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Abstract

Test-time adaptation (TTA) methods have gained significant attention for enhancing
the performance of vision-language models (VLMs) such as CLIP during inference,
without requiring additional labeled data. However, current TTA researches gener-
ally suffer from major limitations such as duplication of baseline results, limited
evaluation metrics, inconsistent experimental settings, and insufficient analysis.
These problems hinder fair comparisons between TTA methods and make it diffi-
cult to assess their practical strengths and weaknesses. To address these challenges,
we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods
on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods
within a unified and reproducible framework, and evaluates them across 15 widely
used datasets. Unlike prior studies focused solely on CLIP, we extend the evalua-
tion to SigLIP—a model trained with a Sigmoid loss—and include training-time
tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond
classification accuracy, TTA-VLM incorporates various evaluation metrics, includ-
ing robustness, calibration, out-of-distribution detection, and stability, enabling a
more holistic assessment of TTA methods. Through extensive experiments, we
find that 1) existing TTA methods produce limited gains compared to the previous
pioneering work; 2) current TTA methods exhibit poor collaboration with training-
time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced
model trustworthiness. We release TTA-VLM to provide fair comparison and
comprehensive evaluation of TTA methods for VLMs, and we hope it encourages
the community to develop more reliable and generalizable TTA strategies. The
code is available in https://github.com/TomSheng21/tta-vlm.

1 Introduction

Vision-language models (VLMs) [1–5], such as CLIP [1], learn to align visual and textual representa-
tions in a shared embedding space, enabling effective performance on a wide range of multi-modal
tasks. These models achieve remarkable performance in tasks such as image classification [1, 6, 7],
multi-modal retrieval [8–10], and semantic segmentation [11–14]. Especially, the introduction of
natural language makes VLMs have better flexibility and generalization than traditional visual classi-
fication models. To further enhance the performance of VLMs, numerous training-time approaches
[6, 15–18] have been proposed, introducing effective optimization solutions and inference paradigms.

In contrast to training-time approaches, test-time adaptation (TTA) methods [19–23] have attracted
increasing attention for their ability to enhance the performance of VLMs during inference without
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requiring additional annotated data. Depending on the type of test data, TTA methods can be broadly
categorized into episodic [21, 24, 25] and online [26–29] TTA strategies. Episodic TTA adapts the
model to a single test sample, exploring the information inside the sample to improve the model’s
prediction. Online TTA aims to process a stream of test data, utilizing historical knowledge in the
previously seen data to update model behavior.

However, existing TTA research for VLMs suffers from various limitations in experimental setup
and analysis. First, most works rely on reported baseline results without reproducing them under
consistent experimental settings. This always leads to unfair comparisons due to variations in
pre-trained model checkpoints, text prompts, and evaluation protocols. Furthermore, except for
a few works [24, 30, 25, 31] that explore alternative evaluation metrics, the majority of research
focuses narrowly on accuracy, resulting in an incomplete understanding. Additionally, there is a
lack of a systematic evaluation of TTA methods on training-time tuned models [6, 32] and on VLM
architectures beyond CLIP, limiting the generalizability of existing conclusions.

To address the limitations of current TTA research for VLMs, we introduce TTA-VLM, a unified
benchmark framework for systematic evaluation and fair comparison. TTA-VLM contains 8 episodic
and 7 online TTA methods, and evaluates them across 15 widely-used datasets commonly adopted in
VLM fine-tuning. Beyond CLIP, we also incorporate training-time methods (i.e., CoOp [6], MaPLe
[32], TeCoA [33]) and SigLIP [4] to assess the generality and compatibility of TTA methods with
diverse VLMs variants. Our evaluation framework goes beyond accuracy by integrating multiple axes
of model behavior: calibration [34], robustness [35], out-of-distribution (OOD) detection performance
[36], and stability against abnormal data. We systematically analyze the impact of TTA algorithms
on the trustworthiness of VLMs while improving accuracy, so as to give the practitioner a deep
understanding. Through extensive experimentation, we obtain several key findings:

• Existing TTA methods yield limited performance gains over the previous pioneering work.
• TTA methods show disappointing collaboration with training-time fine-tuning methods.
• While improving accuracy, TTA methods compromise the trustworthiness of VLMs.

2 A Comprehensive Benchmark for Test-Time Adaptation

In this section, we introduce the tasks and methods in the TTA-VLM benchmark. Sec.2.1 defines the
paradigms of test-time adaptation on VLMs. Sec.2.2 describes the adaptation methods included in
our benchmark. And Sec.2.3 provides information about the pre-trained models and datasets used in
our experiments. An overview of the TTA-VLM is provided in Figure 1.

The experimental results are presented in the subsequent sections: In Sec.3, we conduct a fair
comparison of TTA methods on both CLIP and SigLIP models. In Sec.4, we explore how well TTA
methods collaborate with training-time fine-tuning approaches. And in Sec.5, we analyze the impact
of TTA on model trustworthiness beyond classification accuracy.

2.1 Test-Time Adaptation Paradigms

Definition 1 (Episodic Test-Time Adaptation). Given a pre-trained VLM classifier f(x) and a single
test sample xtest, episodic test-time adaptation refers to the process of adapting f(x) at inference
time by using the information in xtest with the goal of improving the prediction quality for xtest.

Definition 2 (Online Test-Time Adaptation). Given a pre-trained VLM classifier f(x) and a
sequence of test batches {Bt

test}t=1,2,..., online test-time adaptation refers to the process of adapting
f(x) at inference time by leveraging the knowledge inside f(x) and the information in the previous
batches during inference time with the goal of improving the prediction quality for current test batch.

2.2 Test-Time Adaptation Methods

Our benchmark contains 8 episodic TTA methods and 7 online TTA methods. We provide a brief
introduction here; a detailed description and the introduction of TTA methods for other tasks (e.g.,
segmentation) can be found in the supplementary material.

First, we introduce the episodic methods that adapt to a single test sample. Since a single instance
contains limited information, episodic adaptation methods employ Augmix [37] to obtain a batch of
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Figure 1: Overview structure of proposed benchmark TTA-VLM.

augmented views. As a pioneering work, TPT [21] selects the low-entropy views in the augmented
batch and optimizes the textual prompt to minimize their marginal entropy [38]. C-TPT [24]
introduces a new loss to minimize the dispersion of text features to seek both high accuracy and low
calibration error. RLCF [39] employs CLIP as a reward model and utilizes reinforcement learning to
update the prediction step by step. MTA [40] deploys robust MeanShift to calculate the weighting
coefficient for ensembling the augmented image features to obtain a better feature. ZERO [41] argues
that marginal entropy minimization has a minor impact on the average prediction and chooses to
directly conduct a hard vote on low-entropy views. TTL [42] proposes to optimize the LoRA module
inside the image encoder to minimize a designed weighted entropy objective. TPS [43] uses the same
loss function as TPT and chooses to optimize the shift of text features to combine with multiple text
templates. R-TPT [25] modifies the objective to pointwise entropy and introduces a reliablility-based
ensembling strategy to improve the accuracy and the robustness against adversarial examples.

Then, we provide information about online methods that process streaming test data. TDA [26]
saves previous high-quality samples into positive and negative caches to improve the prediction of
VLMs. DMN [44] preserves historical test features and reads out new classifier in an online manner
to enhance model performance. OnZeta [45] traces the distribution of assigned labels and proposes
an online vision proxy learning method to obtain accurate class visual proxies. BoostAdapter [46]
produces final predictions with the help of boosting samples selected from the augmented batch with
low entropy and historical samples in memory. DPE [47] gradually aligns the prototypes of the two
modalities by optimizing the residual vector to produce more accurate predictions of the streaming
test data. ECALP [27] constructs a graph over text prompts and test samples and utilizes label
propagation to generate improved output. DynaPrompt [28] extends the optimization parameters to
multiple learnable prompts to simultaneously learn new information and utilize historical knowledge.

We set the batch size to 1 for all online TTA methods in the experiments. Please note that although
online methods process the same streaming data, some methods (i.e., DMN, BoostAdapter, DPE,
DynaPrompt) employ AugMix augmentation [37] to obtain a batch of views, while other methods
simply use single weak augmentation. This distinction should be explicitly recognized to understand
the performance differences on some datasets. Since DMN is also able to deploy weak augmentation,
we denote this version as DMNW .

Additionally, while there are numerous recent works [48–54] exploring TTA for VLMs, many of
them rely on additional resources, such as large language models [50], generative models [48, 51], or
statistical information from ImageNet [49]. To ensure a fair and controlled comparison within our
benchmark, we have not included these methods at this stage. We acknowledge the importance of
these TTA methods and plan to incorporate them in future versions of TTA-VLM.

2.3 Pre-trained Models and Datasets

Following prior work, our benchmark primarily builds on CLIP [1]. To assess the generality of
TTA methods, we further include SigLIP [4], a VLM that retains the dual-encoder architecture but
replaces the contrastive softmax loss with a sigmoid-based loss function. This change allows for
significantly larger batch sizes during training and yields improved representation learning in some
scenarios. To enrich the diversity of base models, we additionally incorporate several training-time
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Table 1: Accuracies (%) of TTA methods on fine-grained datasets with CLIP-ResNet50.
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP [1] 85.88 83.62 55.75 61.67 73.96 15.69 58.82 40.43 23.68 58.90 55.84
TPT [21] 87.91 84.68 58.39 62.08 75.03 17.16 61.31 42.43 28.41 60.64 57.80
C-TPT [24] 87.75 83.57 56.52 64.80 74.87 16.77 60.78 41.49 26.98 60.14 57.37
RLCF [39] 88.15 82.77 57.87 59.16 74.30 17.16 60.56 42.61 27.23 60.93 57.07
MTA [40] 87.30 84.82 58.59 61.02 74.28 18.06 60.74 40.31 22.53 60.59 56.82
ZERO [41] 86.37 83.97 58.08 58.79 72.22 17.52 60.42 39.07 22.05 59.08 55.76
TPS [43] 86.69 84.41 58.69 61.55 74.37 17.16 60.36 40.43 24.30 60.61 56.86
R-TPT [25] 86.33 84.08 57.87 61.35 73.44 17.61 60.58 41.55 21.40 59.50 56.37

TDA [26] 88.15 84.19 56.81 65.16 75.22 16.53 61.19 40.78 31.15 61.80 58.10
DMNW [44] 85.23 84.52 56.62 64.11 74.62 16.02 59.58 41.02 37.75 60.43 57.99
DMN [44] 86.29 85.88 59.56 61.51 74.55 18.33 61.21 41.31 31.06 61.25 58.10
OnZeta [45] 86.00 84.98 57.16 60.94 76.27 15.66 61.66 41.19 30.53 61.33 57.57
BoostAdapter [46] 87.42 84.22 58.43 65.08 74.90 18.51 61.77 41.02 32.51 62.15 58.60
DPE [47] 88.07 84.33 58.30 63.82 74.90 15.18 60.90 42.43 25.85 62.60 57.64
ECALP [27] 88.48 85.50 59.05 66.18 76.31 16.92 62.40 44.27 30.22 64.50 59.38
DynaPrompt [28] 87.79 84.30 57.08 62.81 75.14 16.02 60.66 40.66 22.90 59.82 56.72

Table 2: Accuracies (%) of TTA methods on ImageNet-X datasets with CLIP-ResNet50.
ImageNet ImageNet-V2 ImageNet-R ImageNet-A ImageNet-Sketch Avg. OOD Avg.

