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ABSTRACT

Retrieval-augmented generation (RAG) in Knowledge Graph Question Answering
(KGQA) enriches the context of Large Language Models (LLMs) with retrieved
KG information based on the question. However, KGs contain complex graph
information and existing KG retrieval methods are challenged when questions
require multi-hop information. To improve RAG in complex KGQA, we introduce
the GNN-RAG framework, which leverages Graph Neural Networks (GNNs) for
effective graph reasoning and retrieval. GNN-RAG consists of a graph neural phase,
where the GNN retriever learns to identify useful graph information for KGQA,
e.g., when tackling complex questions. At inference time, the GNN scores answer
candidates for the given question and the shortest paths in the KG that connect ques-
tion entities and answer candidates are retrieved to represent KG reasoning paths.
The paths are verbalized and given as context to the downstream LLM for ultimate
KGQA; GNN-RAG can be seamlessly integrated with different LLMs for RAG.
Experimental results show that GNN-RAG achieves state-of-the-art performance
in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or
matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG ex-
cels on multi-hop and multi-entity questions outperforming competing approaches
by 8.9–15.5% points at answer F1. Furthermore, we show the effectiveness of
GNN-RAG in retrieval augmentation, which further boosts KGQA performance.

Text KB

NLP Model
(text retriever)

questioncontext LLM answer

KG

GNN Model
(graph retriever)

questioncontext LLM answer

Documents KG facts

RAG for QA RAG for KGQA
(GNN-RAG)

Figure 1: GNN-RAG leverages GNNs for retrieval over KGs (right), similar to how conventional
text-based RAG works (left).

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Bommasani et al., 2021; Chowdhery et al.,
2023) are the state-of-the-art models in many NLP tasks due to their remarkable ability to understand
natural language. LLM power stems from pretraining on large corpora of textual data to obtain general
human knowledge (Kaplan et al., 2020; Hoffmann et al., 2022). However, because pretraining is
costly and time-consuming (Gururangan et al., 2020), LLMs cannot easily adapt to new or in-domain
knowledge and are prone to hallucinations (Zhang et al., 2023b).

Knowledge Graphs (KGs) (Vrandečić & Krötzsch, 2014) are databases that store information in
structured form that can be easily updated. KGs represent human-crafted factual knowledge in the
form of triplets (head, relation, tail), e.g., <Jamaica → language_spoken → English>,
which collectively form a graph. In the case of KGs, the stored knowledge is updated by fact addition
or removal. As KGs capture complex interactions between the stored entities, e.g., multi-hop relations,
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they are widely used for knowledge-intensive task, such as Question Answering (QA) (Pan et al.,
2024).

Retrieval-augmented generation (RAG) is a framework that alleviates LLM hallucinations
by enriching the input context with up-to-date and accurate context (Lewis et al., 2020),
e.g., documents retrieved by a text knowledge base (KB) or facts retrieved from a KG;
see Figure 1. In the KGQA task, the goal is to answer natural questions grounding the
reasoning to the information provided by the KG. For instance, the context for RAG be-
comes “Knowledge: Jamaica → language_spoken → English \n Question:
Which language do Jamaican people speak?”, where the LLM has access to KG in-
formation for answering the question.

RAG’s performance highly depends on the KG facts that are retrieved (Wu et al., 2023) and the
challenge in KGQA is that KGs store complex graph information (they usually consist of millions
of facts). Retrieving the right information requires effective graph understanding, while retrieving
irrelevant information may confuse the LLM during KGQA reasoning (Wu et al., 2023). Existing
retrieval methods that rely on off-the-shelf NLP retrievers (Baek et al., 2023) or classical graph
algorithms (He et al., 2024) are limited as retrieval is not tailored for KGQA. On the other hand, graph
retrieval powered by LLMs, such translating the question to relation paths (Luo et al., 2024) and
traversing the KG guided by LLMs (Sun et al., 2024), is more effective but with certain challenges.
Question translation depends on the LLM generating executable graph queries, while LLM-guided
KG traversal requires a large number of LLM calls, which is limiting in production cases.
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Figure 2: Retrieval effect on
multi-hop/entity KGQA. Our GNN-
RAG outperforms existing KG-RAG
methods by 8.9–15.5% points at F1.

To address the limitations in retrieval for KGQA, we in-
troduce GNN-RAG, a graph neural retrieval framework
which is optimized for KGQA and can be seamlessly in-
tegrated with different downstream LLMs, similar to how
conventional text-based RAG works (Figure 1). GNN-RAG
relies on Graph Neural Networks (GNNs) (Mavromatis &
Karypis, 2022), which are powerful graph representation
learners, to handle the complex graph information stored
in the KG for retrieval. GNN-RAG consists of a graph
neural phase, where the GNN learns to identify useful
graph information for KGQA, e.g., when tackling complex
questions. At inference time, the GNN scores answer can-
didates for the given question and the shortest paths in the
KG that connect question entities and answer candidates
are retrieved, which are verbalized and given as context to
the LLM. Experimental results show GNN-RAG’s superiority over competing RAG-based systems
for KGQA by outperforming them by up to 15.5% points at complex KGQA performance (Figure 2).
Furthermore, we show the effectiveness of GNN-RAG in retrieval augmentation, further boosting
KGQA performance. Our contributions are summarized below:

• Framework: GNN-RAG leverages SOTA GNNs in KG retrieval to enhance RAG for KGQA.
In our GNN-RAG framework, the GNN is optimized to retrieve useful graph information
for KGQA, while the LLM leverages its natural language processing ability for ultimate
KGQA. Similar to retrieval in text-based RAG, GNN-RAG can be seamlessly integrated
with different downstream LLMs.

• Effectiveness & Faithfulness: GNN-RAG achieves state-of-the-art performance in two
widely used KGQA benchmarks (WebQSP and CWQ). GNN-RAG retrieves multi-hop
information that is necessary for faithful LLM reasoning on complex questions (8.9–15.5%
improvement; see Figure 2). Moreover, GNN-RAG with retrieval augmentation further
boosts KGQA performance.

• Efficiency: GNN-RAG improves vanilla LLMs on KGQA performance without incurring
additional LLM calls as previous state-of-the-art RAG systems for KGQA require. In
addition, GNN-RAG outperforms or matches GPT-4 performance with a 7B tuned LLM.
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2 RELATED WORK

KGQA Methods. KGQA methods fall into two categories (Lan et al., 2022): (i) semantic parsing
(SP) methods and (ii) information retrieval (IR) methods. SP methods (Sun et al., 2020; Lan &
Jiang, 2020; Ye et al., 2022) learn to transform the given question into a query of logical form,
e.g., SPARQL query. The transformed query is then executed over the KG to obtain the answers.
However, SP methods require ground-truth logical queries for training, which are time-consuming to
annotate in practice, and may lead non-executable queries due to syntactical or semantic errors (Das
et al., 2021; Yu et al., 2022). IR methods (Sun et al., 2018; 2019; Zhang et al., 2022b) focus on
the weakly-supervised KGQA setting, where only question-answer pairs are given for training. IR
methods retrieve KG information, e.g., a KG subgraph (Zhang et al., 2022a), which is used as input
during KGQA reasoning. GNN-RAG falls in the IR category.

GNNs & LMs. Combining GNNs with LMs has been the subject of a substantial body of existing
literature (Jin et al., 2023), with various applications ranging from QA (Yasunaga et al., 2021; Wang
et al., 2021; Zhang et al., 2022c; Tian et al., 2024; He et al., 2024; Zhang et al., 2024a) to training
LMs on graphs (Zhao et al., 2022; Yasunaga et al., 2022; Huang et al., 2024). Such approaches
seek to combine the natural language and graph reasoning into a single model by fusing latent
GNN information with the LM. However, due to the modality mismatch of GNNs and LMs, fusing
graph and natural language information is challenging for many knowledge-intensive tasks, even in
supervised settings (Mavromatis et al., 2024). To alleviate this challenge, GNN-RAG divides KGQA
in two stages. The GNN first retrieves useful information from the graph modality, which is then
converted into natural language for effective LLM reasoning.

GraphRAG. GraphRAG usually refers to the general approach of inserting verbalized graph in-
formation at the context of LLMs (Peng et al., 2024; Wei et al., 2024) or leveraging additional
graph information when retrieving context for RAG (Edge et al., 2024; Gutiérrez et al., 2024). For
instance, verbalizing graph information obtained by KGs has been widely applied in GraphRAG (Xie
et al., 2022; Baek et al., 2023; Jiang et al., 2023a; Jin et al., 2024; Liu et al., 2024). However,
GraphRAG performance downgrades when the graph information retrieved is noisy and irrelevant to
the question (Wu et al., 2023; He et al., 2024). To improve retrieval in KGQA, GNN-RAG employs
a graph neural framework, which tailors graph retrieval for the KG at hand. By optimizing GNNs
to identify the right graph information for answering the questions, GNN-RAG achieves superior
retrieval performance compared to existing approaches in KGQA.

