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ABSTRACT

The optimal transportation map finds the most economical way to transport one
probability measure to another, and it has been applied in a broad range of applica-
tions in machine learning and computer vision. By the Brenier theory, computing
the optimal transport map is equivalent to solving a Monge-Ampère equation,
which is highly non-linear. Therefore, the computation of optimal transportation
maps is intrinsically challenging. In this work, we propose a novel and powerful
method, the FFT-OT (fast Fourier transform-optimal transport), to compute the
3-dimensional OT problems. The method is based on several key ideas: first, the
Monge-Ampère equation is linearized to a sequence of linear elliptic PDEs with
spacial and temporal variant coefficients; second, the obliqueness property of op-
timal transportation maps is reformulated as a Neumann boundary condition; and
third, the variant coefficient elliptic PDEs are approximated by constant coeffi-
cient elliptic PDEs and solved by FFT on GPUs. We also prove that the algorithm
converges linearly. Experimental results show that the FFT-OT algorithm is more
than a hundred times faster than the conventional methods based on the convex
geometry. Furthermore, the method can be directly applied for sampling from
complex 3D density functions in machine learning and magnifying the volumetric
data in medical imaging.

1 INTRODUCTION

Optimal transportation (OT) transports one probability measure to another in the most economical
way, and it plays a fundamental role in areas like machine learning Courty et al. (2017); Altschuler
et al. (2019), computer vision Arjovsky et al. (2017); Tolstikhin et al. (2018); An et al. (2020), and
computer graphics Solomon et al. (2015); Nader & Guennebaud (2018). Given a Riemannian man-
ifold X , all the probability distributions on X form an infinite dimensional space P(X). Given any
two distributions µ, ν ∈ P(X), the optimal transportation map defines a distance between them,
and the McCann interpolation McCann (1997) defines the geodesic connecting them. Hence opti-
mal transportation equips P(X) with a Riemannian metric and defines its covariant differentiation,
which provides a variational calculus framework for optimization in it.

As the optimal transportation problem is highly non-linear, it is quite challenging to compute the OT
maps. Recently, researchers have developed many algorithms. The geometric variational approach
Aurenhammer et al. (1998); Gu et al. (2016); Levy (2015) based on the Brenier theorem Brenier
(1991) is capable of achieving high accuracy for low dimensional problems, but it requires com-
plicated geometric data structure and the storage complexity grows exponentially as the dimension
increases. The Sinkhorn method Cuturi (2013) based on the Kantorovich theorem adds an entropic
regularizer to the primal problem and can handle high dimensional tasks, but it suffers from the
intrinsic approximation error.

∗ indicates equal contribution
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We propose a novel method to tackle this challenging problem through Fast Fourier Transforma-
tion (FFT). According to the Brenier theorem Brenier (1991), under the quadratic distance cost,
the optimal transportation map is the gradient of the Brenier potential, which satisfies the Monge-
Ampère equation. With the continuity method Delanoë (1991), the Monge-Ampère equation can be
linearized as a sequence of elliptic partial differential equations (PDEs) with spacial and temporal
variant coefficients. By iteratively solving the linearized Monge-Ampère equations, we can obtain
the OT map. Specifically, we propose to approximate the linearized Monge-Ampère equation by
constant coefficient elliptic PDEs and solve them using the FFT on GPUs.

Our proposed FFT-OT method has many merits: (i) it is generalizable for arbitrary dimension; (ii) it
has a linear convergence rate, namely the approximation error decays exponentially fast; (iii) in each
iteration, the computational complexity of FFT is O(n log n), thus our algorithm can solve large
scale OT problems; and (iv) it is highly parallelable and can be efficiently implemented on GPUs.
We demonstrate the efficiency of the FFT-OT algorithm by solving the volumetric OT problems
for machine learning and medical imaging applications including sampling from given 3D density
functions and volumetric magnifier. The algorithm also has its own limitations: (i) although it can
be generalized to any dimensions, the storage complexity increase exponentially with respect to
the dimension, so its power is limited by the memory size of the GPUs; (ii) Since the algorithm
uses FFT, the current version of the method only works well for continuous density functions. (iii)
In this work, we mainly focus on the computation of the OT map from the uniform distribution
to another arbitrary continuous distribution. To extend the method to find the OT map between
any two continuous measures, we can compute two OT maps from the uniform distribution to the
both continuous measures, then combine them together. The combination will give a reasonable
approximation of the OT map Nader & Guennebaud (2018).

Though Lei and Gu Lei & Gu (2021) also uses FFT to solve the 2-dimensional OT problem, our
method differs their works in the following two aspects: (i) Lei and Gu’s method uses the fixed point
method to compute the 2D OT problems, ours is based on the linearization of the Monge-Ampère
operator to solve the 3D OT problems, these are two different methodologies in PDE theory; (ii) In
our paper, we also provide the theoretical convergence analysis of the proposed method. For more
detailed analysis and related work, please refer to the Appendix A.

2 OPTIMAL TRANSPORTATION THEORY

In this section, we review the fundamental concepts and theorems of the OT problem and the Monge-
Amperè equation, more details can be found in Villani (2008).

Optimal Transportation Map and the Monge-Ampère equation Suppose the source domain
Ω is an open set in Rd with the probability measure µ, the target domain Σ is with the probability
measure ν. Both µ and ν have density functions dµ(x) = f(x)dx and dν(y) = g(y)dy, respectively,
with the equal total mass:

∫
Ω
f(x)dx =

∫
Σ
g(y)dy, which is called the balance condition.

Suppose T : Ω → Σ is a measurable map. The mapping T is called measure preserving and denoted
as T#µ = ν if the following relation

µ(T−1(A)) = ν(A) (1)

for every Borel subset A ⊂ Σ. A cost function c : Ω× Σ → R measures the transportation cost for
transporting the unit mass from x ∈ Ω to y ∈ Σ.
Problem 1 (Monge). The optimal transportation problem finds the measure preserving map with
the minimal total transportation cost,

min
T#µ=ν

∫
Ω

c(x, T (x))f(x)dx

The solution to the Monge’s problem is called the optimal transport map between µ and ν. The
existence, uniqueness and regularity of OT maps depend on the boundedness and the continuity of
the density functions, the convexity of the supporting domains, the continuity of their boundaries,
and the cost function. In our current work, we focus on the similar situation in Saumier et al. (2013),

• The cost function is quadratic Euclidean distance c(x, y) = ∥x− y∥2/2;
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• The supports of the source and the target measures are the canonical cube Ω = [−1, 1]3,
which is uniformly convex;

• The source and the target measures µ, ν are absolutely continuous with respect to the
Lebesgue measure, their densities f, g are positive and bounded away from zero;

0 < m < f, g < M,

and f, g are of class Cα(Ω),
• The boundary condition is second boundary condition (OT boundary condition), T (Ω) =
Ω.

Then according to (Villani (2003) Theorem 14.4, Saumier et al. (2013) Theorem 2.1), the OT maps
T : Ω → Ω exists and is unique and invertible (µ a.e), and the Brenier potential is of class C2,β(Ω)
form some 0 < β < α.
Theorem 2. Assume that Ω, µ, ν, f and g are defined as above. Then there exists a convex function
u : Ω → R, u ∈ C2,β(Ω) for some 0 < β < α, such that ∇u pushes µ forward to ν, (∇u)#µ = ν.
Moreover, ∇u is unique and invertible (µ a.e), and its inverse ∇v satisfies (∇v)#ν = µ.

We call such a convex function u the Brenier potential, it satisfies the Monge-Ampère equation,

detD2u(x) =
f(x)

g ◦ ∇u(x) . (2)

with the boundary condition ∇u(Ω) = Σ. Then finding the optimal transportation map is equivalent
to solving the corresponding Monge-Ampère equation. In the current work, the target measure is
always the Lebesgue measure, and the source density f is of class C2,α(Ω).

