
RMBR: A Regularized Minimum Bayes Risk Reranking Framework
for Machine Translation

Anonymous ACL submission

Abstract

Beam search is the most widely used decoding001
method for neural machine translation (NMT).002
In practice, the top-1 candidate with the highest003
log-probability among the n candidates is se-004
lected as the ‘preferred’ one. However, this top-005
1 candidate may not be the best overall transla-006
tion among the n-best list. Recently, Minimum007
Bayes Risk (MBR) decoding has been pro-008
posed to improve the quality for NMT, which009
seeks for a consensus translation that is closest010
on average to other candidates from the n-best011
list. We argue that existing MBR decoding012
still suffers from the following problems: The013
utility function only considers the lexical-level014
similarity between candidates; The expected015
utility considers the entire n-best list which is016
time-consuming and inadequate candidates in017
the tail list may hurt the performance; Only the018
relationship between candidates is considered.019
To solve these issues, we design a regularized020
MBR reranking framework (RMBR), which021
considers semantic-based similarity and com-022
putes the expected utility for each candidate023
by truncating the list. We expect the proposed024
framework to further consider the translation025
quality and model uncertainty of each candi-026
date. Thus the proposed quality regularizer and027
uncertainty regularizer are incorporated into the028
framework. Extensive experiments on multiple029
translation tasks demonstrate the effectiveness030
of our method.031

1 Introduction032

Given a source sentence, neural machine transla-033

tion (NMT) (Sutskever et al., 2014) models are034

trained to predict conditional probability distribu-035

tions for candidate translations. In practice, it is036

desirable to output a single sentence, not a distri-037

bution. Therefore, a decision rule is required to038

rank the candidates and select the ‘preferred’ one.039

The most widely used decision rule is maximum-a-040

posteriori (MAP) decoding, which seeks the most041

probable translation under the conditional distribu-042

tion. Due to the huge search space, beam search is 043

proposed as an approximation. Given a pre-defined 044

beam size n, beam search always keeps the top- 045

n candidates based on the log-probability score. 046

Then, the top-1 candidate, i.e., the one with the 047

highest log-probability among the n-best list, is 048

selected as the ‘preferred’ one. Unfortunately, this 049

top-1 candidate might not be the best translation 050

on the n-best list. 051

We conduct oracle experiments to explore the 052

performance gap between the oracle result1 in the 053

n-best candidates and top-1 candidate. Besides us- 054

ing beam search, we further use three stochastic 055

decodings (ancestral search (AS) (Fu et al., 2021), 056

top-k (Fan et al., 2018), top-p (Holtzman et al., 057

2020)), and two deterministic decodings (diverse 058

beam search (DBS) (Vijayakumar et al., 2016), sib- 059

ling beam search (SBS) (Li et al., 2016)) to obtain 060

n candidates, respectively. The results are reported 061

in Fig. 1a. The top-1 candidate of beam search with 062

beam size 5 is used as baseline. Overall, all of the 063

oracle results achieve significantly higher BLEU 064

(Chen and Cherry, 2014) scores than baseline. For 065

example, under the beam size 100, an oracle result 066

of beam search achieves the high BLEU score of 067

47.98, while the baseline achieves only 34.28. 068

Furthermore, we observe that under the oracle 069

experiment, using beam search to obtain n-best can- 070

didates still outperforms other decoding methods. 071

These results suggest that beam search actually per- 072

forms well, yet log-probability scores fail to select 073

the best translation from the n-best list. Similar 074

to our study, Blain et al. (2017) has observed that 075

NMT model is capable of outputting high-quality 076

candidate translations, but fails at picking them as 077

the best one. Leblond et al. (2021) also points out 078

that, NMT models are good at spreading probabil- 079

ity mass over a large number of acceptable outputs, 080

1The oracle result is defined as argmaxY ∼pNMT(Y |X)

BLEU(Y, Y ′), where (X,Y ′) is the pair of source and refer-
ence sentence.
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(a) (b) (c)

Figure 1: An example of exploring candidate spaces on the IWSLT’14 De→En test set. (a) Oracle ranking of
samples generated by multiple decoding strategies. (b) The token probabilities of sentences in different length
intervals. The x-axis is the length interval, and the y-axis is the average token probability of the sentences within
the same length range. (c) The distribution of oracle translations’ rank index in the n-best list (n=30). The x-axis
represents the index interval, and the y-axis represents the proportion of oracle translations indexed in an interval.

