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ABSTRACT

We propose a new model, DOCHOPPER, that iteratively attends to different parts
of long, heirarchically structured documents to answer complex questions. Similar
to multi-hop question-answering (QA) systems, at each step, DOCHOPPER uses a
query q to attend to information from a document, combines this “retrieved” in-
formation with q to produce the next query. However, in contrast to most previous
multi-hop QA systems, DOCHOPPER is able to “retrieve” either short passages
or long sections of the document, thus emulating a multi-step process of “navigat-
ing” through a long document to answer a question. To enable this novel behavior,
DOCHOPPER does not combine document information with q by concatenating
text to the text of q, but by combining a compact neural representation of q with
a compact neural representation of a hierarchical part of the document, which can
potentially be quite large. We experiment with DOCHOPPER on four different
QA tasks that require reading long and complex documents to answer multi-hop
questions, and show that DOCHOPPER achieves state-of-the-art results on three of
the datasets. Additionally, DOCHOPPER is efficient at inference time, being 3–10
times faster than the baselines.1

1 INTRODUCTION

In this work we focus on the problem of answering complex questions over long structured docu-
ments. A long document typically contains coherent information on a certain topic, and the contents
are grouped by sections or other structures. To answer complex, multi-hop questions over long doc-
uments often requires navigating through different parts of the documents to find different pieces of
information relevant to a question. This navigation, in turn, requires understanding high-level infor-
mation about the structure of the document. For example, to answer the question “What modules
in DOCHOPPER will be finetuned in all the experiments?”, one might first turn to the section title
“Model” to identify the different modules in DOCHOPPER, and then read the “Experiments” with
these modules in mind, potentially further attending to specific subsections (such as the ones titled
“Implementation Details”). As in academic papers (Dasigi et al., 2021), similar tasks are common
for questions about government policies (Saeidi et al., 2018) or legal documents. This type of QA
tests not only the ability to understand short passages of text, but also the ability to understand the
goals of the question and the structure of documents in a domain.

A common approach of solving multi-hop questions is to iteratively find evidence for one hop, and
then use that evidence to update the query used in the next hop of the QA process. The update can
be performed by either explicitly predicting the intermediate answers (Talmor & Berant, 2018; Sun
et al., 2019) or directly appending previous evidences to the questions (Zhao et al., 2021; Qi et al.,
2021; Li et al., 2020; Xiong et al., 2021). While appending retrieved evidence to a query works well
on many factual QA tasks, where it is possible to answer questions with evidences that are short
pieces of text, this approach is expensive if one wishes to retrieve larger pieces of text as evidences
(e.g., the “experiments” section of a paper). Another disadvantage is that appending together many
small fragments of text intuitively fails to capture the relationships between them, and the structure
of the document from which they were extracted.

To capture high-level structural information in a document as well as detailed information from short
passages, hierarchical attention mechanisms have been proposed, which learn neural representations

1We will open-source our code and data.
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at different levels that are then mixed to make final predictions for simple questions (Wang et al.,
2018; Chang et al., 2019). Hierarchical attention has also been adopted in pretrained language mod-
els, e.g. ETC (Ainslie et al., 2020), which introduced a global-local attention mechanism where
embeddings of special global tokens are used to encode high-level information. Our DOCHOPPER
system incorporates ETC as a document encoder. However, while ETC has previously performed
well on multi-hop QA tasks like HotpotQA and WikiHop (Yang et al., 2018; Welbl et al., 2018)
which require combining information from a small number of short passages, it has not been pre-
viously evaluated on tasks of the sort considered here. Our experiments show that DOCHOPPER
outperforms past approaches to using ETC for multi-hop questions.

DOCHOPPER extends the existing hierarchical attention methods with a novel approach to updating
queries in a multi-hop setting. DOCHOPPER iteratively attends to different parts of the document,
either at fine-grained level or at higher level. This process can be viewed as either retrieving a short
passage, or navigating to a part of a document. In each iteration, the query vector is updated in the
embedding space rather than by re-encoding a sequence of concatenated tokens. This updating step
is end-to-end differentiable and efficient. In our experiments, we also show it is effective on four
different benchmarks involving complex queries over long structured documents.

In particular, we evaluate DOCHOPPER on four different tasks: conversational QA for discourse
entailment reasoning, using the ShARC (Saeidi et al., 2018) benchmark2; factual QA with table
and text, using HybridQA (Chen et al., 2020); information seeking QA on academic papers, using
QASPER (Dasigi et al., 2021); and multi-hop factual QA, using HotpotQA (Yang et al., 2018).
Since the outputs of the four tasks are different, additional layers or simple downstream models are
appended to DOCHOPPER to get the final answers. DOCHOPPER achieves state-of-the-art results on
three of datasets, outperforming the baseline models by 3%-5%. Additionally, DOCHOPPER runs 3–
10 faster than the baseline models, because the neural representations of documents is pre-computed,
which significantly reduces computation cost at inference time.

2 RELATED WORKS

Graph-based models have been widely used for answering multi-hop questions in factual QA (Min
et al., 2020; Sun et al., 2018; 2019; Qiu et al., 2019; Fang et al., 2019). However, most of the graph-
based models are grounded to entities, i.e., evidences (from knowledge bases or text corpus) are
connected by entities in the graph. The graph construction step also heavily relies on many discrete
features such as hyperlinks or entities predicted with external entity linkers. It’s not clear how to
apply these models to more general tasks if context is not entity-centric, such as questions about
academic papers or government documents. Similar problems also exist in memory-augmented
language models that achieved the state-of-the-art on many factual QA tasks (Guu et al., 2020;
Lewis et al., 2021; Verga et al., 2020; Dhingra et al., 2020; Sun et al., 2021).

