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Abstract

Beam search is the most widely used decoding
method for neural machine translation (NMT).
In practice, the top-1 candidate with the highest
log-probability among the n candidates is se-
lected as the ‘preferred’ one. However, this top-
1 candidate may not be the best overall transla-
tion among the n-best list. Recently, Minimum
Bayes Risk (MBR) decoding has been pro-
posed to improve the quality for NMT, which
seeks for a consensus translation that is closest
on average to other candidates from the n-best
list. We argue that existing MBR decoding
still suffers from the following problems: The
utility function only considers the lexical-level
similarity between candidates; The expected
utility considers the entire n-best list which is
time-consuming and inadequate candidates in
the tail list may hurt the performance; Only the
relationship between candidates is considered.
To solve these issues, we design a regularized
MBR reranking framework (RMBR), which
considers semantic-based similarity and com-
putes the expected utility for each candidate
by truncating the list. We expect the proposed
framework to further consider the translation
quality and model uncertainty of each candi-
date. Thus the proposed quality regularizer and
uncertainty regularizer are incorporated into the
framework. Extensive experiments on multiple
translation tasks demonstrate the effectiveness
of our method.

1 Introduction

Given a source sentence, neural machine transla-
tion (NMT) (Sutskever et al., 2014) models are
trained to predict conditional probability distribu-
tions for candidate translations. In practice, it is
desirable to output a single sentence, not a distri-
bution. Therefore, a decision rule is required to
rank the candidates and select the ‘preferred’ one.
The most widely used decision rule is maximum-a-
posteriori (MAP) decoding, which seeks the most
probable translation under the conditional distribu-

tion. Due to the huge search space, beam search is
proposed as an approximation. Given a pre-defined
beam size n, beam search always keeps the top-
n candidates based on the log-probability score.
Then, the top-1 candidate, i.e., the one with the
highest log-probability among the n-best list, is
selected as the ‘preferred’ one. Unfortunately, this
top-1 candidate might not be the best translation
on the n-best list.

We conduct oracle experiments to explore the
performance gap between the oracle result! in the
n-best candidates and top-1 candidate. Besides us-
ing beam search, we further use three stochastic
decodings (ancestral search (AS) (Fu et al., 2021),
top-k (Fan et al., 2018), top-p (Holtzman et al.,
2020)), and two deterministic decodings (diverse
beam search (DBS) (Vijayakumar et al., 2016), sib-
ling beam search (SBS) (Li et al., 2016)) to obtain
n candidates, respectively. The results are reported
in Fig. 1a. The top-1 candidate of beam search with
beam size 5 is used as baseline. Overall, all of the
oracle results achieve significantly higher BLEU
(Chen and Cherry, 2014) scores than baseline. For
example, under the beam size 100, an oracle result
of beam search achieves the high BLEU score of
47.98, while the baseline achieves only 34.28.

Furthermore, we observe that under the oracle
experiment, using beam search to obtain n-best can-
didates still outperforms other decoding methods.
These results suggest that beam search actually per-
forms well, yet log-probability scores fail to select
the best translation from the n-best list. Similar
to our study, Blain et al. (2017) has observed that
NMT model is capable of outputting high-quality
candidate translations, but fails at picking them as
the best one. Leblond et al. (2021) also points out
that, NMT models are good at spreading probabil-
ity mass over a large number of acceptable outputs,

'The oracle result is defined as argmax
PNMT(Y | X)

BLEU(Y,Y”), where (X, Y") is the pair of source and refer-
ence sentence.
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Figure 1: An example of exploring candidate spaces on the IWSLT 14 De—En test set. (a) Oracle ranking of
samples generated by multiple decoding strategies. (b) The token probabilities of sentences in different length
intervals. The x-axis is the length interval, and the y-axis is the average token probability of the sentences within
the same length range. (c) The distribution of oracle translations’ rank index in the n-best list (n=30). The x-axis
represents the index interval, and the y-axis represents the proportion of oracle translations indexed in an interval.

but they are not efficient at selecting the best one.

To further explore why the top-1 candidate is not
the best translation, we compare the token prob-
ability between top-1 candidates and references.
Specifically, the average probability of all the to-
kens in each sentence is firstly computed, which
is defined as the token probability. To eliminate
the effect of sentence length, the mean token prob-
ability of all candidates in the same length range
is observed. As shown in Fig. 1b, we find that
the token probability of top-1 candidates is much
higher than that of references, especially when the
result length is longer, suggesting that NMT mod-
els may over-confident about the top-1 candidates.
During beam search decoding, assigning an exces-
sively high probability to a suboptimal sequence
in one step can lead to a chain reaction that even-
tually produces an unnatural candidate with high
probability. Besides, we argue that the essence of
the beam search curse (Meister et al., 2020) (large
beam sizes hurt translation quality) is lying in the
token probability gap between top-1 candidates and
reference translations, as larger beam sizes lead to
larger gaps from Fig. 1b.

