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ABSTRACT

The optimal transportation map finds the most economical way to transport one
probability measure to another, and it has been applied in a broad range of applica-
tions in machine learning and computer vision. By the Brenier theory, computing
the optimal transport map is equivalent to solving a Monge-Ampère equation,
which is highly non-linear. Therefore, the computation of optimal transportation
maps is intrinsically challenging. In this work, we propose a novel and powerful
method, the FFT-OT (fast Fourier transform-optimal transport), to compute the
3-dimensional OT problems. The method is based on several key ideas: first, the
Monge-Ampère equation is linearized to a sequence of linear elliptic PDEs with
spacial and temporal variant coefficients; second, the obliqueness property of op-
timal transportation maps is reformulated as a Neumann boundary condition; and
third, the variant coefficient elliptic PDEs are approximated by constant coeffi-
cient elliptic PDEs and solved by FFT on GPUs. We also prove that the algorithm
converges linearly. Experimental results show that the FFT-OT algorithm is more
than a hundred times faster than the conventional methods based on the convex
geometry. Furthermore, the method can be directly applied for sampling from
complex 3D density functions in machine learning and magnifying the volumetric
data in medical imaging.

1 INTRODUCTION

Optimal transportation (OT) transports one probability measure to another in the most economical
way, and it plays a fundamental role in areas like machine learning Courty et al. (2017); Altschuler
et al. (2019), computer vision Arjovsky et al. (2017); Tolstikhin et al. (2018); An et al. (2020), and
computer graphics Solomon et al. (2015); Nader & Guennebaud (2018). Given a Riemannian man-
ifold X , all the probability distributions on X form an infinite dimensional space P(X). Given any
two distributions µ, ν ∈ P(X), the optimal transportation map defines a distance between them,
and the McCann interpolation McCann (1997) defines the geodesic connecting them. Hence opti-
mal transportation equips P(X) with a Riemannian metric and defines its covariant differentiation,
which provides a variational calculus framework for optimization in it.

As the optimal transportation problem is highly non-linear, it is quite challenging to compute the OT
maps. Recently, researchers have developed many algorithms. The geometric variational approach
Aurenhammer et al. (1998); Gu et al. (2016); Levy (2015) based on the Brenier theorem Brenier
(1991) is capable of achieving high accuracy for low dimensional problems, but it requires com-
plicated geometric data structure and the storage complexity grows exponentially as the dimension
increases. The Sinkhorn method Cuturi (2013) based on the Kantorovich theorem adds an entropic
regularizer to the primal problem and can handle high dimensional tasks, but it suffers from the
intrinsic approximation error.

∗ indicates equal contribution
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We propose a novel method to tackle this challenging problem through Fast Fourier Transforma-
tion (FFT). According to the Brenier theorem Brenier (1991), under the quadratic distance cost,
the optimal transportation map is the gradient of the Brenier potential, which satisfies the Monge-
Ampère equation. With the continuity method Delanoë (1991), the Monge-Ampère equation can be
linearized as a sequence of elliptic partial differential equations (PDEs) with spacial and temporal
variant coefficients. By iteratively solving the linearized Monge-Ampère equations, we can obtain
the OT map. Specifically, we propose to approximate the linearized Monge-Ampère equation by
constant coefficient elliptic PDEs and solve them using the FFT on GPUs.

Our proposed FFT-OT method has many merits: (i) it is generalizable for arbitrary dimension; (ii) it
has a linear convergence rate, namely the approximation error decays exponentially fast; (iii) in each
iteration, the computational complexity of FFT is O(n log n), thus our algorithm can solve large
scale OT problems; and (iv) it is highly parallelable and can be efficiently implemented on GPUs.
We demonstrate the efficiency of the FFT-OT algorithm by solving the volumetric OT problems
for machine learning and medical imaging applications including sampling from given 3D density
functions and volumetric magnifier. The algorithm also has its own limitations: (i) although it can
be generalized to any dimensions, the storage complexity increase exponentially with respect to
the dimension, so its power is limited by the memory size of the GPUs; (ii) Since the algorithm
uses FFT, the current version of the method only works well for continuous density functions. (iii)
In this work, we mainly focus on the computation of the OT map from the uniform distribution
to another arbitrary continuous distribution. To extend the method to find the OT map between
any two continuous measures, we can compute two OT maps from the uniform distribution to the
both continuous measures, then combine them together. The combination will give a reasonable
approximation of the OT map Nader & Guennebaud (2018).