CLIP [1] 58.15 51.52 56.09 21.84 33.34 44.19 40.70
TPT [21] 60.74 54.85 58.97 26.45 35.05 47.21 43.83
C-TPT [24] 60.38 54.27 57.76 24.07 34.73 46.24 42.71
RLCF [39] 60.22 54.28 58.48 28.94 34.97 47.38 44.17
MTA [40] 60.39 54.20 58.40 27.76 35.18 47.19 43.89
ZERO [41] 60.36 54.50 57.84 29.87 34.76 47.47 44.24
TPS [43] 59.96 53.82 58.34 28.11 34.92 47.03 43.80
R-TPT [25] 60.81 54.64 57.71 27.95 34.01 47.02 43.58

TDA [26] 59.94 52.43 57.48 22.88 36.18 45.78 42.24
DMNW [44] 58.65 51.47 55.99 21.88 34.74 44.55 41.02
DMN [44] 60.52 53.85 57.32 30.55 36.19 47.69 44.48
BoostAdapter [46] 60.92 53.74 59.28 29.20 37.21 48.07 44.86
ECALP [27] 60.50 52.39 57.87 22.29 37.26 46.06 42.45
DynaPrompt [28] 60.15 53.31 58.24 24.85 34.53 46.22 42.73

fine-tuning approaches, including CoOp [6] and MaPLe [32]. We also incorporate TeCoA [33], an
adversarial fine-tune method designed to enhance model robustness.

As for datasets, we adopt 10 fine-grained classification datasets (Caltech101 [55], Pets [56], Cars
[57], Flowers [58], Food101 [59], Aircraft [60], SUN397 [61], DTD [62], EuroSAT [63], UCF101
[64]) and five imagenet-related datasets (ImageNet [65], ImageNet-V2 [66], ImageNet-R [67],
ImageNet-A [68], ImageNet-Sketch [69]). Comprehensive details of each dataset can be found in
the supplementary material.

3 Vanilla Test-Time Adaptation under Fair Comparison

Experiment setup. To ensure a fair and consistent evaluation of diverse TTA methods, we establish
a unified benchmarking framework. All components of the experimental pipeline—except the core
algorithmic logic specific to each method—are standardized across methods. (Data). In the episodic
adaptation setting [21], we use a fixed augmentation protocol for each test sample. Specifically, each
test batch consists of 64 views of the test data: the first view is a weakly augmented version used for
prediction by certain methods, while the remaining 63 views are generated using AugMix [37]. In
the online adaptation setting [26], we fix the order of the test stream and clearly state the different
data augmentation protocols for all methods. (Model). We evaluate all methods using two VLMs,
CLIP [1] and SigLIP [4]. Using consistent initialization across all methods allows us to clearly figure
out the contribution of the adaptation procedure itself. Additionally, the introduction of SigLIP helps
us to assess the generalizability of TTA methods beyond the commonly used CLIP framework. (Text
templates). To eliminate variability due to prompt selection, we fix the text template to CLIP’s
default prompt, “a photo of a [CLASS]” across all experiments. For methods capable of leveraging
multiple templates, we also evaluate their performance under a multi-template setting to explore
potential improvements. (Hyperparameters). We adopt the hyperparameters and optimization
protocols recommended by the original implementations of each TTA method. However, we note
that hyperparameter tuning during test time remains an open and challenging problem.

4



Table 3: Accuracies (%) of episodic TTA methods on all datasets with SigLIP (ViT-B/16).
Fine-grained Avg. ImageNet ImageNet-V2 ImageNet-R ImageNet-A ImageNet-Sketch Avg. OOD Avg.

SigLIP [4] 73.89 75.69 68.43 89.30 45.05 66.57 69.01 67.34
TPT [21] 74.12 76.43 69.25 89.86 46.73 67.09 69.87 68.23
C-TPT [24] 73.78 76.11 68.97 89.57 45.76 66.94 69.47 67.81
RLCF [39] 68.94 70.81 63.52 85.26 42.23 60.65 64.49 62.92
MTA [40] 73.43 77.72 70.81 90.94 57.96 67.51 72.99 71.81
ZERO [41] 71.41 77.60 70.97 90.48 61.81 66.48 73.47 72.44
TPS [43] 73.68 78.05 70.92 91.50 58.53 67.73 73.35 72.17
R-TPT [25] 71.61 76.95 69.79 89.16 54.00 65.53 71.09 69.62

Results on CLIP. We present the adaptation results on CLIP-ResNet50 in Tables 1, 2. Additional re-
sults for CLIP-ViT-B/16 and CLIP-ViT-B/32 are included in the supplementary material. Notably, an
early work, TPT achieves the highest accuracy of 55.7% on the fine-grained datasets with ResNet50
and remains competitive on ViT-B/16. This indicates that recent methods have marginal accuracy
improvement under fair and consistent evaluation settings. However, TPT performs less competitively
on ViT-B/32, particularly on ImageNet-related benchmarks. This discrepancy highlights the impor-
tance of evaluating TTA methods across diverse model architectures to assess their generalizability.
Another interesting observation is that online TTA methods consistently outperform episodic ones
on fine-grained tasks, suggesting that leveraging historical context is particularly beneficial in such
datasets. Conversely, the introduction of AugMix augmentation allows episodic methods and some
online methods to achieve attractive results in ImageNet-related tasks. This implies that different
tasks have different preferred strategies.

Results on SigLIP. To assess the generality of TTA approaches beyond CLIP, we evaluate episodic
TTA methods on SigLIP, with results shown in Table 3. It can be seen that the performance gains
on SigLIP are limited. While certain methods yield a 3–4% improvement on ImageNet-related
datasets, most TTA methods fail to surpass the zero-shot baseline on fine-grained tasks. These results
underscore the need for broader evaluation across VLM architectures and emphasize the lack of
generality of current TTA methods when applied to models pre-trained with different objectives.

Improvement by multiple templates. We further analyze the impact of using multiple person-
alized templates and provide the results on the DTD dataset [62] in Figure 2. Most methods
benefit from the inclusion of multiple templates. For example, ZERO achieves a 3.1% gain,
which is higher than the 0.94% gain of CLIP, highlighting the potential of template diversity.

CLIP MTA ZERO TTL TPS TDA DMNW DMN OnZeta Boost
Adapter

DPE ECALP

44

46

48

50

Ac
cu

ra
cy

 (%
)

With templates
W/ templates

Figure 2: Results (%) of adaptation methods combined with
multiple templates on DTD dataset with CLIP-ViT-B/16.

There are also some online methods
that show a drop in performance after
introducing multiple templates, even
though these templates have been ver-
ified to be beneficial for zero-shot
classification. While our benchmark
mainly focuses on single-template
evaluation, this result indicates that
the ability to combine with multiple
templates is really valuable for TTA
methods. These methods have the po-
tential to produce significant improve-
ments when combined with templates
generated by large language models
tailored to specific tasks or domains.

Takeaways

1. When evaluated under standardized and fair conditions, existing episodic TTA methods
provide only limited improvements over early test-time prompting (TPT) baselines.

2. Most current TTA methods exhibit limited generalizability and weak compatibility with
VLMs beyond CLIP, such as SigLIP.

3. Using diverse text templates enhances CLIP’s performance and benefits to TTA methods.
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Table 4: Accuracies (%) of TTA methods on fine-grained datasets with CoOp (ResNet50).
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CoOp [1] 86.37 86.94 55.50 61.63 75.62 15.09 58.19 37.29 26.37 59.03 56.20
TPT [21] 87.10 87.60 57.75 59.07 76.16 15.90 59.87 38.65 28.37 60.72 57.12
C-TPT [24] 87.18 87.00 56.81 62.00 75.67 15.48 59.12 38.30 26.86 60.14 56.86
RLCF [39] 87.83 86.94 58.97 60.86 75.71 17.88 61.09 41.61 30.40 62.07 58.34
MTA [40] 86.73 87.95 57.77 60.17 76.13 16.62 59.34 37.23 26.47 60.03 56.84
ZERO [41] 86.04 87.44 56.83 57.78 74.20 16.68 58.52 36.17 26.59 59.95 56.02
TPS [43] 86.45 87.79 57.23 59.85 76.16 15.96 59.17 38.24 27.14 60.77 56.88
R-TPT [25] 86.33 87.63 57.39 57.53 74.89 15.84 59.24 37.65 27.05 59.90 56.35

TDA [26] 88.07 87.90 56.85 63.50 75.82 15.75 59.37 38.42 37.90 60.75 58.43
DMNW [44] 86.17 87.79 56.39 63.38 75.86 15.57 58.98 37.88 34.64 60.11 57.68
DMN [44] 85.84 88.50 58.55 60.09 75.84 17.07 59.34 37.53 30.00 60.80 57.36
OnZeta [45] 86.41 86.51 57.51 60.98 76.64 14.88 59.99 37.41 30.91 60.64 57.19
BoostAdapter [46] 88.11 87.90 57.78 63.22 76.25 16.77 59.81 38.48 39.17 61.06 58.86
DPE [47] 85.27 61.43 45.80 59.16 75.69 14.25 56.04 37.00 31.49 44.01 51.01
ECALP [27] 88.11 87.65 58.55 64.31 76.82 14.91 60.68 39.95 30.78 63.02 58.48
DynaPrompt [28] 87.26 84.36 57.27 62.12 74.99 16.17 60.70 41.08 22.77 60.61 56.73

Table 5: Accuracies (%) of TTA methods on fine-grained datasets with MaPLe (ViT-B/16).
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