In view of the above analysis, we expect to find
a consensus candidate from the n-best list to avoid
the “over-confident” candidates. Recently, a deci-
sion rule, Minimum Bayes Risk (MBR) decoding,
which was first proposed in Goel and Byrne (2000)
and Kumar and Byrne (2004), has received much
attention in NMT. The main idea of this method is
to find the translation that is closest to other candi-
date translations to minimize the expected risk for a
given utility function. In Shu and Nakayama (2017)
and Blain et al. (2017), MBR decoding are com-

bined with beam search to improve the translation
quality. Nevertheless, we argue that there are still
some defects in MBR decoding: (a) The utility
function only considers the lexical-based similar-
ity between candidates, such as BLEU, METEOR
(Denkowski and Lavie, 2011), CHRF (Popovic,
2016) etc.; (b) The expected utility for each candi-
date considers the entire n-best list, which requires
a large computational cost, especially when n is
large. Besides, inadequate candidates in the tail list
may hurt the performance; (c) MBR only considers
the similarity between candidates but completely
ignore the model uncertainty and the translation
quality of each candidate.

To solve above issues, we propose a Regularized
Mminimum Bayes Risk reranking framework
(RMBR). For the first problem, we explore the
use of semantic-based evaluation metrics (e.g.,
COMET (Rei et al., 2020) and BLEURT (Sellam
et al., 2020)) as the utility function. Aiming at the
second issue, we conduct experiment to analyze
the probability ranking of the oracle translations in
the n-best list (n=30). As shown in Fig. Ic, the
oracle translations are less likely to appear in the
tail list. Therefore, we use only the top-I (I < n)
candidates of the n-best list to calculate the MBR
score (expected utility) for each candidate in the
n-best list. In this way, the computational cost is
reduced and the inadequate candidates in the tail
list that is close to each other, are avoided. For the
third problem, we incorporate two types of regular-
izers into the framework: quality regularizer and
uncertainty regularizer. Quality regularizer allows
RMBR framework to further consider the trans-
lation quality of a single candidate in addition to



considering the similarity between candidates. To
be concrete, we consider four regularization scores
as the quality regularizer: language model score
(Radford et al., 2019), back-translation score (Rapp,
2009), quality estimation score (Ranasinghe et al.,
2020), and translation score (log-probability score).
While the uncertainty regularizer aims to further
consider the model uncertainty for each output. In
this paper, we explore two kinds of uncertainty reg-
ularizers: Monte Carlo (MC) Dropout (Wang et al.,
2019; Gal and Ghahramani, 2016) and the entropy
of model output distributions.

We conduct extensive experiments to compare
different settings of RMBR, as well as the previous
MBR method (Shu and Nakayama, 2017; Blain
et al., 2017) using BLEU as utility and several
commonly used translation reranking methods. Ex-
perimental results show that after using COMET
as utility function, our MBR outperforms previ-
ous MBR decoding methods (Shu and Nakayama,
2017; Blain et al., 2017). When the proposed
quality regularizer or uncertainty regularizer is fur-
ther introduced, the performance of RMBR can
be further improved. Our method achieves consis-
tent performance gains on the tasks of German-
English from IWSLT’ 14, and German-English,
English-German, and English-French tasks from
WMT’ 14, which demonstrates the effectiveness of
our method.

2 Preliminary

2.1 The Decoding Problem

Let X = {x1,22,...,7|x|} denote a source se-
quence, Y = {y1,¥2,...,y|y|} denote a target se-
quence. A NMT model defines a distribution over
outputs and sequentially predicts tokens using a
softmax function as follows:
Y|
p(Y[X) = HPNMT(yt|X7 Y1, 92, - Ye—1)- (1)
t=1

When t = 1, yg = BOS, which means that at the
beginning of the decoding, an additional sequence
start token is input. The decoding problem can be
written as finding a sequence Y* that maximizes
the probability given input X:

Y* = argmax p(Y™"|X). (2)
Y

2.2 Beam Search

When decoding with the above distribution over
sequences, it is not feasible to pick out the most

probable sequence among all possible sequences.
A common approximate decoding method is beam
search, which maintains the top-n highly scoring
candidates at each time step. n is known as beam
size, and the log-probability of a sequence at time
t is computed as:

S(Yi|X) = S(Yi-1]X) + log pamr (vt X, Yi-1),

3)
where S(K,1|X) = IOg pNMT(yla Y2y s Yt—1 |X)
The decoding process is repeated until the stop con-
dition is met. After that, we can obtain a list of
n most promising candidates. Finally, the most
likely sequence is selected as the ‘preferred’ trans-
lation by ranking the n candidates based on log-
probability scores S(Y|X).