Though Lei and Gu Lei & Gu (2021) also uses FFT to solve the 2-dimensional OT problem, our
method differs their works in the following two aspects: (i) Lei and Gu’s method uses the fixed point
method to compute the 2D OT problems, ours is based on the linearization of the Monge-Ampère
operator to solve the 3D OT problems, these are two different methodologies in PDE theory; (ii) In
our paper, we also provide the theoretical convergence analysis of the proposed method. For more
detailed analysis and related work, please refer to the Appendix A.

2 OPTIMAL TRANSPORTATION THEORY

In this section, we review the fundamental concepts and theorems of the OT problem and the Monge-
Amperè equation, more details can be found in Villani (2008).

Optimal Transportation Map and the Monge-Ampère equation Suppose the source domain
Ω is an open set in Rd with the probability measure µ, the target domain Σ is with the probability
measure ν. Both µ and ν have density functions dµ(x) = f(x)dx and dν(y) = g(y)dy, respectively,
with the equal total mass:

R


f(x)dx =

R
�
g(y)dy, which is called the balance condition.

Suppose T : Ω → Σ is a measurable map. The mapping T is called measure preserving and denoted
as T#µ = ν if the following relation

�(T−1(A)) = �(A) (1)

for every Borel subset A ⊂ Σ. A cost function c : Ω× Σ → R measures the transportation cost for
transporting the unit mass from x ∈ Ω to y ∈ Σ.
Problem 1 (Monge). The optimal transportation problem finds the measure preserving map with
the minimal total transportation cost,

min
T#�=�

Z



c(x, T (x))f(x)dx

The solution to the Monge’s problem is called the optimal transport map between µ and ν. The
existence, uniqueness and regularity of OT maps depend on the boundedness and the continuity of
the density functions, the convexity of the supporting domains, the continuity of their boundaries,
and the cost function. In our current work, we focus on the similar situation in Saumier et al. (2013),

• The cost function is quadratic Euclidean distance c(x, y) = ∥x− y∥2/2;
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• The supports of the source and the target measures are the canonical cube
 = [ � 1; 1]3,
which is uniformly convex;

• The source and the target measures�; � are absolutely continuous with respect to the
Lebesgue measure, their densitiesf; g are positive and bounded away from zero;

0 < m < f; g < M;

andf; g are of classC � (
) ,

• The boundary condition is second boundary condition (OT boundary condition),T(
) =

 .

Then according to (Villani (2003) Theorem 14.4, Saumier et al. (2013) Theorem 2.1), the OT maps
T : 
 ! 
 exists and is unique and invertible (� a.e), and the Brenier potential is of classC2;� (
)
form some0 < � < � .
Theorem 2. Assume that
 , �; �; f andg are de�ned as above. Then there exists a convex function
u : 
 ! R, u 2 C2;� (
) for some0 < � < � , such thatr u pushes� forward to� , (r u)# � = � .
Moreover,r u is unique and invertible (� a.e), and its inverser v satis�es(r v)# � = � .

We call such a convex functionu theBrenier potential, it satis�es the Monge-Amp�ere equation,

detD 2u(x) =
f (x)

g � r u(x)
: (2)

with the boundary conditionr u(
) = � . Then �nding the optimal transportation map is equivalent
to solving the corresponding Monge-Amp�ere equation. In the current work, the target measure is
always the Lebesgue measure, and the source densityf is of classC2;� (
) .