but they are not efficient at selecting the best one.081

To further explore why the top-1 candidate is not082

the best translation, we compare the token prob-083

ability between top-1 candidates and references.084

Specifically, the average probability of all the to-085

kens in each sentence is firstly computed, which086

is defined as the token probability. To eliminate087

the effect of sentence length, the mean token prob-088

ability of all candidates in the same length range089

is observed. As shown in Fig. 1b, we find that090

the token probability of top-1 candidates is much091

higher than that of references, especially when the092

result length is longer, suggesting that NMT mod-093

els may over-confident about the top-1 candidates.094

During beam search decoding, assigning an exces-095

sively high probability to a suboptimal sequence096

in one step can lead to a chain reaction that even-097

tually produces an unnatural candidate with high098

probability. Besides, we argue that the essence of099

the beam search curse (Meister et al., 2020) (large100

beam sizes hurt translation quality) is lying in the101

token probability gap between top-1 candidates and102

reference translations, as larger beam sizes lead to103

larger gaps from Fig. 1b.104

In view of the above analysis, we expect to find105

a consensus candidate from the n-best list to avoid106

the “over-confident” candidates. Recently, a deci-107

sion rule, Minimum Bayes Risk (MBR) decoding,108

which was first proposed in Goel and Byrne (2000)109

and Kumar and Byrne (2004), has received much110

attention in NMT. The main idea of this method is111

to find the translation that is closest to other candi-112

date translations to minimize the expected risk for a113

given utility function. In Shu and Nakayama (2017)114

and Blain et al. (2017), MBR decoding are com-115

bined with beam search to improve the translation 116

quality. Nevertheless, we argue that there are still 117

some defects in MBR decoding: (a) The utility 118

function only considers the lexical-based similar- 119

ity between candidates, such as BLEU, METEOR 120

(Denkowski and Lavie, 2011), CHRF (Popovic, 121

2016) etc.; (b) The expected utility for each candi- 122

date considers the entire n-best list, which requires 123

a large computational cost, especially when n is 124

large. Besides, inadequate candidates in the tail list 125

may hurt the performance; (c) MBR only considers 126

the similarity between candidates but completely 127

ignore the model uncertainty and the translation 128

quality of each candidate. 129

To solve above issues, we propose a Regularized 130

Mminimum Bayes Risk reranking framework 131

(RMBR). For the first problem, we explore the 132

use of semantic-based evaluation metrics (e.g., 133

COMET (Rei et al., 2020) and BLEURT (Sellam 134

et al., 2020)) as the utility function. Aiming at the 135

second issue, we conduct experiment to analyze 136

the probability ranking of the oracle translations in 137

the n-best list (n=30). As shown in Fig. 1c, the 138

oracle translations are less likely to appear in the 139

tail list. Therefore, we use only the top-l (l ≤ n) 140

candidates of the n-best list to calculate the MBR 141

score (expected utility) for each candidate in the 142

n-best list. In this way, the computational cost is 143

reduced and the inadequate candidates in the tail 144

list that is close to each other, are avoided. For the 145

third problem, we incorporate two types of regular- 146

izers into the framework: quality regularizer and 147

uncertainty regularizer. Quality regularizer allows 148

RMBR framework to further consider the trans- 149

lation quality of a single candidate in addition to 150
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considering the similarity between candidates. To151

