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Abstract
In this paper, we introduce a geometric frame-
work to analyze memorization in diffusion mod-
els through the sharpness of the log probability
density. We mathematically justify a previously
proposed score-difference-based memorization
metric by demonstrating its effectiveness in quan-
tifying sharpness. Additionally, we propose a
novel memorization metric that captures sharp-
ness at the initial stage of image generation in la-
tent diffusion models, offering early insights into
potential memorization. Leveraging this metric,
we develop a mitigation strategy that optimizes
the initial noise of the generation process using a
sharpness-aware regularization term.

1. Introduction
Recent advancements in generative models have signifi-
cantly improved data generation across various domains, in-
cluding image synthesis (Rombach et al., 2022), natural lan-
guage processing (Achiam et al., 2023; Touvron et al., 2023),
video generation (Ho et al., 2022; Brooks et al., 2022), and
molecular design (Alakhdar et al., 2024). Among these,
diffusion models (Ho et al., 2020; Song et al., 2021c) have
emerged as powerful frameworks, achieving state-of-the-art
results by iteratively refining noisy samples to approximate
complex data distributions (Song et al., 2021b; Saharia et al.,
2022; Rombach et al., 2022; Podell et al., 2024).

Despite their successes, diffusion models suffer from mem-
orization, where they replicate training samples instead of
generating novel outputs (Carlini et al., 2023; Somepalli
et al., 2023b; Webster, 2023). This issue is especially con-
cerning when models are trained on sensitive data, leading to
privacy risks (Orrick, 2023; Joseph Saveri, 2023). Address-
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ing memorization is critical for ensuring the responsible
deployment of generative models in real-world applications.

Previous work has sought to analyze and mitigate memo-
rization in generative models using various approaches, in-
cluding probability manifold analysis via Local Intrinsic Di-
mensionality (LID) (Ross et al., 2024; Kamkari et al., 2024),
spectral characterizations(Ventura et al., 2024; Stanczuk
et al., 2024), and score-based discrepancy measures (Wen
et al., 2024). Additionally, attention-based methods have
been used to examine memorization at the feature level (Ren
et al., 2024; Chen et al., 2024).

In this work, we propose a general sharpness-based frame-
work for understanding memorization in diffusion models.
Specifically, we observe that memorization correlates with
regions of sharpness in the probability landscape, which can
be quantified via the Hessian of the log probability. Large
negative eigenvalues of the Hessian indicate sharp, isolated
regions in the learned distribution, providing a mathemati-
cally grounded explanation of memorization. Furthermore,
we show that the trace-based eigenvalue statistics can serve
as a robust early-stage indicator of memorization, enabling
detection at the initial sampling step of generation.

Our framework also provides a justification for score based
metric by interpreting it through the lens of sharpness, re-
inforcing its validity as a memorization detection metric.
Building on this, we propose an enhanced sharpness mea-
sure with additional Hessian components, improving sensi-
tivity, particularly at the earliest stages of sampling.

Beyond detection, we introduce an inference-time mitiga-
tion strategy that reduces memorization by selecting ini-
tial diffusion noise from regions of lower sharpness. Our
method, Sharpness-Aware Initialization for Latent Diffusion
(SAIL), utilizes our sharpness metric to identify initializa-
tions that avoid trajectories leading to memorization. By
simply adjusting the initial noise, SAIL steers the diffusion
process toward smoother probability regions, mitigating
memorization without requiring retraining. Unlike modi-
fying the prompt, which can negatively affect generation
quality, SAIL reduces memorization by carefully selecting
the initial noise, enabling mitigation without changing the
conditioning inputs.

1



Understanding and Mitigating Memorization in Generative Models via Sharpness of Probability Landscapes

We validate our approach through experiments on a 2D
toy dataset, MNIST, and Stable Diffusion. Our results show
that Hessian eigenvalues effectively differentiate memorized
from non-memorized samples, and our sharpness measure
provides a reliable metric for memorization detection. Addi-
tionally, we demonstrate that SAIL mitigates memorization
while preserving generation quality, offering a simple yet
effective solution for reducing memorization.

In summary, our key contributions are:

• We propose a sharpness-based framework for analyz-
ing memorization in diffusion models, examining the
patterns of Hessian eigenvalues and their aggregate
statistics to characterize memorized samples.

• We provide a theoretical justification for the memoriza-
tion detection metric introduced by Wen et al. (2024)
through sharpness analysis.

• We introduce a new sharpness measure that enables
early-stage memorization detection during the diffu-
sion process.

• We propose SAIL, a simple yet effective mitigation
strategy that selects initial noise leading to smoother
probability regions, reducing memorization without
altering model parameters or prompts.

2. Related works
Understanding and Explaining Memorization. The
memorization behavior of diffusion models (DMs) has
been extensively studied (Somepalli et al., 2023b; Car-
lini et al., 2023; Wen et al., 2024), with prior work ex-
amining contributing factors such as prompt condition-
ing (Somepalli et al., 2023b), data duplication (Carlini et al.,
2023; Somepalli et al., 2023a), and dataset size or complex-
ity (Gu et al., 2023). Some studies have approached this
issue from a geometric standpoint, drawing on the mani-
fold learning conjecture (Fefferman et al., 2016; Pope et al.,
2021), where exact memorization is associated with data
points lying on a zero-dimensional manifold (Ross et al.,
2024; Ventura et al., 2024; Pidstrigach, 2022).

This geometric perspective has led to efforts to esti-
mate Local Intrinsic Dimensionality (LID) at the sample
level (Stanczuk et al., 2024; Kamkari et al., 2024; Hor-
vat & Pfister, 2024; Wenliang & Moran, 2023; Tempczyk
et al., 2022), which has been used to characterize memoriza-
tion (Ross et al., 2024; Ventura et al., 2024).

While our work is inspired by prior studies, it introduces
several key distinctions. Unlike approaches that define mem-
orization in terms of overall model behavior (Yoon et al.,
2023; Gu et al., 2023), we focus on sample-specific behav-
ior manifested in the learned probability density. Although

our perspective is conceptually aligned with recent geomet-
ric interpretations (Ross et al., 2024; Bhattacharjee et al.,
2023), our methodology diverges fundamentally by ana-
lyzing sharpness in the learned density, without relying
on assumptions about an inaccessible ground-truth distri-
bution. In contrast to manifold-based analyses that track
variations in individual feature components (Ventura et al.,
2024; Achilli et al., 2024), we show that sharpness, treated
as an aggregated statistic, can be effectively estimated and
used for detecting memorization. Moreover, unlike LID-
based methods (Ross et al., 2024) that are restricted to the
final denoising step, our approach reveals that memorized
samples persistently occupy high-sharpness regions through-
out the diffusion process. This allows for earlier detection
and targeted intervention, enabling a more proactive and
interpretable strategy for mitigating memorization.

Detecting and Mitigating Memorization. Detecting and
mitigating memorization during the generative process re-
mains a challenging problem. Previous studies have ex-
plored various approaches to identify prompts that induce
memorization in text-conditional DMs by comparing gener-
ated images to training data. For instance, Somepalli et al.
(2023a) employed feature-based detectors like SSCD (Pizzi
et al., 2022) and DINO (Caron et al., 2021), while Carlini
et al. (2023) and Yoon et al. (2023) used calibrated ℓ2 dis-
tance in pixel space to quantify memorization. Webster
(2023) developed both white-box and black-box attacks,
analyzing edges and noise patterns in generated images.