Linearized Monge-Amp�ere Operator The Monge-Amp�ere operator is de�ned as

MA [u] = detD 2u;

which is highly non-linear. It can be linearized as following:

MA[u + "v ] = det(D 2u + "D 2v) � detD 2u + "Trace(Adj(D 2u) � D 2v); (3)

where Adj(A) is the adjoint (co-factor) matrix ofA, Adj(A) := det(A)A � T . Therefore thelin-
earized Monge-Amp�ere operatoris de�ned as

DMAu [v] := Trace(Adj(D 2u) � D 2v) =
dX

p;q =1

upq (x)@p@qv(x); (4)

where(upq) = Adj(D 2u) is the adjoint matrix of the Hessian ofu, and@p@q := @2

@xp @xq
.

Continuity Method For simplicity, we assume the source domain coincides with the target do-
main, that is
 = � , and the target density isg(x) � 1. The Monge-Amp�ere equation Eqn. (2) is
simpli�ed as detD 2u(x) = f (x). De�ne a �ow of density as

� (x; t ) = (1 � t) + tf (x); t 2 [0; 1]: (5)

The corresponding �ow of the Brenier potentials isu(x; t ) : 
 � [0; 1] ! R,

detD 2
x u(x; t ) = � (x; t ); s:t: r x u(x; t )(
) = 
 ;

whereD 2
x u(x; t ) is the Hessian ofu(x; t ) with respect tox, andu(x; 1) is the solution to the initial

Monge-Amp�ere equation Eqn. (2). Take the derivative w.r.t. timet on both sides of the linearized
Monge-Amp�ere operator Eqn. (4), we obtain an elliptic PDE with the spacial and temporal variant
coef�cients of the unknownv(x; t ) := _u(x; t ), namely the “velocity” of the Brenier potential,

DMAu [v] =
dX

p;q =1

upq (x; t )@p@qv(x; t ) =
@
@t

� (x; t ) = f (x) � 1: (6)

At time t = 0 , the initial Brenier potential is known asu(x; 0) = 1
2 kxk2. Suppose at timet, we have

obtainedu(x; t ) already, then we can compute the adjoint matrixupq(x; t ) of the HessianD 2
x u(x; t ),

and solve Eqn. (6) to get the velocityv(x; t ) = _u(x; t ). In turn, we move forward to timet + �t , and
updateu(x; t + �t ) by u(x; t ) + _u(x; t )�t . By repeating this procedure, eventually we reach time
t = 1 and obtain the solutionu(x) := u(x; 1) to the initial Monge-Amp�ere Eqn. (2).
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Obliqueness Boundary Condition Suppose the boundary of
 is C1 almost everywhere, there-
fore at aC1 point x 2 @
 , the outer normaln(x) is well de�ned. For almost every boundary point
x 2 @
 , the obliqueness condition is represented as

hn(x); n(r u(x)) i � 0: (7)

Suppose
 is a cuboid and has6 faces, if a boundary pointx 2 @
 is on a face, by the cyclic
monotonicity of the map and the strict convexity ofu Villani (2008), its imager u(x) must be on
the same face ofx, namely,

hr u(x) � x; n(x)i = 0 : (8)

We can rewrite the Brenier potential asu(x1; x2; : : : ; xd) = 1
2

P d
i =1 x2

i + v(x1; � � � ; xd), then
r u(x) � x = r v(x). By Eqn. (8),v(x) satis�es the Neumann boundary condition,

@v
@n

(x) = 0 ; x 2 @
 : (9)

Similarly, the velocity of the (modi�ed) Brenier potentialv in Eqn. (6) also satis�es the Neumann
boundary condition. The analysis about the existence and regularity of the solutions to Eqn. (6) with
boundary condition Eqn. (9) can be found in the supplementary material.

