
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GNN-RAG: GRAPH NEURAL RETRIEVAL FOR LARGE
LANGUAGE MODEL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) in Knowledge Graph Question Answering
(KGQA) enriches the context of Large Language Models (LLMs) with retrieved
KG information based on the question. However, KGs contain complex graph
information and existing KG retrieval methods are challenged when questions
require multi-hop information. To improve RAG in complex KGQA, we introduce
the GNN-RAG framework, which leverages Graph Neural Networks (GNNs) for
effective graph reasoning and retrieval. GNN-RAG consists of a graph neural phase,
where the GNN retriever learns to identify useful graph information for KGQA,
e.g., when tackling complex questions. At inference time, the GNN scores answer
candidates for the given question and the shortest paths in the KG that connect ques-
tion entities and answer candidates are retrieved to represent KG reasoning paths.
The paths are verbalized and given as context to the downstream LLM for ultimate
KGQA; GNN-RAG can be seamlessly integrated with different LLMs for RAG.
Experimental results show that GNN-RAG achieves state-of-the-art performance
in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or
matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG ex-
cels on multi-hop and multi-entity questions outperforming competing approaches
by 8.9–15.5% points at answer F1. Furthermore, we show the effectiveness of
GNN-RAG in retrieval augmentation, which further boosts KGQA performance.

Text KB

NLP Model
(text retriever)

questioncontext LLM answer

KG

GNN Model
(graph retriever)

questioncontext LLM answer

Documents KG facts

RAG for QA RAG for KGQA
(GNN-RAG)

Figure 1: GNN-RAG leverages GNNs for retrieval over KGs (right), similar to how conventional
text-based RAG works (left).

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Bommasani et al., 2021; Chowdhery et al.,
2023) are the state-of-the-art models in many NLP tasks due to their remarkable ability to understand
natural language. LLM power stems from pretraining on large corpora of textual data to obtain general
human knowledge (Kaplan et al., 2020; Hoffmann et al., 2022). However, because pretraining is
costly and time-consuming (Gururangan et al., 2020), LLMs cannot easily adapt to new or in-domain
knowledge and are prone to hallucinations (Zhang et al., 2023b).

Knowledge Graphs (KGs) (Vrandečić & Krötzsch, 2014) are databases that store information in
structured form that can be easily updated. KGs represent human-crafted factual knowledge in the
form of triplets (head, relation, tail), e.g., <Jamaica → language_spoken → English>,
which collectively form a graph. In the case of KGs, the stored knowledge is updated by fact addition
or removal. As KGs capture complex interactions between the stored entities, e.g., multi-hop relations,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

they are widely used for knowledge-intensive task, such as Question Answering (QA) (Pan et al.,
2024).

Retrieval-augmented generation (RAG) is a framework that alleviates LLM hallucinations
by enriching the input context with up-to-date and accurate context (Lewis et al., 2020),
e.g., documents retrieved by a text knowledge base (KB) or facts retrieved from a KG;
see Figure 1. In the KGQA task, the goal is to answer natural questions grounding the
reasoning to the information provided by the KG. For instance, the context for RAG be-
comes “Knowledge: Jamaica → language_spoken → English \n Question:
Which language do Jamaican people speak?”, where the LLM has access to KG in-
formation for answering the question.

RAG’s performance highly depends on the KG facts that are retrieved (Wu et al., 2023) and the
challenge in KGQA is that KGs store complex graph information (they usually consist of millions
of facts). Retrieving the right information requires effective graph understanding, while retrieving
irrelevant information may confuse the LLM during KGQA reasoning (Wu et al., 2023). Existing
retrieval methods that rely on off-the-shelf NLP retrievers (Baek et al., 2023) or classical graph
algorithms (He et al., 2024) are limited as retrieval is not tailored for KGQA. On the other hand, graph
retrieval powered by LLMs, such translating the question to relation paths (Luo et al., 2024) and
traversing the KG guided by LLMs (Sun et al., 2024), is more effective but with certain challenges.
Question translation depends on the LLM generating executable graph queries, while LLM-guided
KG traversal requires a large number of LLM calls, which is limiting in production cases.

Multi-Hop Multi-Entity

40

60

80

41.1
46.9

61.3 61.7
70.2

77.2
A

ns
w

er
F1

(%
)

No RAG +KG-RAG +GNN-RAG

Figure 2: Retrieval effect on
multi-hop/entity KGQA. Our GNN-
RAG outperforms existing KG-RAG
methods by 8.9–15.5% points at F1.

To address the limitations in retrieval for KGQA, we in-
troduce GNN-RAG, a graph neural retrieval framework
which is optimized for KGQA and can be seamlessly in-
tegrated with different downstream LLMs, similar to how
conventional text-based RAG works (Figure 1). GNN-RAG
relies on Graph Neural Networks (GNNs) (Mavromatis &
Karypis, 2022), which are powerful graph representation
learners, to handle the complex graph information stored
in the KG for retrieval. GNN-RAG consists of a graph
neural phase, where the GNN learns to identify useful
graph information for KGQA, e.g., when tackling complex
questions. At inference time, the GNN scores answer can-
didates for the given question and the shortest paths in the
KG that connect question entities and answer candidates
are retrieved, which are verbalized and given as context to
the LLM. Experimental results show GNN-RAG’s superiority over competing RAG-based systems
for KGQA by outperforming them by up to 15.5% points at complex KGQA performance (Figure 2).
Furthermore, we show the effectiveness of GNN-RAG in retrieval augmentation, further boosting
KGQA performance. Our contributions are summarized below:

• Framework: GNN-RAG leverages SOTA GNNs in KG retrieval to enhance RAG for KGQA.
In our GNN-RAG framework, the GNN is optimized to retrieve useful graph information
for KGQA, while the LLM leverages its natural language processing ability for ultimate
KGQA. Similar to retrieval in text-based RAG, GNN-RAG can be seamlessly integrated
with different downstream LLMs.

• Effectiveness & Faithfulness: GNN-RAG achieves state-of-the-art performance in two
widely used KGQA benchmarks (WebQSP and CWQ). GNN-RAG retrieves multi-hop
information that is necessary for faithful LLM reasoning on complex questions (8.9–15.5%
improvement; see Figure 2). Moreover, GNN-RAG with retrieval augmentation further
boosts KGQA performance.

• Efficiency: GNN-RAG improves vanilla LLMs on KGQA performance without incurring
additional LLM calls as previous state-of-the-art RAG systems for KGQA require. In
addition, GNN-RAG outperforms or matches GPT-4 performance with a 7B tuned LLM.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

KGQA Methods. KGQA methods fall into two categories (Lan et al., 2022): (i) semantic parsing
(SP) methods and (ii) information retrieval (IR) methods. SP methods (Sun et al., 2020; Lan &
Jiang, 2020; Ye et al., 2022) learn to transform the given question into a query of logical form,
e.g., SPARQL query. The transformed query is then executed over the KG to obtain the answers.
However, SP methods require ground-truth logical queries for training, which are time-consuming to
annotate in practice, and may lead non-executable queries due to syntactical or semantic errors (Das
et al., 2021; Yu et al., 2022). IR methods (Sun et al., 2018; 2019; Zhang et al., 2022b) focus on
the weakly-supervised KGQA setting, where only question-answer pairs are given for training. IR
methods retrieve KG information, e.g., a KG subgraph (Zhang et al., 2022a), which is used as input
during KGQA reasoning. GNN-RAG falls in the IR category.

GNNs & LMs. Combining GNNs with LMs has been the subject of a substantial body of existing
literature (Jin et al., 2023), with various applications ranging from QA (Yasunaga et al., 2021; Wang
et al., 2021; Zhang et al., 2022c; Tian et al., 2024; He et al., 2024; Zhang et al., 2024a) to training
LMs on graphs (Zhao et al., 2022; Yasunaga et al., 2022; Huang et al., 2024). Such approaches
seek to combine the natural language and graph reasoning into a single model by fusing latent
GNN information with the LM. However, due to the modality mismatch of GNNs and LMs, fusing
graph and natural language information is challenging for many knowledge-intensive tasks, even in
supervised settings (Mavromatis et al., 2024). To alleviate this challenge, GNN-RAG divides KGQA
in two stages. The GNN first retrieves useful information from the graph modality, which is then
converted into natural language for effective LLM reasoning.

GraphRAG. GraphRAG usually refers to the general approach of inserting verbalized graph in-
formation at the context of LLMs (Peng et al., 2024; Wei et al., 2024) or leveraging additional
graph information when retrieving context for RAG (Edge et al., 2024; Gutiérrez et al., 2024). For
instance, verbalizing graph information obtained by KGs has been widely applied in GraphRAG (Xie
et al., 2022; Baek et al., 2023; Jiang et al., 2023a; Jin et al., 2024; Liu et al., 2024). However,
GraphRAG performance downgrades when the graph information retrieved is noisy and irrelevant to
the question (Wu et al., 2023; He et al., 2024). To improve retrieval in KGQA, GNN-RAG employs
a graph neural framework, which tailors graph retrieval for the KG at hand. By optimizing GNNs
to identify the right graph information for answering the questions, GNN-RAG achieves superior
retrieval performance compared to existing approaches in KGQA.

3 PROBLEM STATEMENT & BACKGROUND

KGQA. We are given a KG G that contains facts represented as (v, r, v′), where v denotes the head
entity, v′ denotes the tail entity, and r is the corresponding relation between the two entities. Given
G and a natural language question q, the task of KGQA is to extract a set of entities {aq} ∈ G that
correctly answer q. Following previous works (Lan et al., 2022), question-answer pairs are given for
training, but not the ground-truth paths that lead to the answers.