3 Regularized MBR Reranking
Framework

As discussed in Sec §1, picking the candidate with
the highest log-probability score is unable to ef-
fectively obtain the best result. In this paper, we
propose a regularized MBR reranking framework
(RMBR) that adopts the semantic similarity evalu-
ation metric as the utility function. Besides consid-
ering the similarity between the output candidates,
we expect the proposed framework to further con-
sider the translation quality of each candidate and
the uncertainty of the model. Thus we incorporate
two types of regularizers into the framework: Qual-
ity Regularizer (Sec §3.2) and Uncertainty Regu-
larizer (Sec §3.3). The candidate with the highest
reranked score is formally defined as the 1-best
candidate.

Given a list of n most likely candidates generated
by beam search with beam size n, which can be
written as { Hy, Ho, ..., H, }, the regularized score
for H; is computed as:

Srmer (Hi| X, H) = Svisr (H;|H)+ > \R;(H;
“)
where Swvgr is the MBR score, which is introduced
in the next section. Note that we introduce two
types of regularizers, R ; is used to denote the j-th
regularizer score. \; is a tradeoff parameter? to
achieve a satisfying balance among multiple de-
coding objectives. Finally, the 1-best candidate is
selected as the ‘preferred’ translation.
2)\j is selected from the set {0.001, 0.01, 0.1, 1, 10} with
the best performance on the validation set. In theory, the per-
formance could be further improved if using more advanced

methods to search for weights, such as MERT (Fernandes
et al., 2022), and Nelder-Mead (Singer and Nelder, 2009)



3.1 MBR Score

Given a utility function I/ (e.g., BLEU) and a list of
n-best candidates, the MBR score (expected utility)
for each candidate is computed by comparing it
to all candidates in the n-best list. Since only a
few oracle translations appear at the tail list as we
observed in preliminary experiment, we compute
the MBR score for H; by comparing it to top-{
candidates:

Swmer (H,

l
%Z (HoH), 6

where [ € {1,2,...,n} is tuned on the validation
set and fixed for inference for all testing instances.
The candidate with the highest MBR score Sypr
is the consensus translation in the n candidates. Be-
sides using lexical-based method (BLEU) as utility
function ¢/ which is called MBRg; gy, we further
explore two semantic-based evaluation methods
BLEURT and COMET as utility functions ¢/ in
our framework, which are called MBRpg| gyurT and
MBRcoMET, respectively.

3.2 Quality Regularizer

MBR score only considers the similarity between
the output candidates and ignores the translation
quality of each candidate. To bridge this gap, we in-
troduce a quality regularizer into MBR framework.
In this work, we explore four kinds of scores as
the quality regularizer: a) Language Model (LM)
score; b) Back-Translation (BT) score; ¢) Qual-
ity Estimation (QE) score; and d) log-probability

scores. The computation for candidate H; is as

follows:

LM(H;) = log pum(H;), QE(H;) = foe(X, H;),
(6)

BT(HZ) = IOg pNMT(X|Hi)a (7)

where ppv(H;) is calculated by a pre-trained lan-
guage model, pnvr (X |H;) is via a backward NMT
model, and fqr (X, H;) is by a off-the-shelf qual-
ity estimation model (e.g., TransQuest (Ranasinghe
et al., 2020)).

3.3 Uncertainty Regularizer

In this section, we introduce the uncertainty regu-
larizer, which quantifies whether the current model
is confident or hesitant on the candidate translation.
For efficiency, we utilize widely used Monte Carlo

(MC) dropout and entropy measures to compute
model uncertainty.

MC Dropout. At test time, for a candidate H;
paired with input X, we perform m forward passes
through the NMT model parameterized by 0, where
the ¢-th pass randomly deactivates part of neu-
rons. Then, m sets of sentence-level perturbed
log-probability score are collected, which is writ-
ten as:

MC;, (H;) = —log pxur(Hi| X, 6;).  (8)

Entropy Measures. We also consider using the en-
tropy of model predicting probability distribution
of each candidate as a measure of model uncer-
tainty. Intuitively, given an output sample, if the
model probability distribution entropy of each to-
ken is very small, it means that the model has a
high degree of confidence in this output result. Let
V = {v1,va, ..., vy| } denote the target vocabulary
of NMT, we compute the token entropy for each
token in the candidate H; = {hi, hiy, - hiyy, }-
Then |H;| sets of token entropy are collected,
which is written as:

4

= - Z log pNMT(Uj‘Xu hi07 ceey
7=1

Sentropy (hlf ) hit—l ) )

)]
where h;, = BOS. Finally, the expectation of m
sets of MCj, (H;) and |H;| sets of Sengropy (R, ) are
used as the uncertainty regularizer score.

4 Experiments

4.1 Experimental Settings

In this section, we describe the datasets, NMT mod-
els, and metrics used in our experiments to investi-
gate the effect of the proposed reranking methods
on the n-best candidate list.