Linearized Monge-Ampère Operator The Monge-Ampère operator is defined as

MA[u] = detD2u,

which is highly non-linear. It can be linearized as following:

MA[u+ εv] = det(D2u+ εD2v) ≈ detD2u+ εTrace(Adj(D2u) ·D2v), (3)

where Adj(A) is the adjoint (co-factor) matrix of A, Adj(A) := det(A)A−T . Therefore the lin-
earized Monge-Ampère operator is defined as

DMAu[v] := Trace(Adj(D2u) ·D2v) =

d∑
p,q=1

upq(x)∂p∂qv(x), (4)

where (upq) = Adj(D2u) is the adjoint matrix of the Hessian of u, and ∂p∂q := ∂2

∂xp∂xq
.

Continuity Method For simplicity, we assume the source domain coincides with the target do-
main, that is Ω = Σ, and the target density is g(x) ≡ 1. The Monge-Ampère equation Eqn. (2) is
simplified as detD2u(x) = f(x). Define a flow of density as

ρ(x, t) = (1− t) + tf(x), t ∈ [0, 1]. (5)

The corresponding flow of the Brenier potentials is u(x, t) : Ω× [0, 1] → R,

detD2
xu(x, t) = ρ(x, t), s.t.∇xu(x, t)(Ω) = Ω,

where D2
xu(x, t) is the Hessian of u(x, t) with respect to x, and u(x, 1) is the solution to the initial

Monge-Ampère equation Eqn. (2). Take the derivative w.r.t. time t on both sides of the linearized
Monge-Ampère operator Eqn. (4), we obtain an elliptic PDE with the spacial and temporal variant
coefficients of the unknown v(x, t) := u̇(x, t), namely the “velocity” of the Brenier potential,

DMAu[v] =

d∑
p,q=1

upq(x, t)∂p∂qv(x, t) =
∂

∂t
ρ(x, t) = f(x)− 1. (6)

At time t = 0, the initial Brenier potential is known as u(x, 0) = 1
2∥x∥

2. Suppose at time t, we have
obtained u(x, t) already, then we can compute the adjoint matrix upq(x, t) of the Hessian D2

xu(x, t),
and solve Eqn. (6) to get the velocity v(x, t) = u̇(x, t). In turn, we move forward to time t+ δt, and
update u(x, t + δt) by u(x, t) + u̇(x, t)δt. By repeating this procedure, eventually we reach time
t = 1 and obtain the solution u(x) := u(x, 1) to the initial Monge-Ampère Eqn. (2).
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Obliqueness Boundary Condition Suppose the boundary of Ω is C1 almost everywhere, there-
fore at a C1 point x ∈ ∂Ω, the outer normal n(x) is well defined. For almost every boundary point
x ∈ ∂Ω, the obliqueness condition is represented as

⟨n(x),n(∇u(x))⟩ ≥ 0. (7)

Suppose Ω is a cuboid and has 6 faces, if a boundary point x ∈ ∂Ω is on a face, by the cyclic
monotonicity of the map and the strict convexity of u Villani (2008), its image ∇u(x) must be on
the same face of x, namely,

⟨∇u(x)− x,n(x)⟩ = 0. (8)

We can rewrite the Brenier potential as u(x1, x2, . . . , xd) = 1
2

∑d
i=1 x

2
i + v(x1, · · · , xd), then

∇u(x)− x = ∇v(x). By Eqn. (8), v(x) satisfies the Neumann boundary condition,

∂v

∂n
(x) = 0, x ∈ ∂Ω. (9)

Similarly, the velocity of the (modified) Brenier potential v in Eqn. (6) also satisfies the Neumann
boundary condition. The analysis about the existence and regularity of the solutions to Eqn. (6) with
boundary condition Eqn. (9) can be found in the supplementary material.

3 COMPUTATIONAL ALGORITHM

Here we introduce the 3-dimensional FFT-OT algorithm, which can be generalized to any dimen-
sions. We approximate the Monge-Ampère equation by a sequence of constant coefficient elliptic
PDEs, and solve them by FFT on GPUs. More detailed analysis about the solution of the discretized
Monge-Ampère equation, and the proofs of the lemmas and theorems are given by Appendix B.

3.1 CONTINUITY METHOD FOR SOLVING THE MONGE-AMPÈRE EQUATION

By using the continuity method, we can solve the Monge-Ampère equation iteratively. For simplic-
ity, we assume the target measure is the Lebesgue’s measure with g ≡ 1. At the n-th iteration, the
Brenier potential is represented as 1

2∥x∥
2 + un(x), its Hessian matrix is Hn(x) := I + D2un(x),

the corresponding density function is defined as the determinant of the Hessian ρn = det(Hn), and
the velocity of the Brenier potential is vn(x). In the beginning, the Brenier potential u0(x) is zero,
the Hessian is H0 = I and the density is ρ0 = 1. At the n-th step, we compute the adjoint matrix
[Hpq

n (x)] of the Hessian matrix Hn(x) for any x ∈ Ω. According to Eqn. (3), the velocity vn(x)
satisfies the variant coefficient elliptic PDE induced by the linearized Monge-Ampère operator,

DMAun [vn] =

2∑
p,q=0

Hpq
n (x)∂p∂qvn(x) =

1

τ
(f(x)− ρn(x)). (10)

Note that the right hand side of Eqn. (6) is the difference between the initial and the target densities,
whereas here it is replaced by the difference between the initial and the current densities. The step
length parameter τ ≥ 1 can be chosen to guarantee the convergence Loeper & Rapetti (2005).

The elliptic PDE Eqn. (10) is with spatially variant coefficients. Although the traditional finite
element method (FEM) can solve it using the GMRES algorithm Saad (2003), this algorithm can not
be directly accelerated by GPUs. To overcome this difficulty, we approximate Eqn. (10) by a much
simpler elliptic PDE with constant coefficients, which can be directly solved using the following
FFT-OT algorithm pipeline Alg. 1 on GPUs in Appendix C.

At the n-th iteration, after obtaining the adjoint matrix [Hpq
n (x)], x ∈ Ω, we compute the mean

adjoint matrix [H̄pq
n (x)]

H̄pq
n :=

∫
Ω
Hpq

n (x)ρn(x)dx∫
Ω
ρn(x)dx

, p, q = 0, 1, 2 (11)

and replace the elliptic PDE Eqn.(10) with variant coefficients by the elliptic PDE with constant
coefficients,

DMAun [vn] =
2∑

p,q=0

H̄pq
n ∂p∂qvn(x) =

1

τ
(f(x)− ρn(x)), (12)
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where DMA is called the mean linearized Monge-Ampère operator.

Then we solve the constant coefficient elliptic PDE Eqn. (12) by FFT Algorithm Alg. 2 in Appendix
C. Although the original variant coefficient PDE Eqn. (10) is replaced by its constant coefficient
approximation Eqn. (12), the algorithm still converges to the solution with a linear convergence
rate. This replacement allows the whole algorithm to be solved by FFT on GPUs, which greatly
improves the computational efficiency.
Theorem 3 (main). Given a domain Ω ⊂ Rd, which is a canonical cuboid Ω = [−1, 1]d, and a
positive density function f : Ω → R with the balance condition

∫
Ω
f(x)dx =

∫
Ω
dx, suppose the

mirror reflection extension Eqn. (14) of f to the flat torus f̃ : Tn → R is Cα, α ∈ (0, 1), then the
Monge-Ampère equation,

detD2u(x) = f(x), ∇u(Ω) = Ω

can be solved using the FFT-OT Algorithm Alg. 1 in Appendix C. In particular, one can choose the
step length parameter τ , such that there is a constant 0 < γ < 1 that the approximation error
satisfies

∥f − ρn+1∥2 < Cγn, (13)
namely the algorithm has a linear convergence rate.