Retrieval & Reasoning. As KGs usually contain millions of facts and nodes, a smaller question-
specific subgraph Gq is retrieved for a question q, e.g., via entity linking and neighbor extraction (Yih
et al., 2015). Ideally, all correct answers for the question are contained in the retrieved subgraph,
{aq} ∈ Gq. The retrieved subgraph Gq along with the question q are used as input to a reasoning
model, which outputs the correct answer(s). The prevailing reasoning models for the KGQA setting
studied are GNNs and LLMs.

GNNs. KGQA can be regarded as a node classification problem, where KG entities are classified as
answers vs. non-answers for a given question. GNNs Kipf & Welling (2016); Veličković et al. (2017);
Schlichtkrull et al. (2018) are powerful graph representation learners suited for tasks such as node
classification. GNNs update the representation h

(l)
v of node v at layer l by aggregating messages

m
(l)
vv′ from each neighbor v′. During KGQA, the message passing is also conditioned to the given

question q (He et al., 2021). For readability purposes, we present the following GNN update for
KGQA,

h(l)
v = ψ

(
h(l−1)
v ,

∑
v′∈Nv

ω(q, r) ·m(l)
vv′

)
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

GNN

Dense
retrieval

Question Question
Prompt: "Which of the
following relations are

relevant? "

LLM LLM

Prompt: "Which of the
following relations are

relevant? "

Question

LLM

Question LLM

Prompt: "Generate
helpful relation paths. "

Prompt: "Given the retrieved knowledge,
can you answer the question? "

Question

LLMAnswer Answer Answer

Prompt: "Given the retrieved knowledge,
can you answer the question? "

R
et
rie
va
l

R
ea
so
ni
ng

Textualize + RAG Textualize + RAG

GNN-based KGQA LLM-based KGQA (ToG) LLM-based KGQA (RoG)

Figure 3: The landscape of existing KGQA methods. GNN-based methods reason on dense subgraphs
as they can handle complex and multi-hop graph information. LLM-based methods employ the same
LLM for both retrieval and reasoning due to its ability to understand natural language.

where function ω(·) is typically a LM that measures how relevant relation r of fact (v, r, v′) is
to question q. Neighbor messages m

(l)
vv′ are aggregated by a sum-operator

∑
and function ψ(·)

combines representations from consecutive GNN layers.

LLM RAG. Retrieval-Augment Generation (RAG) is a method aiming to reduce LLM halluci-
nations (Lewis et al., 2020). Given a query q, RAG retrieves relevant information (e.g, doc-
uments from the given corpus), which is inserted as additional context c to the LLM’s input.
In text applications, RAG leverages NLP models to identify relevant information (Karpukhin
et al., 2020), such as retrieving the top-k most semantic similar documents to the question, i.e,
c = [d1, . . . , dk] = top-kdi∈DM(di, q), where D is the document corpus and M is the NLP model
scoring.

In KGs, the context c consists of graph information relevant to the question, such KG triplets,
paths, or subgraphs. The retrieved graph information is first converted into natural lan-
guage so that it can be processed by the LLM. The input given to the LLM contains the
KG factual information along with the question and a prompt. For instance, the input be-
comes “Knowledge: Jamaica → language_spoken → English \n Question:
Which language do Jamaican people speak?”, where the LLM has access to KG in-
formation for answering the question.

Landscape of KGQA methods. Figure 3 presents the landscape of existing KGQA methods with
respect to KG retrieval and reasoning. GNN-based methods, such as GraftNet (Sun et al., 2018),
NSM (He et al., 2021), and ReaRev (Mavromatis & Karypis, 2022), reason over a dense KG subgraph
leveraging the GNN’s ability to handle complex graph information. Recent LLM-based methods
leverage the LLM’s power for both retrieval and reasoning (Gu et al., 2023). For instance, ToG (Sun
et al., 2024) uses the LLM to retrieve relevant facts hop-by-hop. RoG (Luo et al., 2024) uses the
LLM to generate plausible relation paths which are then queried on the KG to retrieve the relevant
information.

LLM-based Retriever. We present an example of an LLM-based retriever (RoG; (Luo et al., 2024)).
Given training question-answer pairs, RoG extracts the shortest paths to the answers starting from
question entities for fine-tuning the retriever. Based on the extracted paths, an LLM (LLaMA2-Chat-
7B (Touvron et al., 2023)) is fine-tuned to generate reasoning paths given a question q as

LLM(prompt, q) =⇒ {r1 → · · · → rt}k, (2)

where the prompt is “Please generate a valid relation path that can be
helpful for answering the following question: {Question}”. Beam-
search decoding is used to generate k diverse sets of reasoning paths for better answer coverage,
e.g., relations {<official_language>, <language_spoken>} for the question “Which
language do Jamaican people speak?”. The generated paths are queried on the KG,
starting from the question entities, in order to retrieve the intermediate entities for RAG, e.g.,
<Jamaica → language_spoken → English>.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Q: "Which language do Jamaican people speak?"
A: English, Jamaican English

Dense retrieval
for GNN

GNN A: English, Jamaican English,
French, Caribbean

Shortest
Paths

Textualize + RAG

Jamaica -> official_language -> English
Jamaica -> language_spoken -> Jamaican English
Jamaica -> close_to -> Haiti -> official_language -> French
Jamaica -> located_in -> Caribbean Sea
"Which language do Jamaican people speak?"

LLM A: English, Jamaican English

R
et
rie
va
l

R
ea
so
ni
ng

Reasoning

GNN-RAG

LLM

Prompt: "Generate helpful relation paths."
+RA

Union

Figure 4: GNN-RAG: The GNN reasons over a dense subgraph to retrieve candidate answers, along
with the corresponding reasoning paths (shortest paths from question entities to answers). The
retrieved reasoning paths –optionally combined with retrieval augmentation (RA)– are verbalized
and given to the LLM for RAG.

4 GNN-RAG

We introduce GNN-RAG, a novel graph neural retrieval method for KGQA that leverages state-of-the-
art GNNs to improve retrieval performance when questions require complex graph information. We
provide the overall framework at inference time in Figure 4. First, the KGQA GNN reasons over a
dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in
the KG that connect question entities and GNN-based answers are extracted to represent useful KG
reasoning paths. The extracted paths are verbalized and given as context for LLM reasoning via RAG.
In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph
information, while the LLM leverages its natural language processing ability for ultimate KGQA.

4.1 GNN

In order to retrieve high-quality reasoning paths via GNN-RAG, we leverage state-of-the-art GNNs
for KGQA. We prefer GNNs over other KGQA methods, e.g., embedding-based methods (Saxena
et al., 2020), due to their ability to handle complex graph interactions and answer multi-hop questions.
GNNs mark themselves as good candidates for retrieval due to their architectural benefit of exploring
diverse reasoning paths (Choi et al., 2024) that result in high answer recall.

GNN Optimization. GNN reasoning consists of L GNN updates via Equation 1 (L is hyperpa-
rameter), where the node representations in the subgraph Gq are updated to h

(L)
v . Given training

question-answer pairs, the GNN is trained via node classification, where nodes have label yv = 1 if
they belong to the answer set v ∈ {aq} and yv = 0, otherwise. The GNN parameters are optimized
so that the nodes are scored as answers vs. non-answers based on their final GNN representations
h
(L)
v , followed by the softmax(·) operation.

During inference, the nodes with the highest probability scores, e.g., above a probability threshold,
are returned as candidate answers, along with the shortest paths connecting the question entities
with the candidate answers (reasoning paths). The retrieved reasoning paths are used as input for
LLM-based RAG.

GNN Design. Different GNNs may fetch different reasoning paths for RAG. To tackle multi-hop
questions, we need an increased number of L GNN layers, which we study in Section 4.4. As a
result, we prefer deep GNNs, such as ReaRev (Mavromatis & Karypis, 2022), which allow to explore
multi-hop paths to achieve high answer recall.

In addition, as presented in Equation 3, GNN reasoning depends on the question-relation matching
operation ω(q, r). A common implementation of ω(q, r) is ϕ(q⊙r) (He et al., 2021), where function
ϕ is a neural network, and ⊙ is the element-wise multiplication. We compute K different question

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

representations qk, k ∈ [0,K]. Both questions and KG relations are encoded via a shared pretrained
LM (Jiang et al., 2023b) as

qk = γk
(
LM(q)

)
, r = γc

(
LM(r)

)
, (3)

where γk is an attention-based pooling neural network that attends to question tokens, and γc is the
[CLS] token pooling. We provide the GNN implementation in Section 4.2.

In Appendix C, we develop a Theorem that shows that the GNN’s output depends on the question-
relation matching operation ω(q, r) and as result, we employ different LMs in Equation 3. Specifically,
we train two separate GNN models, one using pretrained LMs, such as SBERT (Reimers & Gurevych,
2019), and one using LMSR, a pretrained LM for question-relation matching over the KG (Zhang
et al., 2022a). Our experimental results suggest that, although these GNNs retrieve different KG
information, they both improve RAG-based KGQA.

4.2 GNN IMPLEMENTATION

Classification layer: After L GNN layers, we obtain node representation matrix H(L) ∈ R|V|×d.
To perform classification, we obtain the node probability matrix P = softmax(H(L)W), where
W ∈ Rd×1 is a learnable projection layer followed by softmax normalization. Answer nodes should
have larger probability pv ∈ [0, 1] than non-answer nodes.

Node and relation embeddings: We use pretrained models, such as SBERT or other LMs, to encode
relation embeddings. We obtain node embeddings by aggregating the adjacent relation embeddings
of nodes, which has been shown to generalize better to new entities (He et al., 2021; Choi et al.,
2024). The formula is h(0)

v = ReLU(
∑

r∈Nr(v)
Wrr), where r is the relation embedding and W

is learnable. During training, we optimize the GNN parameters, but not the relation embeddings
obtained via the pretrained models.