3 PROBLEM STATEMENT & BACKGROUND

KGQA. We are given a KG G that contains facts represented as (v, r, v′), where v denotes the head
entity, v′ denotes the tail entity, and r is the corresponding relation between the two entities. Given
G and a natural language question q, the task of KGQA is to extract a set of entities {aq} ∈ G that
correctly answer q. Following previous works (Lan et al., 2022), question-answer pairs are given for
training, but not the ground-truth paths that lead to the answers.

Retrieval & Reasoning. As KGs usually contain millions of facts and nodes, a smaller question-
specific subgraph Gq is retrieved for a question q, e.g., via entity linking and neighbor extraction (Yih
et al., 2015). Ideally, all correct answers for the question are contained in the retrieved subgraph,
{aq} ∈ Gq. The retrieved subgraph Gq along with the question q are used as input to a reasoning
model, which outputs the correct answer(s). The prevailing reasoning models for the KGQA setting
studied are GNNs and LLMs.

GNNs. KGQA can be regarded as a node classification problem, where KG entities are classified as
answers vs. non-answers for a given question. GNNs Kipf & Welling (2016); Veličković et al. (2017);
Schlichtkrull et al. (2018) are powerful graph representation learners suited for tasks such as node
classification. GNNs update the representation h

(l)
v of node v at layer l by aggregating messages

m
(l)
vv′ from each neighbor v′. During KGQA, the message passing is also conditioned to the given

question q (He et al., 2021). For readability purposes, we present the following GNN update for
KGQA,

h(l)
v = ψ

(
h(l−1)
v ,

∑
v′∈Nv

ω(q, r) ·m(l)
vv′

)
, (1)
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Figure 3: The landscape of existing KGQA methods. GNN-based methods reason on dense subgraphs
as they can handle complex and multi-hop graph information. LLM-based methods employ the same
LLM for both retrieval and reasoning due to its ability to understand natural language.

where function ω(·) is typically a LM that measures how relevant relation r of fact (v, r, v′) is
to question q. Neighbor messages m

(l)
vv′ are aggregated by a sum-operator

∑
and function ψ(·)

combines representations from consecutive GNN layers.

LLM RAG. Retrieval-Augment Generation (RAG) is a method aiming to reduce LLM halluci-
nations (Lewis et al., 2020). Given a query q, RAG retrieves relevant information (e.g, doc-
uments from the given corpus), which is inserted as additional context c to the LLM’s input.
In text applications, RAG leverages NLP models to identify relevant information (Karpukhin
et al., 2020), such as retrieving the top-k most semantic similar documents to the question, i.e,
c = [d1, . . . , dk] = top-kdi∈DM(di, q), where D is the document corpus and M is the NLP model
scoring.

In KGs, the context c consists of graph information relevant to the question, such KG triplets,
paths, or subgraphs. The retrieved graph information is first converted into natural lan-
guage so that it can be processed by the LLM. The input given to the LLM contains the
KG factual information along with the question and a prompt. For instance, the input be-
comes “Knowledge: Jamaica → language_spoken → English \n Question:
Which language do Jamaican people speak?”, where the LLM has access to KG in-
formation for answering the question.

Landscape of KGQA methods. Figure 3 presents the landscape of existing KGQA methods with
respect to KG retrieval and reasoning. GNN-based methods, such as GraftNet (Sun et al., 2018),
NSM (He et al., 2021), and ReaRev (Mavromatis & Karypis, 2022), reason over a dense KG subgraph
leveraging the GNN’s ability to handle complex graph information. Recent LLM-based methods
leverage the LLM’s power for both retrieval and reasoning (Gu et al., 2023). For instance, ToG (Sun
et al., 2024) uses the LLM to retrieve relevant facts hop-by-hop. RoG (Luo et al., 2024) uses the
LLM to generate plausible relation paths which are then queried on the KG to retrieve the relevant
information.

LLM-based Retriever. We present an example of an LLM-based retriever (RoG; (Luo et al., 2024)).
Given training question-answer pairs, RoG extracts the shortest paths to the answers starting from
question entities for fine-tuning the retriever. Based on the extracted paths, an LLM (LLaMA2-Chat-
7B (Touvron et al., 2023)) is fine-tuned to generate reasoning paths given a question q as

LLM(prompt, q) =⇒ {r1 → · · · → rt}k, (2)

where the prompt is “Please generate a valid relation path that can be
helpful for answering the following question: {Question}”. Beam-
search decoding is used to generate k diverse sets of reasoning paths for better answer coverage,
e.g., relations {<official_language>, <language_spoken>} for the question “Which
language do Jamaican people speak?”. The generated paths are queried on the KG,
starting from the question entities, in order to retrieve the intermediate entities for RAG, e.g.,
<Jamaica → language_spoken → English>.
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Figure 4: GNN-RAG: The GNN reasons over a dense subgraph to retrieve candidate answers, along
with the corresponding reasoning paths (shortest paths from question entities to answers). The
retrieved reasoning paths –optionally combined with retrieval augmentation (RA)– are verbalized
and given to the LLM for RAG.

4 GNN-RAG

We introduce GNN-RAG, a novel graph neural retrieval method for KGQA that leverages state-of-the-
art GNNs to improve retrieval performance when questions require complex graph information. We
provide the overall framework at inference time in Figure 4. First, the KGQA GNN reasons over a
dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in
the KG that connect question entities and GNN-based answers are extracted to represent useful KG
reasoning paths. The extracted paths are verbalized and given as context for LLM reasoning via RAG.
In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph
information, while the LLM leverages its natural language processing ability for ultimate KGQA.

4.1 GNN

In order to retrieve high-quality reasoning paths via GNN-RAG, we leverage state-of-the-art GNNs
for KGQA. We prefer GNNs over other KGQA methods, e.g., embedding-based methods (Saxena
et al., 2020), due to their ability to handle complex graph interactions and answer multi-hop questions.
GNNs mark themselves as good candidates for retrieval due to their architectural benefit of exploring
diverse reasoning paths (Choi et al., 2024) that result in high answer recall.

GNN Optimization. GNN reasoning consists of L GNN updates via Equation 1 (L is hyperpa-
rameter), where the node representations in the subgraph Gq are updated to h

(L)
v . Given training

question-answer pairs, the GNN is trained via node classification, where nodes have label yv = 1 if
they belong to the answer set v ∈ {aq} and yv = 0, otherwise. The GNN parameters are optimized
so that the nodes are scored as answers vs. non-answers based on their final GNN representations
h
(L)
v , followed by the softmax(·) operation.

During inference, the nodes with the highest probability scores, e.g., above a probability threshold,
are returned as candidate answers, along with the shortest paths connecting the question entities
with the candidate answers (reasoning paths). The retrieved reasoning paths are used as input for
LLM-based RAG.

GNN Design. Different GNNs may fetch different reasoning paths for RAG. To tackle multi-hop
questions, we need an increased number of L GNN layers, which we study in Section 4.4. As a
result, we prefer deep GNNs, such as ReaRev (Mavromatis & Karypis, 2022), which allow to explore
multi-hop paths to achieve high answer recall.

In addition, as presented in Equation 3, GNN reasoning depends on the question-relation matching
operation ω(q, r). A common implementation of ω(q, r) is ϕ(q⊙r) (He et al., 2021), where function
ϕ is a neural network, and ⊙ is the element-wise multiplication. We compute K different question

5
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representations qk, k ∈ [0,K]. Both questions and KG relations are encoded via a shared pretrained
LM (Jiang et al., 2023b) as

qk = γk
(
LM(q)

)
, r = γc

(
LM(r)

)
, (3)

where γk is an attention-based pooling neural network that attends to question tokens, and γc is the
[CLS] token pooling. We provide the GNN implementation in Section 4.2.

In Appendix C, we develop a Theorem that shows that the GNN’s output depends on the question-
relation matching operation ω(q, r) and as result, we employ different LMs in Equation 3. Specifically,
we train two separate GNN models, one using pretrained LMs, such as SBERT (Reimers & Gurevych,
2019), and one using LMSR, a pretrained LM for question-relation matching over the KG (Zhang
et al., 2022a). Our experimental results suggest that, although these GNNs retrieve different KG
information, they both improve RAG-based KGQA.