4.1.1 Datasets and Models

To implement the NMT task, we use the German-
English (De—En) from IWSLT’ 14 task, German-
English (De—En), English-German (En—De), and
English-French (En—Fr) from the WMT’ 14 trans-
lation task. For IWSLT’ 14 task, we use the data pre-
processing scripts and hyperparameter settings pro-
vided by fairseq NMT repository?. For WMT’ 14
task, we train a Transformer base model (Vaswani
et al., 2017) as the base NMT model and use the
Newstest’ 14 dataset as the test set.

Shttps://github.com/pytorch/fairseq/
tree/master/examples/translation.
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IWSLT’ 14 De—En

WMT’ 14 De—En

Method COMET BLEURT BLEU COMET BLEURT BLEU
Top-1 (beam=5) 34.79 16.16 34.28 42.35 21.90 32.70
Top-1 (beam=30) 3422 15.99 34.17 41.80 21.60 32.54
LP+BT (Rapp, 2009) 40.63 18.57 35.11 45.94 2342 33.06
LP+QE (Ranasinghe et al., 2020) 38.84 19.53 35.37 45.56 24.30 33.41
LP+LM (Radford et al., 2019) 36.33 16.58 35.14 44.48 22.48 33.49
Range Voting (Borgeaud and Emerson, 2020) 34.89 16.59 34.53 42.29 21.53 32.78
MBRg_gu(full) (Blain et al., 2017) 33.76 1591 34.38 41.66 20.96 32.68
MBRgiEU 34.39 16.39 34.54 42.53 22.03 32.83
MBRBgLEURT 33.10 22.00 33.01 42.71 25.31 32.45
MBRcomEeT 42.53 17.78 34.55 47.10 23.06 32.93
MBRcomer+LP 41.60 17.89 3491 46.69 22.89 33.08
MBRcomer+LP+BT 43.64 18.86 35.24 47.67 23.57 33.17
MBRcomer+LP+QE 42.04 19.96 35.62 46.89 23.57 33.76
MBRcomer+LP+LM 41.75 18.40 35.49 47.56 2391 33.85
MBRcomer+LP+entropy 42.04 18.34 35.24 46.24 22.99 33.16
MBRcomer+LP+dropout 41.47 17.90 34.95 47.43 2291 33.10
MBRcomer+LP+QE+LM 42.24 20.60 36.19 47.34 25.18 34.29

Table 1: BLEU, COMET, and BLEURT score comparison. All candidates are obtained by beam search.

4.1.2 Evaluation Metrics

In our experiments, three widely used automatic
evaluation metrics are utilized to evaluate the ma-
chine translation: BLEU, an n-gram-based preci-
sion metric which measures the lexical similarly
between translation and reference; COMET (Rei
et al., 2020), a multilingual and adaptable MT eval-
uation model, which exploits information from
both source sentence and target sentence to mea-
sures the semantic similarity between translation
and reference; and BLEURT (Sellam et al., 2020),
a learned evaluation metric based on BERT, which
measures the semantic similarity between two se-
quences.

4.2 Baselines

We take the top-1 results of the beam search with
beam size 5 as the baseline, which is the most
widely used setting of NMT models. For all rerank-
ing methods, we follow previous work (Eikema
and Aziz, 2020) using beam search with beam
size 30 to generate the candidates (experimental
results with varying beam size and different de-
coding method can be found in Appendix D and
Appendix A, respectively). MBRcoMmeTr denotes
use only MBR score to rank the candidate without
any regularizer, where COMET is used as the utility
function. Besides, we also compare MBRg| gy and
MBRBLEURT which use BLEU and BLEURT as
utility function, respectively. We further compare

the performance of introducing different regular-
izer on MBRcomET, including four kinds of quality
regularizer scores: log-probability (LP) score, lan-
guage model (LM) score, back-translation (BT)
score, quality estimation (QE) score, and two un-
certainty regularizer scores: entropy score and MC-
dropout score. We use GPT-24,5. model (Radford
et al., 2019) to calculate LM score. BT score and
QE score is computed via backward NMT mod-
els and TransQuest (Ranasinghe et al., 2020), re-
spectively. For the proposed method, we compute
MBR score for each candidate by comparing it
to partial top candidates, where the details are re-
ported in Sec §5.3. We also compare the method
Range Voting (Borgeaud and Emerson, 2020) and
MBRpgg gy(full) (Blain et al., 2017), which using
BLEU as utility function of MBR. The only differ-
ence between MBRg; gy (full) (Blain et al., 2017)
and our MBRg; gy is that MBRg; gy (full) uses all
candidates to calculate MBR score.