MaPLe [32] 91.28 89.34 64.56 66.50 83.90 22.32 64.02 43.79 50.38 70.21 64.63
TPT [21] 91.32 89.64 66.40 67.97 84.57 23.61 64.95 45.51 48.26 70.66 65.29
C-TPT [24] 91.85 89.64 65.33 67.68 84.38 23.46 64.75 45.27 48.25 70.39 65.10
RLCF [39] 91.64 84.11 66.47 63.50 84.31 21.72 61.18 46.04 42.90 67.62 62.95
MTA [40] 91.52 89.89 67.57 66.71 84.68 24.30 65.24 45.45 48.67 70.29 65.43
ZERO [41] 91.76 89.37 67.16 66.14 84.08 24.15 64.85 45.09 41.85 69.07 64.35
TTL [42] 90.99 88.96 66.00 66.34 84.15 24.66 63.85 44.80 45.33 69.23 64.43
TPS [43] 91.36 89.56 66.93 66.71 84.66 23.13 64.78 44.80 48.23 70.31 65.05
R-TPT [25] 91.36 89.32 67.13 67.44 84.17 24.48 65.16 44.92 41.17 68.99 64.41

TDA [26] 92.66 89.45 66.55 68.25 84.30 23.16 65.19 45.27 53.00 70.79 65.86
DMNW [44] 91.16 90.08 65.85 68.37 84.18 22.74 65.04 45.51 56.33 71.82 66.11
DMN [44] 91.64 89.94 68.52 69.31 84.71 24.24 66.14 46.93 48.23 71.03 66.07
OnZeta [45] 91.56 89.94 68.55 68.62 84.95 24.99 66.77 44.80 53.79 71.82 66.58
BoostAdapter [46] 92.21 89.26 67.67 68.17 84.81 24.03 65.38 45.27 52.89 71.13 66.08
DPE [47] 93.96 89.45 67.79 70.24 84.35 20.82 65.78 45.15 52.51 71.79 66.18
ECALP [27] 91.93 89.86 68.21 73.37 85.55 22.95 66.25 46.69 59.95 73.12 67.79

4 Collaboration with Training-time Fine-tuning Methods

Experiment setup. In this section, we investigate the collaboration between test-time adaptation
(TTA) methods and training-time fine-tuning approaches. Training-time methods operate between
pre-training and deployment stages, leveraging annotated data to tailor the model to specific tasks
or domains. To assess collaboration between them, we evaluate TTA methods on VLMs that have
been fine-tuned using three representative training-time approaches: CoOp, MaPLe, and TeCoA.
(CoOp method.) CoOp [6] introduces learnable textual prompts by combining category names with
trainable context vectors and optimizes with the labeled data. We use the publicly available CoOp
checkpoint trained with 16-shot ImageNet [65] with a context length of 4. TTA methods are applied
without modification, following the same optimization settings as in previous sections. (MaPLe
method.) MaPLe [32] extends prompt learning to both visual and textual modalities by optimizing
token embeddings in early transformer layers of the text encoder and their associated projection
layers. We employ the MaPLe checkpoint trained with 16-shot data from ImageNet. To better align
TTA methods with MaPLe, we expand the optimization space of prompt-based TTA methods (e.g.,
TPT) to include all learnable components introduced by MaPLe (i.e., text prompt, image prompt,
textual tokens, and linear projectors) to further explore their potential. (TeCoA method.) TeCoA
[33] enhances the robustness of VLMs through contrastive adversarial training, updating the image
encoder without altering the architecture. We use the TeCoA checkpoint trained on ImageNet with an
adversarial attack radius of 1.0/255. Since TeCoA does not introduce new components or prompt
structures, no additional adjustments are required when deploying TTA methods.

Results of adaptation on CoOp. Table 4 reports the performance of various TTA methods applied to
the CoOp-tuned VLM on fine-grained classification datasets. Compared to CLIP, TTA methods obtain
smaller improvements when applied to CoOp. Among episodic methods, only RLCF achieves a
notable gain of 2.14%, while the remaining methods yield improvements below 1%. Although CoOp

6



Table 6: Accuracies (%) of TTA methods on fine-grained datasets with TeCoA (ResNet50).
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

TeCoA [33] 78.30 76.04 22.42 33.58 28.00 5.82 37.09 26.18 16.56 38.30 36.23
TPT [21] 79.59 76.37 22.52 31.47 27.17 6.45 36.96 26.48 13.60 38.96 35.96
C-TPT [24] 79.63 75.63 22.11 33.46 28.33 6.21 36.95 27.42 16.20 39.23 36.52
MTA [40] 79.76 76.75 21.23 31.67 26.52 6.27 36.51 25.89 14.57 37.85 35.70
ZERO [41] 77.93 76.59 19.76 30.09 24.73 6.78 34.71 26.12 12.25 36.29 34.53
TPS [43] 79.63 76.91 21.70 32.48 27.28 6.00 36.87 26.18 12.85 38.36 35.83
R-TPT [25] 76.75 75.28 19.91 29.07 24.29 6.51 34.19 25.71 12.17 36.24 34.01

TDA [26] 82.19 77.16 29.13 38.37 33.93 6.39 41.90 29.31 17.37 43.72 39.95
DMNW [44] 78.01 77.05 24.50 35.61 31.36 6.15 39.60 29.08 16.63 42.11 38.01
DMN [44] 79.19 77.32 23.18 33.21 30.33 7.47 38.35 29.67 14.74 40.71 37.42
OnZeta [45] 79.19 77.32 23.18 33.21 30.33 7.47 38.35 29.67 14.74 40.71 37.42
BoostAdapter [46] 81.58 77.08 26.49 38.98 30.86 6.90 41.18 30.38 17.54 44.54 39.55
DPE [47] 24.10 2.75 0.41 35.00 34.94 6.48 34.46 25.71 17.09 0.85 18.18
ECALP [27] 81.18 77.76 29.87 37.64 34.95 7.29 42.76 31.09 23.00 46.31 41.19
DynaPrompt [28] 79.88 76.10 22.21 32.64 28.07 6.06 37.40 25.65 14.80 39.02 36.18

outperforms CLIP slightly in base classification accuracy on these datasets, there is no significant
difference between performance after adaptation. This suggests that CoOp, which already corrects
decision boundaries during training, leaves limited room for further gains through test-time adaptation.

Results of adaptation on MaPLe. The adaptation performance for MaPLe is shown in Table 5.
As with CoOp, although the baseline accuracy of MaPLe itself is 0.92% higher than CLIP, both
episodic and online TTA methods result in marginal. Four episodic TTA methods (i.e., RLCF,
ZERO, TTL, R-TPT) even cause performance degradation. This unexpected trend highlights a
potential incompatibility between training-time tuning and test-time adaptation, suggesting that their
mechanisms may not align in a complementary manner.

Results of adaptation on TeCoA. We provide adaptation results on TeCoA in Table 6. Since
RLCF uses the original CLIP as the reward model, its results have little reference value and are
omitted. Surprisingly, only CTPT achieves a modest improvement of 0.29%, and all other episodic
TTA methods lead to performance degradation when applied to TeCoA. In contrast, most online
TTA methods show positive gains over the TeCoA baseline, with ECALP achieving the highest
improvement of 4.96%. These results suggest that adapting robust models like TeCoA using single-
sample techniques remains a difficult and open challenge.

Remark. Regarding whether the deployer needs to introduce a training time phase before the
test-time method, we have the following suggestions: When the labeled training data and test data
share the same or highly overlapping categories, training-time methods can lead to significant gains.
For example, fine-tuning on labeled ImageNet data yields noticeable improvements on downstream
tasks such as ImageNet-V2 (4-shot ImageNet tuning w/o TTA: 51.5%->55.6% on ImageNet-V2).
Also, when robustness or other specific properties are required, a supervised train-time stage (e.g.,
adversarial fine-tuning) can provide a more robust initialization for TTA. Conversely, if the labeled
data is not strongly correlated with the test distribution, supervised fine-tuning tends to generalize
poorly (4-shot ImageNet tuning w/o TTA: 55.8%->56.2% on fine-grained dataset). In such scenarios,
we recommend applying TTA directly, as it can better adapt to downstream tasks.

Takeaways

1. Both episodic and online TTA methods exhibit poor collaboration with training-time tuned
models, in contrast to their stronger performance on vanilla CLIP.

2. Almost all episodic TTA methods lead to negative transfer on robust TeCoA models.

5 Trustworthiness and Stability from Accuracy-oriented Adaptation

Experiment setup. While previous sections focus on classification accuracy, real-world deployment
requires models that are also reliable and robust. To this end, we extend our evaluation to cover three
key dimensions of trustworthiness: calibration, out-of-distribution (OOD) detection, and adversarial
robustness. (Calibration). Model calibration assesses the alignment between predicted confidence
scores and actual correctness. Overconfident incorrect predictions can mislead downstream systems
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Table 7: Expected calibration error (%) of TTA methods on all datasets with CLIP-ResNet50.
Fine-grained Avg. ↓ IN ↓ IN-V2 ↓ IN-R ↓ IN-A ↓ IN-Sketch ↓ Avg. ↓

CLIP [1] 5.70 (− 0.00) 1.97 2.98 0.98 21.28 3.13 6.07 (− 0.00)
TPT [21] 11.30 (↑ 5.60) 11.34 13.89 10.56 31.12 15.29 16.44 (↑ 10.37)
C-TPT [24] 6.61 (↑ 0.91) 6.81 9.48 5.52 26.79 11.44 12.01 (↑ 5.94)
RLCF [39] 20.26 (↑ 14.56) 21.43 24.72 23.33 44.47 30.09 28.81 (↑ 22.74)
MTA [40] 12.20 (↑ 6.50) 14.45 17.79 14.88 42.68 14.98 20.95 (↑ 14.88)
TPS [43] 21.16 (↑ 15.46) 28.60 32.95 29.28 56.69 34.96 36.50 (↑ 30.43)
R-TPT [25] 11.32 (↑ 5.62) 11.45 13.47 10.01 30.09 12.88 15.58 (↑ 9.51)

TDA [26] 9.21 (↑ 3.51) 6.25 10.69 0.88 29.07 10.74 11.53 (↑ 5.46)
DMNW [44] 16.53 (↑ 10.83) 16.75 25.23 18.25 46.76 22.5 25.90 (↑ 19.83)
DMN [44] 12.89 (↑ 7.19) 13.01 20.52 14.54 33.78 18.92 20.15 (↑ 14.08)
BoostAdapter [46] 17.25 (↑ 11.55) 17.97 16.93 12.82 52.19 25.09 25.00 (↑ 18.93)
ECALP [27] 32.21 (↑ 26.51) 39.27 47.47 39.87 75.79 62.35 52.95 (↑ 46.88)
DynaPrompt [28] 7.42 (↑ 1.72) 6.29 9.56 6.80 28.00 10.68 12.27 (↑ 6.20)