4.2 GNN IMPLEMENTATION

Classification layer: After L GNN layers, we obtain node representation matrix H(L) ∈ R|V|×d.
To perform classification, we obtain the node probability matrix P = softmax(H(L)W ), where
W ∈ Rd×1 is a learnable projection layer followed by softmax normalization. Answer nodes should
have larger probability pv ∈ [0, 1] than non-answer nodes.

Node and relation embeddings: We use pretrained models, such as SBERT or other LMs, to encode
relation embeddings. We obtain node embeddings by aggregating the adjacent relation embeddings
of nodes, which has been shown to generalize better to new entities (He et al., 2021; Choi et al.,
2024). The formula is h(0)

v = ReLU(
∑

r∈Nr(v)
Wrr), where r is the relation embedding and W

is learnable. During training, we optimize the GNN parameters, but not the relation embeddings
obtained via the pretrained models.

Question Representations: As complex questions might consist of multiple subquestions, we obtain
K question representations to better capture different question parts (Qiu et al., 2020), as shown in
Equation 3. To capture multiple question’s contexts, each question representation qk ∈ Rd, k ∈ K, is
initialized by dynamically attending to different question’s tokens. ). First, we derive a representation
qj ∈ Rd for each token j of the question and a question representation, e.g., via CLS pooling,
qc ∈ Rd with pre-trained language models, such as SBERT. Equation 3 becomes

qk = γk(LM(q)) =
∑
j

ak,jqj , (4)

where j denotes is the j-th token position and ak,j ∈ [0, 1] is an attention weight. At each iteration k,
weight ak,j is dynamically adjusted by encouraging attention to new question parts via:

ak,j = softmaxj(Wa(q̃k ⊙ qj) (5)
q̃k = Wk(qk−1||qc||qk−1 ⊙ qc||qc − qk−1), (6)

where Wa ∈ Rd×d and Wk ∈ Rd×4d are learnable parameters.

4.3 RAG WITH LLM

In text RAG, retrieval is performed on a document corpus D (Section 3-LLM RAG). In KGQA, the
corpus is the node set V . GNN-RAG uses the GNN model as the scoring model to obtain the top
relevant nodes for answering the query, [v1, . . . , vk] = top-kvi∈VGNN(vi, q). In order to provide
more context to the LLM, we extract the shortest paths between question entities and the GNN top
scored nodes. After obtaining the reasoning paths by GNN-RAG, we verbalize them and give them as
input to a downstream LLM, such as ChatGPT or LLaMA. However, LLMs are sensitive to the input
prompt template and the way that the graph information is verbalized.

To alleviate this issue, we opt to follow RAG prompt tuning (Lin et al., 2023; Zhang et al., 2024b) for
LLMs that have open weights and are feasible to train. A LLaMA2-Chat-7B model is fine-tuned
based on the training question-answer pairs to generate a list of correct answers, given the prompt:
“Based on the reasoning paths, please answer the given question.\n
Reasoning Paths: {Reasoning Paths} \n Question: {Question}”.
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The reasoning paths are verbalized as “{question entity} → {relation} →
{entity} → · · · → {relation} → {answer entity} \n” (see Figure 4).
During training, the reasoning paths are the shortest paths from question entities to answer entities.
During inference, the reasoning paths are obtained by GNN-RAG.

4.4 RETRIEVAL STUDY: WHY GNNS & THEIR LIMITATIONS

Table 1: Retrieval results for WebQSP.

Retriever 1-hop questions 2-hop questions
#Input Tok. %Ans. Cov. #Input Tok. %Ans. Cov.

RoG (Luo et al., 2024) 150 87.1 435 82.1

GNN (L = 1) 112 83.6 2,582 79.8
GNN (L = 3) 105 82.4 357 88.5

GNNs leverage the graph structure to retrieve
relevant parts of the KG that contain multi-hop
information. We provide experimental evidence
on why GNNs are good retrievers for multi-hop
KGQA. We train two different GNNs, a deep
one (L = 3) and a shallow one (L = 1), and
measure their retrieval capabilities. We report
the ‘Answer Coverage’ metric, which evaluates whether the retriever is able to fetch at least one correct
answer for RAG. Note that ‘Answer Coverage’ does not measure downstream KGQA performance but
whether the retriever fetches relevant KG information. ‘#Input Tokens’ denotes the median number
of the input tokens of the retrieved KG paths. Table 1 shows GNN retrieval results for single-hop and
multi-hop questions of the WebQSP dataset compared to an LLM-based retriever (RoG; Equation 2).
The results indicate that deep GNNs (L = 3) can handle the complex graph structure and retrieve
useful multi-hop information more effectively (%Ans. Cov.) and efficiently (#Input Tok.) than the
LLM and the shallow GNN.

On the other hand, the limitation of GNNs is for simple (1-hop) questions, where accurate question-
relation matching is more important than deep graph search (see our Theorem in Appendix B that
states this GNN limitation). In such cases, the LLM retriever is better at selecting the right KG
information due to its natural language understanding abilities (we provide an example later in
Figure 6).

4.5 RETRIEVAL AUGMENTATION (RA)

Retrieval augmentation (RA) combines the retrieved KG information from different approaches
to increase diversity and answer recall. Motivated by the results in Section 4.4, we present a RA
technique (GNN-RAG+RA), which complements the GNN retriever with an LLM-based retriever
to combine their strengths on multi-hop and single-hop questions, respectively. Specifically, we
experiment with the RoG retrieval, which is described in Equation 2. During inference, we take the
union of the reasoning paths retrieved by the two retrievers.

A downside of LLM-based retrieval is that it requires multiple generations (beam-search decoding) to
retrieve diverse paths, which trades efficiency for effectiveness (we provide a performance analysis in
Appendix B). A cheaper alternative is to perform RA by combining the outputs of different GNNs,
which are equipped with different LMs in Equation 3. Our GNN-RAG+Ensemble combines two
different GNNs (GNN+SBERT & GNN+LMSR) as input for RAG.

5 EXPERIMENTAL SETUP

KGQA Datasets. We experiment with widely used KGQA benchmarks: WebQuestionsSP (We-
bQSP) (Yih et al., 2015), Complex WebQuestions 1.1 (CWQ) (Talmor & Berant, 2018), and MetaQA-
3 Zhang et al. (2018). WebQSP contains 4,737 natural language questions that are answerable using
a subset Freebase KG (Bollacker et al., 2008). The questions require up to 2-hop reasoning within
this KG. CWQ contains 34,699 total complex questions that require up to 4-hops of reasoning over
the KG. MetaQA-3 consists of 3-hop questions in the domain of WikiMovies Miller et al. (2016).
We provide the detailed dataset statistics in Appendix D.

Implementation & Evaluation. For subgraph retrieval, we use the linked entities and the pagerank
algorithm to extract dense graph information (He et al., 2021). We employ ReaRev (Mavromatis &
Karypis, 2022), which is a GNN targeting at deep KG reasoning (Section 4.4), for GNN-RAG. The
default implementation is to combine ReaRev with SBERT as the LM in Equation 3. In addition, we
combine ReaRev with LMSR, which is obtained by following the implementation of SR (Zhang et al.,
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Table 2: Performance comparison of different methods on the two KGQA benchmarks. We denote
the best and second-best method. Hit is used for LLM evaluation due to their free-form generation
and H@1/F1 metrics are used for methods that return a list of scored answers.

Type Method WebQSP CWQ
Hit H@1 F1 Hit H@1 F1

Embedding

KV-Mem Miller et al. (2016) – 46.7 38.6 – 21.1 –
EmbedKGQA Saxena et al. (2020) – 66.6 – – – –
TransferNet Shi et al. (2021) – 71.4 – – 48.6 –
Rigel Sen et al. (2021) – 73.3 – – 48.7 –

GNN

GraftNet Sun et al. (2018) – 66.7 62.4 – 36.8 32.7
PullNet Sun et al. (2019) – 68.1 – – 45.9 –
NSM He et al. (2021) – 68.7 62.8 – 47.6 42.4
SR+NSM(+E2E) (Zhang et al., 2022a) – 69.5 64.1 – 50.2 47.1
NSM+h He et al. (2021) – 74.3 67.4 – 48.8 44.0
SQALER Atzeni et al. (2021) – 76.1 – – – –
UniKGQA (Jiang et al., 2023b) – 77.2 72.2 – 51.2 49.1
ReaRev (Mavromatis & Karypis, 2022) – 76.4 70.9 – 52.9 47.8
ReaRev + LMSR – 77.5 72.8 – 53.3 49.7