4.3 Results

We first report the results on IWSLT’ 14 De—En
and WMT’14 De—En tasks. From Table 1, we
can see that MBRcomer outperforms MBRpy gy,
top-1, and other baselines on all three evaluation
metrics. Interestingly, we find that MBRpy gurT
achieves the highest BLEURT score but low BLEU
and COMET scores. To find out which utility
function is the best, we further perform human



evaluation (see Sec §5.1) to more quantitatively
compare the reranked 1-best candidates. The hu-
man evaluation results show that MBRcomMmgT out-
performs MBRpy gy and MBRg; gyrT, demonstrat-
ing that semantic-based MBR outperforms tradi-
tional lexical-based MBR. For the proposed reg-
ularizers, MBRcomer+LP improves the scores
in BLEU comparing to MBRcomer. Besides,
MBRcomeT+LP can be further improved in three
metrics by adding other regularizers. For example,
the MBRcomer+LP+QE achieves higher scores
on BLEU, COMET, and BLEURT. In addition,
a similar trend is observed in MBRpg gurT and
MBRcomeTr. More results and details can be found
in Sec §5.4. The regularized MBR reranking works
better than beam search with sizes 5 and 30, bring-
ing 8 points and 1.5 points of improvement on
COMET and BLEU metrics, respectively.

We additionally explore the performance of com-
bining more regularizers on MBRcomeT. We col-
lectively tune the A value for each of the regular-
izers on validation sets. We observe the results of
MBRcomeT+LP+QE+LM (we use RMBRcoMET
to denote this setting latter) that achieves the high-
est BLEU score among all the combinations, im-
proving the BLEU score by more than 2 points.
We also find that combining quality and uncer-
tainty regularizers with MBRcomgT can not lead
to further performance gains. Also, we conduct
re-reanking experiment on WMT’19 De—En and
En—De tasks, which can be found in Appendix
C. Moreover, we carry experiment to evaluate the
effectiveness of larger beam size on our proposed
method. More experimental results are reported in
Appendix D. The results suggest that our proposed
reranking method can alleviate the beam search
curse and generate better translations as beam size
increases.

Method Score
MBRcoMET 0.281
MBRBLEURT 0.129
MBRBLEU 0.125
Top-1 (beam=5) 0.120

Table 2: Results of the human evaluation. The score col-
umn represents the percentage of times each reranking
method is judged better across its competitors.

S Analysis

5.1 Human Evaluation

From the previous results, we observe that
MBRcomer  outperforms  MBRprpy  and
MBRgigurr in BLEU and COMET metrics,
but not in BLEURT metric. This motivate us to
perform human evaluation to more quantitatively
compare the reranked results. We randomly
select a subset of 500 source sentences from the
test sets of IWSLT’14 De—En. Reranking is
also based on the beam search results of beam
size 30. We request 3 human annotators to rank
the four translations from the best to the worst.
Specifically, we first set a guideline for evaluating,
which includes the task background, key points,
detailed descriptions, and 5 examples. Then, we
set an entry barrier for annotators. In detail, we
organize a training program and a preliminary
annotating examination (50 examples for each
baseline) to select appropriate annotators with an
approval rate higher than 95%. All the annotators
are highly educated, and the cost of the evaluation
is about 0.05$ for each word by one annotator.
Table 2 reports the ranking results according to the
Expected Wins method (Sakaguchi et al., 2014).
Our observation is that the 1-best candidates
reranking by MBRcomer outperforms the other
three methods. We provide some examples in

Appendix B.

WMT’14 En»De WMT’ 14 En—Fr
Methods COMET BLEU COMET BLEU
Top-1 (beam=5) 2724 2709 5511 3874
Top-1 (beam=30) 2032 2650 5031 3822
LP+QE 2810 2780 5539  39.60
LP+LM 2792 2804 5610  39.62
LP+BT 2750 2775 5606  39.70
MBRcoMET 3425 2737 5985  39.18
MBRg; gy 2615 2730 5381  39.17
MBRcopEr+LP 3198 2793 57.88  39.58
MBRcomer+LP+BT 3253 2801  60.33  39.83
MBRcoyer+LP+QE 3271 2800 59.83  39.84
MBRcomer+LP+LM 3497 2819 5980  39.87
MBRcoyer+LP+QE+LM 32,51 2840 5971  40.15

Table 3: BLEU and COMET score comparison on
WMT’ 14 En—De and WMT’ 14 En—Fr tasks.

5.2 Results on non-English Target Translation
Tasks

To further verify the effectiveness of the proposed
model on non-English target translation tasks, we



conduct experiments on WMT’14 En—Fr and
En—De, where we follow the same settings in
Sec §4.2. Since the evaluation metric BLEURT
only supports evaluation the language of English,
we only report BLEU and COMET scores for
En—Fr and En—De tasks. The results are shown
in Table 3, which are consistent with those in Table
1.

