
Published as a Tiny Paper at ICLR 2023

EDCDE - EXTENDED DISCOVERY OF CLOSED-FORM
DIFFERENTIAL EQUATIONS

Robert Joseph George∗
Department of Mathematics and Statistics
University of Alberta
{rjoseph1}@ualberta.ca

ABSTRACT

Understanding the mathematical connections between variables in a physical sys-
tem, such as Ordinary Differential Equations (ODEs), is an essential part of the
scientific method. This is where symbolic regression plays a key role in looking
for closed-form functions given a dataset. We extend the results of the original
Discovering Closed-Form ODEs from Observed Trajectories (D-CODE) by con-
sidering a generalized variational formulation that can work with most forms of
ODEs. We conclude the paper with numerical results and applications.

1 INTRODUCTION

Symbolic regression for ODEs and PDEs has become a hot topic in recent years due to its significant
potential to advance our understanding and modelling of complex systems Simmons (1972). How-
ever, the direct application of symbolic regression to ODEs is challenging since we typically cannot
observe the time derivative, and the labels for regression are not available in the data. Instead, we
only have access to measurements of the state at some discrete time points with added noise Cullum
(1971). To overcome this limitation, Qian et al. (2021) studied first-order autonomous systems and
observed that finding closed-form ODEs can be a time-consuming and expertise-intensive task. To
simplify the analysis or develop efficient numerical algorithms, non-autonomous and higher-order
ODEs can be transformed into systems of autonomous ODEs by adding more variables. However,
this can be challenging for complex systems and poorly understood equations, requiring significant
mathematical analysis and modelling efforts. Additionally, the increase in the number of variables
from n to a system of 2n+1 can be cumbersome. In our paper, we propose a novel approach to solv-
ing original systems of order n using a generalized variational formulation supported by numerical
results. We also discuss extensions such as non-autonomous higher-order systems in the appendix.

2 FIRST DEGREE HIGHER ORDER ODES

Let
n
ẋj (t) be the nth time derivative. We consider the system with the system with J ∈ N+ variables

defined as
F(xj(t), ẋj(t), . . . ,

n
ẋj (t)) = fj(x(t)),∀j = 1, . . . , J (1)

More specifically F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) =

∑n
i=0 αi

i
ẋj (t) where αi ∈ R and

0
ẋj (t) = xj(t).

The functions fj : RJ → R will sometimes be directly referred to as the ODEs. We also emphasize
that fj could be non - linear. We denote T ∈ R+as the maximum time horizon we have the data for,
and the trajectory xj : [0, T] → R is a function of time, whereas the state xj(t) ∈ R,∀t ∈ [0, T] is
a point on the trajectory. We denote the state vector := [x1(t), . . . , xJ(t)]

⊤ ∈ RJ and the vector-
valued trajectory function x := [x1, . . . , xJ]. Now let f∗

j ’s be the true but unknown ODEs to
be uncovered, and xi : [0, T] → Rj , i ≤ N,N ∈ N+be the true trajectories that satisfy f∗

j ’s.
In practice, we only measure the true trajectories at discrete times and with noise. Denote the
measurement of trajectory i at time t as yi(t) ∈ RJ ; we assume yi(t) = xi(t) + ϵi(t), ∀i ≤

∗Webpage: https://www.robertj1.com/. Code: https://github.com/Robertboy18/EDCDE-ICLR-2023

1

https://www.robertj1.com/
https://github.com/Robertboy18/EDCDE-ICLR-2023

Published as a Tiny Paper at ICLR 2023

N, t ∈ T where ϵi(t) ∈ RJ is zero-mean noise with standard deviation σ. The measurements are
made at time t ∈ T = {t1, t2, . . . , T}. We denote the dataset as D = {yi(t) | i ≤ N, t ∈ T }.

