
Dual Defense: Enhancing Privacy and Mitigating
Poisoning Attacks in Federated Learning

Runhua Xu
Beihang University

runhua@buaa.edu.cn

Shiqi Gao
Beihang University

gaoshiqi@buaa.edu.cn

Chao Li
Beijing Jiaotong University
li.chao@bjtu.edu.cn

James Joshi
University of Pittsburgh
jjoshi@pitt.edu

Jianxin Li∗
Beihang University and Zhongguancun Laboratory

lijx@buaa.edu.cn

Abstract

Federated learning (FL) is inherently susceptible to privacy breaches and poisoning
attacks. To tackle these challenges, researchers have separately devised secure ag-
gregation mechanisms to protect data privacy and robust aggregation methods that
withstand poisoning attacks. However, simultaneously addressing both concerns
is challenging; secure aggregation facilitates poisoning attacks as most anomaly
detection techniques require access to unencrypted local model updates, which are
obscured by secure aggregation. Few recent efforts to simultaneously tackle both
challenges offen depend on impractical assumption of non-colluding two-server
setups that disrupt FL’s topology, or three-party computation which introduces
scalability issues, complicating deployment and application. To overcome this
dilemma, this paper introduce a Dual Defense Federated learning (DDFed) frame-
work. DDFed simultaneously boosts privacy protection and mitigates poisoning
attacks, without introducing new participant roles or disrupting the existing FL
topology. DDFed initially leverages cutting-edge fully homomorphic encryption
(FHE) to securely aggregate model updates, without the impractical requirement
for non-colluding two-server setups and ensures strong privacy protection. Ad-
ditionally, we proposes a unique two-phase anomaly detection mechanism for
encrypted model updates, featuring secure similarity computation and feedback-
driven collaborative selection, with additional measures to prevent potential privacy
breaches from Byzantine clients incorporated into the detection process. We con-
ducted extensive experiments on various model poisoning attacks and FL scenarios,
including both cross-device and cross-silo FL. Experiments on publicly avail-
able datasets demonstrate that DDFed successfully protects model privacy and
effectively defends against model poisoning threats.

1 Introduction

Federated learning (FL)[18] is gaining popularity as a collaborative model training paradigm that
provides primary privacy protection by eliminating the need of sharing private training data. Based
on the participants’ scale, FL is typically divided into two categories: cross-silo FL and cross-device
FL[17]. Cross-device FL typically involves numerous similar devices, while cross-silo FL usually
includes fewer participants like organizations. Recent studies show that FL mainly confronts two
types of threats: privacy risks from curious adversaries attempting to compromise data privacy

∗corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

through methods like membership inference and model inversion attacks, and security risks from
Byzantine adversaries looking to damage the final model’s integrity with backdoors or by lowering
its accuracy [2, 24, 14, 11, 3, 1, 34].

To mitigate privacy risks in FL, researchers have developed a range of techniques to bolster pri-
vacy. These encompass differential privacy-based aggregation [32], as well as secure aggregation
approaches using homomorphic encryption[41], functional encryption[35], and secure multi-party
computation[6, 43]. Aside from privacy concerns, many studies have proposed strategies to identify
and mitigate potentially harmful updates during the model aggregation phase, thereby safeguard-
ing the global model against adversarial attacks. Notable Byzantine-resistant aggregation mecha-
nisms encompass the Krum fusion method[5], cosine defense aggregation mechanism[29, 38], and
median/mean-based strategies like clipping median and trimmed mean strategies [40]. Research in
these two areas has been conducted separately, and addressing both issues at once continues to be
challenging. This difficulty arises because secure aggregation makes it easier for adversarial attacks
to occur, as most anomaly detection methods need access to “unencrypted” local model updates that
secure aggregation protects.

Few recent efforts [39, 13, 16, 43, 15, 23, 9, 20] to tackle both challenges simultaneously often
depend on differential privacy techniques [39, 13, 16, 22, 12], which can degrade model performance
due to added noise, or rely on impractical non-colluded two-server assumption that disrupts FL’s
topology[43, 15, 23, 9, 20], complicating its deployment and application. In light of these limitations,
a critical yet overlooked question is how to create a straightforward dual defense strategy that
simultaneously strengthens privacy protection and mitigates poisoning attacks without introducing
new participant roles or altering the single-server multiple-clients structure?

To address this dilemma, this paper proposes a Dual Defense approach that simultaneously enhances
privacy protection and combats poisoning attacks in Federated learning (DDFed), without changing
the structure of current FL frameworks. DDFed initially leverages cutting-edge cryptographic
technology, specifically fully homomorphic encryption (FHE), to securely aggregate model updates
without the impractical assumption of non-colluding two-server setups and ensures strong privacy
protection by permitting only the aggregation server to perform secure aggregation in the dark.
To tackle the challenge of detecting malicious models within encrypted model updates, DDFed
introduces a novel two-phase anomaly detection mechanism. This approach enables cosine similarity
computation over encrypted models and incorporates a feedback-driven collaborative selection
process, with additional measures to prevent potential privacy breaches from Byzantine clients
incorporated into the detection mechanism. Our main contributions are summarized as follows:

• We introduce a dual defense strategy that simultaneously boosts privacy and combats
poisoning attacks in federated learning. This is achieved by integrating FHE-based secure
aggregation with a mechanism for detecting malicious encrypted models based on similarity.

• To effectively detect malicious models in encrypted updates, we propose a novel two-phase
anomaly detection mechanism with extra safeguards against potential privacy breaches
by Byzantine clients during the detection process. Additionally, we introduce a clipping
technique to bolster defenses against diverse poisoning attacks.

• We carried out comprehensive experiments on multiple model poisoning attacks and feder-
ated learning scenarios, covering both cross-device FL and cross-silo FL. Our experiments
with publicly accessible datasets demonstrate DDFed’s effectiveness in safeguarding model
privacy and robustly defending against model poisoning threats.

2 Related Works

Privacy Risks and Countermeasures in FL The fundamental design of FL ensures that all
training data stays with its owner, offering basic privacy. However, it still exposes vulnerabilities
to inference attacks, which allow adversaries to extract information about the training data used by
each party [24, 27, 2, 24, 14, 11]. In some cases, the risk of private information leakage may be
unacceptable. Therefore, several defenses have been suggested to mitigate these risks, including
differential privacy (DP) and secure aggregation (SA), based on various cryptographic primitives
such as (partial) homomorphic encryption [21, 41], threshold Paillier [30], functional encryption [36],
and pairwise masking protocols [6].