3.2 FFT SOLVER FOR CONSTANT COEFFICIENT ELLIPTIC PDES

To solve the constant coefficient elliptic PDE Eqn. (12), we first extend the PDE to the flat torus
by mirror reflection, then discretize the domain and compute the differential operators by central
difference scheme. Finally the PDE is converted to algebraic equations in the frequency domain by
FFT and can be efficiently solved on GPUs.

Extension by Mirror Reflection Suppose Ω = [0, 1]3 and f : Ω → R are given, we extend Ω to
Ω̃ = [−1, 1]3 and f to f̃ : Ω̃ → R by mirror reflection

f̃(x, y, z) = f(|x|, |y|, |z|), ∀(x, y, z) ∈ Ω̃. (14)

By definition, f̃ satisfies the periodic boundary condition and can be treated as a function defined
on the flat torus T3. Ω̃ is one of the fundamental domain of T3. The constant coefficients ap,q keep
unchanged. Then we solve the following constant coefficient elliptic PDE Eqn. (18) L[ũ] = f̃ with
the periodic boundary condition. Finally, the restriction of ũ on Ω gives the initial solution u to
L[u] = f with Neumann boundary condition.

In the following, to avoid using overly complicated symbols, we use (u, f,Ω) to represent (ũ, f̃ , Ω̃)
for simplicity.

Tessellation Suppose Ω = [−1, 1]3 is the canonical cube (a fundamental domain of a flat torus),
we tessellate it to the regular cells, and the centers of the cells form a grid M ×N ×L. The Brenier
potential u : Ω → R is discretized to a tensor ui,j,k with {i, j, k} ∈ {0, . . . ,M − 1}× {0, . . . , N −
1}×{0, . . . , L− 1}. The spacial step lengths are (hx, hy, hz) = (2/M, 2/N, 2/L). The coordinate
of each sample point (xi, yj , zk) is (xi, yj , zk) = (−1 + hx(i + 1/2),−1 + hy(j + 1/2),−1 +
hz(k + 1/2)). The periodic boundary condition is then formulated as

ui,j,k = ui+αM,j+βN,k+γL, α, β, γ ∈ Z. (15)

Finite Difference Differential Operator We use the standard central differences to compute the
differential operators. The first order derivative Dx is approximated by

Dxui,j,k =
ui+1,j,k − ui−1,j,k

2hx
,

where the index i+ 1 means i+ 1 modulus M . The operators Dy,Dz are defined in a similar way.
The second order derivative operator Dxx and Dxy are approximated by

D2
xxui,j,k =

ui+1,j,k + ui−1,j,k − 2ui,j,k

h2
x

D2
xyui,j,k =

ui+1,j+1,k + ui−1,j−1,k − ui+1,j−1,k − ui−1,j+1,k

4hxhy

The other operators Dyy , Dzz , Dyz and Dxz are defined similarly.
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Discrete Fourier Transformation The discrete Fourier transformation (DFT) of ui,j,k is given by

ûm,n,l =

M−1∑
i=0

N−1∑
j=0

L−1∑
k=0

ui,j,kω̂mnl (16)

ui,j,k =
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,lωmnl (17)

where ω̂mnl = e−ι 2πmi
M e−ι 2πnj

N e−ι 2πlk
L , ωmnl = eι

2πmi
M eι

2πnj
N eι

2πlk
L and ι =

√
−1, {m,n, l} are

the indices of the frequency coefficients. By using DFT, the differential operators are converted to
algebraic operators in the frequency domain.
Lemma 4. Suppose the discrete function is ui,j,k, with the discrete Fourier transformation Eqn. (16)
and Eqn. (17), by using the central difference scheme, the first order differential operator is given by

Dxui,j,k =
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

sin 2πm
M

hx
ωmnl

the second order differential operators are represented by

D2
xxui,j,k =

1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

2
(
cos 2πm

M − 1
)

h2
x

ωmnl

D2
xyui,j,k =

1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

− sin 2πm
M sin 2πn

N

hxhy
ωmnl

The other differential operators Dy , Dz , Dyy, Dzz , Dyz and Dxz are also represented accordingly.
The detailed proofs can be found in the supplementary material.

FFT Solver Suppose we want to solve an elliptic PDE with constant coefficients on Ω ⊂ R3,

L[u] :=

(
2∑

p=0

2∑
q=0

ap,q∂p∂q +

2∑
r=0

br∂r + c

)
u(x) = f(x), (18)

with the periodic boundary condition, where ap,q, br, c are constants, the matrix (ap,q) is positive
definite, namely the PDE is uniformly elliptic. By the discrete Fourier transformation F , we convert
the differential equation to an algebraic equation in the frequency domain,

2∑
p=0

2∑
q=0

ap,qF(∂p∂qu) +

2∑
r=0

brF(∂ru) + cF(u) = F(f)

By applying Lemma 4 and defining

λm,n,l =a0,0 2(cos
2πm
M
− 1)

h2
x

+ a1,1 2(cos
2πn
N
− 1)

h2
y

+a2,2 2(cos
2πl
L
− 1)

h2
z

− (a0,1 + a1,0)
sin 2πm

M
sin 2πn

N

hxhy

−(a1,2 + a2,1)
sin 2πn

N
sin 2πl

L

hyhz
− (a0,2 + a2,0)

sin 2πl
L

sin 2πm
M

hzhx

+ b0
sin 2πm

M

hx
+ b1

sin 2πn
N

hy
+ b2

sin 2πl
L

hz
+ c

(19)

We have the algebraic equations in frequency domain,

ûm,n,lλm,n,l = f̂m,n,l

With ûm,n,l’s, we can easily obtain ui,j,k’s by the Inverse Discrete Fourier Transform (IDFT), which
means solving the constant coefficient elliptic equation. The algorithm is described in Alg. 2 in
Appendix C.

The FFT for solving the constant coefficient elliptic PDE can be efficiently computed with GPUs.
Moreover, the algorithm Alg. 2 solves the constant coefficient elliptic PDEs with a periodic bound-
ary condition, which can be generalized to solving the same type of PDEs with Neumann boundary
condition by extending the PDE to the flat torus T3 using mirror reflection Eqn. (14).
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4 EXPERIMENTAL RESULTS

In this section, we firstly show that the our proposed FFT-OT algorithm converges linearly and runs
100× faster than the conventional convex geometry based solver Levy (2015), then demonstrate the
method in two applications: 3D adaptive sampling and Volume Magnifier. All the algorithms are
developed using generic C++ with CUDA Toolkit. All the experiments are conducted on a Windows
laptop with Intel Core i7-7700HQ CPU with 16 GB memory and NVIDIA GeForce GTX 1060
Graphics Cards. More experiments can be found in Appendix D.

4.1 RUNNING TIME AND CONVERGENCE ANALYSIS

To show the performance of the proposed method, we experiment on the density functions defined
by the Gaussian mixture models. To be specific, the domain is a cube Ω = [0, 1]3, the 3-dimensional
density function defined on Ω is set to be f(x) =

∑30
i=1 piN (µi,Σi), where N (µi,Σi) represents

Gaussian distribution with mean µi and variance Σi = diag(σ2
i0, σ

2
i1, σ

2
i2). µi ∈ R3 is uniformly

sampled from [0, 1]3, σij is uniformly sampled from [0, 0.5], pi ∈ R is uniformly sampled from
[0.2, 1] and normalized such that

∫
Ω
f(x)dx = 1. Thus the source distribution µ is a complicated

Gaussian mixture distribution restricted on Ω. Then by mirror reflection in Sec. 3.2, we obtain the
complex density function which is defined on [−1, 1]3 and satisfies the periodic boundary condition.