Question Representations: As complex questions might consist of multiple subquestions, we obtain
K question representations to better capture different question parts (Qiu et al., 2020), as shown in
Equation 3. To capture multiple question’s contexts, each question representation qk ∈ Rd, k ∈ K, is
initialized by dynamically attending to different question’s tokens.). First, we derive a representation
qj ∈ Rd for each token j of the question and a question representation, e.g., via CLS pooling,
qc ∈ Rd with pre-trained language models, such as SBERT. Equation 3 becomes

qk = γk(LM(q)) =
∑
j

ak,jqj , (4)

where j denotes is the j-th token position and ak,j ∈ [0, 1] is an attention weight. At each iteration k,
weight ak,j is dynamically adjusted by encouraging attention to new question parts via:

ak,j = softmaxj(Wa(q̃k ⊙ qj) (5)
q̃k = Wk(qk−1||qc||qk−1 ⊙ qc||qc − qk−1), (6)

where Wa ∈ Rd×d and Wk ∈ Rd×4d are learnable parameters.

4.3 RAG WITH LLM

In text RAG, retrieval is performed on a document corpus D (Section 3-LLM RAG). In KGQA, the
corpus is the node set V . GNN-RAG uses the GNN model as the scoring model to obtain the top
relevant nodes for answering the query, [v1, . . . , vk] = top-kvi∈VGNN(vi, q). In order to provide
more context to the LLM, we extract the shortest paths between question entities and the GNN top
scored nodes. After obtaining the reasoning paths by GNN-RAG, we verbalize them and give them as
input to a downstream LLM, such as ChatGPT or LLaMA. However, LLMs are sensitive to the input
prompt template and the way that the graph information is verbalized.

To alleviate this issue, we opt to follow RAG prompt tuning (Lin et al., 2023; Zhang et al., 2024b) for
LLMs that have open weights and are feasible to train. A LLaMA2-Chat-7B model is fine-tuned
based on the training question-answer pairs to generate a list of correct answers, given the prompt:
“Based on the reasoning paths, please answer the given question.\n
Reasoning Paths: {Reasoning Paths} \n Question: {Question}”.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The reasoning paths are verbalized as “{question entity} → {relation} →
{entity} → · · · → {relation} → {answer entity} \n” (see Figure 4).
During training, the reasoning paths are the shortest paths from question entities to answer entities.
During inference, the reasoning paths are obtained by GNN-RAG.

4.4 RETRIEVAL STUDY: WHY GNNS & THEIR LIMITATIONS

Table 1: Retrieval results for WebQSP.

Retriever 1-hop questions 2-hop questions
#Input Tok. %Ans. Cov. #Input Tok. %Ans. Cov.

RoG (Luo et al., 2024) 150 87.1 435 82.1

GNN (L = 1) 112 83.6 2,582 79.8
GNN (L = 3) 105 82.4 357 88.5

GNNs leverage the graph structure to retrieve
relevant parts of the KG that contain multi-hop
information. We provide experimental evidence
on why GNNs are good retrievers for multi-hop
KGQA. We train two different GNNs, a deep
one (L = 3) and a shallow one (L = 1), and
measure their retrieval capabilities. We report
the ‘Answer Coverage’ metric, which evaluates whether the retriever is able to fetch at least one correct
answer for RAG. Note that ‘Answer Coverage’ does not measure downstream KGQA performance but
whether the retriever fetches relevant KG information. ‘#Input Tokens’ denotes the median number
of the input tokens of the retrieved KG paths. Table 1 shows GNN retrieval results for single-hop and
multi-hop questions of the WebQSP dataset compared to an LLM-based retriever (RoG; Equation 2).
The results indicate that deep GNNs (L = 3) can handle the complex graph structure and retrieve
useful multi-hop information more effectively (%Ans. Cov.) and efficiently (#Input Tok.) than the
LLM and the shallow GNN.

On the other hand, the limitation of GNNs is for simple (1-hop) questions, where accurate question-
relation matching is more important than deep graph search (see our Theorem in Appendix B that
states this GNN limitation). In such cases, the LLM retriever is better at selecting the right KG
information due to its natural language understanding abilities (we provide an example later in
Figure 6).

4.5 RETRIEVAL AUGMENTATION (RA)

Retrieval augmentation (RA) combines the retrieved KG information from different approaches
to increase diversity and answer recall. Motivated by the results in Section 4.4, we present a RA
technique (GNN-RAG+RA), which complements the GNN retriever with an LLM-based retriever
to combine their strengths on multi-hop and single-hop questions, respectively. Specifically, we
experiment with the RoG retrieval, which is described in Equation 2. During inference, we take the
union of the reasoning paths retrieved by the two retrievers.

A downside of LLM-based retrieval is that it requires multiple generations (beam-search decoding) to
retrieve diverse paths, which trades efficiency for effectiveness (we provide a performance analysis in
Appendix B). A cheaper alternative is to perform RA by combining the outputs of different GNNs,
which are equipped with different LMs in Equation 3. Our GNN-RAG+Ensemble combines two
different GNNs (GNN+SBERT & GNN+LMSR) as input for RAG.

5 EXPERIMENTAL SETUP

KGQA Datasets. We experiment with widely used KGQA benchmarks: WebQuestionsSP (We-
bQSP) (Yih et al., 2015), Complex WebQuestions 1.1 (CWQ) (Talmor & Berant, 2018), and MetaQA-
3 Zhang et al. (2018). WebQSP contains 4,737 natural language questions that are answerable using
a subset Freebase KG (Bollacker et al., 2008). The questions require up to 2-hop reasoning within
this KG. CWQ contains 34,699 total complex questions that require up to 4-hops of reasoning over
the KG. MetaQA-3 consists of 3-hop questions in the domain of WikiMovies Miller et al. (2016).
We provide the detailed dataset statistics in Appendix D.

Implementation & Evaluation. For subgraph retrieval, we use the linked entities and the pagerank
algorithm to extract dense graph information (He et al., 2021). We employ ReaRev (Mavromatis &
Karypis, 2022), which is a GNN targeting at deep KG reasoning (Section 4.4), for GNN-RAG. The
default implementation is to combine ReaRev with SBERT as the LM in Equation 3. In addition, we
combine ReaRev with LMSR, which is obtained by following the implementation of SR (Zhang et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of different methods on the two KGQA benchmarks. We denote
the best and second-best method. Hit is used for LLM evaluation due to their free-form generation
and H@1/F1 metrics are used for methods that return a list of scored answers.

Type Method WebQSP CWQ
Hit H@1 F1 Hit H@1 F1

Embedding

KV-Mem Miller et al. (2016) – 46.7 38.6 – 21.1 –
EmbedKGQA Saxena et al. (2020) – 66.6 – – – –
TransferNet Shi et al. (2021) – 71.4 – – 48.6 –
Rigel Sen et al. (2021) – 73.3 – – 48.7 –

GNN

GraftNet Sun et al. (2018) – 66.7 62.4 – 36.8 32.7
PullNet Sun et al. (2019) – 68.1 – – 45.9 –
NSM He et al. (2021) – 68.7 62.8 – 47.6 42.4
SR+NSM(+E2E) (Zhang et al., 2022a) – 69.5 64.1 – 50.2 47.1
NSM+h He et al. (2021) – 74.3 67.4 – 48.8 44.0
SQALER Atzeni et al. (2021) – 76.1 – – – –
UniKGQA (Jiang et al., 2023b) – 77.2 72.2 – 51.2 49.1
ReaRev (Mavromatis & Karypis, 2022) – 76.4 70.9 – 52.9 47.8
ReaRev + LMSR – 77.5 72.8 – 53.3 49.7

LLM

Flan-T5-xl (Chung et al., 2024) 31.0 – – 14.7 – –
Alpaca-7B (Taori et al., 2023) 51.8 – – 27.4 – –
LLaMA2-Chat-7B (Touvron et al., 2023) 64.4 – – 34.6 – –
ChatGPT 66.8 – – 39.9 – –
ChatGPT+CoT 75.6 – – 48.9 – –

KG+LLM

KAPING (Baek et al., 2023) 73.9 – – – – –
KD-CoT (Wang et al., 2023) 68.6 – 52.5 55.7 – –
StructGPT (Jiang et al., 2023a) 72.6 – – – – –
KB-BINDER (Li et al., 2023) 74.4 – – – – –
ToG+LLaMA2-70B (Sun et al., 2024) 68.9 – – 57.6 – –
ToG+ChatGPT (Sun et al., 2024) 76.2 – – 58.9 – –
ToG+GPT-4 (Sun et al., 2024) 82.6 – – 69.5 – –
RoG (Luo et al., 2024) 85.7 80.0 70.8 62.6 57.8 56.2

GNN+LLM
G-Retriever (He et al., 2024) – 70.1 – – – –
GNN-RAG 85.7 80.6 71.3 66.8 61.7 59.4
GNN-RAG+RA 90.7 82.8 73.5 68.7 62.8 60.4

We use the default GNN-RAG (+RA) implementation. GNN-RAG, RoG, KD-CoT, and G-Retriever
use 7B fine-tuned LLaMA2 models. KD-CoT employs ChatGPT as well.