Table 8: AUC score (%) of TTA methods on fine-grained datasets with CLIP-ResNet50.
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg. ↑

CLIP [1] 87.20 68.90 56.67 73.79 80.27 31.04 70.56 64.61 56.79 72.22 66.20 (− 0.00)
TPT [21] 85.11 65.89 55.19 72.90 79.07 29.38 69.15 63.57 56.25 69.46 64.60 (↓ 1.61)
C-TPT [24] 88.30 65.14 55.07 73.56 80.19 30.56 69.57 62.35 59.15 71.86 65.57 (↓ 0.63)
RLCF [39] 80.20 63.71 52.99 69.78 74.93 32.76 63.50 62.05 57.99 62.89 62.08 (↓ 4.12)
MTA [40] 86.71 63.91 48.32 73.50 79.14 28.87 67.09 63.67 55.23 68.99 63.54 (↓ 2.66)
ZERO [41] 83.34 64.12 58.50 69.64 74.48 44.43 64.96 61.02 50.13 65.58 63.62 (↓ 2.59)
TPS [43] 86.75 69.50 55.64 72.45 78.99 29.51 68.29 63.75 56.32 69.83 65.10 (↓ 1.10)
R-TPT [25] 83.00 64.77 54.49 72.57 78.01 29.33 68.76 62.23 55.07 67.77 63.60 (↓ 2.61)

or users. We measure calibration using the Expected Calibration Error (ECE) with 20 equal-width
bins. We exclude ZERO from episodic methods in this analysis, as it only provides hard predictions
without confidence estimates. (OOD Detection). OOD detection evaluates a model’s ability to
recognize inputs from unknown categories. A reliable model should assign low confidence to OOD
samples and high confidence to the samples that belong to candidate categories. We assess this via the
Area Under the ROC Curve (AUC), a threshold-independent metric. In the experiment, we discard
50% of the original categories and regard samples that belong to them as OOD samples. For online
TTA methods, we focus on how the presence of OOD data affects performance on in-distribution
examples, rather than OOD detection performance. (Adversarial robustness). Adversarial robustness
reflects a model’s resilience to inputs perturbed by imperceptible but malicious changes. Due to
non-differentiable components in many TTA methods, we use CLIP to generate adversarial examples.
We then evaluate the robustness of TTA methods by measuring their defense performance against
these transferred adversarial examples. We employ PGD attack [35], using a perturbation radius of
1/255 with 7 steps for CLIP-ResNet, and 4/255 with 100 steps for CLIP-ViT.

Calibration Degradation Induced by TTA. We report the calibration performance of TTA methods
in Table 7. Our results indicate that both episodic and online adaptation techniques generally degrade
the calibration of the original CLIP model. Among them, C-TPT demonstrates relatively strong
calibration preservation, increasing the calibration error by only 0.91% on fine-grained datasets,
owing to its design that explicitly minimizes text feature dispersion. Similarly, R-TPT, DMN, and
DynaPrompt introduce only modest calibration deterioration. We attribute the calibration degradation
to the overconfidence introduced by TTA methods. In pursuit of higher accuracy, they assign overly
high probabilities to predictions, ultimately compromising the model’s reliability under uncertainty.

Reduced OOD Detection Performance under Episodic TTA. Table 8 presents the out-of-
distribution (OOD) detection results for episodic TTA methods. In-distribution accuracy results are
included in the supplementary material, and their trends remain largely consistent with the experi-
ments in the early sections. It is shown that there is a 1–4% reduction in AUC scores, which indicates
weakened OOD sensitivity. The phenomenon of decreased OOD detection capability is similar to that
of calibration. This degradation suggests that TTA methods often assign high confidence to uncertain
samples, sometimes even exceeding the in-distribution samples.

Limited Adversarial Robustness in Episodic TTA. We provide the adversarial robustness of
episodic TTA methods in Table 9. Among them, we find that methods incorporating ensemble
strategies outperform those relying solely on the current test sample. This aligns with recent findings
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Table 9: Robustness (%) of episodic TTA methods on fine-grained datasets with CLIP-ViT-B/16.
ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP [1] 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
TPT [21] 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.03
C-TPT [24] 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
RLCF [39] 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.06
MTA [40] 25.15 67.30 46.31 10.25 20.34 27.46 2.04 25.28 13.59 0.32 29.50 24.24
ZERO [41] 38.93 76.71 58.16 27.80 36.50 41.09 8.88 42.49 27.90 4.91 41.13 36.56
TTL [42] 4.26 22.43 9.46 11.96 11.94 9.74 3.42 3.95 5.61 0.01 4.12 8.26
TPS [43] 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
R-TPT [25] 38.61 76.11 56.75 27.57 37.27 41.52 9.00 42.65 27.90 5.30 41.13 36.52

Table 10: Accuracies (%) of online TTA methods on fine-grained datasets with CLIP-ResNet50
when adversarial examples are mixed into the test data stream.

Caltech101 Pets Cars Flowers Food101 Aircraft
w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. w/ adv. w adv.

CLIP [1] 86.60 86.60 84.12 84.12 56.05 56.05 62.55 62.55 73.77 73.77 15.40 15.40
TDA [26] 88.24 86.92 84.45 82.95 56.75 56.33 65.10 65.68 74.98 74.86 15.82 16.18
DMNW [44] 86.27 86.68 85.01 84.23 56.03 56.33 63.70 65.02 74.60 74.06 15.70 15.64
DMN [44] 86.84 86.84 85.79 86.23 59.76 60.08 60.00 60.99 74.34 74.50 17.69 17.93
OnZeta [45] 86.92 86.18 83.79 78.68 57.77 56.43 63.29 61.73 75.89 71.67 15.58 16.24
BoostAdapter [46] 87.83 87.99 84.95 83.34 59.86 59.21 64.86 65.35 74.65 74.51 17.21 18.00
DPE [47] 87.58 88.57 84.51 83.84 58.86 58.76 64.36 65.76 74.44 74.64 16.06 15.28
ECALP [27] 88.16 87.83 85.34 83.40 58.44 55.93 66.01 65.35 76.02 74.78 16.67 17.33
DynaPrompt [28] 88.40 88.49 84.40 84.73 57.54 58.49 64.53 63.29 74.94 74.93 16.85 16.24

SUN397 DTD EuroSAT UCF101 Avg.
w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. w/ adv. w adv. ∆

CLIP [1] 58.60 58.60 40.53 40.53 23.07 23.07 58.46 58.46 55.92 55.92 (− 0.00)
TDA [26] 60.40 59.19 40.17 39.33 33.28 23.12 61.26 59.91 58.05 56.45 (↓ -1.60)
DMNW [44] 58.80 59.10 40.41 40.53 35.78 14.83 59.11 59.54 57.54 55.60 (↓ -1.94)
DMN [44] 59.82 60.13 42.33 42.69 32.91 27.73 59.86 60.40 57.93 57.75 (↓ -0.18)
OnZeta [45] 60.93 60.86 40.05 38.85 31.48 28.08 60.94 59.86 57.66 55.86 (↓ -1.81)
BoostAdapter [46] 61.20 60.54 41.37 39.81 34.57 25.46 61.85 60.40 58.84 57.46 (↓ -1.37)
DPE [47] 60.43 59.73 42.93 39.81 24.70 27.24 61.80 59.91 57.57 57.35 (↓ -0.21)
ECALP [27] 61.40 60.01 42.69 41.01 31.36 30.20 63.79 59.59 58.99 57.54 (↓ -1.44)
DynaPrompt [28] 60.51 60.73 39.93 39.33 22.26 21.66 59.38 59.81 56.77 56.87 (↓ -0.10)

in literature [25]. However, many methods still fail to defend against adversarial attacks effectively,
with several episodic TTA methods exhibiting near-zero robustness on CLIP-ViT.

Online TTA Stability under OOD and Adversarial Inputs. We assess the stability of online TTA
methods to streaming data perturbed with adversarial examples and report the results in Tables 10.
The results under OOD samples can be found in the supplementary material. While the introduction of
OOD samples results in minor accuracy degradation for most online methods, OnZeta and DPE suffer
from a significant drop of 1.20%, and 2.07%, respectively. In contrast, adversarial examples have a
larger effect: 5 out of 8 online methods experience accuracy drops exceeding 1%. We hypothesize
that some methods incorrectly save adversarial samples in memory, resulting in inaccurate prototypes.

Takeaways

1. Both episodic and online TTA methods cause a decrease in calibration of CLIP.
2. Episodic TTA decreases OOD detection ability and exhibits limited adversarial robustness.
3. Online TTA methods cause performance degradation when exposed to the data streams

mixed with OOD or adversarial samples.

6 Conclusion

In this work, we present TTA-VLM, a benchmark designed to evaluate test-time adaptation (TTA)
methods for VLMs. Our benchmark addresses key limitations in current TTA research, including
inconsistent experimental setups, limited evaluation metrics, and insufficient analysis. By implement-
ing 8 episodic and 7 online TTA methods for VLMs and evaluating them across 15 datasets with
CLIP, SigLIP, and training-time tuned models, we provide a fair and comprehensive comparison.
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Our experiments reveal several challenges for existing TTA research: (1) the performance gains of
most existing TTA methods are marginal when compared to early pioneering baseline TPT, (2) current
TTA methods do not collaborate well with training-time fine-tuning methods, and (3) many TTA
methods trade off trustworthiness, such as calibration and robustness, for accuracy improvements.
These findings highlight the need for more reliable and generalizable TTA strategies that consider
broader model qualities beyond classification accuracy.

We hope that TTA-VLM will serve as a useful tool for researchers to better understand TTA for
VLMs, promoting more reliable, general, and effective test-time adaptation techniques in the future.

Limitation. Our benchmark focuses on classification tasks and does not cover the broader tasks
of VLMs, such as image captioning, VQA, and segmentation. Also, our benchmark emphasizes
fair comparisons across existing TTA methods, thus, we do not include TTA methods that leverage
additional resources such as generative models, LLM, or statistical information of ImageNet.

Acknowledgments and Disclosure of Funding

Funding in direct support of this work was provided by the National Natural Science Foundation
of China under Grants (62276256, U2441251), the Young Elite Scientists Sponsorship Program by
CAST (2023QNRC001), and the Young Scientists Fund of the State Key Laboratory of Multimodal
Artificial Intelligence Systems (ES2P100117).

The authors declare that they have no competing interests.

