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ABSTRACT

Deep reinforcement learning (RL) has grown rapidly with the development of
backbone feedforward neural networks (FNNs). However, there remains a theoret-
ical gap when researchers conduct error analysis of the FNNs-based RL process.
In this work, we provide an error analysis for deep-fitted Q-iteration applying
ReLU-activated FNNs for value function approximation.

1 INTRODUCTION

Reinforcement learning (RL) has successfully trained sequential decision-making models over the
last decade (Silver et al., 2016; Chen et al., 2020; Cao et al., 2022). Unlike conventional supervised
training with explicit targets, RL aims to generate an agent maximizing the expected future return
through implementing actions, interacting with the environment, and obtaining rewards. A well-
behaved agent is to train a value function that maximizes the final reward. Such processes can be
mathematically modeled as Markov Decision Processes (MDPs) defined in Appendix A.1. Deep
RL replaced prior-defined value function with FNNs (Henderson et al., 2018). As a representative
value-based algorithm in deep RL, deep-fitted Q-iteration (DFQI) takes transition data as its input
and approximates the target value function using FNNs (Ernst et al., 2005). The statistical properties
of traditional fitted Q-iteration (FQI) with function approximation are well-studied (Murphy, 2005).
For DFQI, Fan et al. (2020) tried to provide a theoretical analysis.

Our work further complements Fan et al. (2020) in the following aspects: (1) Our error bound
depends on the ambient dimension d explicitly and polynomially (not implicitly and exponentially);
(2) We introduce a weaker α-mixing condition (Modha & Masry, 1996; Hang & Steinwart, 2014)
than β-mixing in Antos et al. (2007) to characterize the dependency of MDPs (not assume that
the batch data are independently and identically distributed ignoring the temporal dependency of
MDPs); (3) We assume that the optimal action-value function Q∗ is a Hölder continuous function
(without a composition form of certain functions).

2 METHOD AND RESULTS

Through the tools of error propagation (Proposition C.1), statistical error analysis (Theorem C.1),
and deep approximation error analysis (Theorem C.2), a non-asymptotic error bound has been es-
tablished between the estimated action-value function corresponding to the estimated greedy policy
and the optimal Q∗ by controlling the statistical and approximation errors on MDPs assumed to
be α-mixing. Then we derive the generalization bound in terms of the ReLU-activated FNNs and
α-mixing data in the context of RL. Finally, we demonstrate that the error bound depends on the
sample size, the ambient dimension (polynomially), the width and depth of the neural network, and
the number of training iterations, and thus provide a powerful tool in hyper-parameters setting.
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As the optimal Bellman operator T ∗ in (5) is a ζ-contraction, we can use fixed point iteration at
the population level to approximate the optimal action-value function Q∗ in (4). Specifically, when
R(·|x, a) and P (·|x, a) are known, the following iteration (1) can approximate Q∗ well if J is large
enough, i.e.,

Q0 → Q1 = T ∗Q0 → Q2 = T ∗Q1 → . . . → QJ = T ∗QJ−1. (1)
Here, Qj−1 and Qj , j = 1, . . . , J , satisfy

Qj ∈ argmin
Q

L(Q) = E|Q(X,A)− Y |2. (2)

In (2), µ represents the distribution of the state-action pair (X,A), and Y = R +
ζmaxa′∈A Qj−1(X

′, a′). However, in practice, we only have access to the batch data {Zi}ni=1 =

{Xi, Ai, Ri, X
′
i}ni=1. Therefore, DFQI uses an estimator Q̂j in F to mimic the fixed point iteration

in (1). The estimator Q̂j is obtained by solving the regression problem

Q̂j ∈ arg min
Q∈F

L̂(Q) =
1

n

n∑
i=1

(Q(Xi, Ai)− Yi)
2
, (3)

where F represents the ReLU-activated FNNs, and Q̂0 ∈ F is an initial guess, and Yi = Ri +

ζmaxa′∈A Q̂j−1(Xi+1, a
′). It is important to note that the empirical loss in (3) is an unbiased

estimation of the population loss in (2), i.e., E[L̂(Q)] = L(Q), ∀Q ∈ F . Details of the DFQI
algorithm are provided in Algorithm 1.