LLM

Flan-T5-xl (Chung et al., 2024) 31.0 – – 14.7 – –
Alpaca-7B (Taori et al., 2023) 51.8 – – 27.4 – –
LLaMA2-Chat-7B (Touvron et al., 2023) 64.4 – – 34.6 – –
ChatGPT 66.8 – – 39.9 – –
ChatGPT+CoT 75.6 – – 48.9 – –

KG+LLM

KAPING (Baek et al., 2023) 73.9 – – – – –
KD-CoT (Wang et al., 2023) 68.6 – 52.5 55.7 – –
StructGPT (Jiang et al., 2023a) 72.6 – – – – –
KB-BINDER (Li et al., 2023) 74.4 – – – – –
ToG+LLaMA2-70B (Sun et al., 2024) 68.9 – – 57.6 – –
ToG+ChatGPT (Sun et al., 2024) 76.2 – – 58.9 – –
ToG+GPT-4 (Sun et al., 2024) 82.6 – – 69.5 – –
RoG (Luo et al., 2024) 85.7 80.0 70.8 62.6 57.8 56.2

GNN+LLM
G-Retriever (He et al., 2024) – 70.1 – – – –
GNN-RAG 85.7 80.6 71.3 66.8 61.7 59.4
GNN-RAG+RA 90.7 82.8 73.5 68.7 62.8 60.4

We use the default GNN-RAG (+RA) implementation. GNN-RAG, RoG, KD-CoT, and G-Retriever
use 7B fine-tuned LLaMA2 models. KD-CoT employs ChatGPT as well.

2022a). We employ RoG (Luo et al., 2024) for RAG-based prompt tuning (Section 4.3). For KGQA
evaluation, we adopt Hit, Hits@1 (H@1), and F1 metrics. Hit measures if any of the true answers is
found in the generated response, which is typically employed when evaluating LLMs. H@1 is the
accuracy of the top/first predicted answer. F1 takes into account the recall (number of true answers
found) and the precision (number of false answers found) of the generated answers, making it a more
faithful metric. For retrieval evaluation, we use Hit@k, which evaluates whether a correct answer is
retrieved in the top-k retrieved nodes. Further experimental setup details are provided in Appendix D.

Competing Methods. We compare with SOTA GNN and LLM methods for KGQA (Mavromatis
& Karypis, 2022; Li et al., 2023). We also include earlier embedding-based methods (Saxena et al.,
2020) as well as zero-shot/few-shot LLMs (Taori et al., 2023). We do not compare with semantic
parsing methods (Yu et al., 2022; Gu et al., 2023) as they use additional training data (SPARQL
annotations), which are difficult to obtain in practice. Furthermore, we compare GNN-RAG with
LLM-based retrieval approaches (Luo et al., 2024; Sun et al., 2024) in terms of efficiency and
effectiveness.

6 RESULTS

Main Results. Table 2 presents performance results of different KGQA methods. GNN-RAG is the
method that performs overall the best, achieving state-of-the-art results on the two KGQA benchmarks
in almost all metrics. The results show that equipping LLMs with GNN-based retrieval boosts their
reasoning ability significantly (GNN+LLM vs. KG+LLM). Specifically, GNN-RAG+RA outperforms
RoG by 5.0–6.1% points at Hit, while it outperforms or matches ToG+GPT-4 performance, using
an LLM with only 7B parameters and much fewer LLM calls – we estimate ToG+GPT-4 has an
overall cost above $800, while GNN-RAG can be deployed on a single 24GB GPU. GNN-RAG+RA
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Table 3: Performance analysis on multi-hop (hops≥ 2) and multi-entity (entities≥ 2) questions.

Method WebQSP (F1) CWQ (F1) MetaQA-3 (H@1)
multi-hop multi-entity multi-hop multi-entity multi-hop

LLM (No RAG) 48.4 61.5 33.7 32.3 29.7
GNN 58.8 70.4 57.7 54.2 98.6

RoG 63.3 65.1 59.3 58.3 84.8

GNN-RAG 69.8 82.3 68.2 64.8 98.6
GNN-RAG+RA 71.1 88.8 69.3 65.6 98.6

Absolute Improv. +7.8 +23.7 +10.0 +7.3 +13.8

Table 4: Performance comparison (F1 at KGQA) of different retrieval augmentations (Section 4.5).
‘#LLM Calls’ are controlled by the hyperparameter k (number of beams) during beam-search decoding
for LLM-based retrievers, ‘#Input Tokens’ denotes the median number of tokens.

Retriever
Retrieval Metrics KGQA Performance

#LLM Calls #Input Tokens Hit@1 (%) Hit@10 (%) F1 (%)
WebQSP / CWQ WebQSP / CWQ WebQSP / CWQ WebQSP / CWQ

(a) RoG 3 202 / 325 59.9 / 25.9 78.1 / 54.5 70.8 / 56.2

(b) GNN-RAG 0 144 / 207 76.4 / 52.9 82.6 / 64.1 71.3 / 59.4
(c) GNN-RAG+RA 3 299 / 540 76.4 / 52.9 89.9 / 71.1 73.5 / 60.4
(d) GNN-RAG+Ensemble 0 156 / 281 77.5 / 53.3 84.7 / 66.7 71.7 / 57.5

(e) GNN 0 – 76.4 / 52.9 82.6 / 64.1 70.9 / 47.8

outperforms ToG+ChatGPT by up to 14.5% points at Hit and the best performing GNN by 5.3–9.5%
points at Hits@1 and by 0.7–10.7% points at F1.

Complex KGQA. Table 3 compares complex KGQA performance results on multi-hop questions,
where answers are more than one hop away from the question entities, and multi-entity questions,
which have more than one question entities. GNN-RAG leverages GNNs to handle complex graph
information and outperforms RoG (LLM-based retrieval) by 6.5–17.2% points at F1 on WebQSP,
by 8.5–8.9% points at F1 on CWQ, and by 13.8% points at H@1 on MetaQA-3. In addition, GNN-
RAG+RA offers an additional improvement by up to 6.5% points at F1. The results show that
GNN-RAG is an effective retrieval method when the questions involve complex graph information.

Table 5: Performance comparison of different graph retrievers in RAG for KGQA.

Retriever WebQSP CWQ
Hit H@1 F1 Hit H@1 F1

Dense Subgraph 70.2 68.7 54.3 47.1 45.5 41.9
GNN-RAG: GraftNet 82.8 78.6 69.8 58.2 51.9 49.4
GNN-RAG: NSM 85.0 79.6 70.4 58.5 52.5 50.1
GNN-RAG: ReaRev 85.7 80.6 71.3 66.8 61.7 59.4

Retrieval Assessment. Table 4 assesses retrieval perfomance of different graph retrieval approaches,
along with donwstream KGQA perfomance. Based on the results, we make the following conclusions:

1. GNN-based retrieval is more efficient (#LLM Calls, #Input Tokens) and effective (F1) than
LLM-based retrieval (RoG), especially for complex questions (CWQ); see rows (a) vs. (b).

2. GNN-based retrieval achieves remarkable performance, outperforming LLM-based retrieval
by 17.6–27.4% points at H@1; e.g., see rows (a) vs. (d)/(e).

3. Retrieval augmentation works the best (Hit@k and KGQA F1) when combining GNN-
induced reasoning paths with LLM-induced reasoning paths as they fetch non-overlapping
KG information (increased #Input Tokens) that improves retrieval for KGQA; see row (c).

4. Augmenting all retrieval approaches does not necessarily cause improved performance (F1)
as the long input (#Input Tokens) may confuse the LLM; see row (d) at CWQ.

Although GNN-RAG outperforms LLM-based retrieval, we note that weak GNNs are not effective
retrievers. GNN-RAG employs ReaRev as its GNN retriever, which is a powerful GNN for deep KG
reasoning. In Table 5, we ablate on the impact of the GNN used for retrieval, i.e., how strong and
weak GNNs affect KGQA performance. We experiment with GraftNet and NSM GNNs, which are
less powerful than ReaRev at KGQA. The results are presented in Table5 and show that strong GNNs
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Q: "In which state did fictional character Gilfoyle live?"
A: Ontario

KG-RAG Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto

GNN-RAG
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto
Gilfoyle -> fictional_universe.fictional_character.place_of_birth -> Canada -
> location.country.first_level_divisions -> Ontario
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto -
> location.province.capital -> Ontario

LLM A: Toronto

LLM A: Ontario

Q: "Who was the real Erin Brockovich featured in Michael Renault Mageau movie ?"
A: Consultant

KG-RAG Erin Brockovich -> people.person.profession -> Environmentalist
Erin Brockovich -> people.person.profession -> Actor
Erin Brockovich -> people.person.profession -> Consultant

GNN-RAG

LLM A: Actor

LLM A: Consultant

Erin Brockovich -> film.film.starring -> Julia Roberts ->
film.film_character.portrayed_in_films -> Julia, the Waitress
Michael Renault Mageau -> common.topic.notable_types -> Film Actor ->
common.topic.notable_types -> Erin Brockovich
Michael Renault Mageau -> film.film_crew_gig.crewmember -> m.0pxdvpl ->
film.film_job.films_with_this_crew_job -> Consultant

Figure 5: Two case studies that illustrate how GNN-RAG improves the LLM’s faithfulness. In
both cases, GNN-RAG retrieves multi-hop information that is necessary for answering the complex
questions.