Alternatively, one can adopt the “retrieve and read” pipeline to answer multi-hop questions over long
documents. Recent works proposed to extend the dense retrieval methods (Karpukhin et al., 2020)
to multi-hop questions (Zhao et al., 2021; Qi et al., 2021; Li et al., 2020). However, such models
retrieve one small piece of evidence at a time, lacking the ability of navigating between different
parts of the documents to find relevant information at both higher and lower levels of the document-
structure hierarchy. Another disadvantage of these iterative models is that they are not end-to-end
differentiable. Updating the questions for the next hop requires re-encoding the concatenated tokens
from the questions and previously retrieved evidences. It also makes the model inefficient because
re-encoding tokens with large Transformer models is very expensive.

Besides question answering tasks, hierarchical attention has been successfully used in tasks such
as document classification (Yang et al., 2016; Chang et al., 2019), summarization (Gidiotis &
Tsoumakas, 2020; Xiao & Carenini, 2019; Zhang et al., 2019), sentiment analysis (Ruder et al.,
2016), text segmentation (Koshorek et al., 2018), etc. It is worth mentioning that ETC (Ainslie
et al., 2020) was also used on a key-phrase extraction task on web pages using the structured DOM
tree. However, none of these models can be easily adapted to answering complex questions over
long documents.

2We modify the original dataset and replace the oracle snippet with the entire web page as input. Please see
section §4.1 for more details.
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Figure 1: DOCHOPPER Overview for a structured document consisting of sentences and paragraphs. The
query encoder first computes embeddings q0, . . . , qn for a sequence of sub-questions. During the iterative
attention process, DOCHOPPER attends to a paragraph or a sentence from the context embedding table that
contains both paragraph embeddings and sentence embeddings. Information in the attended sentence or para-
graph will be mixed with the query vector to compute query update. If the query attends to a paragraph, e.g. the
first query q0 in the figure, the query vector will be broadcast to the associated sentences. If the query attends
to a sentence, e.g. the second query q1, only the sentence s01 will be used. DOCHOPPER then updates the query
vector q1 for the next round of attention. The selected sentences will be used to make final predictions.

3 MODEL

In this section, we first introduce how to compute neural representations for questions and context
at different levels. Then, we present the iterative process that attends to information in the document
and updates the query vector. Additional layers or simple downstream models required for different
downstream tasks will be explained in the next section (§4).

3.1 BACKGROUND

Input A long document usually contains multiple levels of hierarchy, e.g. sections, sub-sections,
paragraphs, sentences, etc. For simplicity, we only consider two levels of hierarchy in this paper:
paragraph-level and sentence-level. A sentence is the lowest granularity that can be retrieved, while
a paragraph is an abstraction of a collection of sentences, which can be used to represent sections
or other levels in the hierarchy, depending on the application. Formally, let d = {p0, . . . , p|d|} ∈ D
be a document in the corpus D that contains a sequence of paragraphs pi, and let a paragraph
pi = {si0, . . . , si|pi|} contain a sequence of sentences si0. A sentence sij will be encoded into a fixed
length vector sij ∈ Rd.

Pretrained ETC We use ETC (Ainslie et al., 2020) as our query and context encoder as it is pre-
trained to produce both token-level and sentence-level embeddings. ETC is pretrained as a Mask
Language Model (MLM). Different from BERT (Devlin et al., 2019), it employs an additional
global-local attention mechanism. ETC assigns to each sentence a special global token that only
attends to local tokens in the sentence, and its embedding is trained to summarize the information
of local tokens in the sentence. A global token also attends the global tokens of other sentences in
the input. ETC additionally adopts Contrastive Predictive Coding (CPC) (Oord et al., 2018) to train
the embedding of global tokens to make them aware of other sentences in the context. We use the
embeddings of global tokens in ETC as encodings for sentences.

Specifically, ETC takes a list of sentences pi = {si0, . . . , si|pi|} as input, and returns a list of vectors
si0, . . . , si|pi|, where each sij ∈ Rd represents the embedding of a sentence sij .

si0, . . . , s
i
|pi| = ETC({si0, . . . , si|pi|}) ∈ R|pi|×d
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3.2 QUERY EMBEDDINGS

We discuss the strategy of computing query vectors for two types of input, conversational QA and
multi-hop QA. We use ETC (Ainslie et al., 2020) as our query encoder for the reasons discussed
above. Other pretrained language models for similar purposes should work as well.

Conversational QA A conversational question contains multiple rounds of interaction between the
machine and human. As the conversation goes on, the topic of the conversation will shift, but
questions asked in the next turn are related to the history of the conversation. We consider this
multi-turn process as a multi-hop QA task. In our specific task, the conversation starts with an initial
question q0. The model will answer the question if there’s enough information. Otherwise, the
model will ask a followup question f1 and expect the user’s answer a1. The model will keep asking
followup questions for a few more iterations. The task is to predict the answer if there is enough
information after reading the full conversation history, or mark the question as not answerable.