2022a). We employ RoG (Luo et al., 2024) for RAG-based prompt tuning (Section 4.3). For KGQA
evaluation, we adopt Hit, Hits@1 (H@1), and F1 metrics. Hit measures if any of the true answers is
found in the generated response, which is typically employed when evaluating LLMs. H@1 is the
accuracy of the top/first predicted answer. F1 takes into account the recall (number of true answers
found) and the precision (number of false answers found) of the generated answers, making it a more
faithful metric. For retrieval evaluation, we use Hit@k, which evaluates whether a correct answer is
retrieved in the top-k retrieved nodes. Further experimental setup details are provided in Appendix D.

Competing Methods. We compare with SOTA GNN and LLM methods for KGQA (Mavromatis
& Karypis, 2022; Li et al., 2023). We also include earlier embedding-based methods (Saxena et al.,
2020) as well as zero-shot/few-shot LLMs (Taori et al., 2023). We do not compare with semantic
parsing methods (Yu et al., 2022; Gu et al., 2023) as they use additional training data (SPARQL
annotations), which are difficult to obtain in practice. Furthermore, we compare GNN-RAG with
LLM-based retrieval approaches (Luo et al., 2024; Sun et al., 2024) in terms of efficiency and
effectiveness.

6 RESULTS

Main Results. Table 2 presents performance results of different KGQA methods. GNN-RAG is the
method that performs overall the best, achieving state-of-the-art results on the two KGQA benchmarks
in almost all metrics. The results show that equipping LLMs with GNN-based retrieval boosts their
reasoning ability significantly (GNN+LLM vs. KG+LLM). Specifically, GNN-RAG+RA outperforms
RoG by 5.0–6.1% points at Hit, while it outperforms or matches ToG+GPT-4 performance, using
an LLM with only 7B parameters and much fewer LLM calls – we estimate ToG+GPT-4 has an
overall cost above $800, while GNN-RAG can be deployed on a single 24GB GPU. GNN-RAG+RA

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance analysis on multi-hop (hops≥ 2) and multi-entity (entities≥ 2) questions.

Method WebQSP (F1) CWQ (F1) MetaQA-3 (H@1)
multi-hop multi-entity multi-hop multi-entity multi-hop

LLM (No RAG) 48.4 61.5 33.7 32.3 29.7
GNN 58.8 70.4 57.7 54.2 98.6

RoG 63.3 65.1 59.3 58.3 84.8

GNN-RAG 69.8 82.3 68.2 64.8 98.6
GNN-RAG+RA 71.1 88.8 69.3 65.6 98.6

Absolute Improv. +7.8 +23.7 +10.0 +7.3 +13.8

Table 4: Performance comparison (F1 at KGQA) of different retrieval augmentations (Section 4.5).
‘#LLM Calls’ are controlled by the hyperparameter k (number of beams) during beam-search decoding
for LLM-based retrievers, ‘#Input Tokens’ denotes the median number of tokens.

Retriever
Retrieval Metrics KGQA Performance

#LLM Calls #Input Tokens Hit@1 (%) Hit@10 (%) F1 (%)
WebQSP / CWQ WebQSP / CWQ WebQSP / CWQ WebQSP / CWQ

(a) RoG 3 202 / 325 59.9 / 25.9 78.1 / 54.5 70.8 / 56.2

(b) GNN-RAG 0 144 / 207 76.4 / 52.9 82.6 / 64.1 71.3 / 59.4
(c) GNN-RAG+RA 3 299 / 540 76.4 / 52.9 89.9 / 71.1 73.5 / 60.4
(d) GNN-RAG+Ensemble 0 156 / 281 77.5 / 53.3 84.7 / 66.7 71.7 / 57.5

(e) GNN 0 – 76.4 / 52.9 82.6 / 64.1 70.9 / 47.8

outperforms ToG+ChatGPT by up to 14.5% points at Hit and the best performing GNN by 5.3–9.5%
points at Hits@1 and by 0.7–10.7% points at F1.

Complex KGQA. Table 3 compares complex KGQA performance results on multi-hop questions,
where answers are more than one hop away from the question entities, and multi-entity questions,
which have more than one question entities. GNN-RAG leverages GNNs to handle complex graph
information and outperforms RoG (LLM-based retrieval) by 6.5–17.2% points at F1 on WebQSP,
by 8.5–8.9% points at F1 on CWQ, and by 13.8% points at H@1 on MetaQA-3. In addition, GNN-
RAG+RA offers an additional improvement by up to 6.5% points at F1. The results show that
GNN-RAG is an effective retrieval method when the questions involve complex graph information.

Table 5: Performance comparison of different graph retrievers in RAG for KGQA.

Retriever WebQSP CWQ
Hit H@1 F1 Hit H@1 F1

Dense Subgraph 70.2 68.7 54.3 47.1 45.5 41.9
GNN-RAG: GraftNet 82.8 78.6 69.8 58.2 51.9 49.4
GNN-RAG: NSM 85.0 79.6 70.4 58.5 52.5 50.1
GNN-RAG: ReaRev 85.7 80.6 71.3 66.8 61.7 59.4

Retrieval Assessment. Table 4 assesses retrieval perfomance of different graph retrieval approaches,
along with donwstream KGQA perfomance. Based on the results, we make the following conclusions:

1. GNN-based retrieval is more efficient (#LLM Calls, #Input Tokens) and effective (F1) than
LLM-based retrieval (RoG), especially for complex questions (CWQ); see rows (a) vs. (b).

2. GNN-based retrieval achieves remarkable performance, outperforming LLM-based retrieval
by 17.6–27.4% points at H@1; e.g., see rows (a) vs. (d)/(e).

3. Retrieval augmentation works the best (Hit@k and KGQA F1) when combining GNN-
induced reasoning paths with LLM-induced reasoning paths as they fetch non-overlapping
KG information (increased #Input Tokens) that improves retrieval for KGQA; see row (c).

4. Augmenting all retrieval approaches does not necessarily cause improved performance (F1)
as the long input (#Input Tokens) may confuse the LLM; see row (d) at CWQ.

Although GNN-RAG outperforms LLM-based retrieval, we note that weak GNNs are not effective
retrievers. GNN-RAG employs ReaRev as its GNN retriever, which is a powerful GNN for deep KG
reasoning. In Table 5, we ablate on the impact of the GNN used for retrieval, i.e., how strong and
weak GNNs affect KGQA performance. We experiment with GraftNet and NSM GNNs, which are
less powerful than ReaRev at KGQA. The results are presented in Table5 and show that strong GNNs

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Q: "In which state did fictional character Gilfoyle live?"
A: Ontario

KG-RAG Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto

GNN-RAG
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto
Gilfoyle -> fictional_universe.fictional_character.place_of_birth -> Canada -
> location.country.first_level_divisions -> Ontario
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto -
> location.province.capital -> Ontario

LLM A: Toronto

LLM A: Ontario

Q: "Who was the real Erin Brockovich featured in Michael Renault Mageau movie ?"
A: Consultant

KG-RAG Erin Brockovich -> people.person.profession -> Environmentalist
Erin Brockovich -> people.person.profession -> Actor
Erin Brockovich -> people.person.profession -> Consultant

GNN-RAG

LLM A: Actor

LLM A: Consultant

Erin Brockovich -> film.film.starring -> Julia Roberts ->
film.film_character.portrayed_in_films -> Julia, the Waitress
Michael Renault Mageau -> common.topic.notable_types -> Film Actor ->
common.topic.notable_types -> Erin Brockovich
Michael Renault Mageau -> film.film_crew_gig.crewmember -> m.0pxdvpl ->
film.film_job.films_with_this_crew_job -> Consultant

Figure 5: Two case studies that illustrate how GNN-RAG improves the LLM’s faithfulness. In
both cases, GNN-RAG retrieves multi-hop information that is necessary for answering the complex
questions.

(ReaRev) are essential for state-of-the-art KGQA performance. Although retrieval with weak GNNs
(NSM and GraftNet) still outperforms dense subgraph retrieval, it performs worse than strong GNNs
by up to 9.8% at H@1.

Table 6: Retrieval effect on performance
(% Hit) using various LLMs.

Method WebQSP CWQ
ChatGPT 51.8 39.9

+ ToG 76.2 58.9
+ RoG 81.5 52.7
+ GNN-RAG (+RA) 85.3 (87.9) 64.1 (65.4)

Alpaca-7B 51.8 27.4
+ RoG 73.6 44.0
+ GNN-RAG (+RA) 76.2 (76.5) 54.5 (50.8)

LLaMA2-Chat-7B 64.4 34.6
+ RoG 84.8 56.4
+ GNN-RAG (+RA) 85.2 (88.5) 62.7 (62.9)

LLaMA2-Chat-70B 57.4 39.1
+ ToG 68.9 57.6

Flan-T5-xl 31.0 14.7
+ RoG 67.9 37.8
+ GNN-RAG (+RA) 74.5 (72.3) 51.0 (41.5)

Retrieval Effect on LLMs. Table 6 presents performance
results of various LLMs using GNN-RAG or LLM-based
retrievers (RoG and ToG). We report the Hit metric as it
is difficult to extract the number of answers from LLM’s
output. GNN-RAG (+RA) is the retrieval approach that
achieves the largest improvements for RAG. For instance,
GNN-RAG+RA improves ChatGPT by up to 6.5% points
at Hit over RoG and ToG. Moreover, GNN-RAG substan-
tially improves the KGQA performance of weaker LLMs,
such as Alpaca-7B and Flan-T5-xl. The improvement over
RoG is up to 13.2% points at Hit, while GNN-RAG outper-
forms LLaMA2-Chat-70B+ToG using a lightweight 7B
LLaMA2 model. The results demonstrate that GNN-RAG
can be integrated with other LLMs to improve their KGQA
reasoning without retraining.