2

Poisoning Risks and Countermeasures in FL. Besides privacy inference attacks, FL is also
susceptible to poisoning attacks, where adversaries can compromise certain clients and manipulate
their data or models to intentionally worsen the global model’s performance by introducing cor-
rupted updates during training. This paper focuses on untargeted model attacks, whose goal is to
significantly diminish the effectiveness of the global model through methods such as Inner Product
Manipulation (IPM) attack [34], scaling attack[1], and “a little is enough" (ALIE) attack [3]. Several
strategies have been developed to counteract the impact of attacks, ensuring they don’t compromise
model performance. These strategies fall into two categories: client-side and server-side defenses.
Client-side defenses adjust the local training algorithm with a focus on secure client updates[28],
whereas server-side defenses [5, 29, 38, 40] either reduce the influence of updates from malicious
clients through adjusted aggregation weights or use clustering techniques to aggregate updates from
trustworthy clients only. However, these defense strategies typically operate under the assumption
that model updates are not encrypted, which contradicts the objectives of privacy-focused secure
aggregation defense strategies.

Private and Robust Federated Learning. In privacy-preserving FL, identifying poisoning attacks
is harder because of the need to balance local model privacy with the detection of harmful models.
Only a few existing studies like those mentioned in [39, 13, 16, 15] employ Byzantine-resilient
aggregation through differential-privacy techniques. This approach necessitates a compromise
between privacy and model accuracy. Additionally, recent initiatives have been launched to address
this problem through diverse methods by using various secure computation technologies. These
include 3PC[9], which faces scalability limitations; an oblivious random grouping method constrained
by its design for partial parameter disclosure[43]; and both additive secret sharing[20] and two-
trapdoor homomorphic encryption[23], which depend on the impractical assumption of non-colluding
dual servers.

3 Dual Defense Federated Learning Framework

3.1 Formulation and Assumption

Formulation. A typical FL framework involves m clients, C1, ..., Cm, and a single aggregation
server A. Each client Ci possesses its own dataset Di. The overarching goal in FL across these m
clients is to minimize the global objective function:

min
WWW 1,...,WWWm

1

m

m∑
i=1

|Di|∑m
i=1 |Di|

Li(WWW i;Di). (1)

Here, Li represents the local loss function for each client’s data, and WWW i are the local model
parameters specific to client Ci. The term Di refers to the private dataset of client i, with |Di|
indicating its size in terms of sample count. In short, the goal of general FL is to learn an optimal
global model WWWG across m clients. This is achieved by periodically synchronizing the model
parameters from all clients using specified fusion algorithms like FedAvg and its variants, with the
aggregation server A over several training rounds.

Due to various malicious activities, including inference attacks that aim to steal private information
from legitimate clients and poisoning attacks designed to undermine model integrity by degrading
its performance, existing privacy-preserving FL often relies on a secure aggregation mechanism[21,
41, 30, 36, 6]. Typically, without loss of generality, during the t-th federated learning training
round, each client Ci secures its local model update WWW i - referred to as [[WWW i]] throughout this paper -
before transmitting it to the aggregation server. This is achieved by using various privacy-enhancing
technologies such as homomorphic encryption and secure multi-party computation.

Threat Assumption. DDFed tolerates an adversary, capable of corrupting any subset of local
clients at a specified ratio rATTACK, s.t., rATTACK < 0.5, to carry out model poisoning attacks that
degrade the global model’s performance. Additionally, we assume the aggregation server A is semi-
honest (honest-but-curious), meaning it adheres to the protocol but seeks to glean as much private
information as possible. Similarly, the compromised clients CADV

i can conduct privacy inference
attacks like those performed by A. In summary, regarding privacy preservation, both the inquisitive
A and the corrupted client subset aim to extract private information from benign clients; however,

3

Figure 1: Overview of DDFed framework and illustration of a single round DDFed training.

only the corrupted client subset will also initiate model poisoning attacks to undermine the global
model.

3.2 Framework Details

Objective of DDFed. DDFed is designed to bolster privacy protection and mitigate model poisoning
attacks seamlessly within the existing FL framework. Unlike existing private and robust approaches
[39, 13, 16, 43, 15, 23, 9, 20] that add new participant roles or depend on differential privacy, which
may compromise model performance, DDFed maintains effectiveness efficiently. DDFed introduces a
dual defense strategy that combines fully homomorphic encryption (FHE) for secure data aggregation
with an optimized similarity-based mechanism to detect malicious models, ensuring unparalleled
privacy protection and security against model poisoning attacks.

Similarity-based methods are commonly used in existing studies for anomaly detection models
[29, 38]. Specifically, it computes the cosine similarity between each local model update of training
round t and the global model from the previous round t− 1:

cos(αi) =
⟨WWW (t)

i ,WWW
(t−1)
G ⟩

∥WWW (t)
i ∥2 · ∥WWW (t−1)

G ∥2
, (2)

where αi denotes the angle between global model weights WWW (t−1)
G and local model update WWW (t)

i of
client Ci. However, existing similarity-based mechanisms [29, 38] offer no privacy protection for
local model updates, and integrating FHE into them poses significant challenges. These challenges
arise from FHE’s limitations in performing division and comparison operations, which are essential
for identifying benign clients in these methods.

Framework Overview and Training Process. Figure 1 provides an overview of DDFed framework,
which includes several clients C1, ..., Cm and a single aggregation server A, consistent with the
architecture of most existing FL frameworks. In the following section, we demonstrate the DDFed
training process. Due to space limitations, the formal algorithm pseudocode is provided solely in
Appendix A.1.

Before the FL training begins, each client Ci is equipped with an FHE key pair (PK, SK). During
the FL training phase, let’s assume that in the t-th round, each client Ci trains a local model WWW (t)

i

(1⃝) and performs the normalization and encryption as [[WWW (t)
i]] = FHE.ENCPK(WWW

(t)
i) with public

key PK (2⃝). Upon receiving encrypted local models, {[[WWW (t)
i]]}i∈[1,...,m], A starts to detect anomaly

model updates over all encrypted local models. Specifically, A first extracts the last layer, denoted as
{[[WWW

′(t)
i]]}i∈[1,...,m], which remains encrypted (3⃝), and adds a perturbation ∆(t) to safeguard against

4

potential privacy attacks by malicious clients. Next, it retrieves the last layer of the encrypted global
model from the previous training round ([[WWW

′(t−1)
G]]), The method for adding perturbations will be

discussed in Section 3.2. Then, A performs secure inner-product between each perturbed [[WWW
′(t)
i]] +

∆(t) and [[WWW
′(t−1)
G]] to derive encrypted similarity score, denoted as [[sss

′(t)]] = ([[s
′(t)
1]], ..., [[s

′(t)
m]]),

and query each client (4⃝). After receiving [[sss
′(t)]], each client Ci decrypts it to obtain the plaintext

scores sss
′(t)
i . Subsequently, each client submits their list of similarity scores (5⃝). It’s important to

note that at this stage, malicious clients may tamper with their similarity scores in an attempt to
prevent detection of their compromised models. Since a benign client will honestly and accurately
decrypt and select trustworthy clients group via threshold-based filter, and hence their results should
be consistent. Therefore, A uses a majority voting strategy to acquire the final client score list, i.e.,
the voted sss(t) (6⃝). Next, A normalizes sss(t) and generates the fusion weight (7⃝). Here, DDFed
employs FedAvg’s approach by weighting the aggregation according to dataset size proportions in
current training round (8⃝). Finally, each client Ci receives the aggregated global model [[WWW (t)

G]],
decrypts it, and initiates the (t+ 1)-th round of DDFed training (9⃝).