While these methods provide valuable insights, their compu-
tational cost makes real-time detection impractical. To ad-
dress this limitation, heuristic-based alternatives have been
proposed. Wen et al. (2024) introduced a metric based on
the magnitude of text-conditional score predictions, leverag-
ing the observation that memorized prompts exhibit stronger
text guidance. Similarly, Ren et al. (2024) identified memo-
rization via anomalously high attention scores on specific
tokens, while Chen et al. (2024) focused on patterns in end
tokens of text embeddings.

Since memorization in DMs is often linked to specific text
prompts, most mitigation strategies have focused on modi-
fying prompts or adjusting attention mechanisms to reduce
their influence (Wen et al., 2024; Ren et al., 2024; Ross et al.,
2024). For example, Ross et al. (2024) rephrased prompts
using GPT-4 to mitigate memorization. However, these in-
terventions often degrade image quality or compromise user
intent by altering model-internal components.

In contrast, our approach offers a principled and model-
agnostic alternative by optimizing the initial noise input
instead of modifying the text prompt or trained model pa-
rameters. By selecting initial noise that leads to smoother
probability regions, our method mitigates memorization
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while preserving both user prompts and model fidelity, en-
suring minimal impact on generation quality.

3. Preliminaries
Score-based Diffusion Models. Diffusion models
(DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021c) generate images by iteratively refining random
noise into samples that approximate the data distribution
p0(x0). The process begins with the forward process, where
the training data is progressively corrupted by the addition
of Gaussian noise. At each timestep t, the conditional
distribution of the noisy data is given by:

qt|0(xt|x0) = N (xt|
√
αtx0, (1− αt)I),

where xt represents the noisy data at timestep t, and αt de-
creases monotonically over time in the variance-preserving
case, with αT becoming sufficiently small such that the re-
sulting distribution closely resembles pure Gaussian noise:

qT |0(xT |x0) ≈ N (0, I).

This process can be equivalently represented as a stochastic
differential equation (SDE):

dxt = f(xt, t)dt+ g(t)dwt,

where wt is a standard Brownian motion.

The reverse process, which reconstructs the data distribution
p0(x0) from noise, is then formulated as:

dxt =
[
f(xt, t)− g2(t)∇xt

log pt(xt)
]
dt+ g(t)dw̄t,

where w̄t denotes a standard Brownian motion in reverse
time, and pt(xt) is the marginal distribution at timestep t.

The only unknown term in the reverse process is the score
function over timesteps, ∇xt

log pt(xt) := s(xt), which is
often parameterized by a neural network with sθ(xt).

In many applications the data x0 is often represented with
an associated label c (e.g., prompts or class labels). In these
scenarios, the additional condition c is incorporated into
the model as sθ(xt, c), allowing it to estimate the score
of the conditional density ∇xt

log pt(xt|c) := s(xt, c) via
classifier free guidance (Ho & Salimans, 2021).

Sharpness and Hessian. For a given function f at a point
x, the Hessian ∇2

xf(x) represents the matrix of second-
order derivatives, encapsulating the local curvature of f
around x. The eigenvectors of the Hessian define the princi-
pal axes of this curvature, while the corresponding eigenval-
ues characterize the curvature along these directions. Posi-
tive eigenvalues indicate local convexity, negative eigenval-
ues indicate local concavity, and zero eigenvalues indicate

flatness in those directions. The magnitude of an eigenvalue
reflects the steepness of the curvature, with larger absolute
values indicating steeper changes in f .

In this work, we examine the memorization by analyzing the
Hessian of log pt(xt), which corresponds to the Jacobian of
the score function. We denote it as H(xt) := ∇2

xt
log pt(xt)

for the unconditional case and H(xt, c) := ∇2
xt

log pt(xt|c)
for the conditional case. The Hessian estimated by the
model is denoted as Hθ(xt) and Hθ(xt, c).

4. Understanding Memorization via Sharpness
4.1. Memorization: Sharpness in Probability Landscape

Sharpness quantifies the concentration of learned log density
log p(x) around point x, which can be analyzed through the
eigenvalues of its Hessian matrix. Large negative eigenval-
ues indicate sharp peaks in the distribution, suggesting mem-
orization of specific data points. Conversely, small magni-
tude or positive eigenvalues characterize broader, smoother
regions that facilitate better generalization.

Local Intrinsic Dimensionality (LID) (Kamkari et al., 2024)
quantifies the effective dimensionality of a point in its local
neighborhood, characterizing local sample space geometry.
At the final generation step (t ≈ 0), LID serves as a memo-
rization indicator (Ross et al., 2024). Exact Memorization
(EM) shows near-zero LID, indicating pure reproduction of
training samples, while Partial Memorization (PM) exhibits
small but nonzero LID, reflecting limited stylistic variations.
In contrast, properly generalized samples demonstrate mod-
erate LID values, indicating more diverse representations.

While both sharpness and LID characterize curvature prop-
erties of probability density, LID is limited to analyzing
sample space at t ≈ 0, where the generated image emerges.
In contrast, we extend memorization detection across all
timesteps by leveraging sharpness via Hessian eigenvalues
as a more versatile metric, enabling continuous monitoring
throughout the generative process rather than relying solely
on final output characteristics.

(a) (b)

Figure 1: (a) Learned score vectors at final sampling step
(t = 1), with training data points marked in blue. (b) Evolu-
tion of eigenvalues throughout the sampling process for a
memorized (red) and non-memorized (blue) sample.
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Figure 3: Left: Eigenvalue distribution of Hθ(xt, c) across memorization categories in Stable Diffusion v1.4 at initial
sampling step (t = T − 1) with range clipped. (top) 30 prompts per category with identical initialization. (bottom) Fixed
prompt set with three different initializations. Both plots reveal stronger memorization correlates with fewer non-negative
eigenvalues. Right: Eigenvalue distribution of Hθ(xt, c) across memorization categories in Stable Diffusion v1.4 at final
sampling step (t = 1). Generated images shown with original training counterparts (outlined in red). Eigenvalues are
approximated via Arnoldi iteration (Arnoldi, 1951), details in Appendix A.2.

Mem

Non-mem

Figure 2: Left: Generated images for memorized (digit “9”)
and non-memorized (digit “3”) samples. Right: Eigenvalue
distributions for memorized (red) and non-memorized (blue)
samples at initial (top) and final (bottom) sampling steps,
revealing more and larger negative eigenvalues in memo-
rized cases. Experimental details in Appendix C.

Figure 1(b) demonstrates our approach using a mixture of
2D Gaussians, where sharp peaks represent memorized dis-
tributions. From the mid stage of the denoising process, the
memorized sample (red) exhibits large negative eigenvalues,
indicating highly localized distributions, while the generic
sample (blue) maintains near-zero eigenvalues, characteriz-
ing broader, smoother regions. Importantly, the memorized
sample exhibits sharp characteristics even at intermediate
timesteps, making early-stage detection possible.

To validate our approach on real data, we conduct exper-
iments on MNIST by inducing memorization through re-
peated exposure to a single “9” image while maintaining all
“3” images as a general class (Figure 2). The eigenvalue dis-
tributions at t = 1 clearly differentiate memorized from non-
memorized samples: memorized samples show consistently
large negative eigenvalues indicating sharp peaks, while
non-memorized samples exhibit positive eigenvalues, re-
flecting locally convex regions that allow sample variations.
Notably, these clear distributional differences emerged even
at the initial sampling step (t = T − 1), confirming that
sharpness-based memorization detection is effective from
the very beginning of the generation process.

We further validate our approach on Stable Diffusion (Rom-
bach et al., 2022), analyzing its 16, 384-dimensional latent
space. Figure 3 reveals distinct patterns in both the number
of non-negative eigenvalues and the magnitude of negative
eigenvalues across different memorization categories (EM,
PM, and non-memorized) at both initial and final sampling
step. These patterns not only align with LID-based anal-
ysis at t ≈ 0 but also demonstrate sharpness as a more
generalizable memorization measure, capturing distinctive
characteristics at generation onset.