Case Studies on Faithfulness. Figure 5 illustrates two
case studies from the CWQ dataset, showing how GNN-
RAG improves LLM’s faithfulness, i.e., how well the LLM follows the question’s instructions and
uses the right information from the KG. We provide additional discussions on Appendix A.

Further ablation studies are provided in Appendix E. Limitations are discussed in Appendix F.

7 CONCLUSION

We introduce GNN-RAG, a novel graph neural method for enhancing RAG in KGQA with GNNs. Our
contributions are the following. (1) Framework: GNN-RAG tailors GNNs for KG retrieval due to
their ability to handle complex graph information. Similar to retrieval in text-based RAG, GNN-RAG
can be seamlessly integrated with different downstream LLMs. (2) Effectiveness & Faithfulness:
GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP
and CWQ). Furthermore, GNN-RAG is shown to retrieve multi-hop information that is necessary for
faithful LLM reasoning on complex questions. (3) Efficiency: GNN-RAG improves vanilla LLMs on
KGQA performance without incurring additional LLM calls as existing RAG systems for KGQA
require. In addition, GNN-RAG outperforms or matches GPT-4 performance with a 7B tuned LLM.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), 2006.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Mattia Atzeni, Jasmina Bogojeska, and Andreas Loukas. Sqaler: Scaling question answering by
decoupling multi-hop and logical reasoning. Advances in Neural Information Processing Systems,
2021.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering. arXiv preprint arXiv:2306.04136, 2023.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1247–1250, 2008.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Hyeong Kyu Choi, Seunghun Lee, Jaewon Chu, and Hyunwoo J Kim. Nutrea: Neural tree search for
context-guided multi-hop kgqa. Advances in Neural Information Processing Systems, 36, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language queries
over knowledge bases. arXiv preprint arXiv:2104.08762, 2021.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
models to real-world environments. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Toronto, Canada, 2023. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobio-
logically inspired long-term memory for large language models. arXiv preprint arXiv:2405.14831,
2024.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. Improving multi-hop
knowledge base question answering by learning intermediate supervision signals. In Proceedings
of the 14th ACM international conference on web search and data mining, pp. 553–561, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. arXiv preprint arXiv:2402.07630, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei Chai, and Qi Zhu.
Can gnn be good adapter for llms? arXiv preprint arXiv:2402.12984, 2024.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt:
A general framework for large language model to reason over structured data. arXiv preprint
arXiv:2305.09645, 2023a.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and
reasoning for solving multi-hop question answering over knowledge graph. In International
Conference on Learning Representations, 2023b.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Suhang Wang, Yu Meng, and
Jiawei Han. Graph chain-of-thought: Augmenting large language models by reasoning on graphs.
arXiv preprint arXiv:2404.07103, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Yunshi Lan and Jing Jiang. Query graph generation for answering multi-hop complex questions
from knowledge bases. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
969–974. Association for Computational Linguistics, July 2020.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. Complex
knowledge base question answering: A survey. IEEE Transactions on Knowledge and Data
Engineering, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context
learning on knowledge base question answering. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 6966–6980. Association for Computational Linguistics,
2023.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Rich James, Pedro Rodriguez,
Jacob Kahn, Gergely Szilvasy, Mike Lewis, et al. Ra-dit: Retrieval-augmented dual instruction
tuning. arXiv preprint arXiv:2310.01352, 2023.

Yang Liu, Xiaobin Tian, Zequn Sun, and Wei Hu. Finetuning generative large language models with
discrimination instructions for knowledge graph completion. arXiv preprint arXiv:2407.16127,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful
and interpretable large language model reasoning. In International Conference on Learning
Representations, 2024.

Costas Mavromatis and George Karypis. ReaRev: Adaptive reasoning for question answering over
knowledge graphs. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 2447–2458, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.findings-emnlp.181.

Costas Mavromatis, Petros Karypis, and George Karypis. Sempool: Simple, robust, and interpretable
kg pooling for enhancing language models. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 154–166. Springer, 2024.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, 2016.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921, 2024.

Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun Zhang. Stepwise reasoning for multi-relation
question answering over knowledge graph with weak supervision. In Proceedings of the 13th
international conference on web search and data mining, pp. 474–482, 2020.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15,
pp. 593–607. Springer, 2018.

Priyanka Sen, Amir Saffari, and Armin Oliya. Expanding end-to-end question answering on differen-
tiable knowledge graphs with intersection. arXiv preprint arXiv:2109.05808, 2021.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and
transparent framework for multi-hop question answering over relation graph. arXiv preprint
arXiv:2104.07302, 2021.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and William
Cohen. Open domain question answering using early fusion of knowledge bases and text. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 4231–4242. Association
for Computational Linguistics, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text. arXiv preprint arXiv:1904.09537, 2019.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Heung-Yeung
Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model
with knowledge graph. In International Conference on Learning Representations, 2024.

13

https://aclanthology.org/2022.findings-emnlp.181

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong Qu. Sparqa: skeleton-based semantic parsing
for complex questions over knowledge bases. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 8952–8959, 2020.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V Chawla, and
Panpan Xu. Graph neural prompting with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 19080–19088, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning. PMLR,
2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78–85, 2014.

Junxing Wang, Xinyi Li, Zhen Tan, Xiang Zhao, and Weidong Xiao. Relation-aware bidirectional
path reasoning for commonsense question answering. In Proceedings of the 25th Conference on
Computational Natural Language Learning, pp. 445–453, 2021.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive
question answering. arXiv preprint arXiv:2308.13259, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yanbin Wei, Qiushi Huang, James T Kwok, and Yu Zhang. Kicgpt: Large language model with
knowledge in context for knowledge graph completion. arXiv preprint arXiv:2402.02389, 2024.

Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
thoughts in large language models. arXiv preprint arXiv:2308.09729, 2023.

Yike Wu, Nan Hu, Guilin Qi, Sheng Bi, Jie Ren, Anhuan Xie, and Wei Song. Retrieve-rewrite-answer:
A kg-to-text enhanced llms framework for knowledge graph question answering. arXiv preprint
arXiv:2309.11206, 2023.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang, Chengzu
Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming Xiong, Lingpeng Kong, Rui
Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text language models. EMNLP, 2022.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. In North American
Chapter of the Association for Computational Linguistics (NAACL), 2021.

14

https://github.com/tatsu-lab/stanford_alpaca

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D Manning, Percy S
Liang, and Jure Leskovec. Deep bidirectional language-knowledge graph pretraining. Advances in
Neural Information Processing Systems, 35:37309–37323, 2022.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. RNG-KBQA: Genera-
tion augmented iterative ranking for knowledge base question answering. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 6032–6043. Association
for Computational Linguistics, 2022.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via staged
query graph generation: Question answering with knowledge base. In Proceedings of the Joint
Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint Conference on
Natural Language Processing of the AFNLP, 2015.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases. arXiv preprint arXiv:2210.00063, 2022.

Geng Zhang, Jin Liu, Guangyou Zhou, Kunsong Zhao, Zhiwen Xie, and Bo Huang. Question-
directed reasoning with relation-aware graph attention network for complex question answering
over knowledge graph. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2024a.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Subgraph
retrieval enhanced model for multi-hop knowledge base question answering. arXiv preprint
arXiv:2202.13296, 2022a.

Qinggang Zhang, Junnan Dong, Hao Chen, Xiao Huang, Daochen Zha, and Zailiang Yu. Knowgpt:
Black-box knowledge injection for large language models. arXiv preprint arXiv:2312.06185,
2023a.

Qixuan Zhang, Xinyi Weng, Guangyou Zhou, Yi Zhang, and Jimmy Xiangji Huang. Arl: An
adaptive reinforcement learning framework for complex question answering over knowledge base.
Information Processing & Management, 59(3):102933, 2022b.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E
Gonzalez. Raft: Adapting language model to domain specific rag. arXiv preprint arXiv:2403.10131,
2024b.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D Man-
ning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models. In International
Conference on Learning Representations, 2022c.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023b.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational reasoning
for question answering with knowledge graph. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. arXiv preprint arXiv:2210.14709,
2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix / supplemental material

A CASE STUDIES ON FAITHFULNESS

Figure 5 illustrates two case studies from the CWQ dataset, showing how GNN-RAG improves LLM’s
faithfulness, i.e., how well the LLM follows the question’s instructions and uses the right information
from the KG.

In both cases, GNN-RAG retrieves multi-hop information, which is necessary for answer-
ing the questions correctly. In the first case, GNN-RAG retrieves both crucial facts
<Gilfoyle → characters_that_have_lived_here → Toronto> and <Toronto
→ province.capital → Ontario> that are required to answer the question, unlike the
KG-RAG baseline (RoG) that fetches only the first fact. In the second case, the KG-RAG base-
line incorrectly retrieves information about <Erin Brockovich → person> and not <Erin
Brockovich → film_character> that the question refers to. GNN-RAG uses GNNs to ex-
plore how <Erin Brockovich> and <Michael Renault Mageau> entities are related in
the KG, resulting into retrieving facts about <Erin Brockovich → film_character>.
The retrieved facts include important information <films_with_this_crew_job →
Consultant>.

Figure 6 illustrates one case study from the WebQSP dataset, showing how RA (Section 4.5)
improves GNN-RAG. Initially, the GNN does not retrieve helpful information due to its limitation to
understand natural language, i.e., that <jurisdiction.bodies> usually “make the laws”.
GNN-RAG+RA retrieves the right information, helping the LLM answer the question correctly.

Q: "Who made the laws in Canada?"
A: Parliament of Canada LLM

A:
Parliament
of Canada

GNN-RAG

Canada -> royalty.monarchy.kingdom ->
Elizabeth II
Canada -> people.person.nationality -
> WL Mackenzie King

+ RA

... +
Canada ->
government.jurisdiction.bodies ->
Parliament of Canada

Figure 6: One case study that illustrates the benefit of retrieval augmentation (RA). RA uses LLMs to
fetch semantically relevant KG information, which may have been missed by the GNN.