We denote ai as the answer to the followup question fi received from the users at the i’th iteration.
We consider the full conversation history as the question pq = {q0, (f1, a1), . . . , (fn, an)} with the
initial question denoted q0 and the i-th followup question-answer pair denoted (fi, ai). The answer
ai to the followup question fi is concatenated to the end of the questions and represented as a single
sentence. We call pq a question paragraph as it contains a sequence of question-answer pairs. We
use ETC to compute the query embeddings qi, one for each sentence in the query paragraph pq . The
query embeddings qi will be used to perform iterative attention over the document.

q0, . . . ,qn = ETCq({q0, (f1, a1), . . . , (fn, an)}) (1)

Multi-hop QA A multi-hop question, e.g. “Which gulf is north of the Somalian city with 550,000
residents”, requires the model to first find the answer of the first “hop” of the question, and then per-
form a second round to find the final answer. Assume for now there are exactly two hops. Different
from conversational QA, questions in multi-hop QA do not have a clear split between the two hops
of questions, making it impossible to explicitly split a question into two sub-questions. Instead, we
add a dummy question qnull to the question paragraph qp = {q0, qnull}. The global-to-local attention
mask of ETC is modified to allow the global token of the dummy question to attend to tokens in the
question q0. With this modification, the query embeddings q0 and q1 for q0 and qnull can to attend
any part of the question, but each can also attend to different parts of the question. One could append
additional dummy questions to the question paragraph pq if the number of hops is larger. Thus we
let

q0,q1 = ETCq({q0, qnull}) (2)

Note that we assume the true number of hops is known in multi-hop QA tasks, which is two or four
for the experiments in this paper. However, one can train models to decide when to stop if questions
have various numbers of hops. We leave this as a topic for future work.

3.3 NEURAL REPRESENTATIONS OF PARAGRAPHS

We compute embeddings sij for the sentence sij with the context encoder. We use ETC as our
context encoder, but similar pretrained language models will also work. Recall that a paragraph pi =
{si0, . . . , si|pi|} contains a sequence of sentences sij . The sentence embeddings sij in the paragraph
pi are simply computed by applying ETC on the paragraph input.

si0, . . . , s
i
|pi| = ETCc({si0, . . . , si|pi|})

The paragraph embeddings are directly derived from sentence embeddings sij and dependent on the
queries qt, the embedding of the t’th hop of the question. The paragraph embedding pi is a weighted
sum of sentence embeddings sij in the paragraph pi, where αj is the attention weights of the query
vector qt to the sentence embedding sij . The paragraph embeddings pi are thus dependent on the
query, but do not require jointly encoding tokens from queries and context, as in many BERT-style
reading comprehension models. Computing paragraph embeddings with Eq.3 is hence very efficient.

pi =
∑
j

αj sij , αj = softmax(qT
t sij) (3)
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3.4 ITERATIVE ATTENTION

We put the sentence embeddings and paragraph embeddings of document d into a combined context
embedding table, so the model has the flexibility to decide which sentence or paragraph to attend to.
Different update rules will be applied according to whether sentences or paragraphs are attended to.

To construct the embedding table, we iterate through all paragraphs in a document and apply
the ETC encoder on each paragraph to compute the paragraph and sentences embeddings. Sen-
tence and paragraph embeddings from all paragraphs are then merged together to form the com-
bined embedding table. We denote the combined embedding table for document d as Cd =
{p0, s00, . . . , s0|p0|,p1, s10, . . . , s1|p1|, . . . }. Let cm be the embedding of the m’th entry from Cd; we
emphasize that cm can represent either a sentence or a paragraph embedding.

Attention Step At each iteration, DOCHOPPER computes the inner product scores between the
query vector qt and embeddings cm in Cd, and returns the entry ĉ with the largest score, which is
usually referred as hard attention. (As we will see ĉ is not directly used for computation, but it is
helpful in explaining the attention method).

ĉ = argmaxcm(qT
t cm)

Mixing Step DOCHOPPER then mixes the embedding of the attended entry ĉ with the query vector
qt to find the missing information. Since the combined embedding table Cd contains both sentence
and paragraph embeddings, the selected entry ĉ can represent either a sentence or a paragraph. The
two cases are separately considered. If ĉ is a sentence, i.e. ĉ = sij , DOCHOPPER computes the
mixed embeddings as

q̃t = WT
q [qt; sij ] (4)

where [qt; sij ] is the concatenation of two vectors qt and sij . Assume ĉ is a paragraph, i.e., ĉ = pi,
DOCHOPPER first looks up sentences in pi, i.e. the list {si0, . . . , si|pi|}. The following process is
then used to compute the mixed embedding q̃t: (1) DOCHOPPER computes the attention weights
of the query vector qt to the embeddings of associated sentences {si0, . . . , si|pi|} that measures the
relevance scores between the query vector and the sentences. This attention weight is the same as
the weight αj in Eq.3 that is used to compute the paragraph embeddings, so we reuse αj in this
equation. In the implementation, we also re-use the value of αj if it has been computed for the
query-dependent paragraph embeddings. (2) The query vector qt is compared with every sentences
in paragraph to extract missing information. qt is broadcast to the sentence embedding sij with the
weight αj , i.e. the query vector is more important if more relevant. The comparison is performed as
a linear projection of the concatenated query and sentence embeddings, qt and sij .

kj = WT
q [αj qt; sij ] (5)

Then (3) the concatenated vectors kj are summed with the weight βj , where βj is the attention
weight of a learned vector v to the concatenated vector kj . The learned vector v coordinates the
importance of sentences from the attended paragraph after comparing them with the query vector
and decides what information to pass to the next step of retrieval.

q̃t =
∑
j

βj kj , βj = softmax(vT kj) (6)

It is not hard to see that computing the mixed embedding in Eq. 6 for the case that a paragraph is
retrieved is essentially the same as in Eq. 4 if the retrieved paragraph pi only contains one sentence,
i.e. αj = 1 and βj = 1 if |pi| = 1; hence the same logic can be used regardless of whether ĉ is a
sentence or a paragraph.