2.1 GENERALIZED VARIATIONAL FORMULATION

The variational formulation provides a direct link between the trajectory x and the ODE fj without

involving any of the nth derivatives
n
ẋj (t). In particular consider J ∈ N+, T ∈ R+, continuous

functions x : [0, T] → RJ , f : RJ → R, and g ∈ Cn[0, T], where Cn is the set of n times
continuously differentiable functions. We define the functionals

Cj(f,x, g
n) :=

∫ T

0

(
f(x(t))g(t)n + xj(t)Φ(

n
ġ (t))

)
dt, ∀j ∈ {1, 2, . . . , J} (2)

where Φ(
n
ġ) is a function of derivatives of g. To get the explicit representation of Φ, we must do a

Taylor series expansion of gn and choose the n-th term in the series expansion for the corresponding
n
ġ. We obtain a linear combination of the ġ derivatives. The functional Cj depends now on the testing

function g(t) and its n - derivatives
n
ġ (t) but not on any n - derivatives of

n
ẋj (t). Then we can easily

consider an extension of the proposition in the paper, which can be stated as follows.

Proposition 1: Consider J ∈ N+, T ∈ R+, a continuously differentiable function x : [0, T] → RJ ,
and continuous functions fj : RJ × [0, T] → R for j = 1, . . . , J . Then x is the solution to the
system of ODEs in Equation 2 if and only if

Cj (fj ,x, g
n) = 0,∀g ∈ Cn[0, T], g(0) = g(T) ≡ 0

In regard to the choice of the testing functions, we can consider gs(t) =
√

2
T sin(sπtT), which are

an orthonormal basis for L2[0, T] and satisfy g(0) = g(T) = 0. Moreover, their derivatives are

easy to compute and have a closed-form analytic solution such as for odd powers; we have
2k+1

ġs(t)=

(−1)k
√
2πksk cos

(
πsx
T

)
T

2k+1
2

and for even powers of n we have
2k

ġs(t)=
(−1)k

√
2πksk sin

(
πsx
T

)
T

2k+1
2

. The

proof of proposition 1 and pseudocode is in A.1 and A.2, respectively.

3 NUMERICAL RESULTS

We create generalized ODEs from the ODEs considered in the original paper. In particular, we
consider the third-order generalized ODEs (Logistic and Gompertz) given by

3
ẋ (t) = −θ1x(t) · log (θ2x(t)) ,

3
ẋ (t) = θ1x(t) ·

(
1− x(t)θ2

)
, θ1, θ2 ∈ R+ (3)

We have no benchmark to compare our EDCDE algorithm as it is difficult to estimate the
3
ẋ directly

and hence will present the closed-form ODEs discovered by our algorithm. Tables A.3 showcase
our results and some of the closed-form ODEs discovered by EDCDE. We fix the number of basis
as 50, do 10 simulations for each experiment and set the noise level to 0 for simplicity.

4 APPLICATIONS

Similar to the original D-CODE paper, we demonstrate that our generalized algorithms can be used
to discover higher-order closed-form ODEs. These algorithms have applications in various fields,
such as: 1) Data-Centric AI: With the increasing availability of data, ML has enabled the construc-
tion of more powerful and accurate models. Symbolic regression can be used to analyze complex
datasets and identify underlying ODE/PDE systems and relationships that may not be apparent to
human analysts. 2) Theory discovery: Closed-form differential equations provide a concise and
interpretable representation of a system’s behaviour, making them useful for making predictions
and understanding underlying relationships. Symbolic regression can be employed to develop new
theories about the system and make predictions about its behaviour.

2

Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that the author of this work meets the URM criteria of ICLR 2023 Tiny
Papers Track.

REFERENCES

Jane Cullum. Numerical differentiation and regularization. SIAM Journal on Numerical Analysis, 8
(2):254–265, 1971. ISSN 00361429. URL http://www.jstor.org/stable/2949474.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2021.

G.F. Simmons. Differential Equations: With Applications and Historical Notes. International series
in pure and applied mathematics. McGraw-Hill, 1972. ISBN 9780070573758. URL https:
//books.google.ca/books?id=uCDvAAAAMAAJ.

A APPENDIX

A.1 PROOF OF PROPOSITION 1

Lemma 1: If we had an ODE of order n, i.e.
n
ẋ1 then the following statements are true

1:
n
ẋ1 the corresponding Taylor series expansion should be computed until the n + 1 term, and the

first n terms correspond to the boundary terms, which equal to 0 due to g(0) = g(T) = 0. The n+1
term is the corresponding integral term.

2:
n−1
ẋ1 the corresponding boundary terms equal to the first n−1 terms and the n term is the integral.