3 COMPUTATIONAL ALGORITHM

Here we introduce the 3-dimensional FFT-OT algorithm, which can be generalized to any dimen-
sions. We approximate the Monge-Amp�ere equation by a sequence of constant coef�cient elliptic
PDEs, and solve them by FFT on GPUs. More detailed analysis about the solution of the discretized
Monge-Amp�ere equation, and the proofs of the lemmas and theorems are given by Appendix B.

3.1 CONTINUITY METHOD FORSOLVING THE MONGE-AMP �ERE EQUATION

By using the continuity method, we can solve the Monge-Amp�ere equation iteratively. For simplic-
ity, we assume the target measure is the Lebesgue's measure withg � 1. At the n-th iteration, the
Brenier potential is represented as1

2 kxk2 + un (x), its Hessian matrix isHn (x) := I + D 2un (x),
the corresponding density function is de�ned as the determinant of the Hessian� n = det(Hn ), and
the velocity of the Brenier potential isvn (x). In the beginning, the Brenier potentialu0(x) is zero,
the Hessian isH0 = I and the density is� 0 = 1 . At the n-th step, we compute the adjoint matrix
[H pq

n (x)] of the Hessian matrixHn (x) for anyx 2 
 . According to Eqn. (3), the velocityvn (x)
satis�es the variant coef�cient elliptic PDE induced by the linearized Monge-Amp�ere operator,

DMAu n [vn ] =
2X

p;q =0

H pq
n (x)@p@qvn (x) =

1
�

(f (x) � � n (x)) : (10)

Note that the right hand side of Eqn. (6) is the difference between the initial and the target densities,
whereas here it is replaced by the difference between the initial and the current densities. The step
length parameter� � 1 can be chosen to guarantee the convergence Loeper & Rapetti (2005).

The elliptic PDE Eqn. (10) is with spatially variant coef�cients. Although the traditional �nite
element method (FEM) can solve it using the GMRES algorithm Saad (2003), this algorithm can not
be directly accelerated by GPUs. To overcome this dif�culty, we approximate Eqn. (10) by a much
simpler elliptic PDE with constant coef�cients, which can be directly solved using the following
FFT-OT algorithm pipeline Alg. 1 on GPUs in Appendix C.

At the n-th iteration, after obtaining the adjoint matrix[H pq
n (x)], x 2 
 , we compute the mean

adjoint matrix[ �H pq
n (x)]

�H pq
n :=

R

 H pq

n (x)� n (x)dx
R


 � n (x)dx
; p; q = 0 ; 1; 2 (11)

and replace the elliptic PDE Eqn.(10) with variant coef�cients by the elliptic PDE with constant
coef�cients,

DMAu n [vn ] =
2X

p;q =0

�H pq
n @p@qvn (x) =

1
�

(f (x) � � n (x)) ; (12)
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whereDMA is called the mean linearized Monge-Amp�ere operator.

Then we solve the constant coef�cient elliptic PDE Eqn. (12) by FFT Algorithm Alg. 2 in Appendix
C. Although the original variant coef�cient PDE Eqn. (10) is replaced by its constant coef�cient
approximation Eqn. (12), the algorithm still converges to the solution with a linear convergence
rate. This replacement allows the whole algorithm to be solved by FFT on GPUs, which greatly
improves the computational ef�ciency.
Theorem 3 (main). Given a domain
 � Rd, which is a canonical cuboid
 = [ � 1; 1]d, and a
positive density functionf : 
 ! R with the balance condition

R

 f (x)dx =

R

 dx; suppose the

mirror re�ection extension Eqn. (14) off to the �at torus ~f : Tn ! R is C � , � 2 (0; 1), then the
Monge-Amp�ere equation,

detD 2u(x) = f (x); r u(
) = 

can be solved using the FFT-OT Algorithm Alg. 1 in Appendix C. In particular, one can choose the
step length parameter� , such that there is a constant0 < 
 < 1 that the approximation error
satis�es

kf � � n +1 k2 < C
 n ; (13)
namely the algorithm has a linear convergence rate.