Figure 1: Convergence Analysis.

We directly use the FFT-OT algorithm Alg. 1 to solve the
linearized Monge-Ampère equation. With the approxi-
mation error threshold ε = 1.0× 10−6 and the resolution
256 × 256 × 256, the running time for our FFT-OT al-
gorithm with double precision on GPU is less than 175
seconds. The conventional convex geometry based al-
gorithm for 3D optimal transportation Levy (2015) can
neither handle such large data sets nor be implemented
on GPUs. It can only compute OT map with resolution
no greater than 100 × 100 × 100 on our system, which
takes about 2700 seconds. When handling problem with
128× 128× 128 resolution, our FFT-OT consumes about
20.3 seconds, which is 130× faster than the power diagram based method Levy (2015).

Fig. 1 shows the approximation error for the above Gaussian mixture density with respect to itera-
tions, namely log ∥f − ρn∥22. Our algorithm does converge linearly and the result is consistent with
the prediction Eqn. (13) in Thm. 3. Therefore, this experiment validates the theorem.

4.2 3D ADAPTIVE SAMPLING

Generating random samples matching a given density function plays an essential role in the appli-
cations like Monte-Carlo integration or stippling. Efficiently obtaining high quality samples is still
an on-going research topic Bauer et al. (2015); Perrier et al. (2018). And optimal transportation
has been successfully applied for generating high quality 2D samples de Goes et al. (2012); Nader
& Guennebaud (2018). Most of the current research focuses on generating 2D samples fitting the
given density function. Here we apply the proposed 3D FFT-OT method to generate high quality 3D
samples according to the given complex density functions. To the best of our knowledge, it is the
first work that uses OT to sample from 3D density functions.

Suppose the source probability distribution dµ(x) = f(x)dx is defined on Ω = [0, 1]3 with µ(Ω) =
1. The target distribution dν(y) = dy is the uniform distribution. We use the FFT-OT algorithm
Alg. 1 to compute the OT map T : Ω → Ω, T#µ = ν. The domain is tessellated to a 256×256×256
grid. For each xijk, i, j, k ∈ {0, 1, . . . , 255}, the image T (xijk) can be obtained. We use {T (xijk)}
as vertices to compute the Delaunay triangulation of Ω. Then representing the OT map T : (Ω, µ) →
(Ω, ν) as a piecewise linear map, the restriction of T on each tetrahedron is a linear map. Then the
inverse OT map T−1 : (Ω, ν) → (Ω, µ) is also a piecewise linear map. Namely, given a grid
point ymnl, we can find a tetrahedron containing it. Suppose the vertices of the tetrahedron are
{T (xi), T (xj), T (xk), T (xl)}, then ymnl is computed as

ymnl = λiT (xi) + λjT (xj) + λkT (xk) + λlT (xl),

7
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(a) Density (b) Rejection (c) MH (d) Slice (e) Ours-R (f) Ours-G

Figure 2: 3D density function sampling. (a) The density functions in a slice. The slices in each row come from
two different density functions. (b)-(f) The samples obtained by different sampling methods. (b) Rejection
sampling. (c) Metropolis-Hastings (MH) algorithm Bishop (2006). (d) Slice sampling Neal (2003). (e) The
sampling results by mapping the random samples from the uniform distribution back to the desired distribution
with T−1. (f) The sampling results by mapping the grid centers back with T−1. The scores of the top right
give the results of the Chi-square goodness-of-fit test. Smaller means better.

where the non-negative barycenter coordinates satisfy λi + λj + λk + λl = 1. Then the image of
the inverse OT map is given by

T−1(ymnl) = λixi + λjxj + λkxk + λlxl. (20)

We generate random samples {yk} according to the uniform distribution ν on Ω, then their images
{T−1(yk)} are the desired random samples following the distribution µ.

In our experiment, we use the same Gaussian mixture settings of the density function as Sec. 4.1.
Fig. 2 visualizes the generated samples. We randomly pick the k-th slice along the z-direction from
the discretized volume, draw the source density function on this slice, and use pixel intensity to
represent the density in Fig. 2(a). (i) We uniformly generate 100k random samples {yk} ⊂ Ω, and
obtain the desired random samples by applying the inverse OT map {T−1(yk)}. (ii) We also set
{yk} as the grid centers of Ω and obtain the corresponding samples of the desired distribution µ.
The samples around the k-th slice of both sampling strategies are plotted in Fig. 2(e) and Fig. 2(f).

By visual comparison, it is obvious that the distributions of Fig. 2(e) and Fig. 2(f) are consistent
with the density function in Fig. 2(a). The consistency of the boundary of Fig. 2(e) and (f) and Fig.
2(a) also verifies the obliqueness boundary condition of the Monge-Ampère equation. To further
show the performance of the proposed method, we compare it with the classical sampling methods,
namely rejection sampling, the Metropolis-Hastings algorithm Bishop (2006) and the slice sampling
Neal (2003), shown in Fig. 2(b), Fig. 2(c) and Fig. 2(d). To quantitatively compare the sampling
results, we use the Chi-square goodness-of-fit test, which firstly groups the data and then computes
the L2 norm of the difference between the actual number of observations in each group and the
expected number of observations. In our experiment, we set the group number to 64× 64× 64 and
use 500K samples to make the comparison. The corresponding L2 norm of each method is shown in
the top-right of the corresponding figure. We can see that the both sampling strategies of our method
give smaller scores than the classical ones.

4.3 VOLUMETRIC MAGNIFIER

In reality, physical magnifiers can only magnify planar images. In medical image processing, it is
highly desirable to magnify certain regions of the 3D MRIs or CT images. Our algorithm can address
such requests with the user prescribed region of interest (ROI) and magnifying factor. Suppose
the ROI is a symmetric region with the center (x̄, ȳ, z̄) ∈ Ω and the radius σx, σy, σz in different
directions. The density function f of the source measure µ is defined as

f(x, y, z) = 0.5 + 0.5e−((x−x̄)2/2σ2
x+(y−ȳ)2/2σ2

y+(z−z̄)2/2σ2
z)

We compute OT map T : (Ω, µ) → (Ω, ν), where ν is the uniform distribution. Similar to the
method in 3D adaptive sampling, we compute the Delaunay triangulation of the images {T (xijk)},
then the OT map T is represented as a piecewise linear map. The inverse optimal transportation map

8
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Figure 3: The volume magnifier of an aneurysm. The first column shows the original volumetric data, and
the last three columns give the magnified data from the same viewpoints with different magnifying ratios. The
yellow circle denotes the ROI/aneurysm. To obtain the results, we set σ = σx = σy = σz , and they are 0.83,
0.75 and 0.5 respectively.

Figure 4: The volume magnifier of the knee. The first row gives the the original volumetric data with different
ROIs denoted by the blue boxes from different viewpoints, and the second row shows the corresponding mag-
nified results. In the experiments we set σx = σy = σz = 0.75.

T−1 : (Ω, ν) → (Ω, µ) is also piecewise linear. For each grid point ymnl ∈ Ω, we use Eqn. (20) to
find its pre-image. Similarly, its corresponding intensity Imnl is computed by linear interpolation.
Then we obtain the new volumetric data {Imnl} with the magnified ROI and visualize the result
with Voreen Meyer-Spradow et al. (2009).