4.2. Score Norm as a Sharpness Measure

While sharpness serves as a fundamental measure of mem-
orization in generative models, directly computing the full
spectrum of Hessian eigenvalues in high-dimensional distri-
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butions, such as those in Stable Diffusion, is computation-
ally intractable. A practical alternative is to approximate
sharpness using the trace of the Hessian, a single scalar quan-
tity that represents the sum of all eigenvalues, where large
negative traces indicate sharp, highly localized regions.

A key observation is that the norm of the score function
∥s(x)∥ inherently encodes information about the probability
landscape’s curvature. In Gaussian distributions, the score
norm is directly connected to the Hessian trace, as shown in
the following result. (Appendix B.2).

Lemma 4.1. For a Gaussian vector x ∼ N (µ,Σ),

E
[
∥s(x)∥2

]
= −tr(H(x)),

where H(x) ≡ −Σ−1 is the Hessian of the log density.

This result extends to non-Gaussian distributions under mild
regularity assumptions (Appendix B.2). For theoretical clar-
ity and ease of analysis, however, we focus on the Gaussian
case. While the distribution xt in diffusion processes is
not strictly Gaussian at every timestep, recent studies show
that at moderate to high noise levels, corresponding to the
early and middle stages of the reverse process—the learned
score is predominantly governed by its Gaussian compo-
nent (Wang & Vastola, 2024). This approximation is further
justified in latent diffusion models, where the latent variable
zt is explicitly regularized toward a Gaussian prior (Kingma,
2013; Rombach et al., 2022), despite the complexity of the
original data distribution.

Under this Gaussian assumption at relevant sampling steps,
the score norm ∥sθ(xt)∥2 provides an unbiased estimate of
the negative Hessian trace−tr(Hθ(xt)), offering an efficient
measure of the sharpness of the probability landscape.

Stable Diffusion v1.4

MNIST

Figure 4: Empirical alignment in MNIST and Stable Diffu-
sion between: (left) −tr

(
Hθ(xt, c)

)
and ∥sθ(xt, c)∥2, and

(right) −tr
(
Hθ(xt, c)

3
)

and ∥Hθ(xt, c)sθ(xt, c)∥2.

Figure 4 empirically confirms that this approximation holds
reliably across datasets, including MNIST and Stable Diffu-
sion’s latent space. Surprisingly, this relationship persists

even in the later stages of the diffusion process, suggesting
that score norm can serve as a computationally efficient
sharpness measure throughout generation. This perspective
provides a theoretical foundation for interpreting sharpness
in generative models through score norm based statistic, en-
abling efficient memorization detection and analysis without
requiring costly Hessian eigenvalue decompositions.

4.3. Wen’s Metric as a Sharpness Measure

Wen et al. (2024) characterized memorization through the
norm of difference between conditional and unconditional
score functions:

∥s∆θ (xt)∥ := ∥sθ(xt, c)− sθ(xt)∥.

This difference vector s∆θ (xt) determines the sampling di-
rection in classifier-free guidance. Their approach is based
on the observation that memorized prompts consistently
guide generation toward specific images, resulting in larger
magnitudes of s∆θ (xt) due to stronger text-driven guidance.
While the theoretical foundations of this heuristic remain
to be fully understood, it has proven to be one of the most
effective detection metrics thus far.

Notably, the structure of ∥s∆θ (xt)∥ bears a strong resem-
blance to the score norm, which we previously identified as
a measure of sharpness. This similarity hints at the possi-
bility of interpreting Wen’s metric as a sharpness measure,
encapsulating the impact of conditioning on the probability
distribution’s curvature. To rigorously establish this connec-
tion, we proceed to analyze the Hessian of the log-density,
following the same approach as in the preceding analysis.

Lemma 4.2. For x ∼ N (µ,Σ) and x|c ∼ N (µc,Σc):

Ex∼p(x|c)
[
∥s(x, c)− s(x)∥2

]
= ∥H(x)(µ− µc)∥2 + tr((H(x)−Hc(x))

2H−1
c (x)),

where H(x) ≡ −Σ−1 and Hc(x) ≡ −Σ−1
c .

Additionally, when Σ and Σc commute (i.e., ΣΣc = ΣcΣ)
and mean vectors are the same (µ = µc), this reduces to

Ex∼p(x|c)
[
∥s(x, c)− s(x)∥2

]
=

d∑
i=1

(λi − λi,c)
2

λi,c
,

where λi, λi,c are eigenvalues of H(x) and Hc(x).

This result demonstrates that Wen’s metric measures sharp-
ness differences through squared eigenvalue differences of
the conditional and unconditional Hessian. During early
timesteps, when the latent distribution remains close to an
isotropic Gaussian, this metric directly captures the extent
to which conditioning induces sharpness. At later timesteps,
when Σt and Σt,c do not generally commute, the metric
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can be interpreted through generalized eigenvalues, reveal-
ing how conditioning sharpens the learned distribution in
similar manner. The details are provided in Appendix A.3.

Figure 5: Eigenvalue differences between the conditional
and unconditional Hessians. Memorized samples exhibit
a significantly larger gap, while non-memorized samples
show near-zero differences throughout. At intermediate
timesteps (t = 20), the gap remains small but detectable,
and at the final stage (t = 1), it widens further.

Figure 5 shows the eigenvalue disparities between condi-
tional and unconditional Hessians across timesteps, reveal-
ing how conditioning shapes the probability distribution’s
geometry. For memorized samples, the eigenvalue gap is
notably large, showing that conditioning creates a more con-
strained probability landscape. At intermediate timesteps
(t = 20), the differences are subtle but noticeable, indi-
cating early conditioning effects. Near the end (t = 1),
the eigenvalue gap widens substantially, demonstrating con-
ditioning’s growing influence on the learned density. In
contrast, non-memorized samples show minimal eigenvalue
variations throughout, indicating little conditioning influ-
ence. These findings support our theoretical framework and
confirm Wen’s metric effectively measures sharpness.

4.4. Upscaling Eigenvalue Statistics via Hessian

While Wen’s metric reveals eigenvalue disparities at inter-
mediate timesteps, identifying and mitigating memorization
during the initial generation stage remains challenging. The
probability landscape maintains a nearly uniform charac-
ter since the latent distribution approximates an isotropic
Gaussian, making structural sharpness differences subtle.
Conventional metrics struggle to capture these fine-grained
distributional variations, limiting early-stage applications.

To address this limitation, we introduce a curvature-aware
scaling that enhances Wen’s metric through Hessian-based
weighting. By multiplying the Hessian with the score func-
tion, we amplify high-curvature directions, rendering sharp

regions more distinguishable within a smooth probability
landscape. This approach significantly improves the eigen-
value gap at the earliest generation stage, advancing mem-
orization detection in the diffusion process. The following
lemma shows that the Hessian-score product provides an
amplified measure of the Hessian trace, thereby increasing
sensitivity to distributional sharpness.
Lemma 4.3. For a Gaussian vector x ∼ N (µ,Σ),

E
[
∥H(x)s(x)∥2

]
= −tr((H(x))3)

where H(x) ≡ −Σ is the Hessian of the log density.

This relationship, empirically verified in Figure 4, demon-
strates the curvature-sensitive scaling effect of the Hessian
score product. Building on this principle, we propose an
enhanced version of Wen’s metric that improves early-stage
sensitivity through second-order sharpness characterization:

∥H∆
θ (xt, c)s

∆
θ (xt, c)∥2,

where H∆
θ (xt, c) = Hθ(xt, c)−Hθ(xt), and s∆θ (xt, c) =

sθ(xt, c)− sθ(xt).