Private and Robust Malicious Model Detection. As observed in [38], the distribution of local
data labels can be more effectively represented in the weights of the last layer than in other layers.
Consequently, DDFed employs a similar approach to enhance the efficiency of detecting anomalies,
as it requires performing similarity computation on encrypted model updates. Given that FHE
supports only basic mathematical operations, and the similarity-based anomaly model detection
mechanism needs complex operations like division (as shown in equation 2), comparison and sorting
operations, DDFed breaks it down into two stages: secure similarity computation and feedback-driven
collaborative selection. In the rest of the paper and during our experimental evaluation, we adhere
to the layer section settings described in [38]. However, DDFed can be easily extended to support
strategies for detecting malicious models using full layers. Additional experiments are detailed in
Appendix A.2.4 to demonstrate the impact of layer sections on the DDFed framework.

Secure Similarity Computation. To circumvent division operations, DDFed necessitates that all
clients pre-process their inputs for normalization and shifts the task of comparing similarity scores
to the client side. This is because clients possess the FHE private key, allowing them to obtain the
similarity score in plaintext. Formally, we have the following:

[[cos(αi)]] =
⟨[[WWW (t)

i]], [[WWW
(t−1)
G]]⟩

∥[[WWW (t)
i]]∥2 · ∥[[WWW (t−1)

G]]∥2
= ⟨[[WWW

(t)
i

∥WWW (t)
i ∥2

]], [[
WWW

(t−1)
G

∥WWW (t−1)
G ∥2

]]⟩, (3)

where each client Ci prepares the WWW
(t)
i

∥WWW (t)
i ∥2

and WWW
(t−1)
G

∥WWW (t−1)
G ∥2

in advance, and then encrypts them using

FHE encryption algorithm. Next, the aggregation server S verifies received [[
WWW

(t−1)
G

∥WWW (t−1)
G ∥2

]] and perturbs

local inputs and conducts secure inner-product computation as follows:

[[sss
′(t)]] = ⟨[[WWW

(t)
i

∥WWW (t)
i ∥2

]] + ∆(t), [[
WWW

(t−1)
G

∥WWW (t−1)
G ∥2

]]⟩. (4)

Motivation of Similarity Score Perturbation. DDFed aims to simultaneously address privacy and
poisoning risks. This means it not only considers model poisoning attacks but also prevents adversarial
clients from inferring private information from other benign clients by exploiting decrypted similarity
scores and previous global models. To mitigate this privacy risk, DDFed improves secure inner-
product computation by introducing perturbations into each normalized and encrypted model update.
Specifically, DDFed uses (ε, δ)-differential privacy with a Gaussian mechanism as its method of

perturbation, ∆(t) = N (0, σ2), σ =
∆f

√
2 ln(1.25/δ)

ε , where (ε, δ) represents the parameters of the
DP mechanism and ∆f denotes sensitivity.

It’s important to note that our perturbation affects only the anomaly detection phase and does not
change the encrypted model updates that are to be aggregated. Consequently, the final aggregated
model retains its accuracy, just as it would with a standard aggregation mechanism. Furthermore, our
experiments indicate that the perturbation noise does not affect the effectiveness of anomaly detection.

5

Even at ε = 0.01, which offers strong privacy protection, DDFed still performs well and delivers
good model performance.

Feedback-driven Collaborative Selection. As shown in the threat model, DDFed tolerates less
than 50% malicious clients, indicating that over half of the clients are benign and will execute the
steps honestly and correctly as designed. DDFed employs a feedback-driven collaborative selection
approach to filter out potentially malicious models. Specifically, upon receiving the encrypted [[sss

′(t)]],
each client Ci first decrypts to acquire sss

′(t)
i using the FHE private key SK. Next, each client Ci

independently decrypts the similarity scores, sorts them, and selects trustworthy clients sss(t)i for the
current training round based on a threshold. DDFed uses only the mean value of similarity scores
as its filtering threshold. Subsequent experiments have demonstrated its effectiveness. Additionally,
DDFed is open and compatible with alternative methods for setting thresholds. After each client
returns their decision on the group of benign clients (sss(t)i), the aggregation server uses a majority of
vote strategy to decide the final aggregation group (sss(t)) for the current training round. Next, similar
to FedAvg, DDFed applies a data size-based fusion weight strategy to calculate each client’s fusion
weight fffWWW

(t)

sss(t)
in the aggregation group, where f

(t)
j =

|Dj |∑
j∈sss(t)

|Dj | .

FHE-based Secure Aggregation with Clipping. DDFed’s secure aggregation leverages the FHE
cryptosystem, specifically the CKKS instance[8], which excels in arithmetic operations on encrypted
real or complex numbers and stands as one of the most efficient methods for computing with encrypted
data. Formally, the aggregation server performs secure aggregation as [[WWW (t)

G]] = ⟨[[WWW (t)]], fffWWW
(t)

sss(t)
⟩.

Once receiving the aggregated global model [[WWW (t)
G]], each client Ci uses their private key to decrypt it,

obtaining the final global model WWW (t)
G in plaintext via the FHE decryption algorithm. In contrast to

current approaches in private and robust FL, DDFed uniquely enables each benign client to execute a
clipping operation before the next training round. This enhancement is designed to counteract more
sophisticated model poisoning attacks that conventional similarity-based methods [29, 38] fail to
address, as will be shown in the experiments section.

3.3 Analysis on Privacy and Robustness

Based on the threat model discussed earlier, DDFed prevents an honest-but-curious aggregation
server from potentially inferring private information from accessible model updates. Additionally, it
also withstands a subset of local clients, compromised by an adversary, to launch model poisoning
attacks and attempt to infer private information from other benign clients during the anomaly model
detection phase.

In terms of privacy risks, DDFed utilizes FHE primitives to ensure cryptographic-level privacy
protection. This means the aggregation server processes each operation without any insight into
the model update (in the dark), eliminating any chance of inferring private information from local
model updates. Furthermore, to counter potential inferences by corrupted clients exploiting decrypted
similarity scores, DDFed incorporates a perturbation method where DP noise is added during the
secure similarity computation phase. Due to space limitations, the formal DP-enhanced perturbation
analysis is provided solely in Appendix A.3.

Regarding the risk of poisoning attacks, DDFed adopts similarity-based anomaly detection tech-
nologies with additional optimizations such as perturbation-based similarity computation and post-
aggregation clipping. These enhancements bolster the robustness of its aggregation mechanism. Our
experiments demonstrate that DDFed effectively resists a range of continuous poisoning attacks,
including IPM, SCALING, and ALIE attacks, which will be elaborated in Section 4.