Update Step The mixed embedding q̃t is then used to update the query vector qt+1 for the next step.
Intuitively, q̃t is the residual from the previous step. Adding the residual embedding encourages the
model to attend to information that is not fully satisfied from previous steps.

qt+1 ← qt+1 + q̃t (7)
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Loss Function Attention is supervised if (distantly) supervised labels are available in the dataset.
qT
t cm is the inner product score between the query vector qt and a context embedding cm. Icm is an

indicator function that equals to 1 iff the label of cm is positive.

lt = cross entropy(softmax(qT
t cm), Icm)

The loss function is computed at the final step, and possibly at intermediate steps if labels are avail-
able. Supervision labels are sometimes distantly constructed. For example, in the extractive QA
task, a positive candidate is the sentence or paragraph that contains the answer span (see §4).

3.5 RUNTIME EFFICIENCY

DOCHOPPER is very efficient at runtime thanks to the precomputed context embeddings (§3.3) at in-
ference time. Different from previous reading comprehension models that jointly encode questions
and context (Beltagy et al., 2020; Ainslie et al., 2020), DOCHOPPER encode question embeddings
and context embeddings independently. At inference time, DOCHOPPER lets questions directly at-
tend to the precomputed context embeddings, significantly reducing the computation cost compared
to cross-attention models that jointly encode questions and context.

4 EXPERIMENTS

We evaluate DOCHOPPER on four different datasets: ShARC (Saeidi et al., 2018), HybridQA (Chen
et al., 2020), QASPER (Dasigi et al., 2021), and HotpotQA (Yang et al., 2018).3 Since the down-
stream tasks of the four datasets are different, we apply an additional layer for ShARC, and a
Transformer-based extractive QA model for HybridQA, QASPER and HotpotQA to extract the final
answers. We will discuss the setup for each case separately.

4.1 EXTRACTIVE QA: HYBRIDQA AND QASPER

Dataset HybridQA is a dataset that requires jointly using information from tables and hyperlinked
text from cells to find the answers. Please see the Appendix for more information. This dataset
requires the model to first locate the correct row in the table, and then find the answer from cells (or
their hyperlinked text). To apply DOCHOPPER on the HybridQA dataset, we first convert a table
with hyperlinked text into a long document. Each row in the table is considered a paragraph by
concatenating the column header, cell text, and hyperlinked text if any. The average length of the
documents is 9345.5 tokens.

Dataset QASPER (Dasigi et al., 2021) is a QA dataset constructed from NLP papers. The dataset
contains a mixture of extractive, abstractive, and yes/no questions. We experiment with the subset
of extractive questions (51.8% of the datasets) in this paper. Some questions in the dataset are
answerable with a single-hop of retrieval. However, as described in the original paper, 55.5% of
the questions have multi-paragraph evidence, and thus aggregating multiple pieces of information
should improve the accuracy. Answers in the QASPER dataset have an average of 14.4 tokens. We
treat each subsection as a paragraph and prepend the section title and subsection title to the beginning
of the subsection.

Implementation Details Question embeddings q0,q1 are initialized from Eq. 2 and updated as
in Eq. 7. For the two datasets, we perform 2-hop attention: the first hop is trained to attend to a
paragraph, and the second hop to attend to a sentence. Note that we do not require that sentences
attended to in the second hop must come from the previously attended paragraphs. The attention
scores of paragraphs and sentences are linearly combined to find the best sentence that contains
the answer, which will then be read by a BERT-based reader to extract the final answer. The final
attention score of a sentence sij ∈ pi is

score(sij) = qT
1 sij + λ1 · qT

0 pi + λ2 · sparse(q0, pi) (8)

3We modify the original ShARC and HotpotQA datasets to evaluate them in the long-document setting.
Please see the dataset descriptions for more details.
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HybridQA QASPER (Extractive)
Dev Test Dev Test runtime

Retrieval + ETC 37.0 / 43.5 34.1 / 40.3 8.3 / 18.7 9.6 / 19.1 8.3/s
Sequential (ETC) 39.4 / 44.8 37.0 / 43.0 11.2 / 24.6 12.4 / 27.0 0.6±0.1/s
Hybrider 44.0 / 50.7 43.8 / 50.6 – / – – / – 5.1/s
LED – / – – / – – / 26.1 – / 31.0 0.5/s

DOCHOPPER 47.7 / 55.0 46.3 / 53.3 14.0 / 29.6 19.5 / 36.4 74.6/s
(w/o sparse) 44.4 / 51.2 – / – (14.0 / 29.6) – / – –
(w/o query update) 44.2 / 50.9 – / – 12.2 / 28.0 – / – –
(sentence-only) 36.7 / 43.7 – / – 11.4 / 27.2 – / – –
(single-hop) 27.8 / 34.1 – / – 11.8 / 27.3 – / – –
(w/ cell) 53.1 / 61.4 – / – – / – – / – –