To provide intuition, assuming identical means (µ = µc)
and that Σt and Σt,c commute, the expected value of our
metric simplifies to:

Ext∼pt(xt|c)
[
∥H∆

θ (xt, c)s
∆
θ (xt, c)∥2

]
=

d∑
i=1

(λi − λi,c)
4

λi,c
,

where λi, λi,c are eigenvalues of H(xt) and H(xt, c).

Compared to Wen’s metric in Lemma 4.2, this refinement
substantially improves sensitivity by amplifying the differ-
ence in sharpness, thereby enabling more effective detection
of memorization at earlier stages.

4.5. Detecting Memorization in Stable Diffusion

Experimental Setup. To evaluate our metric, we use 500
memorized prompts identified by Webster (2023) for Stable
Diffusion v1.4, and 219 prompts for v2.0. As a complemen-
tary set, we include 500 non-memorized prompts sourced
from COCO (Lin et al., 2014), Lexica (Lexica, 2024), Tuxe-
mon (HuggingFace, 2024), and GPT-4 (Achiam et al., 2023).
Following Wen et al. (2024), we apply the DDIM (Song
et al., 2021a) sampler with 50 inference steps.

Detection performance is assessed with two standard met-
rics: the Area Under the Receiver Operating Characteristic
Curve (AUC) and the True Positive Rate at 1% False Posi-
tive Rate (TPR@1%FPR) with higher values preferable.

For comparison, we implement six baseline methods.
Among them, Carlini et al. (2023) analyzed generation
density by measuring pixel-wise ℓ2 distances across non-
overlapping image tiles, aiming to detect memorized con-
tent based on local similarity patterns. Ren et al. (2024)
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SD v1.4 SD v2.0
Method Steps n AUC TPR@1%FPR AUC TPR@1%FPR

Tiled ℓ2 (Carlini et al., 2023) 50 4 0.908 0.088 0.792 0.114
16 0.94 0.232 0.907 0.114

LE (Ren et al., 2024) 1
1 0.846 0.116 0.848 0
4 0.839 0.13 0.853 0
16 0.832 0.124 0.851 0

AE (Ren et al., 2024) 50
1 0.606 0 0.809 0
4 0.628 0 0.82 0
16 0.598 0 0.817 0

BE (Chen et al., 2024) 50
1 0.986 0.95 0.983 0.908
4 0.997 0.98 0.99 0.945
16 0.997 0.982 0.99 0.949

∥s∆θ (xt)∥ (Wen et al., 2024)

1
1 0.976 0.896 0.948 0.739
4 0.992 0.944 0.98 0.876
16 0.99 0.928 0.983 0.881

5
1 0.991 0.932 0.969 0.885
4 0.997 0.978 0.984 0.917
16 0.998 0.982 0.987 0.931

50
1 0.983 0.948 0.982 0.904
4 0.996 0.982 0.99 0.949
16 0.998 0.98 0.991 0.945

∥H∆
θ (xT )s∆θ (xT )∥2 (Ours) 1 1 0.987 0.908 0.959 0.74

4 0.998 0.982 0.991 0.895

Table 1: AUC and TPR@1%FPR across detection strategies and sampling steps for Stable Diffusion (SD) v1.4 and v2.0.
Here, n denotes the number of generations per prompt, with results averaged over n. “Steps” indicates the stage along the
diffusion sampling path, ranging from step 1 (t = T − 1) to step 50 (t = 1).

detected memorized samples by identifying anomalous at-
tention score patterns in text-conditioning during sampling.
Chen et al. (2024) refined Wen et al. (2024)’s metric for
partial memorization by incorporating end-token masks that
empirically highlight locally memorized regions.

We report detection results at sampling steps 1, 5, and 50,
but only include 50-step results for methods requiring full
sampling or showing significant performance gains. Addi-
tional experimental details are provided in Appendix D.1.

Results. Table 1 demonstrates our metric’s strong per-
formance on Stable Diffusion v1.4 and v2.0 using just a
single sampling step. By upscaling curvature information
via H∆

θ (xt), we significantly enhance Wen et al. (2024)’s
metric. With merely four generations, we achieve an AUC
of 0.998 and TPR@1%FPR of 0.982, matching Wen et al.
(2024)’s performance using five steps and 16 generations.
Similarly, in v2.0, our approach attains an AUC of 0.991
without full-step sampling, underscoring its effectiveness.

Importantly, our metric can be efficiently computed using
Hessian-vector products without explicitly forming the full
Hessian matrix. Leveraging automatic differentiation frame-
works such as PyTorch, a single Hessian-vector product
suffices for detection, incurring minimal overhead.

5. Sharpness Aware Memorization Mitigation
5.1. Sharpness Aware Initialization Sampling

Motivation. In Section 4, we observed that memorized
samples exhibit a sharp conditional density, pt(xt|c), even
at the very beginning of the generation process (i.e., at

t = T − 1; note that sampling proceeds in reverse order,
starting from t = T ). This is substantiated by the strong
detection performance of both Wen’s metric and our metric
at the initial sampling step, which quantifies the sharpness
gap between pt(xt|c) and pt(xt).

This phenomenon, linked to the deterministic nature of ODE
samplers (a one-to-one mapping between noise and image),
implies that initializations from sharper densities remain in
sharper regions at each intermediate timestep of the gen-
eration process, thereby increasing the likelihood of pro-
ducing memorized images. In contrast, initializations from
smoother regions tend to yield non-memorized images.

Thus, we argue that sampling with noise from smoother
densities could effectively mitigate memorization. While
manually searching for such initializations is a straightfor-
ward approach, it becomes infeasible in high-dimensional
Gaussian space due to the sheer size and complexity of the
search domain. Consequently, we propose to directly opti-
mize the initial noise xT as a more scalable and systematic
way to address this challenge.

Sharpness Aware Initialization. We propose Sharpness-
Aware Initialization for Latent Diffusion (SAIL), an
inference-time mitigation strategy that optimizes initializa-
tions xT by minimizing the sharpness gap at the starting step
(t = T−1). SAIL identifies initial seeds on non-memorized
sampling trajectories by selecting xT from smoother regions
while maintaining a reasonable density under the isotropic
Gaussian prior. The objective function is defined as:

∥H∆
θ (xT )s

∆
θ (xT )∥2 − α log pG(xT ),

7
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Figure 6: Left: Comparison of inference-time mitigation methods on SD v1.4 (top) and v2.0 (bottom), evaluated across five
hyperparameter configurations per method. Lower SSCD scores indicate reduced memorization, while higher CLIP scores
show better prompt-image alignment. Right: Qualitative comparison demonstrating SAIL’s effectiveness in preserving key
image details (shown adjacent to the original image), whereas baseline methods exhibit quality degradation due to modified
text conditioning. Images are generated using identical random seeds, with full prompts in Appendix D.2

where pG is the density of an isotropic Gaussian distribution.

While ∥H∆
θ (xT )s

∆
θ (xT )∥2 can be efficiently computed us-

ing Hessian-vector products, the gradient backpropagation
required for optimization introduces computational over-
head. To overcome the burden, we approximate the term
using a Taylor expansion around xT :

∥H∆
θ (xT )s

∆
θ (xT )∥2 ≈

∥∥s∆θ (xT + δs∆θ (xT )
)
− s∆θ (xT )

∥∥2
δ2

.

This leads to the final objective for SAIL:

LSAIL(xT ) := ∥s∆θ
(
xT + δs∆θ (xT )

)
− s∆θ (xT )∥2 + α∥xT ∥2,

where α balances the sharpness of the density and the origi-
nal likelihood. To ensure initializations remain close to the
Gaussian distribution, we employ early stopping based on a
threshold ℓthres, limiting number of optimization steps.