(ReaRev) are essential for state-of-the-art KGQA performance. Although retrieval with weak GNNs
(NSM and GraftNet) still outperforms dense subgraph retrieval, it performs worse than strong GNNs
by up to 9.8% at H@1.

Table 6: Retrieval effect on performance
(% Hit) using various LLMs.

Method WebQSP CWQ
ChatGPT 51.8 39.9

+ ToG 76.2 58.9
+ RoG 81.5 52.7
+ GNN-RAG (+RA) 85.3 (87.9) 64.1 (65.4)

Alpaca-7B 51.8 27.4
+ RoG 73.6 44.0
+ GNN-RAG (+RA) 76.2 (76.5) 54.5 (50.8)

LLaMA2-Chat-7B 64.4 34.6
+ RoG 84.8 56.4
+ GNN-RAG (+RA) 85.2 (88.5) 62.7 (62.9)

LLaMA2-Chat-70B 57.4 39.1
+ ToG 68.9 57.6

Flan-T5-xl 31.0 14.7
+ RoG 67.9 37.8
+ GNN-RAG (+RA) 74.5 (72.3) 51.0 (41.5)

Retrieval Effect on LLMs. Table 6 presents performance
results of various LLMs using GNN-RAG or LLM-based
retrievers (RoG and ToG). We report the Hit metric as it
is difficult to extract the number of answers from LLM’s
output. GNN-RAG (+RA) is the retrieval approach that
achieves the largest improvements for RAG. For instance,
GNN-RAG+RA improves ChatGPT by up to 6.5% points
at Hit over RoG and ToG. Moreover, GNN-RAG substan-
tially improves the KGQA performance of weaker LLMs,
such as Alpaca-7B and Flan-T5-xl. The improvement over
RoG is up to 13.2% points at Hit, while GNN-RAG outper-
forms LLaMA2-Chat-70B+ToG using a lightweight 7B
LLaMA2 model. The results demonstrate that GNN-RAG
can be integrated with other LLMs to improve their KGQA
reasoning without retraining.

Case Studies on Faithfulness. Figure 5 illustrates two
case studies from the CWQ dataset, showing how GNN-
RAG improves LLM’s faithfulness, i.e., how well the LLM follows the question’s instructions and
uses the right information from the KG. We provide additional discussions on Appendix A.

Further ablation studies are provided in Appendix E. Limitations are discussed in Appendix F.

7 CONCLUSION

We introduce GNN-RAG, a novel graph neural method for enhancing RAG in KGQA with GNNs. Our
contributions are the following. (1) Framework: GNN-RAG tailors GNNs for KG retrieval due to
their ability to handle complex graph information. Similar to retrieval in text-based RAG, GNN-RAG
can be seamlessly integrated with different downstream LLMs. (2) Effectiveness & Faithfulness:
GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP
and CWQ). Furthermore, GNN-RAG is shown to retrieve multi-hop information that is necessary for
faithful LLM reasoning on complex questions. (3) Efficiency: GNN-RAG improves vanilla LLMs on
KGQA performance without incurring additional LLM calls as existing RAG systems for KGQA
require. In addition, GNN-RAG outperforms or matches GPT-4 performance with a 7B tuned LLM.
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Appendix / supplemental material

A CASE STUDIES ON FAITHFULNESS

Figure 5 illustrates two case studies from the CWQ dataset, showing how GNN-RAG improves LLM’s
faithfulness, i.e., how well the LLM follows the question’s instructions and uses the right information
from the KG.

In both cases, GNN-RAG retrieves multi-hop information, which is necessary for answer-
ing the questions correctly. In the first case, GNN-RAG retrieves both crucial facts
<Gilfoyle → characters_that_have_lived_here → Toronto> and <Toronto
→ province.capital → Ontario> that are required to answer the question, unlike the
KG-RAG baseline (RoG) that fetches only the first fact. In the second case, the KG-RAG base-
line incorrectly retrieves information about <Erin Brockovich → person> and not <Erin
Brockovich → film_character> that the question refers to. GNN-RAG uses GNNs to ex-
plore how <Erin Brockovich> and <Michael Renault Mageau> entities are related in
the KG, resulting into retrieving facts about <Erin Brockovich → film_character>.
The retrieved facts include important information <films_with_this_crew_job →
Consultant>.

Figure 6 illustrates one case study from the WebQSP dataset, showing how RA (Section 4.5)
improves GNN-RAG. Initially, the GNN does not retrieve helpful information due to its limitation to
understand natural language, i.e., that <jurisdiction.bodies> usually “make the laws”.
GNN-RAG+RA retrieves the right information, helping the LLM answer the question correctly.

Q: "Who made the laws in Canada?"
A: Parliament of Canada LLM

A:
Parliament
of Canada

GNN-RAG

Canada -> royalty.monarchy.kingdom ->
Elizabeth II
Canada -> people.person.nationality -
> WL Mackenzie King

+ RA

... +
Canada ->
government.jurisdiction.bodies ->
Parliament of Canada

Figure 6: One case study that illustrates the benefit of retrieval augmentation (RA). RA uses LLMs to
fetch semantically relevant KG information, which may have been missed by the GNN.

B ANALYSIS

Table 7: Efficiency vs. effectiveness
trade-off of LLM-based retrieval.

Retrieval #LLM Calls Answer Hit (%)
(efficiency) (effectiveness)

RoG (Luo et al., 2024) 3 85.7
1 77.2

ToG (Sun et al., 2024) up to 21 76.2
3 66.3

GNN-RAG 0 87.2

#LLM Calls are controlled by the hyperparameter k
(number of beams) during beam-search decoding.

In this section, we analyze the reasoning and retrieval
abilities of GNN and LLMs, respectively.

Definition B.1 (Ground-truth Subgraph). Given a ques-
tion q, we define its ground-truth reasoning sub-
graph G∗

q as the union of the ground-truth reason-
ing paths that lead to the correct answers {a}. Rea-
soning paths are defined as the KG paths that reach
the answer nodes, starting from the question enti-
ties {e}, e.g., <Jamaica → language_spoken
→ English> for question “Which language do
Jamaican people speak?”. In essence, G∗

q con-
tains only the necessary entities and relations that are needed to answer q.

Definition B.2 (Effective Reasoning). We define that a model M reasons effectively if its output is
{a} =M(G∗

q , q), i.e., the model returns the correct answers given the ground-truth subgraph G∗
q .

As KGQA methods do not use the ground-truth subgraph G∗
q for reasoning, but the retrieved subgraph

Gq, we identify two cases in which the reasoning model cannot reason effectively, i.e., {a} ≠
M(Gq, q).

Case 1: Gq ⊂ G∗
q , i.e., the retrieved subgraph Gq does not contain all the necessary information for

answering q. An application of this case is when we use LLMs for retrieval. As LLMs are not
designed to handle complex graph information, the retrieved subgraph Gq may contain incomplete
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KG information. Existing LLM-based methods rely on employing an increased number of LLM
calls (beam search decoding) to fetch diverse reasoning paths that approximate G∗

q . Table 7 provides
experimental evidence that shows how LLM-based retrieval trades computational efficiency for
effectiveness. In particular, when we switch from beam-search decoding to greedy decoding for faster
LLM retrieval, the KGQA performance drops by 8.3–9.9% points at answer hit.

Case 2: G∗
q ⊂ Gq and model M cannot “filter-out” irrelevant facts during reasoning. An application

of this case is when we use GNNs for reasoning. GNNs cannot understand the textual semantics of
KGs and natural questions the same way as LLMs do, and they reason ineffectively if they cannot tell
the irrelevant KG information. We develop the following Theorem that supports this case for GNNs.
Theorem B.3 (Simplified). Under mild assumptions and due to the sum operator of GNNs in
Equation 1, a GNN can reason effectively by selecting question-relevant facts and filtering-out
question-irrelevant facts through ω(q, r).

We provide the full theorem and its proof in Appendix C. Theorem B.3 suggests that GNNs need to
perform semantic matching via function ω(q, r) apart from leveraging the graph information encoded
in the KG. Our analysis suggests that GNNs lack reasoning abilities for KGQA if they cannot perform
effective semantic matching between the KG and the question.