References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proc. ICML, 2021.

[2] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Proc. ICML, 2021.

[3] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image
pre-training paradigm. In Proc. ICLR, 2022.

[4] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for
language image pre-training. In Proc. ICCV, 2023.

[5] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba,
Marcus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment
model. In Proc. CVPR, 2022.

[6] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

[7] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In Proc. CVPR, 2022.

[8] Haoyu Lu, Nanyi Fei, Yuqi Huo, Yizhao Gao, Zhiwu Lu, and Ji-Rong Wen. Cots: Collaborative
two-stream vision-language pre-training model for cross-modal retrieval. In Proc. CVPR, 2022.

[9] Yan Zhang, Zhong Ji, Di Wang, Yanwei Pang, and Xuelong Li. User: Unified semantic
enhancement with momentum contrast for image-text retrieval. IEEE Transactions on Image
Processing, 33:595–609, 2024.

[10] Ding Jiang and Mang Ye. Cross-modal implicit relation reasoning and aligning for text-to-image
person retrieval. In Proc. CVPR, 2023.

[11] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In Proc.
ECCV, 2022.

10



[12] Gyungin Shin, Weidi Xie, and Samuel Albanie. Reco: Retrieve and co-segment for zero-shot
transfer. In Proc. NeurIPS, 2022.

[13] Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Convolutions die
hard: Open-vocabulary segmentation with single frozen convolutional clip. In Proc. NeurIPS,
2023.

[14] Ziqin Zhou, Yinjie Lei, Bowen Zhang, Lingqiao Liu, and Yifan Liu. Zegclip: Towards adapting
clip for zero-shot semantic segmentation. In Proc. CVPR, 2023.

[15] Tony Huang, Jack Chu, and Fangyun Wei. Unsupervised prompt learning for vision-language
models. arXiv preprint arXiv:2204.03649, 2022.

[16] Korawat Tanwisuth, Shujian Zhang, Huangjie Zheng, Pengcheng He, and Mingyuan Zhou.
Pouf: Prompt-oriented unsupervised fine-tuning for large pre-trained models. In Proc. ICML,
2023.

[17] Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-
guided context optimization. In Proc. CVPR, 2023.

[18] Zhengbo Wang, Jian Liang, Lijun Sheng, Ran He, Zilei Wang, and Tieniu Tan. A hard-to-beat
baseline for training-free clip-based adaptation. In Proc. ICLR, 2024.

[19] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under
distribution shifts. International Journal of Computer Vision, 133(1):31–64, 2025.

[20] Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang. In search
of lost online test-time adaptation: A survey. International Journal of Computer Vision, pages
1–34, 2024.

[21] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
In Proc. NeurIPS, 2022.

[22] Zehao Xiao and Cees GM Snoek. Beyond model adaptation at test time: A survey. arXiv
preprint arXiv:2411.03687, 2024.

[23] Hao Dong, Lijun Sheng, Jian Liang, Ran He, Eleni Chatzi, and Olga Fink. Adapting vision-
language models without labels: A comprehensive survey. arXiv preprint arXiv:2508.05547,
2025.

[24] Hee Suk Yoon, Eunseop Yoon, Joshua Tian Jin Tee, Mark Hasegawa-Johnson, Yingzhen Li,
and Chang D Yoo. C-tpt: Calibrated test-time prompt tuning for vision-language models via
text feature dispersion. In Proc. ICLR, 2024.

[25] Lijun Sheng, Jian Liang, Zilei Wang, and Ran He. R-tpt: Improving adversarial robustness of
vision-language models through test-time prompt tuning. In Proc. CVPR, 2025.

[26] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
test-time adaptation of vision-language models. In Proc. CVPR, 2024.

[27] Yushu Li, Yongyi Su, Adam Goodge, Kui Jia, and Xun Xu. Efficient and context-aware label
propagation for zero-/few-shot training-free adaptation of vision-language model. In Proc.
ICLR, 2025.

[28] Zehao Xiao, Shilin Yan, Jack Hong, Jiayin Cai, Xiaolong Jiang, Yao Hu, Jiayi Shen, Qi Wang,
and Cees GM Snoek. Dynaprompt: Dynamic test-time prompt tuning. In Proc. ICLR, 2025.

[29] Lihua Zhou, Mao Ye, Shuaifeng Li, Nianxin Li, Xiatian Zhu, Lei Deng, Hongbin Liu, and Zhen
Lei. Bayesian test-time adaptation for vision-language models. In Proc. CVPR, 2025.

[30] Balamurali Murugesan, Julio Silva-Rodríguez, Ismail Ben Ayed, and Jose Dolz. Robust
calibration of large vision-language adapters. In Proc. ECCV, 2024.

11



[31] Chentao Cao, Zhun Zhong, Zhanke Zhou, Tongliang Liu, Yang Liu, Kun Zhang, and Bo Han.
Noisy test-time adaptation in vision-language models. In Proc. ICLR, 2025.

[32] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fa-
had Shahbaz Khan. Maple: Multi-modal prompt learning. In Proc. CVPR, 2023.

[33] Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding
zero-shot adversarial robustness for large-scale models. In Proc. ICLR, 2023.

[34] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proc. ICML, 2017.

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proc. ICLR, 2018.

[36] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. International Journal of Computer Vision, 132(12):5635–5662, 2024.

[37] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
In Proc. ICLR, 2020.

[38] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. In Proc. NeurIPS, 2022.

[39] Shuai Zhao, Xiaohan Wang, Linchao Zhu, and Yi Yang. Test-time adaptation with clip reward
for zero-shot generalization in vision-language models. In Proc. ICLR, 2024.

[40] Maxime Zanella and Ismail Ben Ayed. On the test-time zero-shot generalization of vision-
language models: Do we really need prompt learning? In Proc. CVPR, 2024.

[41] Matteo Farina, Gianni Franchi, Giovanni Iacca, Massimiliano Mancini, and Elisa Ricci. Frus-
tratingly easy test-time adaptation of vision-language models. In Proc. NeurIPS, 2024.

[42] Raza Imam, Hanan Gani, Muhammad Huzaifa, and Karthik Nandakumar. Test-time low rank
adaptation via confidence maximization for zero-shot generalization of vision-language models.
In Proc. WACV, 2025.

[43] Elaine Sui, Xiaohan Wang, and Serena Yeung-Levy. Just shift it: Test-time prototype shifting
for zero-shot generalization with vision-language models. In Proc. WACV, 2025.

[44] Yabin Zhang, Wenjie Zhu, Hui Tang, Zhiyuan Ma, Kaiyang Zhou, and Lei Zhang. Dual memory
networks: A versatile adaptation approach for vision-language models. In Proc. CVPR, 2024.

[45] Qi Qian and Juhua Hu. Online zero-shot classification with clip. In Proc. ECCV, 2024.

[46] Taolin Zhang, Jinpeng Wang, Hang Guo, Tao Dai, Bin Chen, and Shu-Tao Xia. Boostadapter:
Improving vision-language test-time adaptation via regional bootstrapping. In Proc. NeurIPS,
2024.

[47] Ce Zhang, Simon Stepputtis, Katia Sycara, and Yaqi Xie. Dual prototype evolving for test-time
generalization of vision-language models. In Proc. NeurIPS, 2024.

[48] Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmenta-
tion with diffusions for effective test-time prompt tuning. In Proc. ICCV, 2023.

[49] Jameel Abdul Samadh, Mohammad Hanan Gani, Noor Hussein, Muhammad Uzair Khattak,
Muhammad Muzammal Naseer, Fahad Shahbaz Khan, and Salman H Khan. Align your prompts:
Test-time prompting with distribution alignment for zero-shot generalization. In Proc. NeurIPS,
2023.

[50] Yuhan Zhu, Yuyang Ji, Zhiyu Zhao, Gangshan Wu, and Limin Wang. Awt: Transferring
vision-language models via augmentation, weighting, and transportation. In Proc. NeurIPS,
2024.

12



[51] Chun-Mei Feng, Yuanyang He, Jian Zou, Salman Khan, Huan Xiong, Zhen Li, Wangmeng Zuo,
Rick Siow Mong Goh, and Yong Liu. Diffusion-enhanced test-time adaptation with text and
image augmentation. International Journal of Computer Vision, pages 1–16, 2025.

[52] Youngjun Lee, Doyoung Kim, Junhyeok Kang, Jihwan Bang, Hwanjun Song, and Jae-Gil Lee.
Ra-tta: Retrieval-augmented test-time adaptation for vision-language models. In Proc. ICLR,
2025.

[53] Xin Wang, Kai Chen, Jiaming Zhang, Jingjing Chen, and Xingjun Ma. Tapt: Test-time
adversarial prompt tuning for robust inference in vision-language models. In Proc. CVPR, 2025.

[54] Xiaosong Ma, Jie Zhang, Song Guo, and Wenchao Xu. Swapprompt: Test-time prompt
adaptation for vision-language models. In Proc. NeurIPS, 2023.

[55] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Proc. CVPR
Workshops, 2004.

[56] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
Proc. CVPR, 2012.

[57] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In Proc. ICCV Workshops, 2013.

[58] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Proc. ICVGIP, 2008.

[59] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative
components with random forests. In Proc. ECCV, 2014.

[60] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[61] Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

[62] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proc. CVPR, 2014.

[63] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

[64] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action
classes from videos in the wild. Center for Research in Computer Vision, 2(11):1–7, 2012.

[65] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR, 2009.

[66] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In Proc. ICML, 2019.

[67] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A
critical analysis of out-of-distribution generalization. In Proc. ICCV, 2021.

[68] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. In Proc. CVPR, 2021.

[69] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Proc. NeurIPS, 2019.

[70] Hanqiu Deng, Zhaoxiang Zhang, Jinan Bao, and Xingyu Li. Anovl: Adapting vision-language
models for unified zero-shot anomaly localization. arXiv preprint arXiv:2308.15939, 2023.

13



[71] Benedetta Liberatori, Alessandro Conti, Paolo Rota, Yiming Wang, and Elisa Ricci. Test-time
zero-shot temporal action localization. In Proc. CVPR, 2024.