be concrete, we consider four regularization scores152

as the quality regularizer: language model score153

(Radford et al., 2019), back-translation score (Rapp,154

2009), quality estimation score (Ranasinghe et al.,155

2020), and translation score (log-probability score).156

While the uncertainty regularizer aims to further157

consider the model uncertainty for each output. In158

this paper, we explore two kinds of uncertainty reg-159

ularizers: Monte Carlo (MC) Dropout (Wang et al.,160

2019; Gal and Ghahramani, 2016) and the entropy161

of model output distributions.162

We conduct extensive experiments to compare163

different settings of RMBR, as well as the previous164

MBR method (Shu and Nakayama, 2017; Blain165

et al., 2017) using BLEU as utility and several166

commonly used translation reranking methods. Ex-167

perimental results show that after using COMET168

as utility function, our MBR outperforms previ-169

ous MBR decoding methods (Shu and Nakayama,170

2017; Blain et al., 2017). When the proposed171

quality regularizer or uncertainty regularizer is fur-172

ther introduced, the performance of RMBR can173

be further improved. Our method achieves consis-174

tent performance gains on the tasks of German-175

English from IWSLT’14, and German-English,176

English-German, and English-French tasks from177

WMT’14, which demonstrates the effectiveness of178

our method.179

2 Preliminary180

2.1 The Decoding Problem181

Let X = {x1, x2, ..., x|X|} denote a source se-182

quence, Y = {y1, y2, ..., y|Y |} denote a target se-183

quence. A NMT model defines a distribution over184

outputs and sequentially predicts tokens using a185

softmax function as follows:186

p(Y |X) =

|Y |∏
t=1

pNMT(yt|X, y1, y2, ..., yt−1). (1)187

When t = 1, y0 = BOS, which means that at the188

beginning of the decoding, an additional sequence189

start token is input. The decoding problem can be190

written as finding a sequence Y ∗ that maximizes191

the probability given input X:192

Y ∗ = argmax
Y

p(Y ∗|X). (2)193

2.2 Beam Search194

When decoding with the above distribution over195

sequences, it is not feasible to pick out the most196

probable sequence among all possible sequences. 197

A common approximate decoding method is beam 198

search, which maintains the top-n highly scoring 199

candidates at each time step. n is known as beam 200

size, and the log-probability of a sequence at time 201

t is computed as: 202

S(Yt|X) = S(Yt−1|X) + log pNMT(yt|X,Yt−1),
(3) 203

where S(Yt−1|X) = log pNMT(y1, y2, ..., yt−1|X). 204

The decoding process is repeated until the stop con- 205

dition is met. After that, we can obtain a list of 206

n most promising candidates. Finally, the most 207

likely sequence is selected as the ‘preferred’ trans- 208

lation by ranking the n candidates based on log- 209

probability scores S(Y |X). 210

3 Regularized MBR Reranking 211

Framework 212

As discussed in Sec §1, picking the candidate with 213

the highest log-probability score is unable to ef- 214

fectively obtain the best result. In this paper, we 215

propose a regularized MBR reranking framework 216

(RMBR) that adopts the semantic similarity evalu- 217

ation metric as the utility function. Besides consid- 218

ering the similarity between the output candidates, 219

we expect the proposed framework to further con- 220

sider the translation quality of each candidate and 221

the uncertainty of the model. Thus we incorporate 222

two types of regularizers into the framework: Qual- 223

ity Regularizer (Sec §3.2) and Uncertainty Regu- 224

larizer (Sec §3.3). The candidate with the highest 225

reranked score is formally defined as the 1-best 226

candidate. 227

Given a list of n most likely candidates generated 228

by beam search with beam size n, which can be 229

written as {H1, H2, ...,Hn}, the regularized score 230

for Hi is computed as: 231

SRMBR(Hi|X,H) = SMBR(Hi|H)+
∑

λjRj(Hi|X),
(4) 232

where SMBR is the MBR score, which is introduced 233

in the next section. Note that we introduce two 234

types of regularizers, Rj is used to denote the j-th 235

regularizer score. λj is a tradeoff parameter2 to 236

achieve a satisfying balance among multiple de- 237

coding objectives. Finally, the 1-best candidate is 238

selected as the ‘preferred’ translation. 239

2λj is selected from the set {0.001, 0.01, 0.1, 1, 10} with
the best performance on the validation set. In theory, the per-
formance could be further improved if using more advanced
methods to search for weights, such as MERT (Fernandes
et al., 2022), and Nelder-Mead (Singer and Nelder, 2009)
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3.1 MBR Score240

Given a utility function U (e.g., BLEU) and a list of241

n-best candidates, the MBR score (expected utility)242

for each candidate is computed by comparing it243

to all candidates in the n-best list. Since only a244

few oracle translations appear at the tail list as we245

observed in preliminary experiment, we compute246

the MBR score for Hi by comparing it to top-l247

candidates:248

SMBR(Hi) =
1

l

l∑
j=1

U(Hi, Hj), (5)249

where l ∈ {1, 2, ..., n} is tuned on the validation250

set and fixed for inference for all testing instances.251

The candidate with the highest MBR score SMBR252

is the consensus translation in the n candidates. Be-253

sides using lexical-based method (BLEU) as utility254

function U which is called MBRBLEU, we further255

explore two semantic-based evaluation methods256

BLEURT and COMET as utility functions U in257

our framework, which are called MBRBLEURT and258

MBRCOMET, respectively.259

3.2 Quality Regularizer260

MBR score only considers the similarity between261

the output candidates and ignores the translation262

quality of each candidate. To bridge this gap, we in-263

troduce a quality regularizer into MBR framework.264

In this work, we explore four kinds of scores as265

the quality regularizer: a) Language Model (LM)266

score; b) Back-Translation (BT) score; c) Qual-267

ity Estimation (QE) score; and d) log-probability268

scores. The computation for candidate Hi is as269

follows:270

LM(Hi) = log pLM(Hi),QE(Hi) = fQE(X,Hi),
(6)