MATE * 63.4 / 71.0 62.8 / 70.2 – / – – / – –

Table 1: EM/F1 performance on HybridQA and QASPER. Runtime is measured by reruning their open-
sourced codes (failed to rerun MATE). Numbers for QASPER are reported on the subset of extractive questions.
* See Results and Analysis for discussion on MATE’s performance.

where qT
1 sij and qT

0 pi are the attention scores at sentence and paragraph levels, and sparse(q0, pi) is
the similarity score using sparse features.4 λ1 and λ2 are hyper-parameters tuned on dev data. We
set λ1 = 1.5 and λ2 = 3.0 for HybridQA, and λ1 = 0.5 and λ2 = 0.0 for QASPER.

Baselines We compare DOCHOPPER with the previous state-of-the-art models, MATE (Eisenschlos
et al., 2021) and LED (Dasigi et al., 2021), and several other competitive baselines to show the
efficacy of DOCHOPPER. MATE (Eisenschlos et al., 2021) is a pretrained Transformer model with
sparse attention between cells that is specifically designed for tabular data. HYBRIDER (Chen
et al., 2020) is a pipeline system that (1) links cells, (2) reranks linked cells, (3) hops from one cell to
another, and (4) reads text to find answers. All four stages are trained separately. LED is an encoder-
decoder model that builds on Longformer (Beltagy et al., 2020). We also experiment with directly
reading the documents with a Transformer-based reader ETC (Ainslie et al., 2020): though it can’t
fit the entire document into its input, it is still one of the best models for reading long sequences (up
to 4096 tokens). To handle longer documents, we adopt the sequential reading strategy: the model
reads the document paragraph by paragraph, and picks the most confident prediction as the answer.
We also report the numbers of a “retrieve and read” pipeline with a BM25 retriever and a finetuned
ETC reader. The numbers are shown in Table 1. Runtime is measured as examples per second with
a batch size of 1.

Results and Analysis On QASPER, DOCHOPPER outperforms the previous state-of-the-art models
by 3-5%, and runs more than 10 times faster. DOCHOPPER performs worse than MATE (Eisensch-
los et al., 2021) on HybridQA. This is due to three reasons. (1) MATE is specifically designed and
pretrained to understand tabular data, while DOCHOPPER is applied to general documents. (2) To
convert tables to DOCHOPPER’s input, DOCHOPPER serializes the tables by rows and thus loses in-
formation from other table structures, e.g. cells and columns, that are commonly used to understand
tabular data. In an ablated experiment with the assumption that sentences are grouped by cells, we
let DOCHOPPER return cells that contain the selected sentences and pass the cells (instead of single
sentences) to the underlying extractive QA model (labeled w/ cell). This improves the performance
by 5.4 points. (3) MATE restricts the length of text in cells to 5 sentences and enforces it by re-
trieving top-k sentences from the hyperlinked text. It also restricts the total length of tables to 2048
tokens. DOCHOPPER does not put any restrictions on the length of cell or the length of tables, and
can thus be easily applied to more general tasks.

We additionally performed more ablated experiments with DOCHOPPER. The query update (see the
row w/o query update) in Eq. 7 is also important, causing 3.5% and 1.8% difference in performance
on both datasets. We also ablated the model by using one step of attention to select the most relevant
sentence from the document (single-hop), and note again that performance drops noticeably. Adding
one more step of attention, while only attending to sentences (sentence-only in the table), leads to

4Similar to the baseline model (Chen et al., 2020), we use paragraph-level sparse features to improve accu-
racy. In HybridQA, sparse(q0, pi) computes the length of longest common substrings in the question q0 and
the paragraph pi. Sparse features are only used at the end of retrieval, not at any intermediate steps.
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HotpotQA-Long
Answer Support

IRRR (direct) 53.6 / 64.8 44.7 / 73.2
IRRR (rerank) 62.1 / 75.6 54.5 / 81.3

DOCHOPPER (direct) 57.4 / 69.5 45.1 / 73.8
DOCHOPPER (rerank) 66.5 / 79.7 61.4 / 85.9

ETC (distractor) – / 81.7 – / 89.4
HGN (distractor) – / 83.4 – / 89.2

Table 2: EM/F1 performance on answer and sup-
porting evidence on HotpotQA (dev set) with full
Wikipedia pages as context. HGN Fang et al. (2019)
and ETC Fang et al. (2019) are evaluated on the dis-
tractor setting.

ShARC-Long
Easy Strict runtime

ETC 61.1 – 11.2/s
Retrieval + DISCERN 65.2 50.7 42.0/s
Sequential (DISCERN) 63.7 54.2 8.8/s

DOCHOPPER 72.3 60.2 164.3/s
(w/o query update) 72.4 59.9 –
(sentence only) 62.2 43.2 –
(single-hop) 68.0 52.7 –

Table 3: Classification accuracy on ShARC-Long
dataset. The Easy setting only checks the predicted la-
bels, while the Strict setting additionally checks if all
required evidences are retrieved. DISCERN is run with
their open-sourced codes.

some improvement, but is still worse than attending at both paragraph and sentence levels. The
performance of sentence selection (with ablated numbers) is presented in the Appendix.