5.2. Mitigating Memorization in Stable Diffusion.

Experimental Setup. To evaluate mitigation strategies,
we use the same memorized prompt set employed in the
detection experiments described in Section 4.5. However,
since verifying mitigation effects requires access to training
images, we exclude prompts whose corresponding training
samples are unavailable. Further details are in Appendix D.

We employ two key metrics following (Wen et al., 2024;
Somepalli et al., 2023a): the SSCD similarity score (Pizzi

et al., 2022), which quantifies memorization by comparing
model-based features of generated images to their corre-
sponding training data, and the CLIP score (Radford et al.,
2021), which evaluates prompt-image alignment. Results
are averaged over five generations per prompt.

For comparison, we implement four recent mitigation al-
gorithms. Somepalli et al. (2023b) propose Random To-
ken Addition (RTA) and Random Number Addition (RNA),
which perturb original prompts to mitigate memorization.
Wen et al. (2024) introduce a method that optimizes text em-
beddings to reduce the influence of memorization-inducing
tokens. Ren et al. (2024) propose a strategy that adjusts
attention scores of text embeddings for mitigation.

For a fair comparison, all methods are evaluated using five
distinct hyperparameter settings and optimized with the
Adam optimizer at a learning rate of 0.05. For a detailed
experimental settings, refer to Appendix D.2.

Results. Figure 6 (left) demonstrates that SAIL signifi-
cantly improves both SSCD and CLIP metrics for Stable Dif-
fusion v1.4 and v2.0. By optimizing the noise initialization
xT without altering model components like text embeddings
or attention weights, SAIL effectively mitigates memorized
content while preserving model behavior and user prompts,
ensuring high-quality, non-memorized outputs.

The advantage of SAIL is evident in Figure 6 (right), where

8
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it generates images that faithfully preserve key prompt de-
tails, such as celebrity names and primary objects. In con-
trast, methods that modify text-conditional components of-
ten reduce the influence of those components during mitiga-
tion, leading to degraded alignment with the original prompt
and potentially diminishing user utility. Additional qualita-
tive results for algorithms are provided in Appendix E.

6. Conclusion
We propose a sharpness-based framework for detecting and
mitigating memorization in diffusion models. Our analysis
identifies Hessian-based sharpness as a reliable indicator of
memorization and introduces an efficient proxy based on the
score norm. This perspective also provides a theoretical in-
terpretation of the memorization detection metric proposed
by Wen et al. (2024). Building on this foundation, we in-
troduce Sharpness-Aware Initialization for Latent Diffusion
(SAIL), an inference-time method that reduces memoriza-
tion by selecting low-sharpness initial noise. Experiments
on synthetic 2D data, MNIST, and Stable Diffusion demon-
strate that our approach enables early detection and effective
mitigation, all without degrading generation quality.
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A. Additional Mathematical Details
A.1. Second-Order Score Function

Since the Hessian of interest is simply the Jacobian of the score function, it can be directly computed using automatic
differentiation from a trained diffusion model (DM). While a well-trained DM that accurately estimates scores should
theoretically yield an accurate Hessian via automatic differentiation, this is not always the case in practice. Therefore, to
achieve a more accurate estimation of the Hessian, the model should be parameterized and incorporate a second-order score
matching loss that estimates∇2

xt
log pt(xt) ≈ ∇xt

sθ(xt) := Hθ(xt) as demonstrated by Meng et al. (2021). This can be
interpreted as implicit correction of the parametrized score function. To enhance numerical stability in the loss function, we
adopt the loss proposed by Lu et al. (2022), an improved version of the loss utilized by Meng et al. (2021). For a fixed t and
given trained score function, this loss is defined as:

θ∗ = argmin
θ

Ex0,ϵ

[
1

σ4
t

∥∥σ2
tHθ(xt) + I− ℓ1ℓ

⊤
1

∥∥2
F

]
,

where ℓ1(ϵ,x0) := σtsθ(xt) + ϵ, xt = αtx0 + σtϵ, ϵ ∼ N (0, I). The proposed objective is

L(2)
DSM (θ) := Et,x0,ϵ

[∥∥σ2
tHθ(xt) + I− ℓ1ℓ

⊤
1

∥∥2
F

]
.

To obtain a more accurate Hessian estimate in the Toy experiment, we used L = LDSM (θ) + 0.5L(2)
DSM (θ), which was

simultaneously optimized using a weighted sum format. For Stable Diffusion, no additional training was performed because
the original training data were not publicly available, making it difficult to retrain or fine-tune. Nevertheless, as noted in the
main text, we still obtained sufficiently good results with the existing pretrained model.

A.2. Numerical Eigenvalue Algorithm

For high-resolution image data with very large dimensions, such as in Stable Diffusion, calculating the exact Hessian and
finding its eigenvalues are computationally complex and mememory inefficient. As an alternative, we employ Arnoldi
iteration (Arnoldi, 1951), a numerical algorithm that leverages the efficient computation of Hessian-vector products
via torch.autograd.functional.jvp to approximate some leading eigenvalues without forming the Hessian
explicitly. In more detail, we can compute the action of the Hessian on a vector v efficiently using automatic differentiation.
Arnoldi iteration is an algorithm derived from the Krylov subspace method that constructs an orthonormal basis Qm =
[q1,q2, . . . ,qm] of the Krylov subspace Km, and an upper Hessenberg matrix Hm, such that the following relationship
holds:

AQm = QmHm + hm+1,mqm+1e
⊤
m,

where em is the m-th canonical basis vector. Since we can compute Aqk without forming A explicitly, using the function
jvp_func(qk), the Arnoldi iteration proceeds as follows. First, we normalize the starting vector b to obtain q1 = b

∥b∥2
.

Then, for each iteration k = 1 to m, we compute:

v = jvp_func(qk),

which represents the action of A on qk. We then orthogonalize v against the previous basis vectors q1, . . . ,qk, updating h
and v:

hj,k = q⊤
j v, v = v − hj,kqj , for j = 1, . . . , k.

After orthogonalization, we compute hk+1,k = ∥v∥2. If hk+1,k is greater than a small threshold ε, we normalize v to obtain
the next basis vector qk+1 = v

hk+1,k
. Otherwise, the iteration terminates. The eigenvalues of Hm(Ritz values) approximate

the m eigenvalues of A. For details on the computational process of Arnoldi iteration, Please refer to the algorithm pesudo
code below. The Arnoldi iteration tends to find eigenvalues with larger absolute values first because components associated
with these eigenvalues dominate within the Krylov subspace. If the input matrix is symmetric, Arnoldi iteration can be
simplified to Lanczos iteration (Lanczos, 1950). However, since the Lanczos iteration is very sensitive to small numerical
errors breaking the symmetry, we use the general version. The computational complexity of the algorithm is O(m2d) with
space complexity O(md), compared to O(d3) with O(d2) of exact derivation and eigendecomposition of Hessian. We
calculate all eigenvalues for several samples for clear justification. But with just a few(m≪ d) iterations, the difference
between memorized samples and non-memorized samples reveals enough.
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Algorithm 1 Arnoldi Iteration using Jacobian-Vector Products

Require: Starting vector b ∈ Rd, number of iterations m ≤ d,
function jvp_func(v) that computes Av, threshold ε

Ensure: Orthonormal basis Qm = [q1, . . . ,qm],
upper Hessenberg matrix Hm ∈ Rm×m

1: Initialize Q ∈ Rd×(m+1), h ∈ R(m+1)×m

2: Normalize the starting vector: q1 = b
∥b∥2

3: for k = 1 to m do
4: Compute v← jvp_func(qk)
5: for j = 1 to k do
6: Compute hj,k ← q⊤

j v
7: Update v← v − hj,kqj

8: end for
9: Compute hk+1,k ← ∥v∥2

10: if hk+1,k > ε then
11: Normalize qk+1 ← v

hk+1,k

12: else
13: break {Terminate iteration}
14: end if
15: end for
16: Adjust Hm by removing the last row of h
17: return Qm = [q1, . . . ,qm],

Hm = [hi,j ]i=1,...,m; j=1,...,m

A.3. Generalized Eigenvalue Analysis of Score Difference

In the main text, we demonstrated that Wen et al. (2024)’s metric can be expressed in terms of Hessian eigenvalue differences.
Here, we provide a more detailed derivation, including the non-commuting case, which requires the use of generalized
eigenvalues.