[72] Rui Yan, Hongyu Qu, Xiangbo Shu, Wenbin Li, Jinhui Tang, and Tieniu Tan. Dts-tpt: dual
temporal-sync test-time prompt tuning for zero-shot activity recognition. In Proc. IJCAI, 2024.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction section clearly reflect the paper’s contributions
and scope. We introduce TTA-VLM, a benchmark for TTA methods in VLMs, and summa-
rize several challenges of current TTA research through a large number of experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our benchmark focuses exclusively on classification tasks, it does not fully
cover the broader task of modern VLMs, such as image captioning, VQA, and segmentation.
Also, our benchmark emphasizes fair comparisons across existing TTA methods that operate
under constrained settings, we do not include TTA methods that leverage additional resources
such as generative models, LLM, or statistics information of ImageNet.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code and detailed instructions for reproducing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code and detailed instructions for reproducing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and test details in the main text and the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not report error bars or other appropriate information about the
statistical significance. Due to single-step optimization or no training required, our results
are little affected by randomness. However, we will update the results of more seeds later.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the use of NVIDIA A6000 GPUs and adaptation time in supple-
mental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All datasets used are publicly available and properly cited. Our research
conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses that while TTA techniques can enhance the accuracy of
models in deployment, always resulting in trustworthiness degradation.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve releasing high-risk models or scraped data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and models (CLIP, SigLIP, CoOp, etc.) are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The benchmark framework TTA-VLM will be released with documentation
and examples.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing or human-subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models were used as part of the method or experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Introduction of TTA Methods

In this section, we introduce the techniques of the methods included in the benchmark in detail. And
the official code links for all methods are listed in Table 11.

TPT [21] applies the AugMix augmentation strategy to a test sample, generating a batch composed
of 63 strongly augmented views alongside one weakly augmented view. Using CLIP, denoted as
f(·), TPT computes logits for all views and selects those with the lowest entropy. The textual prompt
parameters θp are then optimized by minimizing the marginal entropy over the selected views:

min
θp

LTPT = H(p̄) = H(
1

| B |
∑
x∈B

f(x)), (1)

where B denotes the set of selected views, and H is the Shannon entropy. After optimization, the
final prediction is obtained from the weakly augmented view using the updated prompt.

C-TPT [24] is a test-time adaptation method designed to simultaneously enhance prediction accuracy
and calibration for vision-language models. Researchers observe that conventional test-time prompt
tuning often leads to high dispersion among text features, which correlates with increased calibration
errors. Therefore, C-TPT introduces an additional regularization term, Average Text Feature Disper-
sion, to encourage clustering of class-wise text features, thereby reducing calibration error. The full
loss function is defined as:

min
θp

L = LTPT + LCTPT = LTPT +

C∑
k=1

||t̄− tk||, (2)

where tk denotes the text feature for the k-th class, t̄ is the mean of all class text features, and C is
the number of candidate classes.

RLCF [39] integrates a CLIP model as a reward function to guide adaptation through reinforcement
learning. Given a single test sample, the model generates output candidates via sampling, and the
CLIP reward model evaluates these candidates based on their alignment with the input. The VLM
is then adapted to maximize this feedback signal, effectively encouraging semantically meaningful
predictions rather than simply confident ones. Formally, the adaptation objective seeks to optimize
the expected reward under the output distribution of the model, using task-specific sampling and a
reward baseline to stabilize training.

MTA [40] is a training-free TTA method designed to improve the performance without relying on
prompt tuning or hand-crafted filtering rules. Unlike traditional test-time prompt tuning methods that
require optimization of textual prompt parameters, MTA operates directly on augmented image views
using a robust density estimation framework. Since it does not rely on gradient backpropagation,
MTA can also be applied in black-box settings. Specifically, MTA introduces an inlierness score
for each augmented view, which quantifies its contribution to the final prediction. These scores are
jointly optimized with a MeanShift-based mode seeking procedure to identify high-density regions in
the visual embedding space.

ZERO [41] is a forward-pass-only episodic TTA method designed to address the inefficiency of
conventional prompt tuning approaches. Like MTA, ZERO performs adaptation without any gradient
updates. ZERO generates N strong augmentations of a test sample, computing predictions for each,
and selecting the most confident ones based on maximum softmax probabilities. Then, it performs
marginalization over the retained predictions using a zero-temperature softmax, effectively turning
the prediction into an argmax operation over logits.

TTL [42] is a parameter-efficient TTA method designed to improve VLM’s performance. Unlike
prompt tuning-based methods, TTL introduces low-rank adapters into the attention layers of the
image encoder, while keeping both the prompts and the text encoder frozen. During adaptation,
TTL applies strong data augmentations to the input and enforces prediction consistency using a
self-supervised weighted entropy loss. The objective encourages confident and consistent predictions
across augmented views, formulated as:

min
θLoRA

L =
1

| B |
∑
x∈B

β(x)H(f(x)) =
1

| B |
∑
x∈B

1

exp(−H(f(x))− ϵ)
H(f(x)), (3)

where ϵ is a normalization factor and B denotes the batch generated by augmentation algorithms.
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TPS [43] chooses to minimize the marginal entropy through optimizing the shift vector in the
embedding space instead of the textual prompt. This process requires no labeled data and incurs
minimal computational and memory overhead.

R-TPT [25] addresses the vulnerability of existing test-time adaptation methods to adversarial
perturbations. Instead of relying on marginal entropy minimization, R-TPT focuses on minimizing
point-wise entropy for each selected augmented view, thereby avoiding conflict introduced by the
Kullback-Leibler (KL) divergence term. The objective is defined as:

min
θprompt

LRTPT =
1

| B |
∑
x∈B

H(f(x)), (4)

where B denotes the subset of test-time augmentations with low-entropy predictions. To further
enhance robustness, R-TPT incorporates a reliability-based ensembling strategy, which assigns
higher weights to augmented views that are more consistent in their predictions. This leads to final
predictions that are both accurate and resistant to adversarial noise.

TDA [26] is a training-free and backpropagation-free online test-time adaptation method designed
to enable efficient adaptation of vision-language models. Specifically, TDA maintains a dynamic
memory queue by saving the high-confidence samples to construct a positive cache and the low-
confidence samples to construct a negative cache for each category. As test samples arrive, TDA
updates the cache and uses it for progressive pseudo-label refinement, improving label quality without
any parameter updates.

DMN [44] is a versatile online TTA method designed to support zero-shot, few-shot, and training-free
classification tasks. It introduces a dynamic memory, which accumulates test samples’ features on
the fly to exploit additional information during inference. During inference, the model leverages the
memory bank to refine predictions by dynamically retrieving and aggregating relevant features.

OnZeta [45] introduces a TTA framework designed for online scenarios, where each test image arrives
sequentially and is classified without storing past data. OnZeta proposes two key components: online
label learning and online proxy learning. The former dynamically estimates the label distribution of
the target data stream to reflect its evolving characteristics. The latter updates the vision-space class
proxies to reduce the modality gap between image and text features, thereby improving alignment.
Formally, OnZeta combines predictions from both components to produce a final classification output.

BoostAdapter [46] is a lightweight TTA method that integrates both instance-agnostic and instance-
aware information retrieval. BoostAdapter introduces a memory-based strategy that balances effi-
ciency and adaptivity. Specifically, it maintains a key-value memory that stores features from two
types of samples: historical samples, which are selected from the test data stream to capture general
distributional patterns of the target domain, and boosting samples, which are generated through
regional bootstrapping to reflect the characteristics of the current test instance. The final prediction is
produced by combining efficient feature retrieval with test sample-specific enhancement.

DPE [47] is an online TTA method that leverages multi-modal information and accumulates task-
specific knowledge over time. DPE maintains and updates two sets of class prototypes—textual and
visual—to better capture the semantics of target classes. To ensure alignment between modalities,
DPE introduces learnable residuals for each test instance, which are jointly optimized to promote
consistency between the textual and visual prototypes. These prototypes evolve continuously, enabling
the model to refine its understanding of class representations throughout the test phase.

ECALP [27] introduces a graph-based method without requiring task-specific tuning or additional
labeled data. DPE dynamically constructs a graph comprising test samples, few-shot examples, and
class-level text prompts. It performs label propagation over this graph to exploit the underlying test
data manifold, enabling label-efficient adaptation. Crucially, it introduces a context-aware feature
re-weighting mechanism that adjusts node similarities to improve adaptation performance across
tasks.

DynaPrompt [28] enhances online test-time adaptation by addressing limitations of traditional test-
time prompt tuning. DynaPrompt maintains a dynamic prompt buffer that stores multiple prompts
and updates one of them during inference. For each incoming test sample, it selects relevant prompts
from the buffer using a dual-criteria strategy based on prediction entropy and probability difference.
To further handle unseen distribution shifts, DynaPrompt introduces a dynamic prompt appending
mechanism, which allows new prompts to be added to the buffer while removing inactive ones.
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Table 11: Overview of methods used in TTA-VLM.
Method Venue Code

TPT [55] NeurIPS’22 https://github.com/azshue/TPT
C-TPT [24] ICLR’24 https://github.com/hee-suk-yoon/C-TPT
RLCF [39] ICLR’24 https://github.com/mzhaoshuai/RLCF
MTA [40] CVPR’24 https://github.com/MaxZanella/MTA
ZERO [41] NeurIPS’24 https://github.com/FarinaMatteo/zero
TTL [42] WACV’25 https://github.com/Razaimam45/TTL-Test-Time-Low-Rank-Adaptation
TPS [43] WACV’25 https://github.com/elaine-sui/TPS
R-TPT [25] CVPR’25 https://github.com/TomSheng21/R-TPT

TDA [26] CVPR’24 https://github.com/kdiAAA/TDA
DMN [44] CVPR’24 https://github.com/YBZh/DMN
OnZeta [45] ECCV’24 https://github.com/idstcv/OnZeta
BoostAdapter [46] NeurIPS’24 https://github.com/taolinzhang/BoostAdapter
DPE [47] NeurIPS’24 https://github.com/zhangce01/DPE-CLIP
ECALP [27] ICLR’25 https://github.com/Yushu-Li/ECALP
DynaPrompt [28] ICLR’25 https://github.com/zzzx1224/DynaPrompt

Table 12: Overview of datasets used in TTA-VLM.
Dataset Description # Classes # Test

Caltech101 [55] Classic object recognition dataset with 101 categories, with varied poses and backgrounds 100 2,465
Pets [56] Images of 37 cat and dog breeds with high variability in pose and lighting 37 3,669
Cars [57] Fine-grained car models from different manufacturers 196 8,041
Flowers [58] Images of 102 flower species, captured in diverse lighting and angles 102 2,463
Food101 [59] Real-world images of 101 popular food categories, with high visual diversity 101 30,300
Aircraft [60] Aircraft variants with fine-grained differences in shape and appearance 100 3,333
SUN397 [61] Scene classification dataset with a wide range of indoor and outdoor scenes 397 19,850
DTD [62] Textures described by various attributes (e.g., "striped", "bumpy") 47 1,692
EuroSAT [63] Multi-spectral satellite images capturing diverse land use classes 10 8,100
UCF101 [64] Frames extracted from videos covering 101 human actions 101 3,783

ImageNet [65] Large-scale dataset with diverse object and scene categories 1,000 50,000
ImageNet-A [68] Natural adversarial samples misclassified by standard models 200 7,500
ImageNet-V2 [66] A curated set of new test samples closely matching original ImageNet distribution 1,000 10,000
ImageNet-R [67] Rendered versions (e.g., cartoons, 3D models, paintings) of ImageNet classes 200 30,000
ImageNet-S [69] Sketch-style line drawings representing the ImageNet classes 1,000 50,889

TTA methods beyond classification. Although our benchmark focuses on classification tasks,
several recent works explore TTA in broader visual domains such as segmentation, detection, anomaly
localization, and video understanding. We briefly introduce their core ideas below.