We introduce the definition of α-mixing for describing the dependence of a stochastic process.
Definition 2.1. (α-mixing) Let {Ut}t≥1 be a stochastic process. Denote by U1:n the collection
(U1, . . . , Un), where we can allow n = ∞. Let σ

(
U i:j

)
denote the σ-algebra generated by U i:j(i ≤

j). The m-th α-mixing coefficient of {Ut}t≥1, αm, is defined by
αm = sup

t≥1
sup

A∈σ(U1:t),B∈σ(Ut+m:∞)

|P(AB)− P(A)P(B)| .

{Ut}t≥1 is said to be α-mixing if αm → 0 as m → ∞. We say that a α-mixing process is exponential
if there exists parameters ᾱ, a, η > 0 such that αm ≤ ᾱ exp (−amη) holds for all m ≥ 0.

Now, we give the main result in this paper, a non-asymptotic error bound of DFQI.

Theorem 2.1. Suppose that {T ∗Q̂j−1}Jj=1 ∈ Hγ in Definition C.2 with γ = s+ r, s ∈ N0 and r ∈
(0, 1], {Zi}ni=1 is strictly exponentially α-mixing in Definition 2.1, and the probability distribution µ
of (X,A) is absolutely continuous with respect to Lebesgue measure. Then, for the ReLU-activated

FNNs F with the width W = O
(
(n

η
1+η )

d
4(d+4γ) log n

)
and depth D = O

(
(n

η
1+η )

d
4(d+4γ) log n

)
,

we have

E
[
∥Q∗ −QπJ∥L1(ν)

]
≤ 2

√
CCν,µζ

(1− ζ)2
·
[
ds+(γ∨1)/2(n

η
1+η )

−γ
d+4γ (log n)3/2

]
+

4ζJ+1

(1− ζ)2
Rmax,

where C is a constant depending on s,B,B, Rmax, η, a, ᾱ.

The mild completeness condition, denoted by {T ∗Q̂j−1}Jj=1 ∈ Hγ , used in Theorem 2.1 is satisfied
when the MDP underlying the problem satisfies certain smoothness conditions, as pointed out in Fan
et al. (2020). Moreover, it is also noted that a completeness condition is necessary, as highlighted in
Chen & Jiang (2019). Theorem 2.1 provides a non-asymptotic error bound, that is O

(
n

−γη
(1+η)(d+4γ)

)
when J is large enough. This bound improves upon the result in Fan et al. (2020) by taking into
account the temporal dependence of data and by reducing the dependence on the dimension d from
exponential to polynomial.

3 CONCLUSION

The focus of this paper is to analyze the error bound of ReLU-activated FNNs in batch-based RL,
which are used for approximating value functions in DFQI. Our study provides a clear understanding
of how hyper-parameters such as the number of samples, ambient dimension, width and depth of
the neural network, and the number of iterations affect the convergence rate. This knowledge can be
applied to the training of DFQI and other value-based RL algorithms.
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A BACKGROUND AND NOTATIONS

A.1 MARKOV DECISION PROCESS

The primary purpose of modeling a Markov decision process (MDP) is to facilitate the derivation
of a quintuple (X ,A, P,R, ζ) that represents a discounted MDP. Here, X and A are the state and
action spaces, respectively. The transition probability kernel P is a measurable function on X ×
A ⊆ Rd that defines the probability distribution of the next state given the current state and action.
Specially, let M(X ) denote the sets of probability measures on (X ,B(X )), then P (·|x, a) belongs
to M(X ) for each pair (x, a) ∈ X × A, and P (D|·, ·) is one measurable function on X × A for
every D ∈ B(X ). R(· | x, a) is the distribution of the immediate reward R(x, a), and ζ ∈ [0, 1)
is the discount factor. The stochastic policy associated with the action at state x is denoted by
π(·|x). Given an initial distribution ν ∈ M(X ), the batch data {Zi}ni=1 = {Xi, Ai, Ri, X