C FULL THEOREM & PROOF

To analyze under which conditions GNN perform well for KGQA, we use the ground-truth subgraph
G∗
q for a question q, as defined in Definition B.1. We compare the output representations of a GNN

over the ground-truth G∗
q and another Gq to measure how close the two outputs are.

We always assume G∗
q ⊆ Gq for a question q. 1-hop facts that contain v are denoted as N ∗

v .
Definition C.1. Let M be a GNN model for answering question q over a KG Gq , where the output is
computed by M(q,Gq). M consists of L reasoning steps (GNN layers). We assume M is an effective
reasoner, according to Definition B.2. Furthermore, we define the reasoning process RM,q,Gq

as the
sequence of the derived node representations at each step l, i.e.,

RM,q,Gq
=

{
{h(1)

v : v ∈ Gq}, . . . , {h(L)
v : v ∈ Gq}

}
. (7)

We also define the optimal reasoning process for answering question q with GNN M as RM,q,G∗
q
.

We assume that zero node representations do not contribute in Equation 7.
Lemma C.2. If two subgraphs G1 and G2 have the same nodes, and a GNN outputs the same node
representations for all nodes v ∈ G1 and v ∈ G2 at each step l, then the reasoning processes RM,q,G1

and RM,q,G2
are identical.

This is true as h
(l)
v with l = 1, . . . , L for both G1 and G2 and by using Definition C.1 to show

RM,q,G1
= RM,q,G2

. Note that Lemma C.2 does not make any assumptions about the actual edges
of G1 and G2.

To analyze the importance of semantic matching for GNNs, we consider the following GNN update

h(l)
v = ψ

(
h(l−1)
v ,

∑
v′∈Nv

ω(q, r) ·m(l)
vv′

)
. (8)

where ω(·, ·) : Rd × Rd −→ {0, 1} is a binary function that decides if fact (v, r, v′) is relevant to
question q or not. In practice, ω is implemented by LMs (Reimers & Gurevych, 2019). Neighbor
messages m(l)

vv′ are aggregated by a sum-operator, which is typically employed in GNNs. Function
ψ(·) combines representations among consecutive GNN layers. We assume h

(0)
v ∈ Rd and that

ψ
(
h
(0)
v , 0d

)
= 0d

Theorem C.3. If ω(q, r) = 0,∀(v, r, v′) /∈ G∗
q and ω(q, r) = 1,∀(v, r, v′) ∈ G∗

q , then RM,q,Gq
is an

optimal reasoning process of GNN M for answering q.

Proof. We show that ∑
v′∈Nv

ω(q, r) ·m(l)
vv′ =

∑
v′∈N∗

v

m
(l)
vv′ , (9)
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which gives that RM,q,Gq
= RM,q,G∗

q
via Lemma C.2. This is true if

ω(q, r) =

{
1 if (v, r, v′) ∈ N ∗

v ,
0 if (v, r, v′) /∈ N ∗

v ,
(10)

which means that GNNs need to filter-out question irrelevant facts. We consider two cases.

Case 1. Let u denote a node that is present in Gq , but not in G∗
q . Then, all facts that contain u are not

present in G∗
q . Condition ω(q, r) = 0,∀(v, r, v′) /∈ G∗

q of Theorem C.3 gives that

ω(q, r) = 0,∀(u, r, v′), and
ω(q, r) = 0,∀(v, r, u). (11)

as node u /∈ G∗
q . This gives ∑

v′∈N (u)

ω(q, r) · m
(l)
uv′ = 0, (12)

as no edges will contribute to the GNN update. With ψ
(
h
(0)
v , 0d

)
= 0d, we have

h(l)u = 0d,∀u /∈ G∗
q with l = {1, . . . , L}, (13)

which means that nodes u /∈ G∗
q do not contribute to the reasoning process RM,q,Gq

; see Defini-
tion C.1.

Case 2. Let p denote a relation between two nodes v and v′ that is present in Gq, but not in G∗
q . We

decompose the GNN update to∑
v′∈Nr(v)

ω(q, r) · m
(l)
vv′ +

∑
v′∈Np(v)

ω(q, p) · m
(l)
vv′ , (14)

where the first term includes facts Nr that are present in G∗
q and the second term includes facts Np

that are present in Gq only. Using the condition ω(q, r) = 0,∀(v, r, v′) /∈ G∗
q of Theorem C.3, we

have ∑
v′∈Np(v)

ω(q, p) · m
(l)
vv′ = 0. (15)

Using condition ω(q, r) = 1,∀(v, r, v′) ∈ G∗
q , we have∑

v′∈Nr(v)

ω(q, r) · m
(l)
vv′ =

∑
v′∈Nr(v)

m
(l)
vv′ . (16)

Combining the two above expression gives∑
v′∈Nv

ω(q, r) ·m(l)
vv′ =

∑
v′∈Nr(v)

m
(l)
vv′ =

∑
v′∈N∗

v

m
(l)
vv′ . (17)

It is straightforward to obtain RM,q,Gq
= RM,q,G∗

q
via Lemma C.2 in this case.

Putting it altogether. Combining Case 1 and Case 2,nodes u /∈ G∗
q do not contribute to RM,q,Gq ,

while for other nodes we have RM,q,Gq
= RM,q,G∗

q
. Thus, overall we have RM,q,Gq

= RM,q,G∗
q

.

D EXPERIMENTAL SETUP

KGQA Datasets. We experiment with two widely used KGQA benchmarks: WebQuestionsSP
(WebQSP) Yih et al. (2015), Complex WebQuestions 1.1 (CWQ) Talmor & Berant (2018). We also
experiment with MetaQA-3 Zhang et al. (2018) dataset. We provide the dataset statistics Table 8.
WebQSP contains 4,737 natural language questions that are answerable using a subset Freebase
KG (Bollacker et al., 2008). This KG contains 164.6 million facts and 24.9 million entities. The
questions require up to 2-hop reasoning within this KG. Specifically, the model needs to aggregate
over two KG facts for 30% of the questions, to reason over constraints for 7% of the questions, and
to use a single KG fact for the rest of the questions. CWQ is generated from WebQSP by extending
the question entities or adding constraints to answers, in order to construct more complex multi-hop
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Table 8: Datasets statistics. “avg.|Vq|” denotes average number of
entities in subgraph, and “coverage” denotes the ratio of at least one
answer in subgraph.

Datasets Train Dev Test avg. |Vq| coverage (%)

WebQSP 2,848 250 1,639 1,429.8 94.9
CWQ 27,639 3,519 3,531 1,305.8 79.3
MetaQA-3 114,196 14,274 14,274 497.9 99.0

questions (34,689 in total). There are four types of questions: composition (45%), conjunction (45%),
comparative (5%), and superlative (5%). The questions require up to 4-hops of reasoning over the KG,
which is the same KG as in WebQSP. MetaQA-3 consists of more than 100k 3-hop questions in the
domain of movies. The questions were constructed using the KG provided by the WikiMovies Miller
et al. (2016) dataset, with about 43k entities and 135k triples. For MetaQA-3, we use 1,000 (1%) of
the training questions.

Implementation. For subgraph retrieval, we use the linked entities to the KG provided by Yih et al.
(2015) for WebQSP, by Talmor & Berant (2018) for CWQ. We obtain dense subgraphs by He et al.
(2021). It runs the PageRank Nibble Andersen et al. (2006) (PRN) method starting from the linked
entities to select the top-m (m = 2, 000) entities to be included in the subgraph.

We employ ReaRev1 (Mavromatis & Karypis, 2022) for GNN reasoning (Section 4.1) and RoG2 (Luo
et al., 2024) for RAG-based prompt tuning (Section 4.3), following their official implementation
codes. In addition, we empower ReaRev with LMSR (Section 4.1), which is obtained by following the
implementation of SR3 (Zhang et al., 2022a). For both training and inference of these methods, we use
their suggested hyperparameters, without performing further hyperparameter search. Model selection
is performed based on the validation data. Experiments with GNNs were performed on a Nvidia
Geforce RTX-3090 GPU over 128GB RAM machine. Experiments with LLMs were performed on 4
A100 GPUs connected via NVLink and 512 GB of memory. The experiments are implemented with
PyTorch.