271

BT(Hi) = log pNMT(X|Hi), (7)272

where pLM(Hi) is calculated by a pre-trained lan-273

guage model, pNMT(X|Hi) is via a backward NMT274

model, and fQE(X,Hi) is by a off-the-shelf qual-275

ity estimation model (e.g., TransQuest (Ranasinghe276

et al., 2020)).277

3.3 Uncertainty Regularizer278

In this section, we introduce the uncertainty regu-279

larizer, which quantifies whether the current model280

is confident or hesitant on the candidate translation.281

For efficiency, we utilize widely used Monte Carlo282

(MC) dropout and entropy measures to compute 283

model uncertainty. 284

MC Dropout. At test time, for a candidate Hi 285

paired with input X , we perform m forward passes 286

through the NMT model parameterized by θ̂, where 287

the t-th pass randomly deactivates part of neu- 288

rons. Then, m sets of sentence-level perturbed 289

log-probability score are collected, which is writ- 290

ten as: 291

MCθ̂t
(Hi) = −log pNMT(Hi|X, θ̂t). (8) 292

Entropy Measures. We also consider using the en- 293

tropy of model predicting probability distribution 294

of each candidate as a measure of model uncer- 295

tainty. Intuitively, given an output sample, if the 296

model probability distribution entropy of each to- 297

ken is very small, it means that the model has a 298

high degree of confidence in this output result. Let 299

V = {v1, v2, ..., v|V |} denote the target vocabulary 300

of NMT, we compute the token entropy for each 301

token in the candidate Hi = {hi1 , hi2 , ..., hi|Hi|
}. 302

Then |Hi| sets of token entropy are collected, 303

which is written as: 304

Sentropy(hit) = −
|V|∑
j=1

log pNMT(vj |X,hi0 , ..., hit−1),

(9) 305

where hi0 = BOS. Finally, the expectation of m 306

sets of MCθ̂t
(Hi) and |Hi| sets of Sentropy(hit) are 307

used as the uncertainty regularizer score. 308

4 Experiments 309

4.1 Experimental Settings 310

In this section, we describe the datasets, NMT mod- 311

els, and metrics used in our experiments to investi- 312

gate the effect of the proposed reranking methods 313

on the n-best candidate list. 314

4.1.1 Datasets and Models 315

To implement the NMT task, we use the German- 316

English (De→En) from IWSLT’14 task, German- 317

English (De→En), English-German (En→De), and 318

English-French (En→Fr) from the WMT’14 trans- 319

lation task. For IWSLT’14 task, we use the data pre- 320

processing scripts and hyperparameter settings pro- 321

vided by fairseq NMT repository3. For WMT’14 322

task, we train a Transformer base model (Vaswani 323

et al., 2017) as the base NMT model and use the 324

Newstest’14 dataset as the test set. 325

3https://github.com/pytorch/fairseq/
tree/master/examples/translation.
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IWSLT’14 De→En WMT’14 De→En

Method COMET BLEURT BLEU COMET BLEURT BLEU

Top-1 (beam=5) 34.79 16.16 34.28 42.35 21.90 32.70
Top-1 (beam=30) 34.22 15.99 34.17 41.80 21.60 32.54

LP+BT (Rapp, 2009) 40.63 18.57 35.11 45.94 23.42 33.06
LP+QE (Ranasinghe et al., 2020) 38.84 19.53 35.37 45.56 24.30 33.41
LP+LM (Radford et al., 2019) 36.33 16.58 35.14 44.48 22.48 33.49
Range Voting (Borgeaud and Emerson, 2020) 34.89 16.59 34.53 42.29 21.53 32.78
MBRBLEU(full) (Blain et al., 2017) 33.76 15.91 34.38 41.66 20.96 32.68

MBRBLEU 34.39 16.39 34.54 42.53 22.03 32.83
MBRBLEURT 33.10 22.00 33.01 42.71 25.31 32.45
MBRCOMET 42.53 17.78 34.55 47.10 23.06 32.93

MBRCOMET+LP 41.60 17.89 34.91 46.69 22.89 33.08
MBRCOMET+LP+BT 43.64 18.86 35.24 47.67 23.57 33.17
MBRCOMET+LP+QE 42.04 19.96 35.62 46.89 23.57 33.76
MBRCOMET+LP+LM 41.75 18.40 35.49 47.56 23.91 33.85

MBRCOMET+LP+entropy 42.04 18.34 35.24 46.24 22.99 33.16
MBRCOMET+LP+dropout 41.47 17.90 34.95 47.43 22.91 33.10

MBRCOMET+LP+QE+LM 42.24 20.60 36.19 47.34 25.18 34.29

Table 1: BLEU, COMET, and BLEURT score comparison. All candidates are obtained by beam search.

4.1.2 Evaluation Metrics326

In our experiments, three widely used automatic327

evaluation metrics are utilized to evaluate the ma-328

chine translation: BLEU, an n-gram-based preci-329

sion metric which measures the lexical similarly330

between translation and reference; COMET (Rei331

et al., 2020), a multilingual and adaptable MT eval-332

uation model, which exploits information from333

both source sentence and target sentence to mea-334

sures the semantic similarity between translation335

and reference; and BLEURT (Sellam et al., 2020),336

a learned evaluation metric based on BERT, which337

measures the semantic similarity between two se-338

quences.339

4.2 Baselines340

We take the top-1 results of the beam search with341

beam size 5 as the baseline, which is the most342

widely used setting of NMT models. For all rerank-343

ing methods, we follow previous work (Eikema344

and Aziz, 2020) using beam search with beam345

size 30 to generate the candidates (experimental346

results with varying beam size and different de-347

coding method can be found in Appendix D and348

Appendix A, respectively). MBRCOMET denotes349

use only MBR score to rank the candidate without350

any regularizer, where COMET is used as the utility351

function. Besides, we also compare MBRBLEU and352

MBRBLEURT which use BLEU and BLEURT as353

utility function, respectively. We further compare354

the performance of introducing different regular- 355

izer on MBRCOMET, including four kinds of quality 356

regularizer scores: log-probability (LP) score, lan- 357

guage model (LM) score, back-translation (BT) 358

score, quality estimation (QE) score, and two un- 359

certainty regularizer scores: entropy score and MC- 360

dropout score. We use GPT-2base model (Radford 361

et al., 2019) to calculate LM score. BT score and 362

QE score is computed via backward NMT mod- 363

els and TransQuest (Ranasinghe et al., 2020), re- 364

spectively. For the proposed method, we compute 365

MBR score for each candidate by comparing it 366

to partial top candidates, where the details are re- 367

ported in Sec §5.3. We also compare the method 368

Range Voting (Borgeaud and Emerson, 2020) and 369

MBRBLEU(full) (Blain et al., 2017), which using 370

BLEU as utility function of MBR. The only differ- 371

ence between MBRBLEU(full) (Blain et al., 2017) 372

and our MBRBLEU is that MBRBLEU(full) uses all 373

candidates to calculate MBR score. 374

4.3 Results 375

We first report the results on IWSLT’14 De→En 376

and WMT’14 De→En tasks. From Table 1, we 377

can see that MBRCOMET outperforms MBRBLEU, 378

top-1, and other baselines on all three evaluation 379

metrics. Interestingly, we find that MBRBLEURT 380

achieves the highest BLEURT score but low BLEU 381

and COMET scores. To find out which utility 382

function is the best, we further perform human 383
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evaluation (see Sec §5.1) to more quantitatively384

