines
as well. Looking at the result table we also understand that there are some graph transformers that run



Table 2: Ablations

Component

Cora citetseer Pubmed Photo Computer
No PEs and No Global Nodes 90.37 80.12 89.39 9536 90.87

Global Nodes and no PEs 90.93 80.71 89.7 9594 92.25
PEs and no Global Nodes 91.11 80.72 89.55 96.27 91.71
PEs and Global Nodes 91.90 80.80 89.85 96.41 92.36

out-of-memory(OOM) on medium size datasets, as we can see that Graphormer, SAN and Graph-GPS
have run out-of-memory on various datasets.

4.3 Ablation Study

Positional Encoding: To understand if positional encodings are actually useful we perform a
series of experiments on all 5 datasets without concatenating the node features with positional
embeddings, and see the improvements caused solely by the inclusion of positional vectors trained
on the neighbourhood contrastive loss. The results are summarized in Table 2. Since it is clear that
positional encodings were fundamentally added to provide topological or structural knowledge of the
graph, we will see that the percentage improvement for each dataset is different. We observe that
positional encodings are of greater help to datasets with high dependence on structural knowledge
and inductive biases, when compared to datasets where the semantic knowledge of node features is
overpowering the topology.

Global Contextual Information: The idea of sum pooling all the modified node features(raw
node attributes + positional encodings) beyond K hops and introducing this as the last token in the
input sequence is being referred to as giving global contextual information here. We performed
experiments on all 5 datasets by removing this extra token that is the sum pool of all the modified
node features(raw node attributes + positional encodings) beyond K hops and have reported the
ablation studies in Table 3. It is evident that this extra token of global contextual information gains
substantial importance if we are dealing with a dataset that has extremely low inductive biases and a
good number of long-range interactions. It is also very clear that the percentage gain solely due to the
provision of this extra token varies over datasets.

5 Conclusion

In this work, we have proposed SATG, a novel graph transformer model that effectively captures both
short-range and long-range dependencies in graphs. Our main contributions are three-fold:

* We introduce a new class of positional encodings that are trained using a neighborhood
contrastive loss to embed the graph topology into the encoding space. Experiments show
these learned encodings are more effective than prior positional encoding schemes like
Laplacian eigenvectors.

* We present an input sampling strategy that constructs an efficient input sequence per node
consisting of its k-hop neighbor features. We further append a global node token to capture
long-range interactions beyond k hops without increasing time complexity.

* We conduct extensive experiments on 5 benchmark datasets. Results demonstrate that SATG
consistently and significantly outperforms state-of-the-art MP-GNNs like GCN, GAT, and
graph transformers like Graphormer and SAN. This highlights the benefits of our proposed
components.

In summary, SATG provides an effective way to equip graph transformers with comprehensive global
and local structural knowledge. The proposed techniques for learning topological encodings and
capturing multi-scale interactions enable SATG to achieve new state-of-the-art performance on node
classification. Directions for future work include extending SATG to additional graph-based tasks
such as link prediction and graph clustering.
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