B ANALYSIS

Table 7: Efficiency vs. effectiveness
trade-off of LLM-based retrieval.

Retrieval #LLM Calls Answer Hit (%)
(efficiency) (effectiveness)

RoG (Luo et al., 2024) 3 85.7
1 77.2

ToG (Sun et al., 2024) up to 21 76.2
3 66.3

GNN-RAG 0 87.2

#LLM Calls are controlled by the hyperparameter k
(number of beams) during beam-search decoding.

In this section, we analyze the reasoning and retrieval
abilities of GNN and LLMs, respectively.

Definition B.1 (Ground-truth Subgraph). Given a ques-
tion q, we define its ground-truth reasoning sub-
graph G∗

q as the union of the ground-truth reason-
ing paths that lead to the correct answers {a}. Rea-
soning paths are defined as the KG paths that reach
the answer nodes, starting from the question enti-
ties {e}, e.g., <Jamaica → language_spoken
→ English> for question “Which language do
Jamaican people speak?”. In essence, G∗

q con-
tains only the necessary entities and relations that are needed to answer q.

Definition B.2 (Effective Reasoning). We define that a model M reasons effectively if its output is
{a} =M(G∗

q , q), i.e., the model returns the correct answers given the ground-truth subgraph G∗
q .

As KGQA methods do not use the ground-truth subgraph G∗
q for reasoning, but the retrieved subgraph

Gq, we identify two cases in which the reasoning model cannot reason effectively, i.e., {a} ≠
M(Gq, q).

Case 1: Gq ⊂ G∗
q , i.e., the retrieved subgraph Gq does not contain all the necessary information for

answering q. An application of this case is when we use LLMs for retrieval. As LLMs are not
designed to handle complex graph information, the retrieved subgraph Gq may contain incomplete

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

KG information. Existing LLM-based methods rely on employing an increased number of LLM
calls (beam search decoding) to fetch diverse reasoning paths that approximate G∗

q . Table 7 provides
experimental evidence that shows how LLM-based retrieval trades computational efficiency for
effectiveness. In particular, when we switch from beam-search decoding to greedy decoding for faster
LLM retrieval, the KGQA performance drops by 8.3–9.9% points at answer hit.

Case 2: G∗
q ⊂ Gq and model M cannot “filter-out” irrelevant facts during reasoning. An application

of this case is when we use GNNs for reasoning. GNNs cannot understand the textual semantics of
KGs and natural questions the same way as LLMs do, and they reason ineffectively if they cannot tell
the irrelevant KG information. We develop the following Theorem that supports this case for GNNs.
Theorem B.3 (Simplified). Under mild assumptions and due to the sum operator of GNNs in
Equation 1, a GNN can reason effectively by selecting question-relevant facts and filtering-out
question-irrelevant facts through ω(q, r).

We provide the full theorem and its proof in Appendix C. Theorem B.3 suggests that GNNs need to
perform semantic matching via function ω(q, r) apart from leveraging the graph information encoded
in the KG. Our analysis suggests that GNNs lack reasoning abilities for KGQA if they cannot perform
effective semantic matching between the KG and the question.

C FULL THEOREM & PROOF

To analyze under which conditions GNN perform well for KGQA, we use the ground-truth subgraph
G∗
q for a question q, as defined in Definition B.1. We compare the output representations of a GNN

over the ground-truth G∗
q and another Gq to measure how close the two outputs are.

We always assume G∗
q ⊆ Gq for a question q. 1-hop facts that contain v are denoted as N ∗

v .
Definition C.1. Let M be a GNN model for answering question q over a KG Gq , where the output is
computed by M(q,Gq). M consists of L reasoning steps (GNN layers). We assume M is an effective
reasoner, according to Definition B.2. Furthermore, we define the reasoning process RM,q,Gq

as the
sequence of the derived node representations at each step l, i.e.,

RM,q,Gq
=

{
{h(1)

v : v ∈ Gq}, . . . , {h(L)
v : v ∈ Gq}

}
. (7)

We also define the optimal reasoning process for answering question q with GNN M as RM,q,G∗
q
.

We assume that zero node representations do not contribute in Equation 7.
Lemma C.2. If two subgraphs G1 and G2 have the same nodes, and a GNN outputs the same node
representations for all nodes v ∈ G1 and v ∈ G2 at each step l, then the reasoning processes RM,q,G1

and RM,q,G2
are identical.

This is true as h
(l)
v with l = 1, . . . , L for both G1 and G2 and by using Definition C.1 to show

RM,q,G1
= RM,q,G2

. Note that Lemma C.2 does not make any assumptions about the actual edges
of G1 and G2.

To analyze the importance of semantic matching for GNNs, we consider the following GNN update

h(l)
v = ψ

(
h(l−1)
v ,

∑
v′∈Nv

ω(q, r) ·m(l)
vv′

)
. (8)

where ω(·, ·) : Rd × Rd −→ {0, 1} is a binary function that decides if fact (v, r, v′) is relevant to
question q or not. In practice, ω is implemented by LMs (Reimers & Gurevych, 2019). Neighbor
messages m(l)

vv′ are aggregated by a sum-operator, which is typically employed in GNNs. Function
ψ(·) combines representations among consecutive GNN layers. We assume h

(0)
v ∈ Rd and that

ψ
(
h
(0)
v , 0d

)
= 0d

Theorem C.3. If ω(q, r) = 0,∀(v, r, v′) /∈ G∗
q and ω(q, r) = 1,∀(v, r, v′) ∈ G∗

q , then RM,q,Gq
is an

optimal reasoning process of GNN M for answering q.

Proof. We show that ∑
v′∈Nv

ω(q, r) ·m(l)
vv′ =

∑
v′∈N∗

v

m
(l)
vv′ , (9)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

which gives that RM,q,Gq
= RM,q,G∗

q
via Lemma C.2. This is true if

ω(q, r) =

{
1 if (v, r, v′) ∈ N ∗

v ,
0 if (v, r, v′) /∈ N ∗

v ,
(10)

which means that GNNs need to filter-out question irrelevant facts. We consider two cases.

Case 1. Let u denote a node that is present in Gq , but not in G∗
q . Then, all facts that contain u are not

present in G∗
q . Condition ω(q, r) = 0,∀(v, r, v′) /∈ G∗

q of Theorem C.3 gives that

ω(q, r) = 0,∀(u, r, v′), and
ω(q, r) = 0,∀(v, r, u). (11)

as node u /∈ G∗
q . This gives ∑

v′∈N (u)

ω(q, r) · m
(l)
uv′ = 0, (12)

as no edges will contribute to the GNN update. With ψ
(
h
(0)
v , 0d

)
= 0d, we have

h(l)u = 0d,∀u /∈ G∗
q with l = {1, . . . , L}, (13)

which means that nodes u /∈ G∗
q do not contribute to the reasoning process RM,q,Gq

; see Defini-
tion C.1.

Case 2. Let p denote a relation between two nodes v and v′ that is present in Gq, but not in G∗
q . We

decompose the GNN update to∑
v′∈Nr(v)

ω(q, r) · m
(l)
vv′ +

∑
v′∈Np(v)

ω(q, p) · m
(l)
vv′ , (14)

where the first term includes facts Nr that are present in G∗
q and the second term includes facts Np

that are present in Gq only. Using the condition ω(q, r) = 0,∀(v, r, v′) /∈ G∗
q of Theorem C.3, we

have ∑
v′∈Np(v)

ω(q, p) · m
(l)
vv′ = 0. (15)

Using condition ω(q, r) = 1,∀(v, r, v′) ∈ G∗
q , we have∑

v′∈Nr(v)

ω(q, r) · m
(l)
vv′ =

∑
v′∈Nr(v)

m
(l)
vv′ . (16)

Combining the two above expression gives∑
v′∈Nv

ω(q, r) ·m(l)
vv′ =

∑
v′∈Nr(v)

m
(l)
vv′ =

∑
v′∈N∗

v

m
(l)
vv′ . (17)

It is straightforward to obtain RM,q,Gq
= RM,q,G∗

q
via Lemma C.2 in this case.

Putting it altogether. Combining Case 1 and Case 2,nodes u /∈ G∗
q do not contribute to RM,q,Gq ,

while for other nodes we have RM,q,Gq
= RM,q,G∗

q
. Thus, overall we have RM,q,Gq

= RM,q,G∗
q

.

D EXPERIMENTAL SETUP

KGQA Datasets. We experiment with two widely used KGQA benchmarks: WebQuestionsSP
(WebQSP) Yih et al. (2015), Complex WebQuestions 1.1 (CWQ) Talmor & Berant (2018). We also
experiment with MetaQA-3 Zhang et al. (2018) dataset. We provide the dataset statistics Table 8.
WebQSP contains 4,737 natural language questions that are answerable using a subset Freebase
KG (Bollacker et al., 2008). This KG contains 164.6 million facts and 24.9 million entities. The
questions require up to 2-hop reasoning within this KG. Specifically, the model needs to aggregate
over two KG facts for 30% of the questions, to reason over constraints for 7% of the questions, and
to use a single KG fact for the rest of the questions. CWQ is generated from WebQSP by extending
the question entities or adding constraints to answers, in order to construct more complex multi-hop

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Datasets statistics. “avg.|Vq|” denotes average number of
entities in subgraph, and “coverage” denotes the ratio of at least one
answer in subgraph.