3.2 FFT SOLVER FORCONSTANT COEFFICIENTELLIPTIC PDES

To solve the constant coef�cient elliptic PDE Eqn. (12), we �rst extend the PDE to the �at torus
by mirror re�ection, then discretize the domain and compute the differential operators by central
difference scheme. Finally the PDE is converted to algebraic equations in the frequency domain by
FFT and can be ef�ciently solved on GPUs.

Extension by Mirror Re�ection Suppose
 = [0 ; 1]3 andf : 
 ! R are given, we extend
 to
~
 = [ � 1; 1]3 andf to ~f : ~
 ! R by mirror re�ection

~f (x; y; z ) = f (jxj; jyj; jzj); 8(x; y; z ) 2 ~
 : (14)

By de�nition, ~f satis�es the periodic boundary condition and can be treated as a function de�ned
on the �at torusT3. ~
 is one of the fundamental domain ofT3. The constant coef�cientsap;q keep
unchanged. Then we solve the following constant coef�cient elliptic PDE Eqn. (18)L [~u] = ~f with
the periodic boundary condition. Finally, the restriction of~u on 
 gives the initial solutionu to
L [u] = f with Neumann boundary condition.

In the following, to avoid using overly complicated symbols, we use(u; f; 
) to represent(~u; ~f ; ~
)
for simplicity.

Tessellation Suppose
 = [ � 1; 1]3 is the canonical cube (a fundamental domain of a �at torus),
we tessellate it to the regular cells, and the centers of the cells form a gridM � N � L . The Brenier
potentialu : 
 ! R is discretized to a tensorui;j;k with f i; j; k g 2 f 0; : : : ; M � 1g � f 0; : : : ; N �
1g � f 0; : : : ; L � 1g. The spacial step lengths are(hx ; hy ; hz ) = (2 =M; 2=N; 2=L). The coordinate
of each sample point(x i ; yj ; zk ) is (x i ; yj ; zk ) = ( � 1 + hx (i + 1=2); � 1 + hy (j + 1=2); � 1 +
hz (k + 1=2)). The periodic boundary condition is then formulated as

ui;j;k = ui + �M;j + �N;k + 
L ; �; �; 
 2 Z: (15)

Finite Difference Differential Operator We use the standard central differences to compute the
differential operators. The �rst order derivativeDx is approximated by

Dx ui;j;k =
ui +1 ;j;k � ui � 1;j;k

2hx
;

where the indexi + 1 meansi + 1 modulusM . The operatorsDy ; Dz are de�ned in a similar way.
The second order derivative operatorDxx andDxy are approximated by

D2
xx ui;j;k =

ui +1 ;j;k + ui � 1;j;k � 2ui;j;k

h2
x

D2
xy ui;j;k =

ui +1 ;j +1 ;k + ui � 1;j � 1;k � ui +1 ;j � 1;k � ui � 1;j +1 ;k

4hx hy

The other operatorsDyy , Dzz , Dyz andDxz are de�ned similarly.
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Discrete Fourier Transformation The discrete Fourier transformation (DFT) ofui;j;k is given by

ûm;n;l =
M � 1X

i =0

N � 1X

j =0

L � 1X

k =0

ui;j;k !̂ mnl (16)

ui;j;k =
1

MNL

M � 1X

m =0

N � 1X

n =0

L � 1X

l =0

ûm;n;l ! mnl (17)

where!̂ mnl = e� � 2 �mi
M e� � 2 �nj

N e� � 2 �lk
L , ! mnl = e� 2 �mi

M e� 2 �nj
N e� 2 �lk

L and� =
p

� 1, f m; n; l g are
the indices of the frequency coef�cients. By using DFT, the differential operators are converted to
algebraic operators in the frequency domain.
Lemma 4. Suppose the discrete function isui;j;k , with the discrete Fourier transformation Eqn. (16)
and Eqn. (17), by using the central difference scheme, the �rst order differential operator is given by