′
i}ni=1

with X ′
i = Xi+1 is generated by assuming that X1 ∼ ν and Ai ∼ π(· | Xi), Ri ∼ R(· | Xi, Ai),

and X ′
i ∼ P (· | Xi, Ai) for i = 1, . . . , n. The work assumes strict stationarity with α-mixing

for the MDP {Zi}ni=1 as defined in Definition 2.1. This assumption implies that Zi’s have same
distributions.

Let the function Qπ(x, a) define the action-value function, which is represented as the expected
sum of discounted rewards over an infinite horizon for a given policy π, starting at state x and taking
action a at the first step, that is,

Qπ(x, a) := E

[ ∞∑
i=1

ζi−1Ri | X1 = x,A1 = a, π

]
.

Let T π be the Bellman operator for a given policy π, that is,

T πQ(x, a) := ER(x, a) + ζPπQ(x, a),

with

PπQ(x, a) :=

∫
P (dx′|x, a)π(da′|x′)Q(x′, a′),

then it has the unique fixed point Qπ . Under the assumption that R(x, a) ranges between 0 and
Rmax for all (x, a) ∈ X × A, Qπ is constrained to the interval [0, Rmax/(1 − ζ)]. Assuming the
existence of a policy π∗ that maximizes Qπ and satisfies

Q∗ := Qπ∗
, (4)

we obtain Q∗ which satisfies the optimal Bellman equation Q∗ = T ∗Q∗, where T ∗ is the optimal
Bellman operator defined as

T ∗Q(x, a) = E[R(x, a)] + ζEX′∼P (·|x,a) max
a′∈A

[Q (X ′, a′)]. (5)

Furthermore, the optimal Bellman operator T ∗ is shown to be a ζ-contraction in the sup-norm. The
greedy policy π(x;Q) for an action-value function Q is defined as the action that maximizes Q(x, a)
for a given state x, i.e.,

π(x;Q) ∈ argmax
a∈A

Q(x, a), x ∈ X .
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A.2 RELU-ACTIVATED FEEDFORWARD NEURAL NETWORKS

We now introduce the FNNs with ReLU activations. We use F to denote the class of FNNs fθ :
Rd → R with parameter θ, depth D, width W , where fθ is defined as fθ(x) = vD ◦ ρ ◦ vD−1 ◦ ρ ◦
· · · ◦ρ◦v1 ◦ρ◦v0(x), x ∈ Rd, and therefore ∥fθ∥∞ ≤ B holds for some 0 < B < ∞, where ∥ · ∥∞
refers to the sup-norm, ρ(x) = max(0, x) is the ReLU activation function operates that pointwisely
on x and

vi(x) = Ãix+ bi, i = 0, 1, . . . ,D,

Ãi ∈ Rdi+1×di is the weight matrix, bi ∈ Rdi+1 is the bias vector, and di is the width of the i-th
layer. The first layer takes the input data and the last layer gives the output target. The FNNs fθ has
D hidden layers and in total (D+1) layers. We use a (D+1)-vector (d0, d1, . . . , dD)

⊤ to describe
the width of each layer; in particular, d0 = d is the dimension of the input (X,A) and dD = 1 is
the dimension of the output. The width W is defined as the maximum width of hidden layers, i.e.,
W = max {d1, . . . , dD}.

A.3 OTHER NOTATIONS

We introduce other notations used throughout this paper and list them in Table 1.