compare the reranked 1-best candidates. The hu-385

man evaluation results show that MBRCOMET out-386

performs MBRBLEU and MBRBLEURT, demonstrat-387

ing that semantic-based MBR outperforms tradi-388

tional lexical-based MBR. For the proposed reg-389

ularizers, MBRCOMET+LP improves the scores390

in BLEU comparing to MBRCOMET. Besides,391

MBRCOMET+LP can be further improved in three392

metrics by adding other regularizers. For example,393

the MBRCOMET+LP+QE achieves higher scores394

on BLEU, COMET, and BLEURT. In addition,395

a similar trend is observed in MBRBLEURT and396

MBRCOMET. More results and details can be found397

in Sec §5.4. The regularized MBR reranking works398

better than beam search with sizes 5 and 30, bring-399

ing 8 points and 1.5 points of improvement on400

COMET and BLEU metrics, respectively.401

We additionally explore the performance of com-402

bining more regularizers on MBRCOMET. We col-403

lectively tune the λ value for each of the regular-404

izers on validation sets. We observe the results of405

MBRCOMET+LP+QE+LM (we use RMBRCOMET406

to denote this setting latter) that achieves the high-407

est BLEU score among all the combinations, im-408

proving the BLEU score by more than 2 points.409

We also find that combining quality and uncer-410

tainty regularizers with MBRCOMET can not lead411

to further performance gains. Also, we conduct412

re-reanking experiment on WMT’19 De→En and413

En→De tasks, which can be found in Appendix414

C. Moreover, we carry experiment to evaluate the415

effectiveness of larger beam size on our proposed416

method. More experimental results are reported in417

Appendix D. The results suggest that our proposed418

reranking method can alleviate the beam search419

curse and generate better translations as beam size420

increases.421

Method Score

MBRCOMET 0.281
MBRBLEURT 0.129
MBRBLEU 0.125
Top-1 (beam=5) 0.120

Table 2: Results of the human evaluation. The score col-
umn represents the percentage of times each reranking
method is judged better across its competitors.

5 Analysis 422

5.1 Human Evaluation 423

From the previous results, we observe that 424

MBRCOMET outperforms MBRBLEU and 425

MBRBLEURT in BLEU and COMET metrics, 426

but not in BLEURT metric. This motivate us to 427

perform human evaluation to more quantitatively 428

compare the reranked results. We randomly 429

select a subset of 500 source sentences from the 430

test sets of IWSLT’14 De→En. Reranking is 431

also based on the beam search results of beam 432

size 30. We request 3 human annotators to rank 433

the four translations from the best to the worst. 434

Specifically, we first set a guideline for evaluating, 435

which includes the task background, key points, 436

detailed descriptions, and 5 examples. Then, we 437

set an entry barrier for annotators. In detail, we 438

organize a training program and a preliminary 439

annotating examination (50 examples for each 440

baseline) to select appropriate annotators with an 441

approval rate higher than 95%. All the annotators 442

are highly educated, and the cost of the evaluation 443

is about 0.05$ for each word by one annotator. 444

Table 2 reports the ranking results according to the 445

Expected Wins method (Sakaguchi et al., 2014). 446

Our observation is that the 1-best candidates 447

reranking by MBRCOMET outperforms the other 448

three methods. We provide some examples in 449

Appendix B. 450

WMT’14 En→De WMT’14 En→Fr

Methods COMET BLEU COMET BLEU

Top-1 (beam=5) 27.24 27.09 55.11 38.74
Top-1 (beam=30) 20.32 26.50 50.31 38.22

LP+QE 28.10 27.80 55.39 39.60
LP+LM 27.92 28.04 56.10 39.62
LP+BT 27.50 27.75 56.06 39.70

MBRCOMET 34.25 27.37 59.85 39.18
MBRBLEU 26.15 27.30 53.81 39.17

MBRCOMET+LP 31.98 27.93 57.88 39.58
MBRCOMET+LP+BT 32.53 28.01 60.33 39.83
MBRCOMET+LP+QE 32.71 28.00 59.83 39.84
MBRCOMET+LP+LM 34.97 28.19 59.80 39.87

MBRCOMET+LP+QE+LM 32.51 28.40 59.71 40.15

Table 3: BLEU and COMET score comparison on
WMT’14 En→De and WMT’14 En→Fr tasks.