4 Experiments

4.1 Experimental Setup

Datasets and Implementation. We assessed our proposed DDFed framework using publicly
available benchmark datasets: MNIST[19], a collection of handwritten digits, and Fashion-MNIST
(FMNIST)[33], which includes images of various clothing items, offering a more challenging and

6

0 20 40 60 80 100
FL training round

0

50

100

te
st

 a
cc

ur
ac

y

attack start

mnist, IPM attack, clients=100

0 25 50 75 100 125 150
FL training round

0

50

100

te
st

 a
cc

ur
ac

y

attack start

mnist, ALIE attack, clients=100

0 25 50 75 100 125 150
FL training round

0

50

100

te
st

 a
cc

ur
ac

y

attack start

mnist, SCALING attack, clients=100

0 20 40 60 80 100
FL training round

0

25

50

75

te
st

 a
cc

ur
ac

y

attack start

fmnist, IPM attack, clients=100

0 25 50 75 100 125 150
FL training round

0

25

50

75

te
st

 a
cc

ur
ac

y

attack start

fmnist, ALIE attack, clients=100

0 25 50 75 100 125 150
FL training round

0

25

50

75

te
st

 a
cc

ur
ac

y

attack start

fmnist, SCALING attack, clients=100

FedAvg - No Attack
FedAvg

Krum
Median

Clip Median
Trimmed Mean

Cosine Defense
DDFed (Our Work)

Figure 2: Comparison of defense effectiveness across various defense approaches, evaluated on
MNIST (top) and FMNIST(bottom), under IPM attack (left), ALIE attack (middle), and SCALING
attack (right).

diverse dataset for federated learning tasks. We create non-iid partitions for all datasets based on
previous research [38, 43], using a default q value of 0.5, where a higher q reflects greater degrees of
non-iid. We assess the framework’s performance using a nine-layer CNN model with 225k parameters,
secured by the FHE cryptosystem in each training round. This secure aggregation is implemented
through TenSEAL library [4]. The experimental DDFed is available on the GitHub repository.

Baselines and Default Setting. We compare our proposed method DDFed with well-known FL
fusion algorithms and robust aggregation methods, including Krum [5], Cos Defense [38], and
median/mean-based approaches like Median, Clipping Median, and Trimmed Mean strategies[40].
We exclude baselines such as FLTrust[7] or RFFL[37] because they require server-side validation
data or are incompatible with client sampling, making them impractical for real-world applications.
Additionally, we omit secure robust approaches[9, 20, 23, 43] that depend on complex secure
aggregation techniques due to their requirement for additional non-colluding participants, which
alters the original structure of the federated learning framework. Note that the core contribution
of this paper is not to propose new model poisoning defense approaches, but to enhance existing
popular defenses with privacy features—specifically, server-side similarity-based defenses. Therefore,
the experiments aim to evaluate how these privacy-preserving features affect the original defense
methods, rather than defending against recent attack techniques and strategies as shown in works like
[26, 31, 42, 10, 25].

To assess defense performance, we evaluated the proposed work against popular model poisoning
attacks: Inner Product Manipulation (IPM) attack [34], scaling attack[1], and the "a little is enough"
(ALIE) attack[3]. Unless otherwise mentioned, we assume a default attacker ratio of 0.3 among all
participants as malicious clients. The attacks commence at the 50th round and persist until training
ends. The default FL training involves 10 clients randomly chosen from 100 for each communication
round. Furthermore, we employ a batch size of 64 with each client conducting local training over
three epochs per round using an SGD optimizer with a momentum of 0.9 and a learning rate of 0.01.
Our DDFed implementation’s default epsilon (ε) value is set to 0.01 unless specified differently.

4.2 Performance Evaluation

Performance of Defense Effectiveness under Various Attacks. Figure 2 demonstrates the effec-
tiveness of our DDFed method compared to baseline methods in countering three prevalent model
poisoning attacks, with an attacker ratio set at 0.3. The attack commences at the 50th round and
continues until training concludes. Under the IPM attack scenario, aside from FedAvg, Trimmed
Mean, and Clipping Median mechanisms, our approach along with other defense strategies performs
well (nearly as model accuracy as without any model poisoning attack) in defending against the
IPM attack. The same conclusion also holds true in the ALIE attack. However, only DDFed and
Clip Median successfully withstand SCALING attacks with minor and acceptable losses in model

7

https://github.com/irxyzzz/DualDefense/

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

mnist dataset, IPM attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

fmnist dataset, IPM attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

mnist dataset, ALIE attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

0 20 40 60 80 100
FL training round

0

20

40

60

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

fmnist dataset, ALIE attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

mnist dataset, SCALING attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack start

fmnist dataset, SCALING attack

attack ratio=0.1
attack ratio=0.2
attack ratio=0.3
attack ratio=0.4

Figure 3: Comparison of DDFed effectiveness across different attack ratios, evaluated on MNIST
(top) and FMNIST (bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack
(right).

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack start

mnist dataset, IPM attack

clients=10
clients=50
clients=100

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack start

fmnist dataset, IPM attack

clients=10
clients=50
clients=100

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack start

mnist dataset, ALIE attack

clients=10
clients=50
clients=100

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack start

fmnist dataset, ALIE attack

clients=10
clients=50
clients=100

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack start

mnist dataset, SCALING attack

clients=10
clients=50
clients=100

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack start

fmnist dataset, SCALING attack

clients=10
clients=50
clients=100

Figure 4: Comparison of DDFed effectiveness across different client numbers, evaluated on MNIST
(top) and FMNIST (bottom), under IPM attack (left), ALIE attack (middle), and SCALING attack
(right).

performance. Note that DDFed remains robust even when attackers target the system from the start
of training. Due to space constraints, we present the defense effectiveness against various cold-start
attacks in Appendix A.2.3. In summary, our DDFed method achieves the best comprehensive defense
performance.

Impact of Attacker Ratio. To further investigate the impact of attacker ratio in the DDFed
framework, we conducted experiments with various attacker ratio settings. It’s important to note that
DDFed operates under the security assumption that at least half of the participants must be benign
(i.e., rattacker < 0.5), therefore, in our experiments, the attacker ratio setting is ranged from 0.1
to 0.4. As shown in Figure 3, the proportion of attackers among all clients does not significantly
affect our proposed DDFed method. This suggests that it can effectively counter three types of model
poisoning attacks. Additionally, we observed that under an ALIE attack scenario, our method may
require approximately 10-20 training rounds to recover from the continuous attack, depending on the
dataset evaluated.