Fig. 3 demonstrates our volumetric magnifier by magnifying an aneurysm on blood vessel Hansen &
Johnson (2004). We choose the aneurysm region as the ROI. The first column gives the snapshot of
the blood vessel, and the yellow circle denotes the location of the aneurysm. The last three columns
show the magnified aneurysm with different magnifying ratio from the same viewpoints. Moreover,
we show the magnified volumetric knee from different viewpoints with different ROIs denoted by
the blue boxes in Fig. 4. Our method only magnifies the ROIs and keeps other regions unchanged.
Compared with the traditional method requiring tedious zoom in/out, our method only magnifies the
ROI region and keeps the whole subject in the field of view, which enables doctors to visualize the
overall anatomy while scrutinize detailed anatomical structure at the same time.

5 CONCLUSION

In this paper, we propose the FFT-OT method to solve the optimal transportation problem. Accord-
ing to the Brenier theory, under the quadratic distance cost, finding the solution to the OT problem is
equivalent to solving the Monge-Ampère equation, which can be linearized as a sequence of variant
coefficient elliptic PDEs. Later, the variant coefficient PDEs are approximated by constant coeffi-
cient PDEs and solved by Fast Fourier Transformation. We also prove that the proposed method
converges linearly. Experiments on volumetric data show that the FFT-OT can be used to sample
from complex 3D density functions and magnify the volumetric data in medical images.
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A RELATED WORK

There is a huge literature about optimal transportation. Here we will only briefly review the most re-
lated works. For detailed reviews, we refer readers to Santambrogio (2015); Peyré & Cuturi (2019).

The first type of algorithms is based on the Kantorovich theory. When both the input and output
domains are Dirac masses, the Kantorovich problem can be treated as a standard linear program-
ming (LP) task. In order to tackle large data sets, Cuturi (2013) adds an entropic regularizer to
the original LP problem and the regularized problem can be quickly solved by the Sinkhorn al-
gorithm. Recently, various algorithms have been proposed to further accelerate the computation
by improving the efficiency of matrix-vector multiplications, including the Greenkhorn Altschuler
et al. (2017), Screenkhorn Alaya et al. (2019) and the NYS-SINK Altschuler et al. (2019) algorithms.
Dvurechensky et al. Dvurechensky et al. (2018) also propose the adaptive primal-dual accelerated
gradient descent algorithm (APDAGD) to solve the discrete OT problem. An et al. An et al. (2022)
compute the approximate OT plan by smoothing the dual Kantorovich problem and solving it with
the FISTA method. This kind of methods have limitations: (i) they only give transport plans and
cannot produce the bijective transportation maps; and (ii) the computational complexity is too high
to apply them in the scenarios with huge number of samples.

The second type of algorithms is based on the Brenier theory Brenier (1987) and its intrinsic con-
nection with convex geometry Gu et al. (2016). The semi-discrete OT algorithm proposed in Au-
renhammer et al. (1998) finds the transport map between a continuous distribution and a discrete
measure via a variational approach by dynamically constructing the power diagrams. Its efficiency
can be further improved Levy (2015); Merigot (2011) by the multi-resolution strategy. The algo-
rithms proposed in Kitagawa et al. (2019); Su et al. (2017) also improve the efficiency by applying
the Newton’s method. When both the source and target measures are continuous, some interpolation
methods are necessary Schwartzburg et al. (2014). The major drawback of this type of algorithms
is the high computational complexity of constructing the dynamic power diagram, which prevents
them from handling high dimensional tasks. For example, for the 3D OT problems, these algorithms
usually run very slow.

The third type of algorithms is based on computational fluid dynamics Benamou et al. (2002); Pa-
padakis et al. (2014). These methods aim at finding a special temporal-spacial flow field that trans-
ports the initial source density to the target density with the minimal total kinetic energy. Then the
diffeomorphism induced by the flow gives the optimal transport map under the quadratic Euclidean
distance cost. However, this kind of algorithms are difficult to extend to high dimensional space.

The fourth type of algorithms directly solve the Monge-Ampère equation using numerical meth-
ods. Loeper and Rapetti Loeper & Rapetti (2005) propose to solve the linearized Monge-Ampère
equation defined on a flat torus in each iteration. Its corresponding variant coefficient elliptic PDE
is converted to a positive definite linear system using the finite-difference scheme, which can be
solved by the BiCG algorithm Endre (2020). Benamou et al. Benamou et al. (2014) propose to
solve the linearized Monge-Ampère on more general domains using Newton’s method. Nader and
Guennebaud Nader & Guennebaud (2018) apply the similar discretization strategy and solve the
Monge-Ampère equation by conjugate gradient method. Saumier et al. Saumier et al. (2013) pro-
pose to solve the linearized Monge-Ampère equation using FFT. In each iteration the elliptic PDE
with spacial and temporal variant coefficients is converted to a group of linear equations in the fre-
quency domain, which is solved by the GMRES algorithm. Although the GMRES algorithm can
be implemented on GPUs Aliaga et al. (2019), there is no available open source code. The work in
Saumier et al. (2013) focuses on periodic boundary condition, but this our proposed work focuses
on general second boundary condition; the work in Saumier et al. (2013) concerns planar OT maps,
ours emphasizes on volumetric OT maps, which has higher complexity. The work in Saumier et al.
(2013) can handle more general target measures, the proposed work currently only deals with the
Lebesgue target measure. Nevertheless, the current work can be directly generalized to handle gen-
eral target measures as well. Lei and Gu Lei & Gu (2021) use the fixed point method to compute
the 2-dimensional OT problem based on FFT, but it cannot be extended to solve the 3-dimensional
problems.

In this work, we combine the idea of linearizing the Monge-Ampère equation Loeper & Rapetti
(2005) and the idea of FFT Saumier et al. (2013). The key novelty of our proposed method is to
use the mean linearized Monge-Ampère operator Eqn. (12) to replace the conventional linearized

13



Published as a conference paper at ICLR 2023

Monge-Ampere operator Eqn. (10). This replacement allows the algorithm to be implemented on
GPUs and makes the algorithm hundreds of times faster. In the following, we compute the 3-
dimensional optimal transport problem by applying the proposed algorithm. Our method also runs
more than 100× faster than the convex geometry based method Levy (2015).

B APPENDIX THEORY

In the section, we give the detailed proofs for several lemmas and theorems. Some of them are well
known in the Monge-Ampère PDE field and the applied mathematics field, we include them for the
completeness.

B.1 EXISTENCE OF THE SOLUTION TO THE TIME DEPENDENT MONGE-AMPÈRE
EQNUATION

Let Tn = Rn/Zn be the n-dimensional flat torus. Below we sometimes identify it with Ω = [0, 1]n

and assume all data are periodic. The existence and regularity of solutions to the Monge-Ampère
equation are given by the following theorem,
Theorem 5. Suppose a positive density function f : Ω → R is defined on Ω = [0, 1]n, such that∫
Ω
f(x)dx = 1, and f ∈ Cα(Ω), then the solution u : Ω × [0, 1] to the time-dependent Monge-

Ampère equation
detD2

xu(x, t) = (1− t) + tf(x), ∇xu(x, t)(Ω) = Ω (21)
exists and is unique up to a constant. Furthermore, there exist constants 0 < λ < Λ, such that

λ

n∑
p=1

ξ2p ≤
n∑

p,q=1

upq(x, t)ξpξq ≤ Λ

n∑
p=1

ξ2p, ∀ξ ∈ Rn, ∀(x, t) ∈ Ω× [0, 1]. (22)

We refer readers to Cordero-Erausquin (1999) for detailed proof.

Weak Solution In practice, we compute the weak solution of the linearized Monge-Ampère
Eqn. (6) using numerical methods. We first rewrite the differential operator to a divergence form,
then define a bi-linear form.