Among episodic TTA approaches, AnoCLIP [70] proposes a zero-shot anomaly localization frame-
work that enhances CLIP’s patch-level alignment and introduces a lightweight test-time adapter
for refining localization. T3AL [71] performs episodic test-time adaptation for zero-shot temporal
action localization by generating video-level pseudo-labels and refining temporal regions using a
self-supervised strategy. DTS-TPT [72] extends episodic test-time prompt tuning to video activity
recognition, aligning text prompts with multi-scale temporal features for improved zero-shot accu-
racy. CLIP-DIY [73] achieves training-free open-vocabulary semantic segmentation by aggregating
CLIP’s patch-level predictions with unsupervised localization guidance at test time. CLIPtrase [74]
recalibrates CLIP’s patch correlations to improve local feature discrimination, boosting training-free
semantic segmentation performance. VocAda [75] introduces a plug-and-play vocabulary adapter
for open-vocabulary detection that refines user-defined labels through image captioning and noun
selection at test time. As for online TTA, TTCS [76] adapts the Segment Anything Model for medical
image segmentation using CLIP-guided prompt generation and adaptive self-training. TEST-V [77]
combines prompt-based and support-set adaptation for zero-shot video classification, tuning support
samples dynamically to enhance temporal consistency. These methods show that TTA is expanding
beyond classification toward dense and video tasks, highlighting the versatility of adaptation-based
paradigms for broader vision-language applications.

B Introduction of Datasets

We introduce the detailed information of the datasets included in the benchmark in Table 12 and
provide representative examples in Figure 3.
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Caltech101 Pets Cars Flowers Food101

Aircraft SUN397 DTD EuroSAT UCF101

ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S

Figure 3: Examples from the 15 datasets used in TTA-VLM, covering objects, animals, scenes,
actions, textures, and cross-domain visual tasks.

C Additional Experimental Results

Time and GPU Memory Usage. While the main text focuses on evaluating the performance of TTA
methods across multiple effectiveness metrics, it is equally critical to assess their computational effi-
ciency. Time and resource constraints are crucial considerations for practical deployment, especially
on edge devices or limited-resource environments.

To this end, we benchmark the runtime and GPU memory consumption of all TTA methods using
1,000 ImageNet test samples. All evaluations are conducted on an NVIDIA A6000 GPU with 48
GB memory, employing automatic mixed precision (AMP) to reflect optimized inference conditions.
Detailed results are reported in Table 13. Our findings show that methods involving optimization
of textual prompts generally incur higher computational costs. For instance, TPT [21] requires
441.5 seconds and 14.7 GB of GPU memory to process 1,000 test samples. More resource-intensive
methods like DynaPrompt, which simultaneously optimize multiple prompts, consume nearly three
times the memory and time. These results indicate that designing lightweight, efficient TTA methods
remains a key challenge for enabling real-world deployment.

D Detailed Experimental Results

Accuracy on CLIP. We report the accuracy of both episodic and online TTA methods evaluated
on CLIP-ViT-B/16 and CLIP-ViT-B/32. Results are presented in Tables 14, 15 for ViT-B/16, and
Tables 16, 17 for ViT-B/32 across fine-grained and large-scale datasets.

Accuracy on SigLIP. To assess the generality of TTA methods, we further evaluate all methods on
SigLIP-ViT-B/16. Accuracy results are summarized in Table 18.
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Table 13: Time and GPU Memory Usage of TTA methods on 1000 ImageNet test samples with
CLIP-ViT-B/16.

Adapt Time (s / 1000 samples) GPU Memory Usage (GB)

CLIP [32] 70.5 1.4
TPT [21] 441.5 14.7
C-TPT [24] 442.2 14.7
RLCF [39] 920.5 15.5
MTA [40] 124.4 1.5
ZERO [41] 384.3 1.6
TTL [42] 184.6 6.7
TPS [43] 62.1 1.5
R-TPT [25] 598.3 14.7

TDA [26] 73.9 1.4
DMNW [44] 248.9 16.4
DMN [44] 360.9 16.5
OnZeta [45] 72.6 31.1
BoostAdapter [46] 188.2 1.7
DPE [47] 143.1 16.4
ECALP [27] 77.5 1.4
DynaPrompt [28] 1157.1 43.0

Table 14: Accuracies (%) of TTA methods on fine-grained datasets with CLIP-ViT-B/16.
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP [1] 94.00 88.25 65.51 67.40 83.64 23.91 62.56 44.39 42.22 65.24 63.71
TPT [21] 94.24 87.22 66.24 68.62 84.66 23.55 65.45 47.04 43.04 68.41 64.85
C-TPT [24] 93.71 88.14 65.71 69.43 83.17 23.94 64.58 45.27 42.47 64.97 64.14
RLCF [39] 94.44 86.97 66.41 68.29 84.22 22.26 65.27 46.04 43.47 66.96 64.43
MTA [40] 94.40 87.90 67.49 67.72 84.45 24.84 65.28 46.28 42.46 67.80 64.86
ZERO [41] 94.00 87.33 67.03 67.44 83.78 24.81 65.59 45.39 37.28 66.53 63.92
TTL [42] 93.75 87.22 66.25 66.38 83.99 24.75 65.07 45.86 39.02 67.30 63.96
TPS [43] 94.16 87.44 67.21 67.64 84.40 24.78 64.68 46.04 42.56 67.46 64.64
R-TPT [25] 93.91 86.73 66.67 69.02 84.28 24.03 65.50 46.16 34.93 67.35 63.86

TDA [26] 94.73 88.83 66.34 69.87 84.29 24.18 65.71 47.10 53.25 68.57 66.29
DMNW [44] 94.04 89.15 66.83 70.20 84.11 24.21 64.27 45.74 55.31 67.91 66.18
DMN [44] 92.78 88.44 68.65 69.39 84.56 25.02 66.62 47.70 55.78 68.70 66.76
OnZeta [45] 93.96 89.18 66.43 68.66 84.72 23.79 63.97 46.16 52.86 67.75 65.75
BoostAdapter [46] 94.56 88.63 68.03 70.00 84.61 25.38 66.43 47.75 54.12 69.18 66.87
DPE [47] 94.44 89.04 67.84 70.24 83.82 24.12 64.58 48.94 52.53 68.65 66.42
ECALP [27] 93.55 89.67 68.16 72.72 85.64 25.65 68.05 48.23 55.69 72.11 67.95
DynaPrompt [28] 94.24 87.84 66.89 69.02 84.67 24.21 64.85 46.10 41.89 67.91 64.76

Calibration on fine-grained datasets. We provide a detailed evaluation of model calibration for
both episodic and online TTA methods using CLIP-ResNet50 as the backbone. Calibration results
are reported in Table 19.

Clean accuracy performance of Episodic TTA under the invasion of OOD samples. We provide
accuracy results of clean samples for episodic TTA methods under the invasion of OOD samples in
Table 20.

Stability of online TTA under OOD samples. To evaluate the stability of online adaptation, we
assess the performance of online TTA methods when exposed to streams containing out-of-distribution
(OOD) samples. The corresponding results are shown in Table 21.

Visualization of visual features. We employ t-SNE to visualize the visual representations learned
by CLIP (ViT-B/32) [1] and TTL [42] on a subset of the UCF101 dataset. As shown in Figure 4,
the features generated by TTL exhibit more compact and well-separated clusters compared to the
original zero-shot features from CLIP, with fewer ambiguous samples lying near decision boundaries.
This indicates that TTL produces more discriminative and robust representations, consistent with its
superior classification accuracy and adversarial robustness observed in quantitative experiments.
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Table 15: Accuracies (%) of TTA methods on ImageNet-X datasets with CLIP-ViT-B/16.
ImageNet ImageNet-V2 ImageNet-R ImageNet-A ImageNet-Sketch Avg. OOD Avg.

CLIP [1] 66.72 60.84 73.99 47.80 46.15 59.10 57.20
TPT [21] 68.94 63.38 77.13 54.75 47.92 62.42 60.80
C-TPT [24] 68.52 62.60 75.87 51.35 47.48 61.16 59.33
RLCF [39] 68.56 63.02 77.08 57.39 47.98 62.81 61.37
MTA [40] 69.24 63.60 77.00 57.03 48.48 63.07 61.53
ZERO [41] 69.28 64.16 77.38 59.77 48.59 63.84 62.48
TTL [42] 69.28 64.36 77.76 59.00 48.75 63.83 62.47
TPS [43] 68.83 63.68 76.98 58.19 48.24 63.18 61.77
R-TPT [25] 69.37 63.98 76.93 57.72 47.75 63.15 61.60

TDA [26] 68.28 61.24 75.36 49.16 48.73 60.55 58.62
DMNW [44] 67.61 60.86 74.22 48.05 47.98 59.74 57.78
DMN [44] 69.67 63.81 76.82 59.48 49.97 63.95 62.52
BoostAdapter [46] 69.33 63.09 77.30 58.15 49.60 63.49 62.04
ECALP [27] 69.40 61.40 75.81 47.36 50.87 60.97 58.86
DynaPrompt [28] 68.76 62.72 76.67 53.01 47.58 61.75 60.00