Datasets Train Dev Test avg. |Vq| coverage (%)

WebQSP 2,848 250 1,639 1,429.8 94.9
CWQ 27,639 3,519 3,531 1,305.8 79.3
MetaQA-3 114,196 14,274 14,274 497.9 99.0

questions (34,689 in total). There are four types of questions: composition (45%), conjunction (45%),
comparative (5%), and superlative (5%). The questions require up to 4-hops of reasoning over the KG,
which is the same KG as in WebQSP. MetaQA-3 consists of more than 100k 3-hop questions in the
domain of movies. The questions were constructed using the KG provided by the WikiMovies Miller
et al. (2016) dataset, with about 43k entities and 135k triples. For MetaQA-3, we use 1,000 (1%) of
the training questions.

Implementation. For subgraph retrieval, we use the linked entities to the KG provided by Yih et al.
(2015) for WebQSP, by Talmor & Berant (2018) for CWQ. We obtain dense subgraphs by He et al.
(2021). It runs the PageRank Nibble Andersen et al. (2006) (PRN) method starting from the linked
entities to select the top-m (m = 2, 000) entities to be included in the subgraph.

We employ ReaRev1 (Mavromatis & Karypis, 2022) for GNN reasoning (Section 4.1) and RoG2 (Luo
et al., 2024) for RAG-based prompt tuning (Section 4.3), following their official implementation
codes. In addition, we empower ReaRev with LMSR (Section 4.1), which is obtained by following the
implementation of SR3 (Zhang et al., 2022a). For both training and inference of these methods, we use
their suggested hyperparameters, without performing further hyperparameter search. Model selection
is performed based on the validation data. Experiments with GNNs were performed on a Nvidia
Geforce RTX-3090 GPU over 128GB RAM machine. Experiments with LLMs were performed on 4
A100 GPUs connected via NVLink and 512 GB of memory. The experiments are implemented with
PyTorch.

For LLM prompting during retrieval (Section 4.5), we use the following prompt:

Please generate a valid relation path that can be helpful for
answering the following question:
{Question}

For LLM prompting during reasoning (Section 4.3), we use the following prompt:

Based on the reasoning paths, please answer the given question.
Please keep the answer as simple as possible and return all the
possible answers as a list.\n
Reasoning Paths: {Reasoning Paths} \n
Question: {Question}

During GNN inference, each node in the subgraph is assigned a probability of being the correct
answer, which is normalized via softmax. To retrieve answer candidates, we sort the nodes based on
the their probability scores, and select the top nodes whose cumulative probability score is below a
threshold. We set the threshold to 0.95. To retrieve the shortest paths between the question entities
and answer candidates for RAG, we use the NetworkX library4.

Competing Approaches.

1https://github.com/cmavro/ReaRev_KGQA
2https://github.com/RManLuo/reasoning-on-graphs
3https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA
4https://networkx.org/

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We evaluate the following categories of methods: 1. Embedding, 2. GNN, 3. LLM, 4. KG+LMM,
and 5. GNN+LLM.

1. KV-Mem Miller et al. (2016) is a key-value memory network for KGQA. EmbedKGQA Sax-
ena et al. (2020) utilizes KG pre-trained embeddings Trouillon et al. (2016) to improve
multi-hop reasoning. TransferNet Shi et al. (2021) improves multi-hop reasoning over the
relation set. Rigel Sen et al. (2021) improves reasoning with questions of multiple entities.

2. GraftNet Sun et al. (2018) uses a convolution-based GNN Kipf & Welling (2016). Pull-
Net Sun et al. (2019) is built on top of GraftNet, but learns which nodes to retrieve via select-
ing shortest paths to the answers. NSM He et al. (2021) is the adaptation of GNNs for KGQA.
NSM+h He et al. (2021) improves NSM for multi-hop reasoning. SQALER Atzeni et al.
(2021) learns which relations (facts) to retrieve during KGQA for GNN reasoning. Similarly,
SR+NSM (Zhang et al., 2022a) proposes a relation-path retrieval. UniKGQA (Jiang et al.,
2023b) unifies the graph retrieval and reasoning process with a single LM. ReaRev (Mavro-
matis & Karypis, 2022) explores diverse reasoning paths in a multi-stage manner.

3. We experiment with instruction-tuned LLMs. Flan-T5 (Chung et al., 2024) is based on T5,
while Aplaca (Taori et al., 2023) and LLaMA2-Chat (Touvron et al., 2023) are based on
LLaMA. ChatGPT5 is a powerful closed-source LLM that excels in many complex tasks.
ChatGPT+CoT uses the chain-of-thought (Wei et al., 2022) prompt to improve the ChatGPT.
We access ChatGPT ‘gpt-3.5-turbo’ through its API (as of May 2024).

4. KD-CoT (Wang et al., 2023) enhances CoT prompting for LLMs with relevant knowledge
from KGs. StructGPT (Jiang et al., 2023a) retrieves KG facts for RAG. KB-BINDER (Li
et al., 2023) enhances LLM reasoning by generating logical forms of the questions. ToG (Sun
et al., 2024) uses a powerful LLM to select relevant facts hop-by-hop. RoG (Luo et al.,
2024) uses the LLM to generate relation paths for better planning.

5. G-Retriever (He et al., 2024) augments LLMs with GNN-based prompt tuning.

Evaluation metric discussion. We clarify the evaluation metrics in Table 2. H@1 evaluation
assumes that we are given a list of scored candidate answers (sorted based on the model’s scores).
However, since LLMs generate free-form answers, their responses can include multiple answers,
which complicates the direct application of Hit@1. For example, consider the following hypothesized
case:

Question: What do Jamaican people speak?
Answer: English
LLM Response: Jamaican people speak French and English.

In this case, the Hit score would be 1.0, as "English" is included in the response, although the LLM
generates the incorrect response “French”. This is the score that prior methods report as Hit@1 for
LLMs. However, if we were to treat the LLM response as a list [French, English], the Hit@1 score
would be 0.0, because the answer at rank 1 (French) is not the correct one.

For this reason, we do not combine H@1 and Hit metrics for LLMs, as doing so could lead to an
artificially inflated performance, and report LLM performance separately based on the Hit metric.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 QUESTION ANALYSIS

Following the case studies presented in Figure 5 and Figure 6, we provide numerical results on how
GNN-RAG improves multi-hop question answering and how retrieval augmentation (RA) enhances
simple hop questions. Table 9 summarizes these results. GNN-RAG improves performance on multi-
hop questions (≥2 hops) by 6.5–11.8% F1 points over RoG. Furthermore, RA improves performance
on single-hop questions by 0.8–2.6% F1 points over GNN-RAG.

Table 10 presents results with respect to the number of correct answers. As shown, RA enhances
GNN-RAG in almost all cases as it can fetch correct answers that might have been missed by the
GNN.

5https://openai.com/blog/chatgpt

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Performance analysis (F1) based on the number of maximum hops that connect question
entities to answer entities.

Method WebQSP CWQ
1 hop 2 hop ≥3 hop 1 hop 2 hop ≥3 hop

RoG 73.4 63.3 – 50.4 60.7 40.0

GNN-RAG 72.0 69.8 – 47.4 69.4 51.8
GNN-RAG +RA 74.6 71.1 – 48.2 70.9 47.7

Table 10: Performance analysis (F1) based on the number of answers (#Ans).

Method WebQSP CWQ
#Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10 #Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10

RoG 67.89 79.39 75.04 58.33 56.90 53.73 58.36 43.62

GNN-RAG 71.24 76.30 74.06 56.28 60.40 55.52 61.49 50.08
GNN-RAG +RA 71.16 82.31 77.78 57.71 62.09 56.47 62.87 50.33

E.2 GNN EFFECT

Table 11: Performance comparison of different GNN models at KGQA (extended).

Retriever KGQA Model WebQSP CWQ
Hit∗ H@1 F1 Hit∗ H@1 F1

Dense Subgraph GraftNet – 66.7 62.4 – 45.3 35.8
Dense Subgraph NSM – 68.7 62.8 – 47.9 42.0
Dense Subgraph ReaRev – 76.4 70.9 – 52.7 49.1
Dense Subgraph LLaMA2-Chat-7B (tuned) – 68.7 54.3 – 45.5 41.9

RoG

LLaMA2-Chat-7B (tuned)

85.7 80.0 70.8 62.6 57.8 56.2
GNN-RAG: GraftNet 82.8 78.6 69.8 58.2 51.9 49.4
GNN-RAG: NSM 85.0 79.6 70.4 58.5 52.5 50.1
GNN-RAG: ReaRev 85.7 80.6 71.3 66.8 61.7 59.4

GNN-RAG employs ReaRev (Mavromatis & Karypis, 2022) as its GNN retriever, which is a powerful
GNN for deep KG reasoning. In this section, we ablate on the impact of the GNN used for retrieval,
i.e., how strong and weak GNNs affect KGQA performance. We experiment with GraftNet (Sun
et al., 2018) and NSM (He et al., 2021) GNNs, which are less powerful than ReaRev at KGQA. The
results are presented in Table 11. As shown, strong GNNs (ReaRev) are required in order to improve
RAG at KGQA. Retrieval with weak GNNs (NSM and GraftNet) underperfoms retrieval with ReaRev
by up to 9.8% and retrieval with RoG by up to 5.9% points at H@1.

E.3 RETRIEVAL AUGMENTATION

Table 12 has the extended results of Table 4, showing performance results on all three metrics (Hit /
H@1 / F1) with respect to the retrieval method used. Overall, GNN-RAG improves the vanilla LLM
by 149–182%, when employing the same number of LLM calls for retrieval.