Since (upq(x, t)) is the adjoint matrix of D2
xu(x, t), by direct computation, we obtain

n∑
p=1

∂pu
pq(x, t) = 0, ∀(x, t) ∈ Ω× [0, 1], ∀q = 1, . . . , n. (23)

so Eqn. (6) can be converted into the divergence form:
n∑

p=1

∂p

(
n∑

q=1

upq∂qv

)
=

n∑
p,q=1

upq∂p∂qv +

n∑
q=1

(
n∑

p=1

∂pu
pq

)
∂qv =

n∑
p,q=1

upq∂p∂qv,

we obtain
n∑

p=1

∂p

(
n∑

q=1

upq(x, t)∂qv(x, t)

)
= f(x)− 1. (24)

with Neumann boundary condition
∂v(x, t)

∂n
= 0, ∀(x, t) ∈ ∂Ω× [0, 1]. (25)

For any w ∈ H1(Ω), by differentiation of product, we obtain
n∑

p=1

∂p

(
n∑

q=1

upq∂qv

)
w +

n∑
p=1

(
n∑

q=1

upq∂qv

)
∂pw =

n∑
p=1

∂p

[(
n∑

q=1

upq∂qv

)
w

]
by integrating both sides, and from the fact that v satisfies the Neumann boundary condition, we
deduce∫

Ω

n∑
p=1

∂p

(
n∑

q=1

upq∂qv

)
w +

∫
Ω

n∑
p,q=1

upq∂qv∂pw =

∫
∂Ω

n∑
p=1

(
n∑

q=1

upq∂qv

)
w = 0. (26)
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For any fixed time t ∈ [0, 1], by the divergence form, we can construct a bilinear form a : H1(Ω)×
H1(Ω) and a linear form l : H1(Ω) → R,

a(v, w) =

n∑
p,q=1

∫
Ω

upq∂pv∂qw, l(w) = −
∫
Ω

(f − 1)wdx. (27)

A weak solution to Eqn. (24) is a function v ∈ H1(Ω), such that

a(v, w) = l(w), ∀w ∈ H1(Ω). (28)

By the uniform ellipticity Eqn. (22), the Lax-Milgram theorem Endre (2020) shows the existence of
the weak solution.

B.2 DISCRETE LINEARIZED MONGE-AMPÈRE EQUATION SOLVABILITY

Galerkin Method In practice, we construct a triangulation T of Ω, such that the ratio between the
diameter and inscribe-sphere radius of each simplex is bounded, and variation of the diameters of all
the simplexes is small. We call such kind of T a quasi-uniform triangulation, and denote the largest
diameter as h. For each vertex vi ∈ T , we construct a piecewise linear base function φi, such that
φi is linear on each triangle, φi(vj) is δij . We define a finite dimensional subspace Vh ⊂ H1(Ω),

Vh :=

{
vh(x) :=

∑
vi∈T

λiφi(x), λi ∈ R

}
.

Given a function u ∈ H1(Ω), we use uh ∈ Vh to denote its approximation in Vh. Furthermore,
uh =

∑
i λiφi, we also use uh to represent the coefficient vector (λ1, λ2, . . . , λk)

T depending on
the context. The weak solution Eqn. (28) to the Monge-Ampère equation (6) is equivalent to find
a v ∈ H1(Ω), such that a(v, w) = l(w) for all w ∈ H1(Ω). In discrete cases, we want to find
vh ∈ Vh, such that

a(vh, wh) = l(wh), ∀wh ∈ Vh. (29)

Eqn. (29) is equivalent to the linear system,
a(φ1, φ1) a(φ2, φ1) · · · a(φN , φ1)
a(φ1, φ2) a(φ2, φ2) · · · a(φN , φ2)

...
...

...
a(φ1, φN ) a(φ2, φN ) · · · a(φN , φN )




λ1

λ2

...
λN

 =


l(φ1)
l(φ2)

...
l(φN )

 (30)

From the weak solution to the linearized Monge-Ampère equation (10), we obtain the linear system
Eqn. (30). We denote the stiffness matrix A = (a(φi, φj)). By the uniform ellipticity Eqn. (22), and
Vh ⊂ H1(Ω)

a(v, v) ≥ λ∥∇v∥2L2(Ω)

Assume
∫
Ω
vdx = 0, by Poincaré inequality,

∥∇v∥2L2(Ω) ≥ C1(Ω)∥v∥2L(Ω), ∀v ∈ H1(Ω),

∫
Ω

vdx = 0,

where the constant C1(Ω) depends on Ω. Combine the above two inequalities, we obtain

a(v, v) ≥ c∥v∥2L2(Ω), ∀v ∈ H1(Ω),

∫
Ω

vdx = 0. (31)

Similarly, By the uniform ellipticity Eqn. 22, and Vh ⊂ H1(Ω)

a(v, v) ≤ Λ∥∇v∥2L2(Ω)

For linear finite element and quasi-uniform triangulation, we have the inverse Poincaré inequality,

∥∇vh∥2L2 ≤ C2(Ω)h
−1∥vh∥2L2 .
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where h is the diameter of each element. Combine the above two inequalities, we obtain

a(vh, vh) ≤ C∥vh∥2L2(Ω), ∀vh ∈ Vh. (32)

By combining the inequalities Eqn. (31) and Eqn. (32), we obtain

1

C3
∥vh∥2L2(Ω) ≤ a(vh, vh) ≤ C3∥vh∥2L2(Ω), ∀vh ∈ Vh,

∫
Ω

vh = 0, (33)

where C3 > 1 is a constant. Suppose vh =
∑n

i=1 ξiφi, then

∥vh∥2L2(Ω) =

∫
Ω

v2hdx =

n∑
i,j=1

ξiξj

∫
Ω

φi(x)φj(x)dx = ξTΦξ,

where ξ = (ξi) and the matrix Φ =
(∫

Ω
φiφj

)
is positive definite. Therefore,

1

C4
∥ξ∥2 ≤ ξTΦξ < C4∥ξ∥2. (34)

By a(vh, vh) = ξTAξ, combing inequalities Eqn. (33) and Eqn. (34), we obtain

1

C3C4
∥ξ∥2 ≤ ξTAξ ≤ C3C4∥ξ∥2, ∀ξ ∈ Rn,

n∑
i=1

ξi = 0, (35)

where C3C4 > 1. This proves the following lemma,
Lemma 6. By using Galerkin method using linear elements to numerically approximate the weak
solution Eqn. (28) to the linearized Monge-Ampère Eqn. (6), if the uniform ellipticity Eqn. (22) holds,
and the triangulation T is quasi-uniform, then the stiffness matrix of the linear system Eqn. (30) is
positive definite on the space

∑n
i=1 ξi = 0,

1

C3C4
∥ξ∥2 ≤ ξTAξ ≤ C3C4∥ξ∥2, ∀ξ ∈ Rn,

n∑
i=1

ξi = 0, (36)

where C3C4 > 1.

Since the uniform ellipticity Eqn. (22) holds for any time t ∈ [0, 1], then we obtain
Corollary 7. By using Galerkin method with linear elements on quasi-uniform triangulations, the
linearized Monge-Ampère equation in the continuity method Eqn. (6) always has a solution vh ∈ Vh

for any t ∈ [0, 1].

Please note that the central differential scheme can be treated as Galerkin’s method on a special
uniform triangulation. Therefore, the above estimates still hold.