Table 16: Accuracies (%) of TTA methods on fine-grained datasets with CLIP-ViT-B/32.
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP [1] 91.36 85.06 60.14 64.03 77.37 18.06 62.06 42.97 35.81 61.64 59.85
TPT [21] 91.12 84.82 62.38 63.34 78.53 18.93 63.65 43.62 35.38 62.62 60.44
C-TPT [24] 92.33 85.23 60.76 66.02 78.51 18.06 63.59 45.09 34.64 63.07 60.73
RLCF [39] 91.28 84.44 61.01 61.63 78.49 17.40 63.41 42.61 35.93 63.42 59.96
MTA [40] 91.97 86.29 63.38 64.35 79.07 20.19 64.32 43.79 34.57 63.34 61.13
ZERO [41] 91.81 85.88 62.49 62.57 78.51 20.07 64.33 42.61 32.05 62.97 60.33
TTL [42] 91.48 85.94 62.32 62.97 78.54 18.54 64.03 43.79 32.36 62.89 60.29
TPS [43] 91.64 86.10 63.00 63.78 79.00 19.71 63.75 43.56 35.07 63.42 60.90
R-TPT [25] 90.75 85.17 63.10 62.12 78.69 19.53 64.16 42.49 31.86 63.10 60.10

TDA [26] 92.09 85.36 61.07 66.02 78.21 19.32 64.05 44.80 42.53 64.45 61.79
DMNW [44] 90.75 85.64 61.36 65.57 78.11 18.60 63.32 43.91 43.56 63.68 61.45
DMN [44] 91.03 86.73 63.60 64.51 79.37 20.37 65.22 45.09 36.95 65.05 61.79
OnZeta [45] 91.28 86.48 61.02 65.08 78.88 18.66 63.09 45.21 40.95 63.57 61.42
BoostAdapter [46] 91.93 85.88 63.67 65.81 79.52 21.15 64.96 45.39 42.23 65.16 62.57
DPE [47] 92.74 86.10 61.42 64.88 77.86 17.52 64.02 47.04 34.85 65.85 61.23
ECALP [27] 92.58 86.43 61.21 68.57 79.95 20.04 65.76 46.22 47.85 66.48 63.51
DynaPrompt [28] 92.21 85.99 61.92 65.00 78.98 17.85 63.50 43.50 34.86 62.81 60.66

Table 17: Accuracies (%) of TTA methods on ImageNet-X datasets with CLIP-ViT-B/32.
ImageNet ImageNet-V2 ImageNet-R ImageNet-A ImageNet-Sketch Avg. OOD Avg.

CLIP [1] 62.04 54.77 66.23 29.53 40.84 50.68 47.84
TPT [21] 63.47 56.85 69.01 34.68 41.67 53.14 50.55
C-TPT [24] 63.85 56.42 68.45 32.43 42.18 52.67 49.87
RLCF [39] 63.64 57.38 70.45 37.49 42.75 54.34 52.02
MTA [40] 65.02 58.21 70.37 38.03 43.45 55.02 52.52
ZERO [41] 65.29 58.91 70.76 40.48 43.65 55.82 53.45
TTL [42] 64.99 58.91 71.16 39.65 43.84 55.71 53.39
TPS [43] 64.77 57.75 70.21 38.61 43.14 54.90 52.43
R-TPT [25] 64.25 57.96 69.94 36.61 41.60 54.07 51.53

TDA [26] 63.50 55.45 67.44 31.23 43.01 52.13 49.28
DMNW [44] 62.68 54.76 66.12 29.60 42.37 51.11 48.21
DMN [44] 65.72 58.98 70.36 41.52 44.84 56.28 53.93
BoostAdapter [46] 65.01 56.87 70.39 38.99 44.40 55.13 52.66
ECALP [27] 64.39 55.43 67.66 29.96 44.71 52.43 49.44
DynaPrompt [28] 63.92 56.47 68.94 32.99 42.06 52.88 50.12

Table 18: Accuracies (%) of TTA methods on fine-grained datasets with SigLIP (ViT-B/16).
Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

SigLIP [4] 97.93 93.13 90.70 84.37 87.30 40.68 69.64 63.00 41.33 70.79 73.89
TPT [21] 98.05 92.78 91.28 84.73 87.50 40.71 70.03 64.18 40.44 71.48 74.12
C-TPT [24] 97.97 92.94 90.77 84.17 87.37 40.05 69.64 63.59 40.62 70.71 73.78
RLCF [39] 96.47 92.20 86.30 81.20 85.15 33.72 63.97 54.02 30.09 66.24 68.94
MTA [40] 98.05 92.94 91.52 84.86 87.29 39.78 69.80 65.19 33.56 71.32 73.43
ZERO [41] 97.65 92.26 90.98 84.29 86.54 34.05 69.03 64.07 24.48 70.76 71.41
TTL [42] 97.97 92.53 91.12 84.17 87.54 38.76 70.12 65.25 37.22 72.14 73.68
TPS [43] 98.05 92.53 91.37 85.10 87.48 39.96 69.60 65.13 34.01 72.38 73.56
R-TPT [25] 97.32 92.94 90.72 84.94 87.02 32.82 69.09 64.66 26.37 70.18 71.61
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Table 19: Expected calibration error (%) of TTA methods on fine-grained datasets with CLIP-
ResNet50.

Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 ECE Avg. ↓
CLIP [1] 4.50 5.62 4.47 2.96 2.69 6.31 3.82 8.82 14.76 3.01 5.70
TPT [21] 3.98 3.87 4.16 13.51 5.15 15.97 9.03 25.22 21.17 10.89 11.30
C-TPT [24] 3.10 3.25 1.81 4.09 1.80 11.12 2.81 21.55 13.62 2.96 6.61
RLCF [39] 6.00 8.51 11.44 24.47 13.70 23.56 20.21 37.36 35.95 21.43 20.26
MTA [40] 4.63 4.99 5.97 13.68 11.55 7.70 10.43 22.04 26.50 14.49 12.20
TPS [43] 7.14 9.63 17.51 22.77 15.74 23.16 20.20 35.19 39.18 21.08 21.16
R-TPT [25] 6.48 4.27 1.63 12.27 5.44 12.42 7.88 25.00 29.44 8.32 11.32

TDA [26] 5.83 3.00 1.54 5.68 2.40 15.74 5.80 19.19 23.56 9.36 9.21
DMNW [44] 5.22 4.43 14.86 9.79 6.56 31.75 16.39 36.78 23.05 16.46 16.53
DMN [44] 3.59 5.93 9.66 10.44 4.55 26.81 12.83 27.35 13.63 14.14 12.89
BoostAdapter [46] 10.27 2.56 16.15 6.72 14.83 48.03 18.03 22.20 23.03 10.67 17.25
ECALP [27] 11.46 14.35 39.35 33.79 22.16 73.12 31.45 51.65 12.18 32.55 32.21
DynaPrompt [28] 2.81 2.41 1.09 4.97 2.35 9.97 3.05 17.46 22.89 7.21 7.42

Table 20: Accuracies (%) of Episodic TTA methods on fine-grained datasets under the invasion of
OOD samples with CLIP-ResNet50.

Caltech101 Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP [1] 90.58 84.91 55.42 64.96 78.70 17.35 66.64 51.93 38.74 65.01 61.42
TPT [21] 93.03 85.80 58.55 64.86 79.51 18.37 69.31 50.48 32.41 65.65 61.80
C-TPT [24] 92.45 84.06 55.65 68.47 79.45 18.43 68.86 53.14 39.52 65.54 62.56
RLCF [39] 92.83 84.79 57.87 62.30 79.32 17.71 68.65 50.60 30.45 65.96 61.05
MTA [40] 92.38 85.63 57.92 63.34 79.17 20.05 68.58 51.21 31.12 66.23 61.56
ZERO [41] 91.93 85.47 57.92 61.82 77.56 19.63 68.51 48.67 23.26 64.80 59.96
TPS [43] 92.64 85.75 57.90 63.53 79.29 19.81 68.41 52.66 28.69 65.81 61.45
R-TPT [25] 91.67 85.19 58.15 63.34 78.51 19.03 68.85 49.28 27.21 64.59 60.58

Table 21: Accuracies (%) of online TTA methods on fine-grained datasets with CLIP-ResNet50
when OOD samples are mixed into the test data stream.

Caltech101 Pets Cars Flowers Food101 Aircraft
w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD

CLIP 90.70 90.70 84.85 84.85 55.40 55.40 64.96 64.96 78.65 78.65 17.53 17.53
TDA [26] 92.77 92.25 85.58 85.69 56.92 56.92 68.47 68.09 79.40 79.37 17.77 17.53
DMNW [44] 89.61 89.93 85.69 85.69 56.27 55.95 66.10 68.00 78.97 78.88 18.07 17.83
DMN [44] 90.83 90.96 85.75 86.48 59.15 58.45 64.86 65.91 78.78 78.75 19.75 19.15
OnZeta [45] 90.51 90.32 87.88 83.16 57.67 54.72 61.54 62.39 80.04 78.55 20.11 17.05
BoostAdapter [46] 91.54 91.74 85.97 85.69 58.15 58.60 67.71 67.52 79.73 79.74 19.69 19.93
DPE [47] 91.67 91.09 68.01 65.66 47.43 42.05 66.38 66.57 79.23 79.13 17.47 13.99
ECALP [27] 93.09 92.70 87.21 87.37 59.02 59.00 68.66 68.76 80.41 80.38 18.19 18.19
DynaPrompt [28] 92.58 92.77 85.41 85.35 57.25 57.50 65.43 64.20 79.83 79.47 17.41 17.59

SUN397 DTD EuroSAT UCF101 Avg.
w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD w/ OOD w OOD ∆

CLIP 66.64 66.64 51.69 51.69 38.76 38.76 65.01 65.01 61.42 61.42 (− 0.00)
TDA [26] 69.12 68.69 53.50 52.05 44.43 44.55 67.12 66.44 63.51 63.16 (↓ 0.35)
DMNW [44] 67.39 67.25 52.78 53.50 44.10 40.67 66.70 66.97 62.57 62.47 (↓ 0.10)
DMN [44] 69.40 69.38 50.12 50.60 38.50 38.48 66.54 66.54 62.37 62.47 (↑ 0.10)
OnZeta [45] 69.31 68.00 48.67 48.67 43.69 44.79 66.91 66.65 62.63 61.43 (↓ 1.20)
BoostAdapter [46] 69.15 69.12 53.14 52.90 49.14 48.43 67.49 66.75 64.17 64.04 (↓ 0.13)
DPE [47] 68.78 68.19 52.17 45.53 41.95 39.98 67.81 67.97 60.09 58.02 (↓ 2.07)
ECALP [27] 70.69 69.83 56.04 54.95 42.86 41.98 70.45 70.40 64.66 64.36 (↓ 0.31)
DynaPrompt [28] 68.93 68.86 52.05 51.21 32.12 32.57 65.07 64.33 61.61 61.39 (↓ 0.22)
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(2) TTL

Figure 4: t-SNE visualization of visual features from CLIP and TTL on a subset of the UCF101
dataset.
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