Compatibility with Cross-device and Cross-silo FL Scenarios. To explore how the number of
clients affects our DDFed framework and to confirm its compatibility with two common federated
learning scenarios, i.e., cross-device and cross-silo, we conducted multiple experiments. These

8

experiments had an attacker ratio fixed at 0.3, with client counts varying from 10 to 100. In cross-silo
FL, client numbers are typically small, often ranging from a few to several dozen; however, for
simulating the cross-device FL scenario in our study, we used 100 clients due to their generally
larger population. As illustrated in Figure 4, our DDFed framework effectively defends against all
three attacks across various client number settings. This suggests that the performance of DDFed is
not significantly affected by the number of clients, indicating its suitability for both cross-silo and
cross-device FL scenarios. Furthermore, a higher number of client settings may result in relatively
large fluctuations during training rounds immediately following the attack; however, the model
training ultimately converges steadily, unaffected by the continuous attack.

Table 1: Time cost per training round of various defense approaches.
Approaches MNIST, IPM attack FMNIST, IPM attack

avg (s) var (s) avg (s) var (s)

FedAvg 10.26 0.07 10.47 0.01
Krum 10.32 0.03 10.26 0.01
Median 10.32 0.01 10.28 0.02
Clipping Median 10.31 0.01 10.32 0.01
Trimmed Mean 10.32 0.02 10.30 0.01
Cos Defense 10.25 0.01 10.26 0.02
DDFed (Our Work) 12.43 0.01 12.14 0.01

Time Cost of Secure Aggregation. To assess the additional time cost incurred by integrating
FHE-based secure similarity computation and secure aggregation into DDFed, we measured the
time cost of each training round and compared it with the baseline methods mentioned earlier. All
experiments were carried out using the default settings described above. Due to space constraints, we
only present the defense approach’s time cost per training round when under an IPM attack and have
included further results in Appendix A.2.2.

As shown in Table 1, compared to other robust aggregation mechanisms that lack privacy-preserving
features, our DDFed solution incurs additional time costs due to the integration of FHE-based secure
similarity computation and secure aggregation. Across experiments on various datasets and under
different attacks, our DDFed generally requires an extra 2 seconds compared to the usual 10-second
training round, resulting in a 20% increase in time per training round. However, our DDFed is capable
of defending against model poisoning attacks while also offering strong privacy guarantees. Note
that the time-related experiments were conducted on a MacOS platform with an Apple M2 Max chip
and 96GB of memory.

Impact of Epsilon Setting. To better understand the effect of the hyperparameter ε setting on
DDFed’s perturbation-based secure similarity computation phase, we conducted several experiments
with different ε settings, ranging from 0.01 to 0.1. Here, we only demonstrate the results from 10
clients here, with additional results in Appendix A.2.1.

As shown in Figure 5, the ε
setting has a negligible impact
on performance with the MNIST
dataset. However, higher ε val-
ues, which indicate stronger DP
protection, cause relatively larger
fluctuations in performance on
the FMNIST dataset. Therefore,
we believe that the optimal ε set-
ting depends on the specific task
at hand and leave it as an open
question for future research.

0 20 40 60 80 100
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack startattack start

clients=10, mnist dataset, IPM attack

epsilon=0.01
epsilon=0.03
epsilon=0.05
epsilon=0.08
epsilon=0.1

0 20 40 60 80 100
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack startattack start

clients=10, fmnist dataset, IPM attack

epsilon=0.01
epsilon=0.03
epsilon=0.05
epsilon=0.08
epsilon=0.1

Figure 5: Impact of hyper-parameter ϵ of differential privacy based
perturbation at secure similarity computation phase, evaluated on
MNIST (left) and FMNIST (right), under IPM attack.

9

4.3 Discussion and Limitation

To the best of our knowledge, DDFed offers a dual defense strategy that simultaneously boosts
privacy protection and fights against poisoning attacks in FL, without altering the existing FL
framework’s architecture. DDFed utilizes FHE for top-notch privacy, enabling the aggregation
server to perform similarity calculations and aggregation without directly accessing model updates.
Additionally, DDFed introduces perturbation techniques to block attempts by malicious clients to infer
information from similarity scores. It further employs similarity-based anomaly detection, enhanced
with strategies like perturbation and post-aggregation clipping, to protect against various types of
poisoning attacks. However, DDFed has not fully explored two related questions: how can we relax
the attacker ratio restriction (i.e., rATTACK < 0.5) while still ensuring effective dual defense? And
how can we adapt DDFed to more complex FL scenarios, such as dropout and dynamic participant
groups? We leave these questions open for future research. Currently, DDFed only enhances existing
popular defenses, such as similarity-based strategies with privacy features. Extending DDFed to
support other or more recent defense strategies remains an open question.

5 Conclusion

To tackle the dual challenges of privacy risks and model poisoning in federated learning, we introduce
DDFed, a comprehensive approach that strengthens privacy protections and counters model poisoning
attacks. DDFed enhances privacy by using an FHE-based secure aggregation mechanism and
addresses encrypted poisoned model detection through an innovative secure similarity-based anomaly
filtering method. This method includes secure similarity computation with perturbation and feedback-
driven selection process to distinguish safe model updates from potentially harmful ones. Our
approach has been rigorously tested against well-known attacks on diverse datasets, demonstrating its
effectiveness. We believe our work sets a solid foundation for future advancements in secure and
robust federated learning.

Acknowledgments and Disclosure of Funding

This work is funded by the National Natural Science Foundation of China, under grants No.62302022,
No.62225202, No.62202038. We sincerely thank the anonymous reviewers for their insightful
comments and constructive feedback, which have greatly improved this paper. Their suggestions
were invaluable in refining our analysis and presentation, as well as guiding future research questions
related to this work.

References
[1] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor federated

learning. In International conference on artificial intelligence and statistics, pages 2938–2948.
PMLR, 2020.

[2] N. Baracaldo and R. Xu. Protecting against data leakage in federated learning: What approach
should you choose? In Federated Learning: A Comprehensive Overview of Methods and
Applications, pages 281–312. Springer, 2022.

[3] G. Baruch, M. Baruch, and Y. Goldberg. A little is enough: Circumventing defenses for
distributed learning. Advances in Neural Information Processing Systems, 32, 2019.

[4] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal. Tenseal: A library for encrypted tensor
operations using homomorphic encryption, 2021.

[5] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with adversaries:
Byzantine tolerant gradient descent. Advances in neural information processing systems, 30,
2017.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In
proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1175–1191, 2017.

10

[7] X. Cao, M. Fang, J. Liu, and N. Z. Gong. Fltrust: Byzantine-robust federated learning via trust
bootstrapping. In ISOC Network and Distributed System Security Symposium (NDSS), 2021.

[8] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of
approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International
Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I 23, pages 409–437. Springer, 2017.

[9] C. Dong, J. Weng, M. Li, J.-N. Liu, Z. Liu, Y. Cheng, and S. Yu. Privacy-preserving and
byzantine-robust federated learning. IEEE Transactions on Dependable and Secure Computing,
2023.

[10] M. Fang, X. Cao, J. Jia, and N. Gong. Local model poisoning attacks to {Byzantine-Robust}
federated learning. In 29th USENIX security symposium (USENIX Security 20), pages 1605–
1622, 2020.