Table 1: Table of notations used throughout this paper
Notation Meaning
a ∨ b max{a, b}, a, b ∈ R.
⌊a⌋ The largest integer less than a, a ∈ R.
⌈a⌉ The smallest integer no less than a, a ∈ R.
∥x∥q ℓq-norm of vector ∥x∥q = (

∑d
i=1 |xi|q)

1
q ,

q ∈ [1,∞], x = (x1, . . . , xd)
⊤ ∈ Rd.

N0 Non-negative integers.
N Strictly positive integers.
∥Q∥qLq(µ) ℓq-norm of measurable function

Q : Rd → R1 for probability measure µ on Rd, i.e.,
∥Q∥qLq(µ) = Ex∼µ|Q(x)|q .

B DFQI ALGORITHM

The detailed architecture of DFQI is summarized in Algorithm 1.

Algorithm 1 Deep Fitted Q-Iteration Algorithm

1: Input: Initial value Q̂0 ∈ F .
2: for j = 1, . . . , J do
3: Sampling (Xi, Ai, Ri, X

′
i) , i = 1, . . . , n.

4: Compute Yi = Ri + ζmaxa′∈A Q̂j−1 (X
′
i, a

′).
5: Obtain the j-step action-value function Q̂j via solving (3), that is,

Q̂j ∈ arg min
Q∈F

L̂(Q).

6: end for
7: Output: Estimator Q̂J of Q∗ and the greed policy πJ = π(·; Q̂J).

C ERROR ANALYSIS

In this section, we provide an error analysis of DFQI by constraining ∥Q∗ −QπJ∥L1(ν)
for any per-

missible distribution ν. We introduce concentration coefficients that regulate the shift in distribution
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since specific concentrability is required for the theoretical analysis of RL (Munos, 2003; Xie &
Jiang, 2020; 2021; Chen & Jiang, 2019).

Definition C.1. (Concentration Coefficients). Let ν1, ν2 ∈ M(X ×A) be two probability measures
that are absolutely continuous with respect to the Lebesgue measure on X × A. Let {πt}t≥1 be a
sequence of policies. Suppose the initial state-action pair (X0, A0) of the MDP has distribution ν1,
and we take action At according to the policy πt. For any integer m, we denote the distribution of
{(Xt, At)}mt=0 by ν1P

π1Pπ2 · · ·Pπm . The m-th concentration coefficient is defined as

cν1,ν2
(m) = sup

π1,...,πm

∥∥∥∥d (ν1Pπ1Pπ2 . . . Pπm)

dν2

∥∥∥∥
∞

,

where the supremum is taken over all possible policies. Furthermore, let µ be the distribution of
(Xi, Ai) in Algorithm 1 and let ν be a fixed distribution on X ×A. Denote

Cν,µ := (1− ζ)2 ·
∑
m≥1

mζm−1cν,µ(m), (6)

and assume Cν,µ < ∞, where (1 − ζ)2 in (6) is a normalization term, since
∑

m>1 ζ
m−1 · m =

(1− ζ)−2.

Next, we introduce the error propagation (Antos et al., 2008; Farahmand et al., 2016; Fan et al., 2020)
such that we can relate the error bound of ∥Q∗ −QπJ∥L1(ν)

into that of ∥Q̂j − T ∗Q̂j−1∥L2(µ).

Proposition C.1. (Error propagation) Let πJ be the greedy policy of Q̂J in Algorithm 1 and QπJ

be the action-value function corresponding to πJ , then

∥Q∗ −QπJ∥L1(ν)
≤ 2ζ

(1− ζ)2

(
Cν,µ max

1≤j≤J
∥εj∥L2(µ)

+ 2ζJRmax

)
,

where εj = Q̂j − T ∗Q̂j−1, j = 1, . . . , J .

Proposition C.1 implies that we only need to bound ∥Q̂j−T ∗Q̂j−1∥L2(µ). To achieve this goal, we
start by decomposing the excess risk L(Q̂j)−L(T ∗Q̂j−1) into two parts, namely the approximation
and statistical errors, as shown in Lemma C.1. We then apply suitable techniques from the empirical
process with dependent data and deep approximation theory to derive the bound of each of these
errors.