For LLM prompting during retrieval (Section 4.5), we use the following prompt:

Please generate a valid relation path that can be helpful for
answering the following question:
{Question}

For LLM prompting during reasoning (Section 4.3), we use the following prompt:

Based on the reasoning paths, please answer the given question.
Please keep the answer as simple as possible and return all the
possible answers as a list.\n
Reasoning Paths: {Reasoning Paths} \n
Question: {Question}

During GNN inference, each node in the subgraph is assigned a probability of being the correct
answer, which is normalized via softmax. To retrieve answer candidates, we sort the nodes based on
the their probability scores, and select the top nodes whose cumulative probability score is below a
threshold. We set the threshold to 0.95. To retrieve the shortest paths between the question entities
and answer candidates for RAG, we use the NetworkX library4.

Competing Approaches.

1https://github.com/cmavro/ReaRev_KGQA
2https://github.com/RManLuo/reasoning-on-graphs
3https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA
4https://networkx.org/
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We evaluate the following categories of methods: 1. Embedding, 2. GNN, 3. LLM, 4. KG+LMM,
and 5. GNN+LLM.

1. KV-Mem Miller et al. (2016) is a key-value memory network for KGQA. EmbedKGQA Sax-
ena et al. (2020) utilizes KG pre-trained embeddings Trouillon et al. (2016) to improve
multi-hop reasoning. TransferNet Shi et al. (2021) improves multi-hop reasoning over the
relation set. Rigel Sen et al. (2021) improves reasoning with questions of multiple entities.

2. GraftNet Sun et al. (2018) uses a convolution-based GNN Kipf & Welling (2016). Pull-
Net Sun et al. (2019) is built on top of GraftNet, but learns which nodes to retrieve via select-
ing shortest paths to the answers. NSM He et al. (2021) is the adaptation of GNNs for KGQA.
NSM+h He et al. (2021) improves NSM for multi-hop reasoning. SQALER Atzeni et al.
(2021) learns which relations (facts) to retrieve during KGQA for GNN reasoning. Similarly,
SR+NSM (Zhang et al., 2022a) proposes a relation-path retrieval. UniKGQA (Jiang et al.,
2023b) unifies the graph retrieval and reasoning process with a single LM. ReaRev (Mavro-
matis & Karypis, 2022) explores diverse reasoning paths in a multi-stage manner.

3. We experiment with instruction-tuned LLMs. Flan-T5 (Chung et al., 2024) is based on T5,
while Aplaca (Taori et al., 2023) and LLaMA2-Chat (Touvron et al., 2023) are based on
LLaMA. ChatGPT5 is a powerful closed-source LLM that excels in many complex tasks.
ChatGPT+CoT uses the chain-of-thought (Wei et al., 2022) prompt to improve the ChatGPT.
We access ChatGPT ‘gpt-3.5-turbo’ through its API (as of May 2024).

4. KD-CoT (Wang et al., 2023) enhances CoT prompting for LLMs with relevant knowledge
from KGs. StructGPT (Jiang et al., 2023a) retrieves KG facts for RAG. KB-BINDER (Li
et al., 2023) enhances LLM reasoning by generating logical forms of the questions. ToG (Sun
et al., 2024) uses a powerful LLM to select relevant facts hop-by-hop. RoG (Luo et al.,
2024) uses the LLM to generate relation paths for better planning.

5. G-Retriever (He et al., 2024) augments LLMs with GNN-based prompt tuning.

Evaluation metric discussion. We clarify the evaluation metrics in Table 2. H@1 evaluation
assumes that we are given a list of scored candidate answers (sorted based on the model’s scores).
However, since LLMs generate free-form answers, their responses can include multiple answers,
which complicates the direct application of Hit@1. For example, consider the following hypothesized
case:

Question: What do Jamaican people speak?
Answer: English
LLM Response: Jamaican people speak French and English.

In this case, the Hit score would be 1.0, as "English" is included in the response, although the LLM
generates the incorrect response “French”. This is the score that prior methods report as Hit@1 for
LLMs. However, if we were to treat the LLM response as a list [French, English], the Hit@1 score
would be 0.0, because the answer at rank 1 (French) is not the correct one.

For this reason, we do not combine H@1 and Hit metrics for LLMs, as doing so could lead to an
artificially inflated performance, and report LLM performance separately based on the Hit metric.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 QUESTION ANALYSIS

Following the case studies presented in Figure 5 and Figure 6, we provide numerical results on how
GNN-RAG improves multi-hop question answering and how retrieval augmentation (RA) enhances
simple hop questions. Table 9 summarizes these results. GNN-RAG improves performance on multi-
hop questions (≥2 hops) by 6.5–11.8% F1 points over RoG. Furthermore, RA improves performance
on single-hop questions by 0.8–2.6% F1 points over GNN-RAG.

Table 10 presents results with respect to the number of correct answers. As shown, RA enhances
GNN-RAG in almost all cases as it can fetch correct answers that might have been missed by the
GNN.

5https://openai.com/blog/chatgpt
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Table 9: Performance analysis (F1) based on the number of maximum hops that connect question
entities to answer entities.

Method WebQSP CWQ
1 hop 2 hop ≥3 hop 1 hop 2 hop ≥3 hop

RoG 73.4 63.3 – 50.4 60.7 40.0

GNN-RAG 72.0 69.8 – 47.4 69.4 51.8
GNN-RAG +RA 74.6 71.1 – 48.2 70.9 47.7

Table 10: Performance analysis (F1) based on the number of answers (#Ans).

Method WebQSP CWQ
#Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10 #Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10

RoG 67.89 79.39 75.04 58.33 56.90 53.73 58.36 43.62

GNN-RAG 71.24 76.30 74.06 56.28 60.40 55.52 61.49 50.08
GNN-RAG +RA 71.16 82.31 77.78 57.71 62.09 56.47 62.87 50.33

E.2 GNN EFFECT

Table 11: Performance comparison of different GNN models at KGQA (extended).

Retriever KGQA Model WebQSP CWQ
Hit∗ H@1 F1 Hit∗ H@1 F1

Dense Subgraph GraftNet – 66.7 62.4 – 45.3 35.8
Dense Subgraph NSM – 68.7 62.8 – 47.9 42.0
Dense Subgraph ReaRev – 76.4 70.9 – 52.7 49.1
Dense Subgraph LLaMA2-Chat-7B (tuned) – 68.7 54.3 – 45.5 41.9

RoG

LLaMA2-Chat-7B (tuned)

85.7 80.0 70.8 62.6 57.8 56.2
GNN-RAG: GraftNet 82.8 78.6 69.8 58.2 51.9 49.4
GNN-RAG: NSM 85.0 79.6 70.4 58.5 52.5 50.1
GNN-RAG: ReaRev 85.7 80.6 71.3 66.8 61.7 59.4

GNN-RAG employs ReaRev (Mavromatis & Karypis, 2022) as its GNN retriever, which is a powerful
GNN for deep KG reasoning. In this section, we ablate on the impact of the GNN used for retrieval,
i.e., how strong and weak GNNs affect KGQA performance. We experiment with GraftNet (Sun
et al., 2018) and NSM (He et al., 2021) GNNs, which are less powerful than ReaRev at KGQA. The
results are presented in Table 11. As shown, strong GNNs (ReaRev) are required in order to improve
RAG at KGQA. Retrieval with weak GNNs (NSM and GraftNet) underperfoms retrieval with ReaRev
by up to 9.8% and retrieval with RoG by up to 5.9% points at H@1.

E.3 RETRIEVAL AUGMENTATION

Table 12 has the extended results of Table 4, showing performance results on all three metrics (Hit /
H@1 / F1) with respect to the retrieval method used. Overall, GNN-RAG improves the vanilla LLM
by 149–182%, when employing the same number of LLM calls for retrieval.

E.4 PROMPT ABLATION

When using RAG, LLM performance depends on the prompts used. To ablate on the prompt impact,
we experiment with the following prompts:

• Prompt A:

Based on the reasoning paths, please answer the
given question. Please keep the answer as
simple as possible and return all the possible
answers as a list.\n
Reasoning Paths: {Reasoning Paths} \n
Question: {Question}
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Table 12: Performance comparison of retrieval augmentation approaches (extended).