5.2 Results on non-English Target Translation 451

Tasks 452

To further verify the effectiveness of the proposed 453

model on non-English target translation tasks, we 454
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conduct experiments on WMT’14 En→Fr and455

En→De, where we follow the same settings in456

Sec §4.2. Since the evaluation metric BLEURT457

only supports evaluation the language of English,458

we only report BLEU and COMET scores for459

En→Fr and En→De tasks. The results are shown460

in Table 3, which are consistent with those in Table461

1.462

5.3 N-by-L463

The number of candidates used to compute ex-464

pected utility is defined as l in Sec §3.1. To ex-465

plore the effectiveness of l on BLEU score of the466

reranked 1-best candidates, we use MBRCOMET and467

MBRBLEU to rank the 30 candidates decoded by468

beam search with beam size of 30. We compute the469

expected utility for each candidate by comparing470

it to top-l candidates of the 30 candidates. The471

results are shown in Fig. 2. As l increases, the472

BLEU scores of the 1-best candidates reranked by473

both MBRCOMET and MBRBLEU go up and then474

down. The reason may be that partial candidates475

near the end of the list is extremely close to each476

other, but of poor quality. When l increases, this477

part of candidates are more likely to be selected.478

When l is around 21, BLEU scores of MBRCOMET479

and MBRBLEU are close to the optimal. For the480

proposed reranking method, l is tuned on the val-481

idation set and fixed for inference for all testing482

instances.483

Figure 2: The reranking results using partial candidates
to compute expected utility on the IWSLT’14 De→En
dev sets. y-axis is the BLEU score. x-axis is the number
of candidates used to compute MBR scores.

5.4 Utility Functions484

To further verify the effectiveness of different util-485

ity functions, we also compare the performance486

of introducing the quality regularizers that per-487

forms well in previous experiments on MBRBLEU488

and MBRBLEURT. We follow the same settings489

Method COMET BLEURT BLEU

Top-1 (beam=5) 34.79 16.16 34.28
Top-1 (beam=30) 34.22 15.99 34.17

MBRBLEU 34.39 16.39 34.54
MBRBLEU+LP 34.75 16.64 34.56
MBRBLEU+LP+BT 42.48 19.03 35.17
MBRBLEU+LP+QE 38.68 19.75 35.44
MBRBLEU+LP+LM 38.89 19.91 35.41
MBRBLEU+LP+QE+LM 39.82 19.92 35.81

MBRBLEURT 33.10 22.00 33.01
MBRBLEURT+LP 35.83 19.86 34.55
MBRBLEURT+LP+BT 42.46 19.20 35.18
MBRBLEURT+LP+QE 38.91 20.19 35.42
MBRBLEURT+LP+LM 36.79 18.04 35.25
MBRBLEURT+LP+QE+LM 40.65 20.49 36.14

MBRCOMET+LP+QE+LM 42.24 20.60 36.19

Table 4: Comparison results of MBRBLEURT and
MBRBLEU with the proposed quality regularizers on
IWSLT’14 De→En.

in Sec §4.2. As shown in Table 4, similar to 490

RMBRCOMET, RMBRBLEU and RMBRBLEURT also 491

outperform beam search with sizes 5 and 30, which 492

is consistent with the results shown in Table 1 493

and Table 3. Overall, RMBRBLEURT variants 494

achieve better scores than RMBRBLEU variants, 495

and RMBRCOMET variants perform best. These 496

results show that semantic-based MBR leads to 497

better translation options. 498

5.5 Inference Time 499

We further compare the inference time of the pro- 500

posed reranking variants and baseline. For rerank- 501

ing, we still use 30 candidates obtained by beam 502

search on the IWSLT’14 De→En test sets. To com- 503

pare the inference time, all experiments are per- 504

formed on single Tesla V100 16GB GPU. Note 505

that, in practice we can further reduce inference 506

time by using more GPUs to compute utility func- 507

tions in parallel. The results are shown in Ta- 508

ble 5. n represents the number of candidates 509

used to rerank, l represents the number of can- 510

didates used to compute expected utility (n = 511

30, l1 = 21, l2 = 3). For RMBRCOMET(C2F), 512

which is a coarse-to-fine MBR procedure proposed 513

in Eikema and Aziz (2021), we use BLEU as 514

the proxy utility to select 15 candidates and then 515

use COMET as the target utility to select the 1- 516

best candidate. From the results we can see that 517

RMBRCOMET(n-by-l1) achieves the best perfor- 518

mance with about 3.6 times more inference time 519

than top-1 (beam=5). Both RMBRCOMET(n-by-l2) 520
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Methods COMET BLEURT BLEU Time

Top-1 (beam=5) 34.79 16.16 34.28 x1
RMBRCOMET(n-by-n) 42.52 20.47 36.01 x4.7
RMBRCOMET(n-by-l1) 42.24 20.60 36.19 x3.6
RMBRCOMET(n-by-l2) 40.93 20.26 35.90 x1.4
RMBRCOMET(C2F) 41.50 19.41 35.93 x1.9

Table 5: Comparison results of inference time. Rerank-
ing uses n = 30 candidates per sample.