Lemma C.1. Given a random sample {Zi}ni=1, the excess risk satisfies

L(Q̂j)− L(T ∗Q̂j−1) ≤ 2 sup
Q∈F

|L(Q)− L(Q)|+ inf
Q∈F

∥Q− T ∗Q̂j−1∥2L2(µ).

C.1 STATISTICAL ERROR

The statistical error of ReLU-activated FNNs F with dependent data {Zi}ni=1 is represented by

the term supQ∈F

∣∣∣L(Q)− L̂(Q)
∣∣∣. In order to bound this term, we follow the approach described in

Modha & Masry (1996) and derive the tail probability bound of the empirical process with α-mixing
data, indexed by functions in F , using the covering number of F . The covering number can be
further bounded by the width and depth of the ReLU-activated neural networks, using VC dimension
(Bartlett et al., 2019). Finally, we present the bound on the statistical error, supQ∈F

∣∣∣L(Q)− L̂(Q)
∣∣∣,

in the following theorem.

Theorem C.1. Suppose that {Zi}ni=1 is strictly exponentially α-mixing, then

E sup
Q∈F

∣∣∣L(Q)− L̂(Q)
∣∣∣ ≤ C1 ·

[(
D2W2 log(WD) log(n)

n
η

1+η

)1/2
]
,

where C1 is a constant depending on B, η, a, ᾱ, Rmax.
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Proof. Denote the composite function class

ℓ ◦ F :=
{
ℓQ : ℓQ(x, a, r, x

′) =

(
Q(x, a)− r − γmax

a′∈A
Q̂j−1(x

′, a′)

)2

, Q ∈ F
}
.

Then, we have

sup
Q∈F

∣∣∣L̂(Q)− L(Q)
∣∣∣ = sup

Q∈F

∣∣∣∣∣ 1n
n∑

i=1

(Q(Xi, Ai)− Yi)
2 − E (Q(Xi, Ai)− Yi)

2

∣∣∣∣∣
= sup

Q∈F

∣∣∣∣∣ 1n
n∑

i=1

ℓQ(Xi, Ai, Ri, X
′
i)− EℓQ(Xi, Ai, Ri, X

′
i)

∣∣∣∣∣ .
Let VCF be the VC-dimension of F . For any δ ≥ 0, we obtain

E sup
Q∈F

∣∣∣∣∣ 1n
n∑

i=1

ℓQ(Xi, Ai, Ri, X
′
i)− EℓQ(Xi, Ai, Ri, X

′
i)

∣∣∣∣∣
≤ δ +

∫ 2M̃

δ

P
(
sup
Q∈F

∣∣∣ 1
n

n∑
i=1

ℓQ(Xi, Ai, Ri, X
′
i)− EℓQ(X1, A1, R1, X

′
1)
∣∣∣ > ε

)
dε

≤ δ +

∫ 2M̃

δ

2CNn (ε/4, ℓ ◦ F , ∥ · ∥∞) exp

(
− 3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ +

∫ 2M̃

δ

2CNn

( ε

4λ
,F , ∥ · ∥∞

)
exp

(
− 3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ +

∫ 2M̃

δ

2C

(
eBn

δ
4λ ·VCF

)VCF

exp

(
− 3n(η)ε2

96M̃2 + 32M̃ε

)
dε

≤ δ + 4CM̃

(
4λeBn
δVCF

)VCF

exp

(
−3n(η)δ2

160M̃2

)
≤ C1n

− η
2(1+η) ·

√
log n ·VCF .