[11] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients-how easy is it
to break privacy in federated learning? Advances in neural information processing systems,
33:16937–16947, 2020.

[12] H. Guo, H. Wang, T. Song, Y. H. R. Ma, X. Jin, Z. Xue, and H. Guan. Siren+: Robust federated
learning with proactive alarming and differential privacy. IEEE Transactions on Dependable
and Secure Computing, 2024.

[13] M. T. Hossain, S. Islam, S. Badsha, and H. Shen. Desmp: Differential privacy-exploited stealthy
model poisoning attacks in federated learning. In 2021 17th International Conference on
Mobility, Sensing and Networking (MSN), pages 167–174. IEEE, 2021.

[14] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora. Evaluating gradient inversion attacks and
defenses in federated learning. Advances in Neural Information Processing Systems, 34:7232–
7241, 2021.

[15] Y. Huang, G. Yang, H. Zhou, H. Dai, D. Yuan, and S. Yu. Vppfl: A verifiable privacy-preserving
federated learning scheme against poisoning attacks. Computers & Security, 136:103562, 2024.

[16] Y. Jiang, Y. Li, Y. Zhou, and X. Zheng. Mitigating sybil attacks on differential privacy based
federated learning. arXiv preprint arXiv:2010.10572, 2020.

[17] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

[18] J. Konecnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
8, 2016.

[19] Y. LeCun, C. Cortes, and C. J. Burges. Mnist handwritten digit database. http://yann.lecun.
com/exdb/mnist, 2010.

[20] X. Li, X. Yang, Z. Zhou, and R. Lu. Efficiently achieving privacy preservation and poisoning
attack resistance in federated learning. IEEE Transactions on Information Forensics and
Security, 2024.

[21] C. Liu, S. Chakraborty, and D. Verma. Secure model fusion for distributed learning using
partial homomorphic encryption. In Policy-Based Autonomic Data Governance, pages 154–179.
Springer, 2019.

[22] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu. Privacy-enhanced federated learning
against poisoning adversaries. IEEE Transactions on Information Forensics and Security,
16:4574–4588, 2021.

[23] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng. Shieldfl: Mitigating model poisoning attacks
in privacy-preserving federated learning. IEEE Transactions on Information Forensics and
Security, 17:1639–1654, 2022.

11

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

[24] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In
2019 IEEE symposium on security and privacy (SP), pages 739–753. IEEE, 2019.

[25] T. D. Nguyen, P. Rieger, R. De Viti, H. Chen, B. B. Brandenburg, H. Yalame, H. Möllering,
H. Fereidooni, S. Marchal, M. Miettinen, et al. {FLAME}: Taming backdoors in federated
learning. In 31st USENIX Security Symposium (USENIX Security 22), pages 1415–1432, 2022.

[26] K. Pillutla, S. M. Kakade, and Z. Harchaoui. Robust aggregation for federated learning. IEEE
Transactions on Signal Processing, 70:1142–1154, 2022.

[27] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against
machine learning models. In IEEE S&P’17, pages 3–18. IEEE, 2017.

[28] J. Sun, A. Li, L. DiValentin, A. Hassanzadeh, Y. Chen, and H. Li. Fl-wbc: Enhancing robustness
against model poisoning attacks in federated learning from a client perspective. Advances in
Neural Information Processing Systems, 34:12613–12624, 2021.

[29] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan. Can you really backdoor federated
learning? arXiv preprint arXiv:1911.07963, 2019.

[30] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. A hybrid
approach to privacy-preserving federated learning. In ACM AISec’19, pages 1–11, 2019.

[31] S. Wang, J. Hayase, G. Fanti, and S. Oh. Towards a defense against federated backdoor attacks
under continuous training. Transactions on Machine Learning Research, 2022.

[32] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor.
Federated learning with differential privacy: Algorithms and performance analysis. IEEE
transactions on information forensics and security, 15:3454–3469, 2020.

[33] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[34] C. Xie, O. Koyejo, and I. Gupta. Fall of empires: Breaking byzantine-tolerant sgd by inner
product manipulation. In Uncertainty in Artificial Intelligence, pages 261–270. PMLR, 2020.

[35] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, S. Kadhe, and H. Ludwig. Detrust-fl: Privacy-
preserving federated learning in decentralized trust setting. In 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD), pages 417–426. IEEE, 2022.

[36] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig. Hybridalpha: An efficient approach
for privacy-preserving federated learning. In ACM AISec’19, pages 13–23, 2019.

[37] X. Xu and L. Lyu. A reputation mechanism is all you need: Collaborative fairness and
adversarial robustness in federated learning. arXiv preprint arXiv:2011.10464, 2020.

[38] D. N. Yaldiz, T. Zhang, and S. Avestimehr. Secure federated learning against model poisoning
attacks via client filtering. In ICLR 2023 Workshop on Backdoor Attacks and Defenses in
Machine Learning, 2023.

[39] M. Yang, H. Cheng, F. Chen, X. Liu, M. Wang, and X. Li. Model poisoning attack in differential
privacy-based federated learning. Information Sciences, 630:158–172, 2023.

[40] D. Yin, Y. Chen, R. Kannan, and P. Bartlett. Byzantine-robust distributed learning: Towards
optimal statistical rates. In International Conference on Machine Learning, pages 5650–5659.
Pmlr, 2018.

[41] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu. Batchcrypt: Efficient homomorphic
encryption for cross-silo federated learning. In USENIX ATC’20), pages 493–506, 2020.

[42] K. Zhang, G. Tao, Q. Xu, S. Cheng, S. An, Y. Liu, S. Feng, G. Shen, P.-Y. Chen, S. Ma, et al.
Flip: A provable defense framework for backdoor mitigation in federated learning. In The
Eleventh International Conference on Learning Representations, 2022.

[43] Z. Zhang, J. Li, S. Yu, and C. Makaya. Safelearning: Secure aggregation in federated learning
with backdoor detectability. IEEE Transactions on Information Forensics and Security, 2023.

12

A Appendix

A.1 DDFed Algorithm

Algorithm 1: DDFed Training
Input: clients {C1, ..., Cm}, each client Ci has its own dataset Di; global training round T

Output: final global model WWW (T)
G .