Retriever KGQA Model #LLM Calls WebQSP CWQ Avg.
(total) Hit∗ H@1 F1 Hit∗ H@1 F1

Dense Subgraph (i) ReaRev + SBERT 0 – 76.4 70.9 – 52.9 47.8 –
(ii) ReaRev + LMSR 0 – 77.5 72.8 – 52.7 49.1 –

None

LLaMA2-Chat-7B (tuned)

1 65.6 60.4 49.7 40.1 36.2 33.8 47.63
(iii) LLM-based 4 85.7 80.0 70.8 62.6 57.8 56.2 68.85
GNN-RAG: (i) 1 85.7 80.6 71.3 66.8 61.7 59.4 70.92
GNN-RAG: (ii) 1 85.0 80.3 71.5 66.2 61.3 58.9 70.50

GNN-RAG: (i) + (ii)

LLaMA2-Chat-7B (tuned)

1 87.2 81.0 71.7 65.5 59.5 57.5 70.40
GNN-RAG: (i) + (iii) 4 90.7 82.8 73.5 68.7 62.8 60.4 73.15
GNN-RAG: (ii) + (iii) 4 89.9 82.4 73.4 67.9 63.0 61.0 72.93
GNN-RAG: (i) + (ii) + (iii) 4 90.1 81.7 72.3 67.3 61.5 59.1 72.00

None
LLaMA2-Chat-7B

1 64.4 – – 34.6 – – –
GNN-RAG: (i) + (ii) 1 86.8 – – 62.9 – – –
GNN-RAG: (i) + (iii) 4 88.5 – – 62.1 – – –

• Prompt B:

Based on the provided knowledge, please answer
the given question. Please keep the answer as
simple as possible and return all the possible
answers as a list.\n
Knowledge: {Reasoning Paths} \n
Question: {Question}

• Prompt C:

Your tasks is to use the following facts
and answer the question.
Make sure that you use the information
from the facts provided. Please keep the answer
as simple as possible and return all the
possible answers as a list.\n
The facts are the following: {Reasoning Paths}
\n
Question: {Question}

Table 13: Performance comparison (%Hit) based on different input prompts.

WebQSP CWQ

Prompt A RoG 84.8 56.4
GNN-RAG 86.8 62.9

Prompt B RoG 84.3 55.2
GNN-RAG 85.2 61.7

Prompt C RoG 81.6 51.8
GNN-RAG 84.4 59.4

We provide the results based on different input prompts in Table 13. As the results indicate, GNN-RAG
outperforms RoG in all cases, being robust at the prompt selection.

E.5 EFFECT OF TRAINING DATA

Training Cost. GNN-RAG requires only fine-tuning the GNN for retrieval. The downstream LLM can
be fine-tuned (our default implementation) or not (as we experimented with in Table 6). Fine-tuning
the downstream LLM is memory-intensive. For example, if we use 2 A100-80G GPUs, 1 epoch of

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

30k training data requires more than 12 hours. GNN training is much more efficient: On a GeForce
RTX 3090, 1 epoch of 30k training data needs less than 15 minutes and less than 8GB of GPU
memory.

Table 14: Impact of LLM tuning.

Retrieval LLM WebQSP CWQ

RoG LLaMa2-Chat-7B (untuned) 84.8 56.4
RoG LLaMa2-Chat-7B (tuned) 85.7 62.6
GNN-RAG LLaMa2-Chat-7B (untuned) 85.2 62.7
GNN-RAG LLaMa2-Chat-7B (tuned) 85.7 66.7

Data Size Impact. Fine-tuning the downstream LLM generally improves performance. In Table 14,
we compare LLaMa2-Chat-7B and LLaMa2-Chat-7B fine-tuned. As shown (Hit metric), GNN-RAG
demonstrates a more stable performance when switching between the two LLMs. Specifically,
GNN-RAG experiences a relatively small drop of 0.5-5.0 points, whereas RoG suffers from a larger
performance degradation of 0.9-6.2 points under the same conditions. CWQ has more data (27.6k)
than WebQSP (2.8k) and thus, performance improvement when using the tuned LLM is larger.

Table 15: Number of training data impact on CWQ.

Retrieval # Training Data CWQ Hit (%)

RoG 30k 62.6
GNN-RAG 27.6k 66.7
GNN-RAG 10k 63.7

In Table 15, we provide results when we use 10k training data of CWQ when training the GNN. As
shown, although GNN-RAG uses approximately 3x less data, it still outperforms RoG (which uses
30k data from both CWQ and WebQSP for training).

Table 16: Performance results based on different training data.

Method WebQSP CWQ
Training Data (Retriever) Training Data (KGQA Model) Hit Training Data (Retriever) Training Data (KGQA Model) Hit

UniKGQA WebQSP WebQSP 77.2 CWQ CWQ 51.2

RoG
WebQSP WebQSP 81.5 CWQ CWQ 59.1

WebQSP+CWQ None 84.8 WebQSP+CWQ None 56.4
WebQSP+CWQ WebQSP+CWQ 85.7 WebQSP+CWQ WebQSP+CWQ 62.6

GNN-RAG
WebQSP None 86.8 CWQ None 62.9
WebQSP WebQSP+CWQ 87.2 CWQ WebQSP+CWQ 66.8

Table 16 compares performance of different methods based on the training data used for training the
retriever and the KGQA model. For example, GNN-RAG trains a GNN model for retrieval and uses a
LLM for KGQA, which can be fine-tuned or not. As the results show, GNN-RAG outperforms the
competing methods (RoG and UniKGQA) by either fine-tuning the KGQA model or not, while it
uses the same or less data for training its retriever.

E.6 GRAPH EFFECT

GNNs operate on dense subgraphs, which might include noisy information. A question that arises
is whether removing irrelevant information from the subgraph would improve GNN retrieval. We
experiment with SR (Zhang et al., 2022a), which learns to prune question-irrelevant facts from the
KG. As shown in Table 17, although SR can improve the GNN reasoning results – see row (a) vs. (b)
at CWQ –, the retrieval effectiveness deteriorates; rows (c) and (d). After examination, we found that
the sparse subgraph may contain disconnected KG parts. In this case, GNN-RAG’s extraction of the
shortest paths fails, and GNN-RAG returns empty KG information.
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Table 17: Performance comparison on different subgraphs.

Retriever KGQA Model WebQSP CWQ
Hit∗ H@1 F1 Hit∗ H@1 F1

a) Dense Subgraph (A) ReaRev + LMSR – 77.5 72.8 – 52.7 49.1
b) Sparse Subgraph (Zhang et al., 2022a) (B) ReaRev + LMSR – 74.2 69.8 – 53.3 49.7

c) GNN-RAG: (A) LLaMA2-Chat-7B (tuned) 85.0 80.3 71.5 66.2 61.3 58.9
d) GNN-RAG: (B) 83.4 78.9 69.8 60.6 55.6 53.3

E.7 FURTHER ABLATIONS

Regarding GNN hyperparameters, we provide sensitivity analysis on the number of GNN layers L in
Table 1, which shows that deep GNNs are better retrievers for mutli-hop KGQA.

As an additional ablation study, we set the threshold θ, which controls the number of candidate
answer nodes for entity selection, to 0.99 (retrieves more candidate answers), to 0.95 (default), and to
0.75 (retrieves less candidate answers). GNN-RAG performance is shown in Table 18. Increasing
the threshold (0.99) to retrieve more context, can further increase performance to 85.9%. Lower
threshold (0.75) might miss some answers and the performance drops to 83.5%.

Table 18: Threshold θ impact for answer node selection (WebQSP Hit %).

θ = 0.99 θ = 0.95 θ = 0.75

GNN-RAG 85.9 85.7 83.8

F LIMITATIONS

GNN-RAG assumes that the KG subgraph, on which the GNN reasons, contains answer nodes.
However, this may not be true for all questions or when errors in entity linking happen. In addition,
GNN-RAG employs simple prompting with the shortest paths from question entities to candidate
answers as context. As an extension, GNN-RAG can be combined with prompt optimization (Wen
et al., 2023; Zhang et al., 2023a) so that the LLM understands the graph better. Moreover, similar
to conventional retrieval which focuses on identifying relevant information (text documents or KG
nodes in Figure 1) regardless the downstream LLM, the scope of our GNN-RAG contributions is
to improve the retrieval results over the KG without specialized GNN-LLM interactions. However,
the GNN and the LLM could be coupled via iterative retrieval (Asai et al., 2023) to further improve
KGQA.

G BROADER IMPACTS

GNN-RAG is a method that grounds the LLM generations for QA using ground-truth facts from the
KG. As a result, GNN-RAG can have positive societal impacts by using KG information to alleviate
LLM hallucinations in tasks such as QA.

24


	Introduction
	Related Work
	Problem Statement & Background
	Gnn-Rag
	GNN
	GNN Implementation
	RAG with LLM
	Retrieval Study: Why GNNs & Their Limitations
	Retrieval Augmentation (RA)

	Experimental Setup
	Results
	Conclusion
	Case Studies on Faithfulness
	Analysis
	Full Theorem & Proof
	Experimental Setup
	Additional Experimental Results
	Question Analysis
	GNN Effect
	Retrieval Augmentation
	Prompt Ablation
	Effect of Training Data
	Graph Effect
	Further Ablations

	Limitations
	Broader Impacts