53 N-by-L

The number of candidates used to compute ex-
pected utility is defined as [ in Sec §3.1. To ex-
plore the effectiveness of [ on BLEU score of the
reranked 1-best candidates, we use MBRcomeT and
MBRgy gy to rank the 30 candidates decoded by
beam search with beam size of 30. We compute the
expected utility for each candidate by comparing
it to top-/ candidates of the 30 candidates. The
results are shown in Fig. 2. As [ increases, the
BLEU scores of the 1-best candidates reranked by
both MBRcoMmer and MBRg; gy go up and then
down. The reason may be that partial candidates
near the end of the list is extremely close to each
other, but of poor quality. When [ increases, this
part of candidates are more likely to be selected.
When [ is around 21, BLEU scores of MBRcoMET
and MBRpg gy are close to the optimal. For the
proposed reranking method, [ is tuned on the val-
idation set and fixed for inference for all testing
instances.

MBRgieu
—&— MBRcomer

34.55

34.50

34.45

BLEU score

34.40

34.35

5 10 15 20 25 30
candidate size(l)

Figure 2: The reranking results using partial candidates
to compute expected utility on the IWSLT’ 14 De—En
dev sets. y-axis is the BLEU score. x-axis is the number
of candidates used to compute MBR scores.

5.4 Utility Functions

To further verify the effectiveness of different util-
ity functions, we also compare the performance
of introducing the quality regularizers that per-
forms well in previous experiments on MBRp1 ru
and MBRgrpurr. We follow the same settings

Method COMET BLEURT BLEU
Top-1 (beam=5) 34.79 16.16 34.28
Top-1 (beam=30) 34.22 15.99 34.17
MBRgy EU 34.39 16.39 34.54
MBRg gy+LP 34.75 16.64 34.56
MBRg; gu+LP+BT 42.48 19.03 35.17
MBRggy+LP+QE 38.68 19.75 35.44
MBRggyu+LP+LM 38.89 19.91 35.41
MBRggu+LP+QE+LM 39.82 19.92 35.81
MBRBgLEURT 33.10 22.00 33.01
MBRBLEURT+LP 35.83 19.86 34.55
MBRBLEURT+LP+BT 42.46 19.20 35.18
MBRBLEURT+LP+QE 38.91 20.19 35.42
MBRgLEURT+LP+LM 36.79 18.04 35.25
MBRBLEURT+LP+QE+LM 40.65 20.49 36.14
MBReoypr+LP+QE+LM  42.24 2060  36.19

Table 4: Comparison results of MBRpgyrr and
MBRp gy with the proposed quality regularizers on
IWSLT’ 14 De—En.

in Sec §4.2. As shown in Table 4, similar to
RMBRCOMET, RMBRBLEU and RMBRBLEURT also
outperform beam search with sizes 5 and 30, which
is consistent with the results shown in Table 1
and Table 3. Overall, RMBRggyrr Vvariants
achieve better scores than RMBRg[ gy variants,
and RMBRcomEeT variants perform best. These
results show that semantic-based MBR leads to
better translation options.

5.5 Inference Time

We further compare the inference time of the pro-
posed reranking variants and baseline. For rerank-
ing, we still use 30 candidates obtained by beam
search on the IWSLT’ 14 De—En test sets. To com-
pare the inference time, all experiments are per-
formed on single Tesla V100 16GB GPU. Note
that, in practice we can further reduce inference
time by using more GPUs to compute utility func-
tions in parallel. The results are shown in Ta-
ble 5. n represents the number of candidates
used to rerank, [ represents the number of can-
didates used to compute expected utility (n =
30, ll = 21, l2 = 3) For RMBRCOMET(C2F),
which is a coarse-to-fine MBR procedure proposed
in Eikema and Aziz (2021), we use BLEU as
the proxy utility to select 15 candidates and then
use COMET as the target utility to select the 1-
best candidate. From the results we can see that
RMBRcomeT(n-by-11) achieves the best perfor-
mance with about 3.6 times more inference time
than top-1 (beam=5). Both RMBRcomeT(n-by-11)



Methods COMET BLEURT BLEU Time
Top-1 (beam=5) 34.79 16.16 3428  «x1
RMBRcomer(n-by-n)  42.52 2047 3601 x47
RMBRcomer(n-by-;)  42.24 2060  36.19 x3.6
RMBRcomer(n-by-l)  40.93 2026 3590 «xl.4
RMBRcomer(C2F) 41.50 1941 3593 xI1.9

Table 5: Comparison results of inference time. Rerank-
ing uses n = 30 candidates per sample.

and RMBRcomer(C2F) can further reduce infer-
ence time and outperform the baseline, which can
be used as a trade-off between time cost and per-
formance.