Here, the first inequality holds since ℓ◦F is bounded by M̃ := 6B2+3R2
max, the second inequality

holds by some elementary calculations and Theorem 4.3 of Modha & Masry (1996) with C :=
1+4e−2ᾱ, and Nn refers to the uniform covering number (Anthony et al., 1999), the third inequality
holds since

|ℓQ1
(x, a, r, x′)− ℓQ2

(x, a, r, x′)| ≤ λ · ∥Q1 −Q2∥∞
with λ := 4B+2Rmax, the fourth inequality holds by the relationship between the covering number
and the VC-dimension of the ReLU-activated networks F (Anthony et al., 1999) given by

Nn

( ε

4λ
,F , ∥ · ∥∞

)
≤
(

eBn
ε
4λ ·VCF

)VCF

,

and the last inequality holds for constant C1 depending on B, η, a, ᾱ, Rmax due to the fact that
n(η) ≥ 2−

2η+5
1+η a

1
1+η n

η
1+η when ⌈t⌉ ≤ 2t for all t ≥ 1 and ⌊t⌋ ≥ t/2 for all t ≥ 2 and setting

δ2 =
160M̃2

n
η

1+η

VCF log

(
4λeBn
VCF

)
.

Hence, we have

E sup
Q∈F

∣∣∣L̂(Q)− L(Q)
∣∣∣ ≤ C1 ·

[(
D2W2 log(WD) log(n)

n
η

1+η

)1/2
]
,

where the inequality holds since the upper bound of VC-dimension for the ReLU-activated network
F satisfies

c1 · D2W2 log(DW2) ≤ VCF ≤ c2 · D2W2 log(D2W2)

with universal constant c1 and c2, see Bartlett et al. (2019).
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C.2 APPROXIMATION ERROR

The term infQ∈F ∥Q − T ∗Q̂j−1∥2L2(µ) can be comtrolled by the approximation error of ReLU-
activated FNNs F to the Hölder class. This is because the smoothing property of T ∗ implies that
T ∗Q̂j−1 is included in the Hölder class. In order to achieve this, we make the assumption that the
distribution of the state-action pair (X,A) is supported on [0, 1]d, without any loss of generality.
Furthermore, we need to satisfy the representation condition that the target Q∗ is an element of the
Hölder class Hγ , which is defined as follows.
Definition C.2. (Hölder class) For γ > 0 with γ = s+ r, where s ∈ N0 and r ∈ (0, 1] and d ∈ N,
we denote Hölder class Hγ as

Hγ =

{
f :[0, 1]d → R, max

∥α̃∥1≤s

∥∥∥∂α̃f
∥∥∥
∞

≤ B, max
∥α̃∥1=s

sup
x ̸=y

∣∣∂α̃f(x)− ∂α̃f(y)
∣∣

∥x− y∥r∞
≤ B

}
.

We apply the approximation result of Jiao et al. (2023) giving the approximation error bound for
Hölder continuous functions using ReLU-activated FNNs, shown in the following Theorem C.2.
Note that the prefactor (d⌊γ⌋+(γ∨1)/2) depends on the ambient dimension d polynomially, which
improves that in Lu et al. (2021) from exponentially to polynomially.
Theorem C.2. (Theorem 3.3 of Jiao et al. (2023)) Assume that f ∈ Hγ with γ = s + r, s ∈ N0

and r ∈ (0, 1]. For any W,L ∈ N, there exists a function f̃ belonging to the ReLU-activated FNNs
F with width W = 38(⌊γ⌋ + 1)2d⌊γ⌋+1W ⌈log2(8W )⌉ and depth D = 21(⌊γ⌋ + 1)2L⌈log2(8L)⌉
such that

|f(x)− f̃(x)| ≤ 18B(⌊γ⌋+ 1)2d⌊γ⌋+(γ∨1)/2(WL)−2γ/d,

for all x ∈ [0, 1]d\Ω([0, 1]d, S, δ), where Ω([0, 1]d, S, δ) = ∪d
i=1{x = [x1, x2, . . . , xd]

⊤ : xi ∈
∪S−1
k=1 (k/S − δ, k/S)}, with S = ⌈(WL)2/d⌉ and δ ∈ (0, 1/(3S)].