4.2 HOTPOTQA-LONG

Dataset HotpotQA requires multi-hop reasoning to answer two types of questions, bridge and com-
parison. The original dataset provides the first paragraphs of 10 Wikipedia pages as its context. To
test the model’s ability to extract information from a longer context, we use first 2048 tokens of the
10 Wikipedia pages, and concatenate the 10 pages into a single document. This increases the average
length of context from 897 to 9970 tokens. We call this variant of the dataset HotpotQA-Long.

Implementation Details The experiment setup for HotpotQA-Long is similar to HybridQA and
QASPER. Attention for this dataset is supervised, using the information about which evidences
support each answer provided in the dataset. Here, we refer to a Wikipedia page (with a maximum
of 2048 tokens) as a paragraph. The iterative attention is performed similarly to §4.1, but repeated
for 4 hops: paragraph, sentence, paragraph, and sentence. The first two hops are supervised by the
first supporting evidence, and the last two hops are supervised by the second supporting evidence.
The final score for each evidence is computed as in Eq. 8 with λ1 = 0.7 for the first evidence and
λ1 = 0.0 for the second, and λ2 = 0 for both. As suggested by Xiong et al. (2021), reranking can
improve the overall performance, so we take the top 4 sentences for each step and rerank the 16
combinations.5

Baselines We compare DOCHOPPER with IRRR (Xiong et al., 2021) which is an multi-hop retrieval
model that iteratively retrieves a small piece of evidence and re-encodes query vectors at each step
by concatenating tokens from the retrieved passages at the previous step.6 We compare to IRRR
both with or without the reranking step. Since questions in HotpotQA require combining evidences
from multiple paragraphs, it’s not clear how to run the sequential reading baseline on HotpotQA-
Long, but as a reference, we show the performance of ETC and HGN in the distractor setting (with
the original context, which is 10x smaller) in Table 2.

Results DOCHOPPER outperforms the baseline models by 4-6 points on the accuracy of both answer
and supporting evidence. More surprisingly, the performance of DOCHOPPER in the long document
setting is only ∼4 points lower than the state-of-the-art on the distractor setting, even though the
context is more than 10 times longer. Please see the Appendix for ablated experiments and analysis.

4.3 CONVERSATIONAL QA: SHARC-LONG

Dataset ShARC Saeidi et al. (2018) is a conversational QA dataset for discourse entailment reason-
ing. Each example consists of a document that describes a government policy and a conversation
history about the document between the machine and the user. The conversation starts with an ini-
tial questions asked by the user and follows by a sequence of clarification questions and answers
collected from the interaction between the machine and the user. The model takes the conversation

5Please refer to Xiong et al. (2021) for more details on the reranking step.
6IRRR is the best model (ranked #9 on leaderboard) on HotpotQA (fullwiki) with open-sourced codes.
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history as input and predicts the answer to the initial question. An answer has one of the four labels:
“Yes”, “No”, “Irrelevant”, or “Inquire”. “Irrelevant” means the question is not related to the pro-
vided context and “Inquire” means there’s not enough information to answer the question. Similar
to HotpotQA-Long, we expand the original context to test the long document setting. The expanded
context contains 737.1 tokens on average, 13.5 times longer than the original context. Please see the
Appendix for more details and examples.

Implementation Details The query embeddings q0, . . . ,qn are initialized from Eq. 1 where n is the
number of followup questions in the conversation. The query vector qt at the step t will be updated
with the residuals following the update rule in Eq.7. The iterative attention process is distantly
supervised at intermediate steps. See the Appendix for information on distant supervision.

We add a simple classification layer on DOCHOPPER to make the final prediction. As in-
put to this layer, we reuse the concatenated vector kj in Eq. 5. Let k(t)

j be the concate-
nated vector of the sentence attended at the t’th retrieval step, either a sentence directly at-
tended or associated from a attended paragraph. Concatenated embeddings at all attention steps
{k(0)

0 , . . . ,k(0)
∗ , . . . ,k(n)

0 , . . . ,k(n)
∗ } are linearly combined into one vector k̃ that will be used to

make the final prediction, using weights γ(t)j computed across the attended sentences from all steps
t. m ∈ R4 holds the logits of the 4 classes that is used to compute the softmax cross entropy with
the one-hot encoding of the positive class labels.

k̃ =
∑
t

∑
j

γ
(t)
j k(t)

j , γ
(t)
j = softmax(uT k(t)

j ), m = WT
c k̃ ∈ R4

Baselines We compare our model with ETC and a “retrieve and read” baseline. In using ETC, we
concatenate the full context and the conversation into a single input, and prepend a global [CLS]
token. The embedding of the global [CLS] token will be used to make the final prediction. For the
“retrieve and read” pipeline, we adopt the previous state-of-the-art model DISCERN as the reader,
and pair it with a learned retriever.7 We also run a sequential reading baseline with DISCERN where
documents are chunked every 128 tokens with a stride of 32 tokens and then read with DISCERN,
predicting the class with the highest probability among all chunked inputs.8Runtime is measured as
examples per second.

Results The evaluation is performed in two settings: Easy and Strict. The Easy setting only eval-
uates the accuracy of classification. In the Strict setting, we additionally require that all evidences
(provided in the original dataset) are retrieved. We report the (micro) accuracy as the evaluation
metric. DOCHOPPER outperforms all baseline models by more than 7 points in both easy and strict
settings, while being more than 3 times faster than all baseline models. We performed the previ-
ous ablated experiments and observed similar changes in performance. Please see the Appendix for
more numbers on evidence selection.