6 Related Work

In NMT, reranking is a way of improving transla-
tion quality by scoring and selecting a ‘preferred’
translation from a list of candidates generated by
a source-to-target model. MBR decoding (Goel
and Byrne, 2000; Kumar and Byrne, 2004) is one
of the effective methods. The goal of MBR de-
coding is to find a consensus translation that is
closest to other candidates. Some studies rerank
the n candidates directly sampled from the model.
Eikema and Aziz (2020) is the first to use unbi-
ased samples from the model by ancestral sam-
pling, to approximate hypotheses space. Aiming at
keeping computational cost of estimating expected
utility tractable, a coarse-to-fine MBR procedure
is proposed in Eikema and Aziz (2021). Other
studies tend to rerank the n candidates decoded by
beam search. In Shu and Nakayama (2017), both
MBR scores and log-probability scores are consid-
ered at each step of decoding. Blain et al. (2017)
investigates some automatic MT evaluation met-
rics (BLEU, BEER, and CHRF), and observes that
evaluation metric plays a major role in the n-best
reranking approach. Borgeaud and Emerson (2020)
designs some similarity functions to make more in-
formative candidates receive stronger votes, thus
selecting the most representative candidate.

These previous studies only use MBR score to
rank each candidate without considering source
sentence and model score. In the proposed RMBR,
some regularizers are utilized to rank candidates
in an overall way. Different from previous works
which select candidates based on only lexical simi-
larity, we also explore the semantic similarity be-
tween candidates. The other difference is that MBR
score is computed using top-/ candidates of the n-
best list to avoid candidates with poor quality in

the tail list and reduce the computation cost.

Besides MBR, there are some studies focus on
MT reranking. For example, Ng et al. (2019) de-
scribes using language model to rank candidates.
In Bhattacharyya et al. (2021), an energy based
model is trained to rank samples drawn from NMT.
Lee et al. (2021) predicts the observed distribution
of a desired metric, e.g., BLEU, over the n-best list
by training a large transformer architecture. Note
that these methods are orthogonal to our method,
and they can be theoretically used as the quality
regularizer in our framework.

Uncertainty quantification (Hiillermeier and
Waegeman, 2021) have been widely used in neu-
ral networks, which is usually solved by Bayesian
frameworks. Because the high training cost
brought by Bayesian neural networks, various ap-
proximations, such as Monte Carlo (MC) Dropout
(Gal and Ghahramani, 2016) and model ensem-
bling (Lakshminarayanan et al., 2017) have been
developed. In NMT, the MC dropout is used at
test time, by performing several stochastic forward
passes through the model. Then, the expectation
or variance of the output which reflect whether the
current model is confident or hesitant on the transla-
tion, is used to evaluate machine translation quality
(Fomicheva et al., 2020). On the other hand, in
the image classification task, entropy based mea-
sures are used to address uncertainty quantification
(Smith and Gal, 2018). Our uncertainty regulariz-
ers adopt similar uncertainty quantification strate-
gies.

7 Conclusion

In this paper, we introduce a RMBR to choose ade-
quate translations from the candidates decoded by
beam search. Based on MBR, we adopt semantic-
based similarity and compute the expected utility
by truncating the list. The proposed quality and
uncertainty regularizers are further incorporated
into the framework. Extensive experimental results
show that RMBR outperforms several MBR-based
variants and other reranking baselines on MT tasks:
+1.9 BLEU points, +7.5 COMET points, +4.4
BLEURT points over the results of beam search
with sizes 5 on IWSLT’ 14 German—English. To
get a better insight into RMBR, we also conduct the
in-depth ablation study and analytical experiments
to show the performance improvement brought by
each component of RMBR.
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Methods COMET BLEURT BLEU

Beam Search (beam=30)

Top-1 (beam=30) 34.22 15.99 34.17
MBRcomeT 42.53 17.78 34.55
MBRg Eu 34.39 16.39 34.54
MBRg| guRT 33.10 22.00 33.01
Siblings Beam Search (beam=30)
Top-1 (n = 30) 34.11 15.67 34.09
MBRcoMET 41.44 17.16 34.39
MBRpgEU 33.83 16.04 34.42
MBRB1 EURT 31.78 21.68 32.95
Ancestral Sampling (n=30)
Top-1 (n = 30) 21.37 10.62 29.33
MBRcomET 30.44 13.71 28.27
MBRp; Eu 9.67 8.99 30.62
MBRBg1 EURT 9.12 19.74 22.81

Table 6: The reranking results from 30 candidates de-
coded by beam search, SBS, and AS on the test sets of
IWSLT’ 14 De—En.

A Diverse Candidate Spaces

From the oracle experiments (see Fig.1a), we ob-
serve that deterministic decoding performs better
than stochastic decoding, and sibling beam search
(SBS) performs as well as beam search. To further
explore the effect of diverse candidate spaces, we

10

Wir erwarten ein paar aulergewohnliche

Source Jahrzehnte.

We are living into extraordinary decades

Reference ahead.

Top-1 (beam=5) We expect some extraordinary years.

We are looking forward to extraordinar
MBRcomET -ooking forwarc fo Y

decades.
MBRgLEURT We expect some extraordinary decades.
MBRgLEU We expect for several remarkable decades.