1 Each client initializes with FHE key pair (PK, SK);
2 aggregation server A initializes the global model WWW (0)

G ;
3 foreach training round t ∈ {1, ..., T} do
4 foreach client Ci ∈ {C1, ..., Cm} do
5 if not initial training round then
6 Ci receives [[WWW (t−1)

G]] from A and acquires WWW (t−1)
G ← FHE.DECSK([[WWW

(t−1)
G]]);

7 if reaching final training round T then
8 return final modelM(m)

G ;
9 if Ci is benign then Ci performs clipping on WWW

(t−1)
G ;

10 Ci conducts local training WWW
(t)
i ← TRAIN(WWW

(t−1)
G);

11 Ci encrypts local model [[WWW (t)
i ,WWW

L,(t)
i]]← FHE.ENCPK([[WWW

(t−1)
G]]);

12 Ci sends out [[WWW (t)
i ,WWW

L,(t)
i]] to A;

13 A waits and collects {[[WWW (t)
i ,WWW

L,(t)
i]]}i∈[1,...,m];

14 A retrieves [[WWWL,(t−1)
G]] from previous round and prepares perturbation ∆(t);

15 A performs [[sss
′(t)]]← {⟨[[WWWL,(t)

i]] + ∆(t), [[WWW
L,(t−1)
G]]⟩}i∈[1,...,m] and sends [[sss

′(t)]] to {C1, ..., Cm};
16 foreach client Ci ∈ {C1, ..., Cm} do
17 Ci decrypts sss

′(t)
i ← FHE.DECSK([[sss

′(t)]]), conducts threshold-based selection and sends back sss
(t)
i ;

18 A collects {sss(t)i }i ∫ [1,...,m] and selects sss(t) via majority of votes strategy;
19 A generates fusion weights fffw

sss(t)
using sss(t);

20 A conducts secure aggregation [[WWW
(t)
G]]← ⟨[[WWW (t)]], fffWWW (t)

sss(t)
⟩ and sends [[WWW (t)

G]] to {C1, ..., Cm};

The DDFed algorithm is outlined in Algorithm 1. Assuming, without loss of generality, that at
training round t, each client receives the aggregated and encrypted global model from the previous
round. Upon decrypting this global model, benign clients clip it before conducting local training.
They then encrypt their local model updates after applying a normalization preprocessing step to aid
in detecting similarity-based poisoning attacks.

Once all encrypted model updates are collected from the clients, the aggregation server begins secure
similarity computations using the abstracted last layer of these updates. It introduces differential
privacy by adding perturbation noise and sends them back to each client for collaborative decryption
and selection of benign clients.

Following this, based on majority votes, the aggregation server determines final aggregation groups
and calculates fusion weights. Finally, it securely aggregates these with the fusion weights to produce
an encrypted global model and concludes that round of federated learning (FL) training.

A.2 Additional Experimental Results

A.2.1 Impact of Epsilon with 100 Clients

Figure 6 presents the experimental findings on how different ε values affect perturbations during
the secure similarity computation phase, with experiments focusing on an IPM attack scenario
and involving 100 clients. These tests were carried out using the MNIST and Fashion-MNIST
(FMNIST) datasets. For both datasets, we explored a range of epsilon values from 0.01 to 0.1, noting
that lower epsilon values indicate enhanced privacy through increased noise addition. Initially, all
configurations demonstrated high accuracy levels; however, performance fluctuations became evident
following the attack. Specifically, the MNIST dataset exhibited a notable decrease in accuracy at
certain epsilon settings, while the FMNIST dataset showed more moderate variations in performance.
Ultimately, both datasets achieved relatively stable model accuracy. Determining the optimal ε setting
is task-dependent and remains an area for future investigation.

13

0 25 50 75 100 125 150
FL training round

0

25

50

75

100

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack startattack start

clients=100, mnist dataset, IPM attack

epsilon=0.01
epsilon=0.03
epsilon=0.05
epsilon=0.08
epsilon=0.1

0 25 50 75 100 125 150
FL training round

0

20

40

60

80

te
st

 a
cc

ur
ac

y

attack startattack startattack startattack startattack start

clients=100, fmnist dataset, IPM attack

epsilon=0.01
epsilon=0.03
epsilon=0.05
epsilon=0.08
epsilon=0.1

Figure 6: Impact of hyper-parameter ϵ of differential privacy based perturbation at secure similarity
computation phase with client number 100, evaluated on MNIST (left) and FMNIST (right), under
IPM attack.

Table 2: Time cost per training round of various defense approaches on MNIST and FMNIST datasets
under SCALING attack

Approaches MNIST, SCALING attack FMNIST, SCALING attack

avg (s) var (s) avg (s) var (s)

FedAvg 9.87 0.21 10.51 0.01
Krum 9.75 0.21 10.42 0.01
Median 9.81 0.15 10.29 0.02
Clipping Median 9.73 0.11 10.19 0.01
Trimmed Mean 9.76 0.22 10.24 0.01
Cos Defense 9.43 0.08 10.30 0.01
DDFed (Our Work) 12.15 0.03 12.25 0.18

A.2.2 Time Cost of Secure Aggregation on Scaling and ALIE attacks.

Table 2 and Table 3 report additional results on the time cost of each training round taken for
various defense strategies against SCALING and ALIE attacks on the MNIST and FMNIST datasets,
respectively. Consistent with the findings presented in Section 4.2, our DDFed approach adds
only 2 seconds to the usual 10-second training round across multiple experiments, datasets, and
attack scenarios, resulting in a 20% increase in time per round. Despite this slight increase, DDFed
successfully defends against model poisoning attacks while ensuring robust privacy protection.

A.2.3 Performance of DDFed Against Cold-Start Model Poisoning Attacks.

The primary purpose that we initiated the attack at round 50 is to demonstrate the effectiveness of
defense mechanisms and clearly show the comparative effects of different defense methods before
and after an attack. This setup can also illustrate how various defensive measures impact training
convergence and model quality, even without attacks.

DDFed is resilient to poisoning attacks from the beginning of training. Our design is not constrained
by the attack’s initiation round. Supplementary experimental results as reported in Table 4 on the
FMNIST dataset with 100 clients in a non-iid setting support this claim.

A.2.4 Impact of Selected Layer Count on Poisoning Model Detection in DDFed.

In the main body of the paper, we use only the last layer for similarity computation because our
primary goal is to integrate privacy-preserving functionality into existing poisoning defense strategies
rather than optimizing these mechanisms. Our exploration shows that similarity-based methods and
their variants provide comprehensive defense effectiveness, robust against various threat scenarios
such as server reliance on validation data, types of model poisoning attacks, and the number of
compromised clients. Therefore, we selected a typical similarity-based defense strategy (Cosine
Defense) as a starting point to enhance privacy-preserving features. Our approach can easily extend
to other similarity-based detection variants using full layers for secure similarity computation. As

14

Table 3: Time cost per training round of various defense approaches on MNIST and FMNIST datasets
under ALE attack

Approaches MNIST, ALE attack FMNIST, ALE attack

avg (s) var (s) avg (s) var (s)

FedAvg 10.31 0.11 10.38 0.16
Krum 10.19 0.10 10.06 0.08
Median 10.19 0.05 10.15 0.04
Clipping Median 9.98 0.09 10.05 0.12
Trimmed Mean 9.97 0.11 10.06 0.06
Cos Defense 9.78 0.17 10.14 0.09
DDFed (Our Work) 12.23 0.07 11.95 0.08

Table 4: Performance of DDFed Against Cold-Start attacks on FMNIST datasets.
Approaches IPM Attacks ALIE Attacks SCALINE Attacks

FedAvg 0 10.1 0
Krum 69.05 73.69 69.95
Median 67.57 76.57 74.03
Clipping Median 61.1 73.8 75.49
Trimmed Mean 0 43.29 0
Cos Defense 81.87 82.97 81.11
DDFed (Our Work) 83.32 80.97 83.05

shown in Table 5, we conducted additional experiments with full-layer secure similarity computation
on a larger dataset (CIFAR10) under various attacks.