Dx ui;j;k =
1

MNL

M � 1X

m =0

N � 1X

n =0

L � 1X

l =0

ûm;n;l
sin 2�m

M

hx
! mnl

the second order differential operators are represented by

D2
xx ui;j;k =

1
MNL

M � 1X

m =0

N � 1X

n =0

L � 1X

l =0

ûm;n;l
2

�
cos2�m

M � 1
�

h2
x

! mnl

D2
xy ui;j;k =

1
MNL

M � 1X

m =0

N � 1X

n =0

L � 1X

l =0

ûm;n;l
� sin 2�m

M sin 2�n
N

hx hy
! mnl

The other differential operatorsDy , Dz , Dyy , Dzz , Dyz andDxz are also represented accordingly.
The detailed proofs can be found in the supplementary material.

FFT Solver Suppose we want to solve an elliptic PDE with constant coef�cients on
 � R3,

L [u] :=

 
2X

p=0

2X

q=0

ap;q @p@q +
2X

r =0

br @r + c

!

u(x) = f (x); (18)

with the periodic boundary condition, whereap;q ; br ; c are constants, the matrix(ap;q ) is positive
de�nite, namely the PDE is uniformly elliptic. By the discrete Fourier transformationF , we convert
the differential equation to an algebraic equation in the frequency domain,

2X

p=0

2X

q=0

ap;q F (@p@qu) +
2X

r =0

br F (@r u) + cF (u) = F (f )

By applying Lemma 4 and de�ning

� m;n;l = a0;0 2(cos 2�m
M � 1)

h2
x

+ a1;1 2(cos 2�n
N � 1)

h2
y

+ a2;2 2(cos 2�l
L � 1)

h2
z

� (a0;1 + a1;0)
sin 2�m

M sin 2�n
N

hx hy

� (a1;2 + a2;1)
sin 2�n

N sin 2�l
L

hy hz
� (a0;2 + a2;0)

sin 2�l
L sin 2�m

M

hz hx

+ b0 sin 2�m
M

hx
+ b1 sin 2�n

N

hy
+ b2 sin 2�l

L

hz
+ c

(19)

We have the algebraic equations in frequency domain,

ûm;n;l � m;n;l = f̂ m;n;l

With ûm;n;l 's, we can easily obtainui;j;k 's by the Inverse Discrete Fourier Transform (IDFT), which
means solving the constant coef�cient elliptic equation. The algorithm is described in Alg. 2 in
Appendix C.

The FFT for solving the constant coef�cient elliptic PDE can be ef�ciently computed with GPUs.
Moreover, the algorithm Alg. 2 solves the constant coef�cient elliptic PDEs with aperiodic bound-
ary condition, which can be generalized to solving the same type of PDEs withNeumann boundary
conditionby extending the PDE to the �at torusT3 using mirror re�ection Eqn. (14).
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4 EXPERIMENTAL RESULTS

In this section, we �rstly show that the our proposed FFT-OT algorithm converges linearly and runs
100� faster than the conventional convex geometry based solver Levy (2015), then demonstrate the
method in two applications: 3D adaptive sampling and Volume Magni�er. All the algorithms are
developed using generic C++ with CUDA Toolkit. All the experiments are conducted on a Windows
laptop with Intel Core i7-7700HQ CPU with 16 GB memory and NVIDIA GeForce GTX 1060
Graphics Cards. More experiments can be found in Appendix D.