Consider two Gaussian distributions: the unconditional distribution

N (µ,Σt),

and the conditional distribution
N (µc,Σt,c).

For simplicity, we assume the means are identical (µ = µc) and focus on the effect of covariance differences. Wen’s metric
approximately measures ∥∥ s(xt, c) − s(xt)

∥∥,
Through direct calculation, the expected squared difference in these scores is

Ext∼p(xt|c)

[∥∥ s(xt, c) − s(xt)
∥∥2] = tr

[(
Σ−1

t − Σ−1
t,c

)2
Σt,c

]
.

When ΣtΣt,c = Σt,cΣt, this trace simplifies to a sum of squared eigenvalue differences:

∑
i

(λi − λi,c)
2

λi,c
.

However, when Σt and Σt,c do not commute, their respective eigen-decompositions cannot be directly aligned. In this case,
we introduce generalized eigenvalues λ by solving

Σ−1
t v = λΣ−1

t,cv.
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Intuitively, these λ measure how Σt transforms relative to Σt,c along each direction. Note that we can rewrite the trace term
in the expectation as

tr
[
(Σ−1

t −Σ−1
t,c )

2 Σt,c

]
= tr

[(
Σ

−1/2
t,c (Σ

1/2
t,c Σ−1

t Σ
1/2
t,c − I)Σ

−1/2
t,c

)2
Σt,c

]
= tr

[(
Σ

1/2
t,c Σ−1

t Σ
1/2
t,c − I

)2
Σ−1

t,c

]
=

d∑
k=1

d∑
j=1

(λk − 1)2 wk,j ,

where wk,j are weights induced by Σ−1
t,c . The λks are eigenvalues of Σ1/2

t,c Σ−1
t Σ

1/2
t,c . Since

Σ
1/2
t,c Σ−1

t Σ
1/2
t,c y = λy,

setting v = Σ
1/2
t,c y yields

Σ
1/2
t,c Σ−1

t v = λΣ
−1/2
t,c v =⇒ Σ−1

t v = λΣ−1
t,cv.

When λ < 1, since
v⊤Σ−1

t v

v⊤Σ−1
t,cv

= λ,

the unconditional covariance Σt is effectively larger (less sharp) in that eigen-direction, indicating that the conditional
distribution is sharper by comparison. Consequently, the difference ∥ s(xt, c) − s(xt)∥ encodes how much sharper (or
flatter) the conditional distribution is along each generalized eigenvector. This extends the simpler commuting-case result
discussed in the main text, providing a more general interpretation of Wen’s metric in terms of non-commuting covariances.

A.4. Score Difference Norm and Fisher-Rao Equivalence

Here, we show that for small perturbations δΣt, the local geometry prescribed by the Fisher-Rao metric coincides with
that implied by the expected squared norm of the score difference. Specifically, let Σt,c = Σt + δΣt with ∥δΣt∥ ≪ 1. By
expanding both the Fisher-Rao distance and the expected score-difference norm in powers of δΣt up to second order, we
find that their expansions match exactly in this limit. Importantly, this matching of expansions implies that the derivatives of
the two measures with respect to Σt also coincide (i.e., as δΣt → 0). In other words, the local (infinitesimal) curvature on
the covariance manifold-in other words, the Riemannian structure encoded by the second-order terms-is the same whether
we measure distance via Fisher-Rao or via the expected score-difference norm. Consequently, both metrics capture how
conditioning sharpens the learned distribution in precisely the same way under small perturbations, thereby confirming that
the two approaches share the same local geometry on the Gaussian covariance manifold.

The Fisher-Rao (or affine-invariant) distance (A. Micchelli & Noakes, 2005) between Σt and Σt,c is

dFR(Σt,Σt,c)
2 =

∥∥∥log(Σ−1/2
t,c Σt Σ

−1/2
t,c

)∥∥∥2
F
.

In particular, we show that for small perturbations in Σt, the expected norm of the score difference coincides with this
squared Fisher-Rao distance up to second order. Define a small perturbation on Σt as δΣt, where δ can be arbitrarily small.
Let Σt,c = Σt + δΣt, with Σt ≻ 0 and ∥δΣt∥ ≪ 1 so that Σt,c remains positive-definite. Define

H∆ := Σ−1
t − Σ−1

t,c .

Since s(xt, c) = −Σ−1
t,c (xt − µ) and s(xt) = −Σ−1

t (xt − µ), their difference is

s∆(xt) = H∆ (xt − µ).

Hence,
Ext∼pt(xt|c)

[
∥s∆(xt)∥2

]
= tr

(
(H∆)2 Σt,c

)
.
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Next, expand Σ−1
t,c = (Σt + δΣt)

−1 using the Neumann series. Up to O(∥δΣt∥2),

Σ−1
t,c ≈ Σ−1

t −Σ−1
t δΣt Σ

−1
t ,

which yields
H∆ ≈ Σ−1

t δΣt Σ
−1
t , (H∆)2 ≈ Σ−1

t δΣt Σ
−1
t δΣt Σ

−1
t .

Then,
(H∆)2 Σt,c ≈ Σ−1

t δΣt Σ
−1
t δΣt,

so
tr
[
(H∆)2 Σt,c

]
≈ tr

(
Σ−1

t δΣt Σ
−1
t δΣt

)
.

On the other hand, consider the Fisher-Rao distance:

d2FR(Σt,Σt,c) ≈
∥∥log(Σ−1/2

t,c Σt Σ
−1/2
t,c

)∥∥2
F
.

Define A := Σ
−1/2
t,c Σt Σ

−1/2
t,c . Since δΣt is small, we can write A ≈ I+X with ∥X∥ ≪ 1. Then,

log(A) ≈ X, ∥ log(A)∥2F ≈ ∥X∥2F .

It can be shown (via expansion in δΣt) that ∥X∥2F matches tr(Σ−1
t δΣt Σ

−1
t δΣt) up to second order, leading to

d2FR(Σt,Σt,c) ≈ tr
(
Σ−1

t δΣt Σ
−1
t δΣt

)
.

Hence, combining the two expansions shows:

Ext∼pt(xt|c)

[
∥s∆(xt)∥2

]
and d2FR(Σt,Σt,c)

coincide to second order in ∥δΣt∥. Thus, in the small-perturbation limit, the expected value of the squared norm of the
score difference encodes the same information as the Fisher-Rao distance, affirming that Wen’s metric indeed captures how
conditioning sharpens the learned distribution from a Riemannian perspective.

B. Proofs
B.1. Proof of Lemma 4.1

State. For a Gaussian vector x ∼ N (µ,Σ),

E
[
∥s(x)∥2

]
= − tr

(
H(x)

)
,

where H(x) ≡ −Σ−1 is the Hessian of the log-density.