5 CONCLUSION

We consider on the problem of answering complex questions over long structured documents. Like
multi-hop open QA tasks, this problem requires not only conventional “machine reading” abilities,
but the ability to retrieve relevant information and refine queries based on retrieved information.
Additionally, it requires the ability to navigate through a document, by understanding the relation-
ship between sections of the document and parts of the question. In our framework, navigation
is modeling similarly to retrieval in multi-hop models: the model attends to a document section,
and uses a compact neural encoding of the section to update the query. Unlike most prior multi-
hop QA models, however, queries are updated in embedding space, rather than by appending to a
discrete representation of question text. This approach is end-to-end differentiable and very fast.
Experiments also demonstrate that this use of hierarchical attention can significantly improve the
performance on QA tasks: in fact, the DOCHOPPER model achieves the start-of-the-art results on
four challenging QA datasets, outperforming the baseline models by 3–5%, while also being 3–10
times faster.

7The retriever is a ablated DOCHOPPER model that attends at the paragraph level only.
8The model is often extremely confident on the “Irrelevant” class because most chunked inputs are obviously

irrelevant. We tuned a hyper-parameter ε = 0.99 so the model predicts “Irrelevant” if the probabilities of all
chunked inputs are larger than ε.
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6 ETHICS STATEMENT

Pretrained language models (LM) are effective in many tasks but are criticized due to their high
training cost and environmental concerns. Recently, more attention has been brought into devel-
opment efficient models. The DOCHOPPER model proposed in this paper follows research in this
direction. DOCHOPPER exploits the existing language models released by other research institutes.
Without any additional pretraining, DOCHOPPER achieved competitive or state-of-the-art results in
several challenging QA datasets. All experiments in this paper were conducted with a single GPU.

Besides being efficient in training, DOCHOPPER is also extremely efficient during inference. Ex-
periments show that DOCHOPPER runs 3-10 times faster compared to existing QA models and thus
could be deployed using limited computation resources.

7 REPRODUCIBILITY STATEMENT

Experiments in this paper are conducted on publicly available datasets. Codes and processed data
will be open-sourced upon the acceptance of this paper.
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laume Bouchard, and Sebastian Riedel. Interpretation of natural language rules in conversational
machine reading. arXiv preprint arXiv:1809.01494, 2018.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W Cohen. Open domain question answering using early fusion of knowledge bases
and text. arXiv preprint arXiv:1809.00782, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W. Cohen. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text, 2019.

Haitian Sun, Pat Verga, Bhuwan Dhingra, Ruslan Salakhutdinov, and William W Cohen. Reasoning
over virtual knowledge bases with open predicate relations. arXiv preprint arXiv:2102.07043,
2021.

A. Talmor and J. Berant. The web as a knowledge-base for answering complex questions. In North
American Association for Computational Linguistics (NAACL), 2018.

Pat Verga, Haitian Sun, Livio Baldini Soares, and William W Cohen. Facts as experts: Adaptable
and interpretable neural memory over symbolic knowledge. arXiv preprint arXiv:2007.00849,
2020.

Wei Wang, Ming Yan, and Chen Wu. Multi-granularity hierarchical attention fusion networks for
reading comprehension and question answering. arXiv preprint arXiv:1811.11934, 2018.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association for Computational Lin-
guistics, 6:287–302, 2018.

11



Under review as a conference paper at ICLR 2022

Wen Xiao and Giuseppe Carenini. Extractive summarization of long documents by combining global
and local context. arXiv preprint arXiv:1909.08089, 2019.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang,
Yashar Mehdad, Wen tau Yih, Sebastian Riedel, Douwe Kiela, and Barlas Oğuz. Answering
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A APPENDIX

A.1 DATASET DETAILS

HybridQA (Chen et al., 2020) is a dataset that requires jointly using information from tables and
text hyperlinked from table cells to find the answers of multi-hop questions. A row in the table
describes attributes of an instance, for example, a person or an event. Attributes are organized by
columns. For example, the table of Medalist of Sweden in 1932,9 contains a row “[Medal:] Gold;
[Name:] Rudolf Svensson; [Sport:] Wrestling (Greco-Roman); [Event:] Men’s Heavyweight”. Text
in the square brackets are the headers of the table. The medal winner “Rudolf Svensson” and the
event “Wrestling (Greco-Roman)” are hyperlinked to the first paragraph of their Wikipedia pages. A
question asks “What was the nickname of the gold medal winner in the men ’s heavyweight greco-
roman wrestling event of the 1932 Summer Olympics?” requires the model to first locate the correct
row in the table, and find the answer from other cells in the row or their hyperlinked text.

To apply our model on the HybridQA dataset, we first convert a table with hyperlinked text into
a long document. Each row in the table is considered a paragraph by concatenating the column
header, cell text, and hyperlinked text if any. The column name and cell text are each treated as
one sentence. Hyperlinked text is also split into sentences. In the example above, the row becomes
“Medal. Gold. Name. Rudolf Svensson. Johan Rudolf Svensson (27 March 1899 – 4 December
1978) was a Swedish wrestler. He competed ...”. The average length of the documents is 9345.5.