and RMBRCOMET(C2F) can further reduce infer-521

ence time and outperform the baseline, which can522

be used as a trade-off between time cost and per-523

formance.524

6 Related Work525

In NMT, reranking is a way of improving transla-526

tion quality by scoring and selecting a ‘preferred’527

translation from a list of candidates generated by528

a source-to-target model. MBR decoding (Goel529

and Byrne, 2000; Kumar and Byrne, 2004) is one530

of the effective methods. The goal of MBR de-531

coding is to find a consensus translation that is532

closest to other candidates. Some studies rerank533

the n candidates directly sampled from the model.534

Eikema and Aziz (2020) is the first to use unbi-535

ased samples from the model by ancestral sam-536

pling, to approximate hypotheses space. Aiming at537

keeping computational cost of estimating expected538

utility tractable, a coarse-to-fine MBR procedure539

is proposed in Eikema and Aziz (2021). Other540

studies tend to rerank the n candidates decoded by541

beam search. In Shu and Nakayama (2017), both542

MBR scores and log-probability scores are consid-543

ered at each step of decoding. Blain et al. (2017)544

investigates some automatic MT evaluation met-545

rics (BLEU, BEER, and CHRF), and observes that546

evaluation metric plays a major role in the n-best547

reranking approach. Borgeaud and Emerson (2020)548

designs some similarity functions to make more in-549

formative candidates receive stronger votes, thus550

selecting the most representative candidate.551

These previous studies only use MBR score to552

rank each candidate without considering source553

sentence and model score. In the proposed RMBR,554

some regularizers are utilized to rank candidates555

in an overall way. Different from previous works556

which select candidates based on only lexical simi-557

larity, we also explore the semantic similarity be-558

tween candidates. The other difference is that MBR559

score is computed using top-l candidates of the n-560

best list to avoid candidates with poor quality in561

the tail list and reduce the computation cost. 562

Besides MBR, there are some studies focus on 563

MT reranking. For example, Ng et al. (2019) de- 564

scribes using language model to rank candidates. 565

In Bhattacharyya et al. (2021), an energy based 566

model is trained to rank samples drawn from NMT. 567

Lee et al. (2021) predicts the observed distribution 568

of a desired metric, e.g., BLEU, over the n-best list 569

by training a large transformer architecture. Note 570

that these methods are orthogonal to our method, 571

and they can be theoretically used as the quality 572

regularizer in our framework. 573

Uncertainty quantification (Hüllermeier and 574

Waegeman, 2021) have been widely used in neu- 575

ral networks, which is usually solved by Bayesian 576

frameworks. Because the high training cost 577

brought by Bayesian neural networks, various ap- 578

proximations, such as Monte Carlo (MC) Dropout 579

(Gal and Ghahramani, 2016) and model ensem- 580

bling (Lakshminarayanan et al., 2017) have been 581

developed. In NMT, the MC dropout is used at 582

test time, by performing several stochastic forward 583

passes through the model. Then, the expectation 584

or variance of the output which reflect whether the 585

current model is confident or hesitant on the transla- 586

tion, is used to evaluate machine translation quality 587

(Fomicheva et al., 2020). On the other hand, in 588

the image classification task, entropy based mea- 589

sures are used to address uncertainty quantification 590

(Smith and Gal, 2018). Our uncertainty regulariz- 591

ers adopt similar uncertainty quantification strate- 592

gies. 593

7 Conclusion 594

In this paper, we introduce a RMBR to choose ade- 595

quate translations from the candidates decoded by 596

beam search. Based on MBR, we adopt semantic- 597

based similarity and compute the expected utility 598

by truncating the list. The proposed quality and 599

uncertainty regularizers are further incorporated 600

into the framework. Extensive experimental results 601

show that RMBR outperforms several MBR-based 602

variants and other reranking baselines on MT tasks: 603

+1.9 BLEU points, +7.5 COMET points, +4.4 604

BLEURT points over the results of beam search 605

with sizes 5 on IWSLT’14 German→English. To 606

get a better insight into RMBR, we also conduct the 607

in-depth ablation study and analytical experiments 608

to show the performance improvement brought by 609

each component of RMBR. 610
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Methods COMET BLEURT BLEU

Beam Search (beam=30)

Top-1 (beam=30) 34.22 15.99 34.17
MBRCOMET 42.53 17.78 34.55
MBRBLEU 34.39 16.39 34.54
MBRBLEURT 33.10 22.00 33.01

Siblings Beam Search (beam=30)

Top-1 (n = 30) 34.11 15.67 34.09
MBRCOMET 41.44 17.16 34.39
MBRBLEU 33.83 16.04 34.42
MBRBLEURT 31.78 21.68 32.95

Ancestral Sampling (n=30)

Top-1 (n = 30) 21.37 10.62 29.33
MBRCOMET 30.44 13.71 28.27
MBRBLEU 9.67 8.99 30.62
MBRBLEURT 9.12 19.74 22.81

Table 6: The reranking results from 30 candidates de-
coded by beam search, SBS, and AS on the test sets of
IWSLT’14 De→En.

A Diverse Candidate Spaces737

From the oracle experiments (see Fig.1a), we ob-738

serve that deterministic decoding performs better739

than stochastic decoding, and sibling beam search740

(SBS) performs as well as beam search. To further741

explore the effect of diverse candidate spaces, we742

Source Wir erwarten ein paar außergewöhnliche
Jahrzehnte.

Reference We are living into extraordinary decades
ahead.

Top-1 (beam=5) We expect some extraordinary years.