Table 7: Examples of 1-best candidates chosen by the
proposed reranking methods from n-best list (with n =
30). Underline represents the main differences between
the reference, the top-1 candidates, and the reranked
1-best candidates.

WMT’19 De—En WMT’19 En—De

Method COMET BLEURT BLEU COMET BLEU
Top-1 (beam=5) 44.82 25.00 40.02 41.53 41.23
Top-1 (beam=30) 4477 24.71 39.86 41.50 41.14
LP+BT 45.77 26.97 40.33 40.73 41.46
LP+QE 45.61 25.47 40.20 41.88 41.52
LP+LM 45.18 2509 40.13 41.44 41.44
MBRgLEU 45.05 24.56 39.89 41.19 41.35
MBRgLEURT 44.70 28.05 3791 \ \

MBRcomeT 49.03 25.74 39.88 45.49 41.38
MBRcomer+LP 48.05 26.00 40.21 45.02 41.49
MBRcomer+LP+BT 49.47 26.71 40.39 45.03 41.69
MBRcomer+LP+QE 48.83 27.80 40.51 42.96 41.63
MBRcomer+LP+LM 46.34 25.39 40.24 43.69 41.56
MBRcomer+LP+QE+BT 50.28 27.92 40.56 45.15 41.73

Table 8: Reranking results on WMT’ 19 De—En and
WMT’ 19 En—De tasks.

rerank the 30 top candidates by SBS and 30 can-
didates sampled by AS. As shown in Table 6, the
reranking results of the candidates decoded by SB
perform slightly worse than that of beam search.
For AS decoding, the scores of both top-1 candi-
dates and reranked 1-best candidates are signifi-
cantly low compared to other reranking methods.

B Qualitative Analysis

In Table 7, we illustrate some examples from the
reranking approach. Although, the word overlap
between the 1-best candidates by regularized MBR
ranker and the top-1 candidates is high, the pro-
posed reranking methods produce accurate and flu-
ent translation with asyntactic re-orderings, new
words, morphological variations.

C Experiments on WMT’19 Translation
tasks

To further verify the effectiveness of the proposed
model on the newly translation tasks, we conduct
experiments on WMT’19 De—En and En—De.
For baseline, we use the best performing single



Method COMET BLEURT BLEU
Top-1 (beam=5) 34.79 16.16 34.28
Top-1 (beam=30) 34.22 15.99 34.17
Top-1 (beam=>50) 33.84 15.87 34.10
beam=50
MBRcoMET 43.50 18.27 34.57
MBRcomer+LP 42.35 18.11 34.94
MBRcomer+LP+BT 44.42 18.97 35.31
MBRcomer+LP+QE 42.74 20.26 35.62
MBRcomer+LP+LM 42.87 18.96 35.58
MBRcomer+LP+QE+LM 42.62 21.54 36.24
beam=30
MBRcoMET 42.53 17.78 34.55
MBRcomer+LP 41.60 17.89 3491
MBRcomer+LP+BT 43.64 18.86 35.24
MBRcomer+LP+QE 42.04 19.96 35.62
MBRcomer+LP+LM 41.75 18.40 35.49
MBRcomer+LP+QE+LM 42.24 20.60 36.19
beam=5
MBRcoMmET 36.65 16.03 34.19
MBRCOMET+LP 36.44 16.47 34.40
MBRCOMET+LP+BT 38.99 17.38 34.69
MBRCOMET+LP+QE 38.09 18.20 34.86
MBRCOMET+LP+LM 36.73 16.81 34.78
MBRCOMET+LP+QE+LM 37.67 18.70 35.28

Table 9: Comparison results of beam size 5, 30, and 50
on IWSLT’ 14 De—En.

pre-trained model and data pre-processing method
provided by fairseq NMT repository. Reranking
follows the same settings in Sec §4.2. Since the
evaluation metric BLEURT only supports evalua-
tion the language of English, we only report BLEU
and COMET scores for En—De. The results are
shown in Table 8, which is consistent with the con-
clusion in Table 1.

D Beam Sizes

In this section, we explore the performance of the
proposed RMBRcoMmeT reranking in large beam
sizes, which performs best on average of three met-
rics on the IWSLT’ 14 De—En test sets. As shown
in Table 9 and Fig. 3, the translation quality of
beam search decreases with increased beam sizes.
Notably, RMBRcomeT achieves higher score in
COMET, BLEU, and BLEURT with larger beam
sizes, which suggests that RMBR benefits from
larger beam sizes. Moreover, the 1-best candidates
of RMBRcomET far outperforms the top-1 candi-
dates of beam search with sizes 5, 30, and 50. The
results means that the proposed reranking method
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Figure 3: The results of the 1-best candidates reranked
by the RMBRcoMmgT using beam of sizes 5, 30, and 50.

can improve upon beam search.