4.1 RUNNING TIME AND CONVERGENCEANALYSIS

To show the performance of the proposed method, we experiment on the density functions de�ned
by the Gaussian mixture models. To be speci�c, the domain is a cube
 = [0 ; 1]3, the 3-dimensional
density function de�ned on
 is set to bef (x) =

P 30
i =1 pi N (� i ; � i ), whereN (� i ; � i ) represents

Gaussian distribution with mean� i and variance� i = diag(� 2
i 0; � 2

i 1; � 2
i 2). � i 2 R3 is uniformly

sampled from[0; 1]3, � ij is uniformly sampled from[0; 0:5], pi 2 R is uniformly sampled from
[0:2; 1] and normalized such that

R

 f (x)dx = 1 . Thus the source distribution� is a complicated

Gaussian mixture distribution restricted on
 . Then by mirror re�ection in Sec. 3.2, we obtain the
complex density function which is de�ned on[� 1; 1]3 and satis�es the periodic boundary condition.

Figure 1: Convergence Analysis.

We directly use the FFT-OT algorithm Alg. 1 to solve the
linearized Monge-Amp�ere equation. With the approxi-
mation error threshold" = 1 :0 � 10� 6 and the resolution
256 � 256 � 256, the running time for our FFT-OT al-
gorithm with double precision on GPU is less than175
seconds. The conventional convex geometry based al-
gorithm for 3D optimal transportation Levy (2015) can
neither handle such large data sets nor be implemented
on GPUs. It can only compute OT map with resolution
no greater than100� 100� 100 on our system, which
takes about2700seconds. When handling problem with
128� 128� 128resolution, our FFT-OT consumes about
20:3 seconds, which is130� faster than the power diagram based method Levy (2015).

Fig. 1 shows the approximation error for the above Gaussian mixture density with respect to itera-
tions, namelylogkf � � n k2

2. Our algorithm does converge linearly and the result is consistent with
the prediction Eqn. (13) in Thm. 3. Therefore, this experiment validates the theorem.

4.2 3D ADAPTIVE SAMPLING

Generating random samples matching a given density function plays an essential role in the appli-
cations like Monte-Carlo integration or stippling. Ef�ciently obtaining high quality samples is still
an on-going research topic Bauer et al. (2015); Perrier et al. (2018). And optimal transportation
has been successfully applied for generating high quality 2D samples de Goes et al. (2012); Nader
& Guennebaud (2018). Most of the current research focuses on generating 2D samples �tting the
given density function. Here we apply the proposed 3D FFT-OT method to generate high quality 3D
samples according to the given complex density functions. To the best of our knowledge, it is the
�rst work that uses OT to sample from 3D density functions.

Suppose the source probability distributiond� (x) = f (x)dx is de�ned on
 = [0 ; 1]3 with � (
) =
1. The target distributiond� (y) = dy is the uniform distribution. We use the FFT-OT algorithm
Alg. 1 to compute the OT mapT : 
 ! 
 , T# � = � . The domain is tessellated to a256� 256� 256
grid. For eachx ijk , i; j; k 2 f 0; 1; : : : ; 255g, the imageT(x ijk ) can be obtained. We usef T(x ijk )g
as vertices to compute the Delaunay triangulation of
 . Then representing the OT mapT : (
 ; � ) !
(
 ; � ) as a piecewise linear map, the restriction ofT on each tetrahedron is a linear map. Then the
inverse OT mapT � 1 : (
 ; � ) ! (
 ; � ) is also a piecewise linear map. Namely, given a grid
point ymnl , we can �nd a tetrahedron containing it. Suppose the vertices of the tetrahedron are
f T(x i ); T(x j ); T(xk ); T(x l )g, thenymnl is computed as

ymnl = � i T(x i ) + � j T(x j ) + � k T(xk ) + � l T(x l );

7
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(a) Density (b) Rejection (c) MH (d) Slice (e) Ours-R (f) Ours-G

Figure 2: 3D density function sampling. (a) The density functions in a slice. The slices in each row come from
two different density functions. (b)-(f) The samples obtained by different sampling methods. (b) Rejection
sampling. (c) Metropolis-Hastings (MH) algorithm Bishop (2006). (d) Slice sampling Neal (2003). (e) The
sampling results by mapping the random samples from the uniform distribution back to the desired distribution
with T � 1 . (f) The sampling results by mapping the grid centers back withT � 1 . The scores of the top right
give the results of the Chi-square goodness-of-�t test. Smaller means better.

where the non-negative barycenter coordinates satisfy� i + � j + � k + � l = 1 . Then the image of
the inverse OT map is given by

T � 1(ymnl ) = � i x i + � j x j + � k xk + � l x l : (20)

We generate random samplesf yk g according to the uniform distribution� on 
 , then their images
f T � 1(yk )g are the desired random samples following the distribution� .