Continuing the process, we eventually get that for the ẋ1 term, our boundary term equals the first
term, and the integral equals the second term.

Proof 1: We now prove our proposition in full generality. As in the original paper, the proof is
straightforward, with repeated integration by parts. We have from 2 that

F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) = fj(x(t))

Now using the Fundamental lemma of the calculus of variations, we get the following two statements
are equivalent.

F(xj(t), ẋj(t), . . . ,
n
ẋj (t))− fj(x(t)) = 0 ∀t ∈ [0, T]∫ T

0

(
F(xj(t), ẋj(t), . . . ,

n
ẋj (t))− fj(x(t))

)
g(t)dt = 0, ∀g ∈ Cn[0, T], g(0) = g(T) ≡ 0

Using linearity of integration, we get

=

∫ T

0

(
F(xj(t), . . . ,

n
ẋj (t))

)
g(t)dt−

∫ T

0

fj(x(t))g(t)dt

=

∫ T

0

(
n∑

i=0

αi

i
ẋj (t)

)
g(t)dt−

∫ T

0

(fj(x(t))) g(t)dt

=

n∑
i=0

∫ T

0

αi

i
ẋj (t)g(t)dt−

∫ T

0

(fj(x(t))) g(t)dt

Where the swap can be made due to the dominated convergence theorem (Again, we only have a
finite sum, so it is valid mathematically). Now we only care about the first term above. Therefore
we get (Avoiding the explicit notation of t)

=

n∑
i=0

∫ T

0

αi

i
ẋj (t)g(t)dt =

n∑
i=0

(
αi

(
i∑

k=1

ξk{gn(t)}
k
ẋ −

∫ T

0

ξi+1{gn(t)}xjdt

))

=

n∑
i=0

(
−
∫ T

0

ξi+1{gn(t)}xjdt

)

3

http://www.jstor.org/stable/2949474
https://books.google.ca/books?id=uCDvAAAAMAAJ
https://books.google.ca/books?id=uCDvAAAAMAAJ

Published as a Tiny Paper at ICLR 2023

where in the last equality we used the fact that g(0) = g(T) = 0 and where ξk{gn(t) is the k − th
term in the power series expansion of gn(t). That means that

= −
∫ T

0

n∑
i=0

ξi+1{gn(t)xj}dt =
∫ T

0

Φ(
n
ġ (t))xjdt =

∫ T

0

(
f(x(t))g(t)n + xj(t)Φ(

n
ġ (t))

)
dt

This proves that (Let J = {1, 2 . . . J} and ∀j ∈ J)

F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) = fj(x(t)) ⇐⇒ Cj (fj ,x, g

n) = 0, ∀g ∈ Cn[0, T], g(0) = g(T) = 0

A.2 PSEUDOCODE

Algorithm 1 EDCDE - ODE
Input: Dataset D = {Gi(t) | i ≤ N, t ∈ T }
Input: Smoothing Algo S, Optimization Algo O
Input: Numerical Integration Algo I , Order n
Input: Test functions gs, s ≤ S, Initial guesses fj , j ≤ J ̂̂xi = S (xi (t1) ,xi (t2) , . . .) , i ≤ N
Φ = Symbolically differentiate g(x)n

for i = 1 to J do
f̂j = fj
Converge = False
while Not Converge do

obj =
∑N

i=1

∑S
s=1 Cj(fj , ̂̂xi, g

n
s) [Use Φ]

f̂j , Converge = O(obj, f̂j)
end while

end for
Output: The discovered ODE’s fj , j ≤ J

A.3 NUMERICAL RESULTS

We note that we did not compare it with the original DCODE algorithm as DCODE does not estimate
3
ẋ (t) directly, but instead, they convert that into a first-order autonomous system because higher
order or nonautonomous ODEs can be transformed into first-order autonomous systems by including
more variables. We also did not compare to the original D-CODE paper as the original codebase did
not include examples on how to do this and estimate higher-order ODEs.