Proof. A Gaussian log-density has

log p(x) = − 1
2 (x− µ)⊤Σ−1(x− µ) + const.,

so H(x) = −Σ−1 and s(x) = −Σ−1(x− µ). Then

∥s(x)∥2 = (x− µ)⊤Σ−2(x− µ).

Taking expectation, using E[(x− µ)⊤A (x− µ)] = tr(AΣ)), we get E[∥s(x)∥2] = tr(Σ−1) = − tr(H(x)).

This result generalizes to non-Gaussian distributions under weak regularity conditions (Hyvärinen, 2005). Although
we chose the Gaussian assumption to facilitate theoretical extensions and applications, we will still present the original
generalization here.
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B.2. Generalization of Lemma 4.1

State. For a random vector x ∼ p(x) with regularity conditions E
[
||s(x)||2

]
<∞ and lim

∥x∥→∞
p(x)s(x) = 0,

E
[
∥s(x)∥2

]
= −E [tr(H(x))] .

Proof. Write si(x) = ∂xi log p(x). Because si p = ∂xip,

E
[
∥s(x)∥2

]
=

d∑
i=1

∫
si(x) ∂xip(x) dx.

For each i integrate by parts: ∫
si ∂xi

p =

∫
∂xi

[
p si
]
dx−

∫
p ∂xi

si dx.

The first term is a surface integral over the sphere of radius R; by the assumed boundary condition it vanishes as R→∞.
Hence

∫
si ∂xip = −

∫
p ∂xisi. Summing over i gives

E
[
∥s(x)∥2

]
= −

∫
p(x)

d∑
i=1

∂xi
si(x) dx = −E

[
tr(H(x))

]
.

B.3. Proof of Lemma 4.2

State. For x ∼ N (µ,Σ) and x|c ∼ N (µc,Σc):

Ex∼p(x|c)
[
∥s(x, c)− s(x)∥2

]
= ∥H(x)(µ− µc)∥2 + tr

[
(H(x)−Hc(x))

2 H−1
c (x)

]
,

where H(x) ≡ −Σ−1 and Hc(x) ≡ −Σ−1
c .

Additionally, if ΣΣc = ΣcΣ and µ = µc, then

Ex∼p(x|c)
[
∥s(x, c)− s(x)∥2

]
=

d∑
i=1

(λi − λi,c)
2

λi,c
,

where λi, λi,c are eigenvalues of H(x) and Hc(x).

Proof. Let s(x) = −Σ−1(x−µ) and s(x, c) = −Σ−1
c (x−µc) denote the Gaussian score functions for the unconditional

and conditional distributions. Then

s(x, c)− s(x) = −Σ−1
c (x− µc) + Σ−1(x− µ).

Taking the expectation,

Ex∼p(x|c)
[
∥ −Σ−1

c (x− µc) +Σ−1(x− µ)∥2
]
=Ex∼p(x|c)

[
∥Σ−1

c (x− µc)∥2
]

+ Ex∼p(x|c)
[
∥Σ−1(x− µ)∥2

]
− Ex∼p(x|c)

[
(x− µc)

⊤Σ−1
c Σ−1(x− µ)

]
− Ex∼p(x|c)

[
(x− µ)⊤Σ−1Σ−1

c (x− µc)
]

=tr(Σ−1
c ) + tr(Σ−2Σc) + (µc − µ)⊤Σ−2(µc − µ)

− tr(Σ−1
c Σ−1Σc)− tr(Σ−1Σ−1

c Σc)

=∥Σ−1(µc − µ)∥2 + tr
(
(Σ−1 −Σ−1

c )2Σc

)
.
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if µ = µc, and ΣΣc = ΣcΣ so that Σ−1 and Σ−1
c are simultaneously diagonalizable as Σ−1 = QΛQ⊤ and Σ−1

c =
QΛcQ

⊤, the trace term becomes

tr(Σ−1 −Σ−1
c )2Σc) = tr(Q(Λ−Λc)

2Λ−1
c Q⊤) = tr((Λ−Λc)

2Λ−1
c )

=

d∑
i=1

(λi − λi,c)
2

λi,c
.

B.4. Proof of Lemma 4.3

State. For a Gaussian vector x ∼ N (µ,Σ),

E
[
∥H(x)s(x)∥2

]
= −tr((H(x))3)

where H(x) ≡ −Σ is the Hessian of the log density.

Proof. As H(x) = −Σ−1 and s(x) = −Σ−1(x− µ),

E
[
∥H(x)s(x)∥2

]
= E

[
(x− µ)⊤Σ−4(x− µ)

]
= tr(Σ−3) = −tr(H(x)3).

C. Details of the Toy Experiments
This section provides additional details on the 2D and MNIST experiments discussed in Section 4.1. For both experiments,
we use the DDPM (Ho et al., 2020) framework with the DDIM (Song et al., 2021a) sampler, employing 500 sampling steps.
Additionally, to obtain a more accurate estimate of the Hessian (Jacobian of the score function), we utilize the second-order
score matching loss proposed by Lu et al. (2022) during model training. Refer to Appendix A.1 for details.

2D Mixture of Gaussian Experiment. We use a mixture of Gaussians with two modes equidistant from zero but with
differing covariance scales. One mode is designed with an extremely small covariance to induce a sharp peak, representing
memorization, while the other mode has a larger covariance for the opposite case.

The mixture ratio between the two modes is 5:95, with a dataset comprising 3,000 samples in total. Empirically, we observed
that only samples from the mode with extremely small covariance exhibited memorization, indicated by extremely small ℓ2
distances between the generated samples and training samples.

MNIST Experiment. In the MNIST experiment, we use two digits: “3” for the generalized case and “9” for the
memorized case, with 3,000 samples each. Classifier-free guidance (Ho & Salimans, 2021) (CFG) is employed, training the
unconditional score function s(xt) with a probability p = 0.2 using all 6,000 samples.

For s(xt, c), all samples of digit “3” are used to enable generalization and diversity, while a single sample of digit “9”
(duplicated 100 times) is used to collapse the model’s output for this digit into a single conditioned image. Sampling is
performed with a guidance scale of 5. As expected, even with CFG, the model generates only a single image for digit “9,”
while producing diverse outputs for digit “3.”

In Figure 2, for the non-memorized case, we sample 1,000 images and select the top 500 samples with the largest pairwise
ℓ2 distances from training samples to highlight cases clearly deviating from memorization. For the memorized case, as all
images collapse into a single image, we sample 500 outputs without comparing ℓ2 distances.

D. Details of the Stable Diffusion Experiments
This section describes the experimental setups for the Stable Diffusion experiments presented in Section 4.5 and Section 5.
We provide a detailed overview of the configurations, including the specific prompts used and the implementation details of
the baseline methods.
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Models. We use Stable Diffusion v1.4 and v2.0, the same versions in which memorized prompts were identified by (Wen
et al., 2024). For both detection and mitigation experiments, we use the DDIM sampler (Song et al., 2021a) with 50 sampling
steps following Wen et al. (2024); Ross et al. (2024).

Prompt Configuration.