In our experiment, we use the same Gaussian mixture settings of the density function as Sec. 4.1.
Fig. 2 visualizes the generated samples. We randomly pick thek-th slice along thez-direction from
the discretized volume, draw the source density function on this slice, and use pixel intensity to
represent the density in Fig. 2(a). (i) We uniformly generate100k random samplesf yk g � 
 , and
obtain the desired random samples by applying the inverse OT mapf T � 1(yk )g. (ii) We also set
f yk g as the grid centers of
 and obtain the corresponding samples of the desired distribution� .
The samples around thek-th slice of both sampling strategies are plotted in Fig. 2(e) and Fig. 2(f).

By visual comparison, it is obvious that the distributions of Fig. 2(e) and Fig. 2(f) are consistent
with the density function in Fig. 2(a). The consistency of the boundary of Fig. 2(e) and (f) and Fig.
2(a) also veri�es the obliqueness boundary condition of the Monge-Amp�ere equation. To further
show the performance of the proposed method, we compare it with the classical sampling methods,
namely rejection sampling, the Metropolis-Hastings algorithm Bishop (2006) and the slice sampling
Neal (2003), shown in Fig. 2(b), Fig. 2(c) and Fig. 2(d). To quantitatively compare the sampling
results, we use the Chi-square goodness-of-�t test, which �rstly groups the data and then computes
the L 2 norm of the difference between the actual number of observations in each group and the
expected number of observations. In our experiment, we set the group number to64� 64� 64 and
use 500K samples to make the comparison. The correspondingL 2 norm of each method is shown in
the top-right of the corresponding �gure. We can see that the both sampling strategies of our method
give smaller scores than the classical ones.

4.3 VOLUMETRIC MAGNIFIER

In reality, physical magni�ers can only magnify planar images. In medical image processing, it is
highly desirable to magnify certain regions of the 3D MRIs or CT images. Our algorithm can address
such requests with the user prescribed region of interest (ROI) and magnifying factor. Suppose
the ROI is a symmetric region with the center(�x; �y; �z) 2 
 and the radius� x ; � y ; � z in different
directions. The density functionf of the source measure� is de�ned as

f (x; y; z) = 0 :5 + 0:5e� (( x � �x )2 =2� 2
x +( y � �y )2 =2� 2

y +( z� �z)2 =2� 2
z )

We compute OT mapT : (
 ; � ) ! (
 ; � ), where� is the uniform distribution. Similar to the
method in 3D adaptive sampling, we compute the Delaunay triangulation of the imagesf T(x ijk )g,
then the OT mapT is represented as a piecewise linear map. The inverse optimal transportation map

8




	Introduction
	Optimal Transportation Theory
	Computational Algorithm
	Continuity Method for Solving the Monge-Ampère Equation
	FFT Solver for Constant Coefficient Elliptic PDEs

	Experimental Results
	Running Time and Convergence Analysis
	3D Adaptive Sampling
	Volumetric Magnifier

	Conclusion
	Related Work
	Appendix Theory
	Existence of the Solution to the Time Dependent Monge-Ampère Eqnuation
	Discrete Linearized Monge-Ampère Equation Solvability
	Convergence Rate
	Differential Operator Using FFT

	Algorithm Pipelines
	Appendix Experiments
	More results on 3D Adaptive Sampling
	More results on Volumetric Magnifier