C.3 BOUNDING THE EXCESS RISK L(Q̂j)− L(T ∗Q̂j−1)

With Theorems C.1-C.2, we can establish the non-asymptotic error bound for the excess risk
L(Q̂j) − L(T ∗Q̂j−1)

(
∥Q̂j − T ∗Q̂j−1∥2L2(µ)

)
by choosing appropriate width W and depth D,

shown in Theorem C.3.
Theorem C.3. Suppose that {T ∗Q̂j−1}Jj=1 ∈ Hγ in Definition C.2 with γ = s + r, s ∈ N0 and
r ∈ (0, 1], {Zi}ni=1 is strictly exponentially α-mixing, and the probability distribution µ of (X,A)
is absolutely continuous with respect to Lebesgue measure. Then, for the ReLU-activated FNNs F
with the width W = O

(
(n

η
1+η )

d
4(d+4γ) log n

)
and depth D = O

(
(n

η
1+η )

d
4(d+4γ) log n

)
, the excess

risk satisfies

E
[
∥Q̂j − T ∗Q̂j−1∥2L2(µ)

]
≤ C

[
d2s+(γ∨1)(n

η
1+η )

−2γ
d+4γ (log n)3

]
, j = 1, . . . , J,

where C is a constant depending on s,B,B, Rmax, η, a, ᾱ.

Proof. By Theorem C.2, for any f∗ ∈ Hγ , there exists one function f̃ ∈ F with width W =
38(s+ 1)2ds+1W ⌈log2 8W ⌉ and depth D = 21(s+ 1)2L ⌈log2 8L⌉ such that∣∣∣f∗(x)− f̃(x)

∣∣∣ ≤ 18B(s+ 1)2ds+(γ∨1)/2 (WL)
−2γ/d

for x ∈ ∪θQ̃θ, with

Q̃θ =

{
x : xi ∈

[
θi
S
,
θi + 1

S
− δ · 1{θi<S−1}

]}
where θ = (θ1, θ2, . . . , θn) ∈ {0, 1, . . . , S − 1}d, and δ is an arbitrary number satisfying 0 < δ ≤
1
3S . Then the Lebesgue measure of [0, 1]\Q̃θ is no more than dSδ which can be arbitrarily small if
δ is arbitrarily small. Since µ is absolutely continuous with respect to the Lebesgue measure and
T ∗Q̂j−1 ∈ Hγ , we have

inf
Q∈F

∥Q− T ∗Q̂j−1∥2L2(µ) ≤ 324B2(s+ 1)4d2s+(γ∨1)
⌊
(WL)2/d

⌋−2γ

.

8



Published as a Tiny Paper at ICLR 2023

By Lemma C.1 and Theorem C.1, it yields that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≤ C1 ·

[(
W2D2 log(WD) log(n)

n
η

1+η

)1/2
]

+ 324B2(s+ 1)4d2s+(γ∨1)
⌊
(WL)2/d

⌋−2γ

.

Setting W = O
(
(n

η
1+η )

d
4(d+4γ) log n

)
and depth D = O

(
(n

η
1+η )

d
4(d+4γ) log n

)
, then it yields that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≤ C2 ·

[
d2s+(γ∨1)(n

η
1+η )

−2γ
d+4γ (log n)3

]
,

where C2 is a constant depending on s,B,B, Rmax, η, a, ᾱ.

C.4 PROOF OF THEOREM 2.1

Proof. By Proposition C.1 and Theorem C.3, we can conclude that

E
[
∥Q∗ −QπJ∥L1(ν)

]
≤ 2

√
CCν,µζ

(1− ζ)2
·
[
ds+(γ∨1)/2(n

η
1+η )

−γ
d+4γ (log n)3/2

]
+

4ζJ+1

(1− ζ)2
Rmax,

where C is a constant depending on s,B,B, Rmax, η, a, ᾱ. This completes the proof.
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