QASPER (Dasigi et al., 2021) is a QA dataset constructed from NLP papers. They hired graduate
students to read the papers and ask questions. A different group of students are hired to answer
the questions. For example, a question asks “What are the baseline models used in this paper?”.
The answers are {“BERT”, “RoBERTa”}. The dataset contains a mixture of extractive, abstractive,
and yes/no questions. We focus on the subset of extractive questions (51.8% of the datasets) in
this paper. Some questions in the dataset are answerable with a single-hop. However, as suggested
in the original paper, 55.5% of the questions have multi-paragraph evidence, and thus aggregating
multiple pieces of information should improve the accuracy. Answers in the QASPER dataset are
longer, with an average of 14.4 tokens. We treat each subsection as a paragraph and prepend the
section title and subsection title to the beginning of the subsection.

ShARC Saeidi et al. (2018) is a conversational QA dataset for discourse entailment reasoning.
Questions in ShARC are about government policy crawled from government websites. Users engage
with a machine to check if they qualify for some benefits. A question in the dataset starts with a

9https://en.wikipedia.org/wiki/Sweden_at_the_1932_Summer_Olympics
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HybridQA QASPER
(Extractive)

DOCHOPPER 56.5 39.1
(w/o sparse) 53.3 (39.1)
(w/o query update) 51.8 37.2
(sentence-only) 46.4 36.1
(single-hop) 34.2 36.8

Table 4: Hits@1 accuracy on selecting sentences that actually contains the answer (on dev set).

initial question, e.g. “Can I get standard deduction for my federal tax return?”, with a user scenario,
e.g. “I lived in the US for 5 years with a student visa”, and a few followup questions and answers
through the interaction between the machine and users, e.g. “Bot: Are you a resident alien for tax
purpose? User: No”. The model reviews the conversation and predicts one of the three labels: “Yes”,
“No”, or “Irrelevant”. If the model think there’s not enough information to make the prediction, it
should predict a fourth label “Inquire”.

Besides the conversation, each example in the ShARC dataset provides a snippet that the conver-
sation is originated from. A snippet is a short paragraph that the conversation is created from, e.g.
“Certain taxpayers aren’t entitled to the standard deduction: (1) A married individual filing as mar-
ried... (2) An individual ...”. Since the snippets are usually short, with an average of 54.7 tokens,
previous models, e.g. DISCERN Gao et al. (2020), concatenate the snippet and the conversation,
and jointly encode them with Transformer-based models, e.g. BERT or RoBERTa. Here we con-
sider instead a more challeging long-document setting, in which the snippet is not known, and the
model must also locate the snippet from the document. We crawl the web pages with the provided
URL. The pages contain 737.1 tokens on average, 13.5 times longer than the original snippets, and
the longest page contains 3927 tokens. We name this new variant ShARC-Long.

A.2 IMPLEMENTATION DETAILS FOR SHARC-LONG

Changes to Context Representations Instead of computing the paragraph embeddings as a
weighted sum of sentence embeddings, we directly obtain the paragraph embeddings from ETC
output for this dataset. Recall that a paragraph pi = {si0, . . . , si|pi|} contains a sequence of sen-
tences sij . We prepend a dummy sentence snull to the beginning of the paragraph, and again, we
modify the global-to-local attention mask to allow the global token of the dummy sentence to attend
to all tokens in the paragraph pi. Let pi ∈ Rd be the embedding of paragraph pi. The embeddings
for a paragraph and its contained sentences are:

pi, s
i
0, . . . , s

i
|pi| = ETC({snull, s

i
0, . . . , s

i
|pi|})

Distant Supervision The iterative attention process is distantly supervised with supervision at in-
termediate steps. At each step, the model is trained to attend to both the correct paragraph and
the correct sentences if they exists. Since the embedding table Cd consists of both paragraph and
sentence embeddings, we only need to compute the attention scores once at each step, but consider
both the correct paragraph and the correct sentence as positive. The positive paragraph is one of
the paragraphs from the crawled web page with the highest BLEU score.10 We notice that some
web pages at the provided URLs have been changed significantly, so the snippets provided in the
datasets may not exist any more, hence we discard the associated data if the highest BLEU scores of
the paragraphs is less than 0.7. We follow the heuristics used by baseline models (Gao et al., 2020)
to get positive sentence candidates by finding the sentence with the minimum edit distance.

A.3 ADDITIONAL RESULTS

We report the performance of eventually selecting the correct evidences in Table 4, 5, and 6.

Comments on HotpotQA-Long We also observe that ablated experiment on evidence selection
(w/o query update) is only 7.8 points lower than the full model. To understand the underlying

10We drop the brevity penalty term in BLEU score.
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HotpotQA-Long

IRRR 56.8

DOCHOPPER 64.7
(w/o query update) 56.5
(sentence-only) 61.8
(single-hop) 37.4

Table 5: Accuracy of correctly predicting supporting facts for both hops on HotpotQA-Long (with-
out reranking).

ShARC-Long

DOCHOPPER 82.2
(w/o query update) 81.8
(sentence-only) 63.0
(single-hop) 72.4

Table 6: Accuracy of selecting all required evidences on ShARC-Long.

reason, we train the model to perform a one-step attention only for supporting facts of the second
hop (for bridge questions). The accuracy is 71.7, only 3.6 points lower than the accuracy of the full
multi-hop process. This is likely due to the high surface form overlap between the questions and
their context.
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