B.3 CONVERGENCE RATE

Theorem 8 (main). Given a domain Ω ⊂ Rn, which is a canonical cuboid Ω = [−1, 1]n, and a
positive density function f : Ω → R with the balance condition∫

Ω

f(x)dx =

∫
Ω

1 · dx,

suppose the mirror reflection extension Eqn. (14) of f to the flat torus f̃ : Tn → R is Cα, α ∈ (0, 1),
then Monge-Ampère equation,

detD2u(x) = f(x), ∇u(Ω) = Ω

can be solved using FFT-OT Algorithm Alg. (1). In particular, one can choose the step length
parameter τ , such that there is a constant 0 < γ < 1, the approximation error satisfies

∥f − ρk+1∥2 < Cγk,

namely the algorithm has a linear convergence rate.
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Proof. Suppose at the k + 1-th iteration, ρk+1 = det(I +D2uk+1), ∥vk∥ ∼ O(τ−1),

f − ρk+1 = f − det(I +D2uk +D2vk)

= f − det(I +D2uk)−
∑
pq

upq
k ∂p∂qvk + o(τ−1)

= (f − ρk)− Lk[vk] + o(τ−1)

where Lk[vk] =
∑

pq u
pq
k ∂p∂qvk. Hence by integration by parts Eqn. (27),

∥f − ρk+1∥2L2(Ω) = ∥f − ρk∥2L2(Ω) − 2

∫
Ω

Lk[vk](f − ρk) + o(τ−1)

= ∥f − ρk∥2L2(Ω) + 2ak(f − ρk, vk) + o(τ−1)

where ak is the bilinear form in Eqn.(27). In the discrete case, all functions are in Vh, we denote

∥uh∥2Φ := ∥uh∥2L2(Ω) = uT
hΦuh, ∥uh∥2 := uT

huh, ∥uh∥2A := uT
hAuh,

by the inequality Eqn. (34) and Eqn. 35,

1

C4
∥uh∥2 ≤ ∥uh∥2Φ ≤ C4∥uh∥2,

1

C3C4
∥uh∥2 ≤ ∥uh∥2A ≤ C3C4∥uh∥2.

Therefore

∥fh − ρh,k+1∥2Φ = ∥fh − ρh,k∥2Φ − 2τ−1(f − ρh,k)
TAkĀ

−1
k (fh − ρh,k) + o(τ−1), (37)

where Ak is the stiffness matrix in Eqn.(30), and Āk is the mean stiffness matrix. ( By the uniform
ellipticity Eqn. (22), the eigen values of the adjoint matrix (upq)(x, t) is uniformly bounded away
from zero in the space H := {ξ ∈ Rn|

∑
i ξi = 0}, so the eigen value of the mean adjoint matrix

ūpq(t) is bounded away from zero in H. After discretization, the eigen values of Āk is strictly
positive in H, hence Āk is invertible in H. In the following discussion, the term o(τ−1) will be
ignored.) Remark that the following displayed equation is a scalar

(fh − ρh,k)
TAkĀ

−1
k (f − ρh,k) = tr((fh − ρh,k)

TAkĀ
−1
k (fh − ρh,k))

Since Ak and Āk are symmetric, positive definite on the space
∑

i ξi = 0, ∥Ak∥2 ≤ C3C4 and
∥Āk∥2 ≤ C3C4, so are their inverses. Since An and Ān are symmetric, positive definite on the
space orthogonal to (1, 1, . . . , 1)T , by Eqn. (35) and ∥AkĀ

−1
k ∥ ≤ ∥Ak∥∥Ā−1

k ∥, we have

(n− 1)

C2
3C

3
4

∥fh − ρh,k∥2Φ ≤ (fh − ρh,k)
TAkĀ

−1
k (fh − ρh,k).

Plug into Eqn. (37), we have

∥fh − ρh,k+1∥2Φ ≤
(
1− 1

τ

(n− 1)

C2
3C

3
4

)
∥fh − ρh,k∥2Φ ≤

(
1− 1

τ

(n− 1)

C2
3C

3
4

)k

∥fh − ρh,0∥2Φ. (38)

We can choose the step-length τ−1, such that γ ∈ (0, 1), where

γ = 1− (n− 1)

τC2
3C

3
4

.

Therefore
∥fh − ρh,k+1∥2Φ ≤ γk∥fh − ρh,0∥2Φ ≤ C4γ

k∥fh − ρh,0∥2. (39)

B.4 DIFFERENTIAL OPERATOR USING FFT

By using the Discrete Fourier Transformation, the differential operators can be converted to alge-
braic operators in the frequency domain.
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Lemma 9. Suppose the discrete function is ui,j,k, with discrete Fourier transformation

ui,j,k =
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,le
√
−1 2πmi

M e
√
−1 2πnj

N e
√
−1 2πlk

L

then the differential operator using central difference ∂i∂iui,j,k is given by

∂i∂iui,j,k =
1

h2
x

(ui+1,j,k + ui−1,j,k − 2ui,j,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

2
(
cos 2πm

M − 1
)

h2
x

eι
2πmi
M eι

2πnj
N eι

2πlk
L

where ι =
√
−1, and ∂i∂jui,j,k is given by,

∂i∂jui,j,k =
1

4hxhy
(ui+1,j+1,k + ui−1,j−1,k − ui+1,j−1,k − ui−1,j+1,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

− sin 2πm
M sin 2πn

N

hxhy
eι

2πmi
M eι

2πnj
N eι

2πlk
L

Proof. By equations
cos(A+ α) + cos(A− α)− 2 cos(A)

=(cosA cosα− sinA sinα) + (cosA cosα+ sinA sinα)− 2 cosA

=2(cosα− 1) cosA

and
sin(A+ α) + sin(A− α)− 2 sin(A)

=(sinA cosα+ cosA sinα) + (sinA cosα− cosA sinα)− 2 cosA

=2(cosα− 1) sinA

we obtain
1

h2
x

[eι
2πm(i+1)

M + eι
2πm(i−1)

M − 2eι
2πmi
M ] =

2
(
cos 2πm

M − 1
)

h2
x

eι
2πmi
M

by direct computation, we have

∂i∂iui,j,k =
1

h2
x

(ui+1,j,k + ui−1,j,k − 2ui,j,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l
eι

2πm(i+1)
M + eι

2πm(i−1)
M − 2eι

2πmi
M

h2
x

eι
2πnj
N eι

2πlk
L

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

2
(
cos 2πm

M − 1
)

h2
x

eι
2πmi
M eι

2πnj
N eι

2πlk
L

Similarly, by equations
cos(A+ α+B + β) + cos(A− α+B − β)− cos(A+ α+B − β)− cos(A− α+B + β)

= cos(A+B + α+ β) + cos(A+B − α− β)− cos(A+B + α− β)− cos(A+B − α+ β)

=2 cos(A+B) cos(α+ β)− 2 cos(A+B) cos(α− β)

=2 cos(A+B)(cos(α+ β)− cos(α− β))

=2 cos(A+B)(cosα cosβ − sinα sinβ − cosα cosβ − sinα− sinβ)

=− 4 cos(A+B) sinα sinβ

and
sin(A+ α+B + β) + sin(A− α+B − β)− sin(A+ α+B − β)− sin(A− α+B + β)

= sin(A+B + α+ β) + sin(A+B − α− β)− sin(A+B + α− β)− sin(A+B − α+ β)

=2 sin(A+B) cos(α+ β)− 2 sin(A+B) cos(α− β)

=2 sin(A+B)(cos(α+ β)− cos(α− β))

=2 sin(A+B)(cosα cosβ − sinα sinβ − cosα cosβ − sinα− sinβ)

=− 4 sin(A+B) sinα sinβ
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we deduce the following equation,

∂i∂jui,j,k =
1

4hxhy
(ui+1,j+1,k + ui−1,j−1,k − ui+1,j−1,k − ui−1,j+1,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