MBRCOMET
We are looking forward to extraordinary
decades.

MBRBLEURT We expect some extraordinary decades.

MBRBLEU We expect for several remarkable decades.

Table 7: Examples of 1-best candidates chosen by the
proposed reranking methods from n-best list (with n =
30). Underline represents the main differences between
the reference, the top-1 candidates, and the reranked
1-best candidates.

WMT’19 De→En WMT’19 En→De

Method COMET BLEURT BLEU COMET BLEU

Top-1 (beam=5) 44.82 25.00 40.02 41.53 41.23
Top-1 (beam=30) 44.77 24.71 39.86 41.50 41.14

LP+BT 45.77 26.97 40.33 40.73 41.46
LP+QE 45.61 25.47 40.20 41.88 41.52
LP+LM 45.18 2509 40.13 41.44 41.44
MBRBLEU 45.05 24.56 39.89 41.19 41.35
MBRBLEURT 44.70 28.05 37.91 \ \
MBRCOMET 49.03 25.74 39.88 45.49 41.38

MBRCOMET+LP 48.05 26.00 40.21 45.02 41.49
MBRCOMET+LP+BT 49.47 26.71 40.39 45.03 41.69
MBRCOMET+LP+QE 48.83 27.80 40.51 42.96 41.63
MBRCOMET+LP+LM 46.34 25.39 40.24 43.69 41.56

MBRCOMET+LP+QE+BT 50.28 27.92 40.56 45.15 41.73

Table 8: Reranking results on WMT’19 De→En and
WMT’19 En→De tasks.

rerank the 30 top candidates by SBS and 30 can- 743

didates sampled by AS. As shown in Table 6, the 744

reranking results of the candidates decoded by SB 745

perform slightly worse than that of beam search. 746

For AS decoding, the scores of both top-1 candi- 747

dates and reranked 1-best candidates are signifi- 748

cantly low compared to other reranking methods. 749

B Qualitative Analysis 750

In Table 7, we illustrate some examples from the 751

reranking approach. Although, the word overlap 752

between the 1-best candidates by regularized MBR 753

ranker and the top-1 candidates is high, the pro- 754

posed reranking methods produce accurate and flu- 755

ent translation with asyntactic re-orderings, new 756

words, morphological variations. 757

C Experiments on WMT’19 Translation 758

tasks 759

To further verify the effectiveness of the proposed 760

model on the newly translation tasks, we conduct 761

experiments on WMT’19 De→En and En→De. 762

For baseline, we use the best performing single 763
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Method COMET BLEURT BLEU

Top-1 (beam=5) 34.79 16.16 34.28
Top-1 (beam=30) 34.22 15.99 34.17
Top-1 (beam=50) 33.84 15.87 34.10

beam=50

MBRCOMET 43.50 18.27 34.57
MBRCOMET+LP 42.35 18.11 34.94
MBRCOMET+LP+BT 44.42 18.97 35.31
MBRCOMET+LP+QE 42.74 20.26 35.62
MBRCOMET+LP+LM 42.87 18.96 35.58
MBRCOMET+LP+QE+LM 42.62 21.54 36.24

beam=30

MBRCOMET 42.53 17.78 34.55
MBRCOMET+LP 41.60 17.89 34.91
MBRCOMET+LP+BT 43.64 18.86 35.24
MBRCOMET+LP+QE 42.04 19.96 35.62
MBRCOMET+LP+LM 41.75 18.40 35.49
MBRCOMET+LP+QE+LM 42.24 20.60 36.19

beam=5

MBRCOMET 36.65 16.03 34.19
MBRCOMET+LP 36.44 16.47 34.40
MBRCOMET+LP+BT 38.99 17.38 34.69
MBRCOMET+LP+QE 38.09 18.20 34.86
MBRCOMET+LP+LM 36.73 16.81 34.78
MBRCOMET+LP+QE+LM 37.67 18.70 35.28

Table 9: Comparison results of beam size 5, 30, and 50
on IWSLT’14 De→En.

pre-trained model and data pre-processing method764

provided by fairseq NMT repository. Reranking765

follows the same settings in Sec §4.2. Since the766

evaluation metric BLEURT only supports evalua-767

tion the language of English, we only report BLEU768

and COMET scores for En→De. The results are769

shown in Table 8, which is consistent with the con-770

clusion in Table 1.771

D Beam Sizes772

In this section, we explore the performance of the773

proposed RMBRCOMET reranking in large beam774

sizes, which performs best on average of three met-775

rics on the IWSLT’14 De→En test sets. As shown776

in Table 9 and Fig. 3, the translation quality of777

beam search decreases with increased beam sizes.778

Notably, RMBRCOMET achieves higher score in779

COMET, BLEU, and BLEURT with larger beam780

sizes, which suggests that RMBR benefits from781

larger beam sizes. Moreover, the 1-best candidates782

of RMBRCOMET far outperforms the top-1 candi-783

dates of beam search with sizes 5, 30, and 50. The784

results means that the proposed reranking method785

Figure 3: The results of the 1-best candidates reranked
by the RMBRCOMET using beam of sizes 5, 30, and 50.

can improve upon beam search. 786
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