Table 5: Comparison of Model Performance and Time Cost Across Different Layer Protection
Settings on Evaluating the CIFAR10 Dataset with Setting of 60 Training Rounds.

Approaches No attack IPM attack ALIE attack SCALINE attack

Acc Time(m) Acc Time(m) Acc Time(m) Acc Time(m)

FedAvg 70.16 46.23 0 46.62 10 46.89 0 46.48
DDFed (Last Layer) - - 70.3 50.66 64.62 51.3 69.61 51.63
DDFed (Full Layers) - - 69.84 58.95 69.73 58.78 68.89 59.01

A.3 Differential Privacy

A.3.1 Differential Privacy

Differential privacy is a mathematical framework designed to provide privacy guarantees for individ-
uals in a dataset. The standard definition of differential privacy is as follows:

A randomized algorithm M is said to be (ε, δ)-differentially private if, for any two adjacent datasets
D and D′ (i.e., datasets differing by only one element), and for any subset of outputs S ⊆ Range(M),
the following inequality holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (5)

where ε is the privacy budget parameter, which controls the trade-off between privacy and utility. A
smaller ε indicates stronger privacy. δ (delta) is a small probability that accounts for the possibility of
the privacy guarantee being violated.

The Gaussian mechanism is a specific method to achieve differential privacy by adding Gaussian
noise to the output of a function. The definition of the Gaussian mechanism is as follows:

Given a function f and any two adjacent datasets D and D′, the sensitivity of f is defined as:

∆f = max
D,D′

∥f(D)− f(D′)∥2 (6)

15

The Gaussian mechanism adds noise drawn from a Gaussian distribution with mean 0 and standard
deviation σ, where σ is determined by:

σ =
∆f

√
2 ln(1.25/δ)

ε
(7)

Thus, the Gaussian mechanism is defined as:

M(D) = f(D) +N (0, σ2) (8)

where N (0, σ2) denotes a Gaussian distribution with mean 0 and variance σ2. By adding Gaussian
noise in this manner, the Gaussian mechanism ensures that the output satisfies (ε, δ)-differential
privacy.

A.3.2 Privacy Analysis of Differentially Private Similarity Computation in DDFed

The DDFed framework aims to enhance privacy protection and mitigate poisoning attacks within
federated learning systems by integrating FHE and a similarity-based anomaly detection system. To
further bolster privacy, DDFed incorporates DP during the similarity score computation process. This
section provides a theoretical analysis of the differential privacy levels maintained by each participant
in the DDFed framework, specifically focusing on clients during similarity score computation and
feedback stages, as well as the aggregation server during model aggregation and similarity score
processing.

In the similarity score computation phase, each client normalizes its local model updates before
submitting them. To ensure DP, Gaussian noise is added to these normalized updates. By adding
Gaussian noise, each client’s similarity score computation adheres to (ε, δ)-differential privacy,
ensuring that the privacy of the client’s data is preserved even in the presence of adversaries.

During the feedback phase, clients decrypt the similarity scores and submit their results. Since
these scores have already been DP due to the added Gaussian noise, the privacy level remains at
(ε, δ)-differential privacy. This ensures that even when clients provide feedback, their privacy is not
compromised.

In the model aggregation phase, the aggregation server receives encrypted model updates from clients.
While FHE inherently provides a high level of security for these crucial parameters, the aggregation
server further ensures privacy by applying DP during the similarity score calculation. The server
aggregates the encrypted updates without accessing the plaintext data, thereby maintaining the privacy
of the individual model updates.

For the similarity score processing phase, the aggregation server handles the scores submitted by
clients, which have already been protected using differential privacy. Consequently, the server does
not need to apply additional privacy mechanisms during this phase. The DP guarantees provided
during the similarity score computation phase by clients are sufficient to protect the overall process.

Based on the analysis, the privacy levels for each client in DDFed framework can be summarized as
follows. During the similarity score computation phase, clients achieve (ε, δ)-differential privacy
by adding Gaussian noise to their normalized model updates. During the feedback phase, clients
maintain (ε, δ)-differential privacy as the similarity scores they submit have already been differential
private.

By thoughtfully designing and selecting parameters, the DDFed framework can provide robust
privacy protection and maintain high model performance. The use of FHE for critical parameters and
differential privacy for similarity scores ensures a balanced and comprehensive approach to privacy
protection, addressing both security and utility needs effectively.

A.3.3 Impact of DP on FHE-based Similarity Computation in DDFed

Generally, the reader may concern about whether [[x]] + ∆ equals x + ∆, where x is under FHE
protection. However, this depends on the precision of the employed FHE schemes. Proving such
a statement theoretically may require delving into the specific construction algorithm of the FHE
scheme, which is beyond the scope of machine learning-oriented venues.

16

Table 6: Impact of DP on FHE-based Similarity Detection in DDFed on evaluating CIFAR10 datasets.
Approaches IPM Attacks ALIE Attacks SCALINE Attacks

DDFed (Simulated) 70.21 64.3 69.82
DDFed (Our Work) 70.31 64.62 69.6

This paper utilizes CKKS constructions, which natively support high-precision secure computation
on floating-point numbers. As a result, adding DP noise to encrypted similarity results does not
degrade performance. To validate this, we conducted supplementary experiments on CIFAR10 using
a simulated DDFed setup where DP noise was added to non-encrypted parameters. The reported
results in Table 6 support this claim.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction are consistent with
the contributions and scope detailed in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec 4.3
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

18

Justification: Sec 3.1 and Appendix A.3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sec 4 and Appendix A.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: https://github.com/irxyzzz/DualDefense
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Sec 4 and Appendix A.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Sec 4.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Sec 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

21

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper have state which version of the asset is used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets

Answer: [NA]
Justification: Paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Works
	Dual Defense Federated Learning Framework
	Formulation and Assumption
	Framework Details
	Analysis on Privacy and Robustness

	Experiments
	Experimental Setup
	Performance Evaluation
	Discussion and Limitation

	Conclusion
	Appendix
	DDFed Algorithm
	Additional Experimental Results
	Impact of Epsilon with 100 Clients
	Time Cost of Secure Aggregation on Scaling and ALIE attacks.
	Performance of DDFed Against Cold-Start Model Poisoning Attacks.
	Impact of Selected Layer Count on Poisoning Model Detection in DDFed.

	Differential Privacy
	Differential Privacy
	Privacy Analysis of Differentially Private Similarity Computation in DDFed
	Impact of DP on FHE-based Similarity Computation in DDFed