− sin 2πm
M sin 2πn

N

hxhy
eι

2πmi
M eι

2πnj
N eι

2πlk
L

Similarly, we have the representations of other differential operators in the frequency domain,

∂j∂jui,j,k =
1

h2
x

(ui,j+1,k + ui,j−1,k − 2ui,j,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

2
(
cos 2πn

N − 1
)

h2
y

eι
2πmi
M eι

2πnj
N eι

2πlk
L

∂k∂kui,j,k =
1

h2
z

(ui,j,k+1 + ui,j,k−1 − 2ui,j,k)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

2
(
cos 2πl

L − 1
)

h2
z

eι
2πmi
M eι

2πnj
N eι

2πlk
L

∂j∂kui,j,k =
1

4hyhz
(ui,j+1,k+1 + ui,j−1,k−1 − ui,j+1,k−1 − ui,j−1,k+1)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

− sin 2πn
N sin 2πl

L

hyhz
eι

2πmi
M eι

2πnj
N eι

2πlk
L

∂k∂iui,j,k =
1

4hzhx
(ui+1,j,k+1 + ui−1,j,k−1 − ui+1,j,k−1 − ui−1,j,k+1)

=
1

MNL

M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

ûm,n,l

− sin 2πl
L sin 2πm

M

hzhx
eι

2πmi
M eι

2πnj
N eι

2πlk
L

C ALGORITHM PIPELINES

In this section, we give the algorithm pipeline of the FFT-OT in Alg. 1 and the details to solve the
costant coefficient elliptic PDE through FFT in Alg. 2.

Algorithm 1: FFT-OT
Input: Domain Ω = [−1, 1]3, the source density function f > 0, the target density g = 1, step length τ ,

approximation error threshold ε
Output: Solution 1

2
∥x∥2 + un to the Monge-Ampère Eqn. (2) with the corresponding boundary

condition.
Initialize u0(x) = 0;
while true do
Compute the Hessian matrix D2un(x);
Compute the density function ρn(x)← det(I +D2un(x));
if ∥f − ρn∥L2(Ω) < ε then

Break;
Compute the adjoint matrix [Hpq

n (x)]← Adj(I +D2un(x));
Compute the mean adjoint matrix [H̄pq

n ] using Eqn. (11);
Solve the constant coefficient elliptic PDE (12) using the FFT Solver Alg. 2;
Update the Brenier potential un+1(x)← un + τvn;
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(a) Density (b) Rejection (c) MH (d) Slice (e) Ours-rand (f) Ours-grid
Figure 5: 3D density function sampling. (a) The density functions in different slices of the same model, namely
the 40th, 56th, 72th and 80th. (b)-(f) The samples obtained by different sampling methods. (b) Rejection
sampling. (c) Metropolis-Hastings (MH) algorithm Bishop (2006). (d) Slice sampling Neal (2003). (e) The
sampling results by mapping the random samples from the uniform distribution back to the desired distribution
with T−1. (f) The sampling results by mapping the grid centers back with T−1. The scores of the top right
give the results of the Chi-square goodness-of-fit test. Smaller means better. Zoom in for better visualization.

Algorithm 2: FFT Solver for the Constant Coefficient Elliptic PDE
Input: Domain Ω = [−1, 1]3, M,N,L, {apq}, br , c, function f with the periodic boundary condition
Output: Solution u to the elliptic PDE Eqn. (18)

Discretize the domain Ω to a M ×N × L grid;
Sample the function f to fi,j,k;
Compute FFT using Eqn. (16), {f̂m,n,l} ← FFT({fi,j,k});
for (m,n, l) ∈ [0,M − 1]× [0, N − 1]× [0, L− 1] do

Compute the factor λm,n,l using Eqn. (19);
if λm,n,l is 0 then

ûm,n,l ← 0;
else

ûm,n,l ← f̂m,n,l/λm,n,l;

Compute the Inverse FFT using Eqn. (17), {ui,j,k} ← IFFT({ûm,n,l});
Return {ui,j,k}.

D APPENDIX EXPERIMENTS

In this section, as a compensation of the experiments in the main paper, we give more results on the
3D adaptive sampling and volumetric magnifier.

D.1 MORE RESULTS ON 3D ADAPTIVE SAMPLING

In the experiments, we set the density function f(x) =
∑30

i=1 piN (µi,Σi), where N (µi,Σi) rep-
resents Gaussian distribution with mean µi and variance Σi = diag(σ2

i0, σ
2
i1, σ

2
i2). µi ∈ R3 is

uniformly sampled from [0, 1]3, σij is uniformly sampled from [0, 0.5], pi ∈ R is uniformly sam-
pled from [0.2, 1] and normalized such that

∫
Ω
f(x)dx = 1. Thus the source distribution µ is a

complicated Gaussian mixture distribution restricted on Ω = [0, 1]3. After computing the OT map
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(a) Density (b) Rejection (c) MH (d) Slice (e) Ours-rand (f) Ours-grid
Figure 6: 3D density function sampling. (a) The density functions in different slices of the same model, namely
the 56th, 64th, 80th and 88th. (b)-(f) The samples obtained by different sampling methods. (b) Rejection
sampling. (c) Metropolis-Hastings (MH) algorithm Bishop (2006). (d) Slice sampling Neal (2003). (e) The
sampling results by mapping the random samples from the uniform distribution back to the desired distribution
with T−1. (f) The sampling results by mapping the grid centers back with T−1. The scores of the top right
give the results of the Chi-square goodness-of-fit test. Smaller means better. Zoom in for better visualization.

T from µ to the uniform distribution ν defined on [−1, 1]3, we conduct two groups of experiments:
(i) we map the cell centers of the grid {yk} of [−1, 1]3 back to [−1, 1]3 through the inverse OT map
T−1(yk) defined by Eqn. (20); (ii) we randomly sample 100k samples {yk} from the Uniform dis-
tribution defined in [−1, 1]3, then map them back to [−1, 1]3 through the inverse OT map T−1(yk).
In order to keep the consistency with the mirror reflection process in the FFT-OT algorithm, we also
reflect the the generated samples back to Ω. To visualize the results of the kth slice, we plot the
samples whose z coordinates satisfy the inequality,

k/128− 1/256 ≤ z ≤ k/128 + 1/256.

In Fig. 5 and Fig. 6, we give more sampling results of different slices correspond to the two
models used in Fig. 2 in the main paper. Fig. 5 visualize the density function restricted on the
40th, 56th, 72th and 80th slices for different methods of the model displayed in the first row of 2.
Fig. 6 visualize the density function restricted on the 56th, 64th, 80th and 88th slices for different
methods of the model displayed in the second row of 2. Compared with the classical methods, the
both sampling strategies of our method give decent sampling results that fit the prescribed density
function well. Moreover, the number of generated samples for different slices of the same 3D
model fits the density functions restricted to the corresponding slices well, namely more samples are
generated in the brighter regions for different slices.

D.2 MORE RESULTS ON VOLUMETRIC MAGNIFIER

In this experiment, we magnify the volumetric MRI image of the aneurysm by different amplifica-
tion factors. In Fig. 7, we show the original aneurysm viewed from difference angles in the first
column. The last three columns give the magnified results with different amplification factors from
the viewpoints same as those in the first column. We can see that the aneurysm region is successfully
magnified by different factors and the rest parts of the volume nearly keeps the same.
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(a) Original (b) Magnifying ratio 1 (c) Magnifying ratio 2 (d) Magnifying ratio 3

Figure 7: The volume magnifier of an aneurysm. The first column shows the original volumetric data from
different viewpoints, and the last three columns give the magnified data from the same viewpoints of the first
column with different magnifying ratios. The yellow circles denote the aneurysm or the ROIs.
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