E.4 PROMPT ABLATION

When using RAG, LLM performance depends on the prompts used. To ablate on the prompt impact,
we experiment with the following prompts:

• Prompt A:

Based on the reasoning paths, please answer the
given question. Please keep the answer as
simple as possible and return all the possible
answers as a list.\n
Reasoning Paths: {Reasoning Paths} \n
Question: {Question}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: Performance comparison of retrieval augmentation approaches (extended).

Retriever KGQA Model #LLM Calls WebQSP CWQ Avg.
(total) Hit∗ H@1 F1 Hit∗ H@1 F1

Dense Subgraph (i) ReaRev + SBERT 0 – 76.4 70.9 – 52.9 47.8 –
(ii) ReaRev + LMSR 0 – 77.5 72.8 – 52.7 49.1 –

None

LLaMA2-Chat-7B (tuned)

1 65.6 60.4 49.7 40.1 36.2 33.8 47.63
(iii) LLM-based 4 85.7 80.0 70.8 62.6 57.8 56.2 68.85
GNN-RAG: (i) 1 85.7 80.6 71.3 66.8 61.7 59.4 70.92
GNN-RAG: (ii) 1 85.0 80.3 71.5 66.2 61.3 58.9 70.50

GNN-RAG: (i) + (ii)

LLaMA2-Chat-7B (tuned)

1 87.2 81.0 71.7 65.5 59.5 57.5 70.40
GNN-RAG: (i) + (iii) 4 90.7 82.8 73.5 68.7 62.8 60.4 73.15
GNN-RAG: (ii) + (iii) 4 89.9 82.4 73.4 67.9 63.0 61.0 72.93
GNN-RAG: (i) + (ii) + (iii) 4 90.1 81.7 72.3 67.3 61.5 59.1 72.00

None
LLaMA2-Chat-7B

1 64.4 – – 34.6 – – –
GNN-RAG: (i) + (ii) 1 86.8 – – 62.9 – – –
GNN-RAG: (i) + (iii) 4 88.5 – – 62.1 – – –

• Prompt B:

Based on the provided knowledge, please answer
the given question. Please keep the answer as
simple as possible and return all the possible
answers as a list.\n
Knowledge: {Reasoning Paths} \n
Question: {Question}

• Prompt C:

Your tasks is to use the following facts
and answer the question.
Make sure that you use the information
from the facts provided. Please keep the answer
as simple as possible and return all the
possible answers as a list.\n
The facts are the following: {Reasoning Paths}
\n
Question: {Question}

Table 13: Performance comparison (%Hit) based on different input prompts.

WebQSP CWQ

Prompt A RoG 84.8 56.4
GNN-RAG 86.8 62.9

Prompt B RoG 84.3 55.2
GNN-RAG 85.2 61.7

Prompt C RoG 81.6 51.8
GNN-RAG 84.4 59.4

We provide the results based on different input prompts in Table 13. As the results indicate, GNN-RAG
outperforms RoG in all cases, being robust at the prompt selection.

E.5 EFFECT OF TRAINING DATA

Training Cost. GNN-RAG requires only fine-tuning the GNN for retrieval. The downstream LLM can
be fine-tuned (our default implementation) or not (as we experimented with in Table 6). Fine-tuning
the downstream LLM is memory-intensive. For example, if we use 2 A100-80G GPUs, 1 epoch of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

30k training data requires more than 12 hours. GNN training is much more efficient: On a GeForce
RTX 3090, 1 epoch of 30k training data needs less than 15 minutes and less than 8GB of GPU
memory.

Table 14: Impact of LLM tuning.

Retrieval LLM WebQSP CWQ

RoG LLaMa2-Chat-7B (untuned) 84.8 56.4
RoG LLaMa2-Chat-7B (tuned) 85.7 62.6
GNN-RAG LLaMa2-Chat-7B (untuned) 85.2 62.7
GNN-RAG LLaMa2-Chat-7B (tuned) 85.7 66.7

Data Size Impact. Fine-tuning the downstream LLM generally improves performance. In Table 14,
we compare LLaMa2-Chat-7B and LLaMa2-Chat-7B fine-tuned. As shown (Hit metric), GNN-RAG
demonstrates a more stable performance when switching between the two LLMs. Specifically,
GNN-RAG experiences a relatively small drop of 0.5-5.0 points, whereas RoG suffers from a larger
performance degradation of 0.9-6.2 points under the same conditions. CWQ has more data (27.6k)
than WebQSP (2.8k) and thus, performance improvement when using the tuned LLM is larger.

Table 15: Number of training data impact on CWQ.

Retrieval # Training Data CWQ Hit (%)

RoG 30k 62.6
GNN-RAG 27.6k 66.7
GNN-RAG 10k 63.7

In Table 15, we provide results when we use 10k training data of CWQ when training the GNN. As
shown, although GNN-RAG uses approximately 3x less data, it still outperforms RoG (which uses
30k data from both CWQ and WebQSP for training).

Table 16: Performance results based on different training data.

Method WebQSP CWQ
Training Data (Retriever) Training Data (KGQA Model) Hit Training Data (Retriever) Training Data (KGQA Model) Hit

UniKGQA WebQSP WebQSP 77.2 CWQ CWQ 51.2

RoG
WebQSP WebQSP 81.5 CWQ CWQ 59.1

WebQSP+CWQ None 84.8 WebQSP+CWQ None 56.4
WebQSP+CWQ WebQSP+CWQ 85.7 WebQSP+CWQ WebQSP+CWQ 62.6

GNN-RAG
WebQSP None 86.8 CWQ None 62.9
WebQSP WebQSP+CWQ 87.2 CWQ WebQSP+CWQ 66.8

Table 16 compares performance of different methods based on the training data used for training the
retriever and the KGQA model. For example, GNN-RAG trains a GNN model for retrieval and uses a
LLM for KGQA, which can be fine-tuned or not. As the results show, GNN-RAG outperforms the
competing methods (RoG and UniKGQA) by either fine-tuning the KGQA model or not, while it
uses the same or less data for training its retriever.

E.6 GRAPH EFFECT

GNNs operate on dense subgraphs, which might include noisy information. A question that arises
is whether removing irrelevant information from the subgraph would improve GNN retrieval. We
experiment with SR (Zhang et al., 2022a), which learns to prune question-irrelevant facts from the
KG. As shown in Table 17, although SR can improve the GNN reasoning results – see row (a) vs. (b)
at CWQ –, the retrieval effectiveness deteriorates; rows (c) and (d). After examination, we found that
the sparse subgraph may contain disconnected KG parts. In this case, GNN-RAG’s extraction of the
shortest paths fails, and GNN-RAG returns empty KG information.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 17: Performance comparison on different subgraphs.

Retriever KGQA Model WebQSP CWQ
Hit∗ H@1 F1 Hit∗ H@1 F1

a) Dense Subgraph (A) ReaRev + LMSR – 77.5 72.8 – 52.7 49.1
b) Sparse Subgraph (Zhang et al., 2022a) (B) ReaRev + LMSR – 74.2 69.8 – 53.3 49.7

c) GNN-RAG: (A) LLaMA2-Chat-7B (tuned) 85.0 80.3 71.5 66.2 61.3 58.9
d) GNN-RAG: (B) 83.4 78.9 69.8 60.6 55.6 53.3

E.7 FURTHER ABLATIONS

Regarding GNN hyperparameters, we provide sensitivity analysis on the number of GNN layers L in
Table 1, which shows that deep GNNs are better retrievers for mutli-hop KGQA.

As an additional ablation study, we set the threshold θ, which controls the number of candidate
answer nodes for entity selection, to 0.99 (retrieves more candidate answers), to 0.95 (default), and to
0.75 (retrieves less candidate answers). GNN-RAG performance is shown in Table 18. Increasing
the threshold (0.99) to retrieve more context, can further increase performance to 85.9%. Lower
threshold (0.75) might miss some answers and the performance drops to 83.5%.

Table 18: Threshold θ impact for answer node selection (WebQSP Hit %).

θ = 0.99 θ = 0.95 θ = 0.75

GNN-RAG 85.9 85.7 83.8

F LIMITATIONS

GNN-RAG assumes that the KG subgraph, on which the GNN reasons, contains answer nodes.
However, this may not be true for all questions or when errors in entity linking happen. In addition,
GNN-RAG employs simple prompting with the shortest paths from question entities to candidate
answers as context. As an extension, GNN-RAG can be combined with prompt optimization (Wen
et al., 2023; Zhang et al., 2023a) so that the LLM understands the graph better. Moreover, similar
to conventional retrieval which focuses on identifying relevant information (text documents or KG
nodes in Figure 1) regardless the downstream LLM, the scope of our GNN-RAG contributions is
to improve the retrieval results over the KG without specialized GNN-LLM interactions. However,
the GNN and the LLM could be coupled via iterative retrieval (Asai et al., 2023) to further improve
KGQA.

G BROADER IMPACTS

GNN-RAG is a method that grounds the LLM generations for QA using ground-truth facts from the
KG. As a result, GNN-RAG can have positive societal impacts by using KG information to alleviate
LLM hallucinations in tasks such as QA.

24

	Introduction
	Related Work
	Problem Statement & Background
	Gnn-Rag
	GNN
	GNN Implementation
	RAG with LLM
	Retrieval Study: Why GNNs & Their Limitations
	Retrieval Augmentation (RA)

	Experimental Setup
	Results
	Conclusion
	Case Studies on Faithfulness
	Analysis
	Full Theorem & Proof
	Experimental Setup
	Additional Experimental Results
	Question Analysis
	GNN Effect
	Retrieval Augmentation
	Prompt Ablation
	Effect of Training Data
	Graph Effect
	Further Ablations

	Limitations
	Broader Impacts