Higher Order ODE Training Time

ODE Training Time Order

Logistic 1540 1
Gompertz 1200 1
Logistic 1080 3
Gompertz 3000 3

Higher Order ODE Closed Form Discovery

ODE Order ODE Discovered (Best)

Logistic 1 θ1x(t)− x(t)θ2

Gompertz 1 −θ1x(t) · log (θ2x(t))
Logistic 3 x(t)θ1(θ2 − x(t))
Gompertz 3 (−x(t)− 4 log x(t))(θ1 log(θ2x(t)))

A.4 COMPUTATIONAL COST AND THE TEST FUNCTION

The algorithm for D-CODE remains almost the same as the original paper. Still, we can improve
the complexity of the original algorithm by pre-computing all the derivatives up to order n and then
passing it onto our objective function and optimization step. A key benefit to this is that our test
function has a very nice symmetry in the derivatives, i.e. differentiating sin(x) twice gives us back
the original function (the negative of it). This symmetry allows us to use the generalized derivatives
formula for odd and even derivative powers of gs(t) by plugging in the value for k. We can also do
the same for αi in section D by pre-computing and storing all the derivatives. However, one must
remember that their closed-form derivatives could be complicated to compute, especially for higher
orders. In theory, our algorithm should work and be generalizable to capture most of the ODEs, but
in practice, rarely does one encounter greater than third-order ODEs, so our method is feasible.

4

Published as a Tiny Paper at ICLR 2023

B CONVERGENCE TO DISTANCE

The convergence properties remain the same as in the original paper, and the proof of the theorem
follows the same procedure as the original paper but replaces gs by gns .

Theorem 2: Consider J ∈ N+, j ∈ {1, . . . , J}, T ∈ R+. Let f∗ : RJ → R be a continuous func-
tion, and let x : [0, T] → RJ be a continuously differentiable function satisfying ẋj(t) = f∗(x(t)).
Consider a sequence of functions (x̂k), where x̂k : [0, T] → RJ is a continuously differentiable
function. If (x̂k) converges to x in L2 norm. Then for any Lipschitz continuous function f

lim
S→∞

lim
k→∞

S∑
s=1

Cj (f, x̂k, g
n
s)

2
= dx (f, f∗)

2
, where {g1, g2, . . .} is a Hilbert (orthonormal) basis

for L2[0, T] such that ∀i, gi(0) = gi(T) = 0 and gi ∈ Cn[0, T].

C NON - AUTONOMOUS ODES

We consider a Non -Autonomous system of ODEs as F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) =

fj(x(t), t),∀j = 1, . . . , J . The only key difference here is to make one variable substitution, i.e.
xm = t, and so ẋm = 1, and we solve the following ODE system

F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) = fj(x(t), t) and ẋm = 1, m = J + 1, ∀j = 1, . . . , J (4)

Then we can easily use our generalized D-CODE algorithm given the measurements of xm and xj .

D FIRST DEGREE GENERAL ODES

Lastly, we can generalize this technique to discover more general ODE systems that are of the form

F(xj(t), ẋj(t), . . . ,
n
ẋj (t)) = fj(x(t)),∀j = 1, . . . , J (5)

More specifically F(xj(t), . . . ,
n
ẋj (t)) =

∑n
i=0 αi(xj)

i
ẋj (t) where αi are now functions of xj .

This is a more general setting, and we can again use our generalized variational formulation to
uncover the true fj . This only works assuming all our αi(xj(t)) ∈ Cn[0, T]. We come to the
following proposition

Proposition 2: Consider J ∈ N+, T ∈ R+, continuous functions x : [0, T] → RJ , f : RJ → R,
and αi, g ∈ Cn[0, T], where Cn is the set of n times continuously differentiable functions. We define
the functionals

Cj(f,x, g
n) =

∫ T

0

(f(x(t))g(t)n + xj(t)Φ(
n
ġ (t),

n
α̇i))dt ∀j ∈ {1, 2, . . . , J}

and where Φ(
n
ġ (t),

n
α̇i) is a function of derivatives of g and αi. We can again prove the proposition

in full generality as it follows identical steps as the previous proposition, but now, considering the
influence of αi and their derivatives. We leave that proof of this for future work.

5

	Introduction
	First Degree Higher Order ODEs
	Generalized Variational Formulation

	Numerical Results
	Applications
	Appendix
	Proof of Proposition 1
	Pseudocode
	Numerical Results
	Computational cost and the test function

	Convergence to Distance
	Non - Autonomous ODEs
	First Degree General ODEs