• Memorized Prompts: Following recent studies (Wen et al., 2024; Ren et al., 2024; Ross et al., 2024; Chen et al.,
2024), we use memorized prompts identified by Webster (2023) in our experiments. Webster (2023) categorized
memorized prompts into three types: 1) Matching Verbatim (MV): Generated images are exact pixel-by-pixel matches
with the original paired training image. 2) Template Verbatim (TV): Generated images partially resemble the training
image but may differ in attributes like color or style. 3) Retrieval Verbatim (RV): Generated images memorize certain
training images but are associated with prompts different from the original captions. The categorization of MV, TV,
and RV considers both the memorized portions of generated images and their associations with specific prompt-image
pairs. For instance, a prompt generating a pixel-perfect match to a training image is classified as RV, not MV, if the
prompt differs from the original training caption. However, in our study, these categories are used to differentiate
between images that are exact pixel-level matches and those that replicate specific attributes, such as style or color. For
simplicity, we refer exact matches as Exact Memorization (EM) and partial matches as Partial Memorization (PM),
without considering their caption associations.
For detection experiments, we combine prompts from all categories, resulting in a total of 500 memorized prompts for
Stable Diffusion v1.4, identical to the prompts used by Wen et al. (2024), and 219 prompts for v2.0.
While detection experiments only require a prompt set, mitigation experiments necessitate access to the original training
images to evaluate SSCD (Pizzi et al., 2022) scores. Consequently, prompts without accessible training images are
excluded, resulting in 454 prompts for v1.4 and 202 prompts for v2.0.

• Non-memorized Prompts: To ensure a diverse distribution of non-memorized prompts, we compile a total of
500 prompts drawn from COCO (Lin et al., 2014), Lexica (Lexica, 2024), Tuxemon (HuggingFace, 2024), and
GPT-4 (Achiam et al., 2023). Specifically, the GPT-4 prompts are a random subset of those used by (Ren et al., 2024).

D.1. Memorization Detection

Details for Baseline Methods. We provide details of each baseline detection algorithm.

• Tiled ℓ2 distance: Building on the insight that memorized prompts produce similar generations regardless of their
initializations, Carlini et al. (2023) propose examining generation density by analyzing multiple generated images for a
given prompt using pairwise ℓ2 distances in pixel space. To address false positives from similar backgrounds, Carlini
et al. (2023) divide images into non-overlapping 128 × 128 tiles and compute the maximum ℓ2 distance between
corresponding tiles. We adopt the identical setting for both Stable Diffusion v1.4 and v2.0. As the detection performance
of this metric achieves the best after full sampling steps, we only report the complete 50-step results in Table 1.

• (Ren et al., 2024): Based on the empirical observation that patterns in attention scores for specific tokens (termed as
"trigger tokens") behaves differently in memorized samples, Ren et al. (2024) introduce the detection score D and
layer-specific entropy El

t=T as primary indicators of memorization.
The first metric D, which we refer to Average Entropy (AE) for intuitive notation, is defined as:

AE =
1

TD

TD−1∑
t=0

Et +
1

TD

TD−1∑
t=0

|Esummary
t − Esummary

T |,

where Et represents attention entropy, measuring the dispersion of attention scores across different tokens:

Et =

N∑
i=1

−ai log(ai).

In addition, Esummary
t is the entropy computed only on the summary tokens, and TD = T

5 corresponds to the last T
5

steps of the reverse diffusion process used for memorization detection.
The second metric, layer-specific entropy El

t=T , which we refer to Layer Entropy (LE), is computed at the first
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diffusion step and focuses on specific U-Net layers:

LE =

N∑
i=1

−ali log(ali),

where ali is the average attention score in layer l. For detection experiments, we follow the implementation and
hyperparameter settings of Ren et al. (2024). The detection performance differences between our results in Table 1 and
those reported in Ren et al. (2024) can be attributed to different choices of non-memorized prompts. Specifically, our
evaluation uses prompts collected from diverse sources, whereas Ren et al. (2024) utilizes GPT-4 generated prompts
that share similar characteristics. For comprehensive experimental details, we refer readers to Ren et al. (2024).

• (Wen et al., 2024): Building on the insight that significant text guidance induces memorized samples during sam-
pling, Wen et al. (2024) propose using the magnitude of predicted noise difference between conditional and uncondi-
tional noise. It is defined as:

1

T

T∑
t=1

∥ϵθ(xt, c)− ϵθ(xt, ∅)∥,

where T denotes the number of timesteps, c denotes the specific embedded prompt, and ∅ denotes empty string,
equivalent to unconditional case. Recall that diffusion forward process qt|0(xt|x0) = N (

√
αtx0, (1 − αt)I) and

therefore,

∇xt
log pt(xt) = Ep0(x0) [∇xt

log q(xt|x0)] ≈ Ep0(x0)

[
− ϵθ(xt)√

1− αt

]
= − ϵθ(xt)√

1− αt
= sθ(xt).

Thus,

∥sθ(xt, c)− sθ(xt)∥ =
1√

1− αt
∥ϵθ(xt, c)− ϵθ(xt, ∅)∥.

Consequently, Wen’s metric can be defined as the norm of score differences as described in Section 4.3.

• (Chen et al., 2024): Building on the observation that the end token exhibits abnormally high attention scores for
memorized prompts, specifically highlighting the memorized region, Chen et al. (2024) leverage this attention score as
a mask to amplify the detection of the Partial Memorization (PM) cases. We refer this metric as Bright Ending (BE)
for short.
In detail, Chen et al. (2024) multiply the attention mask m on Wen’s metric:

BE =
1

T

T∑
t=1

∥
(
ϵ
θ
(xt, c)− ϵθ(xt, ∅)

)
◦m∥

/(
1

N

N∑
i=1

mi

)
,

where N denotes for the number of elements in the mask m, therefore the result is normalized by the mean of m.
We note that the attention mask m is obtainable at the final sampling step (t = 1). Therefore, to utilize BE as a
detection metric, the model requires completion of all sampling steps. Consequently, in Table 1, we report experimental
results using the complete 50-step diffusion process.
In addition, following the identical setup as Chen et al. (2024), we average attention scores from the first two
downsampling layers of U-Net to obtain m for both Stable Diffusion v1.4 and v2.0. For additional details, refer to the
original paper of Chen et al. (2024).

D.2. Memorization Mitigation

Details for Baseline Methods. We provide details for each recent baseline mitigation algorithm. For every mitigation
strategy, results are averaged over five generations per memorized prompt. Additionally, each baseline is evaluated using
five different hyperparameter settings, which are described in detail below.

• Random Token Addition (RTA) & Random Number Addition (RNA): Somepalli et al. (2023b) propose mitigation
strategies that perturb prompts by adding arbitrary tokens or numbers. Following Wen et al. (2024), we insert tokens or
numbers in quantities of {1, 2, 4, 6, 8} for both RTA and RNA.
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• (Ren et al., 2024): Ren et al. (2024) propose a mitigation strategy that involves masking memorization-inducing tokens
and rescaling the attention scores of the beginning token using a hyperparameter C. After token masking, we evaluate
the approach by varying C within the range {1.1, 1.2, 1.25, 1.3, 1.5} for both v1.4 and 2.0.

• (Wen et al., 2024): As explained in Appendix D.1, Wen et al. (2024) propose a differentiable metric based on the norm
of the difference between the conditional and unconditional scores. Since memorized prompts empirically exhibit a
large magnitude for this term, Wen et al. (2024) optimize the text embedding by directly minimizing it.
Wen et al. (2024) introduce ℓtarget, a hyperparameter for early stopping, to prevent the text embedding from deviating
significantly from its original semantic meaning. Following Wen et al. (2024), we investigate ℓtarget values ranging
from 1 to 5 in Stable Diffusion v1.4. However, in v2.0, we found the generated results to be more sensitive. Therefore,
for v2.0, we investigate ℓtarget values in {1, 1.25, 1.5, 1.75, 2}.

Algorithm 2 SAIL pseudo-code
Require: Initialization xT ∼ N (0, I), Early stopping threshold ℓthres, Score function s(·), Loss balancing term α, Step size η > 0
Ensure: Set LSAIL ← L0 {where L0 > ℓthres}

1: while LSAIL > ℓthres do
2: Compute s∆θ (xT ) := sθ(xT , c)− sθ(xT );
3: Normalize s∆θ (xT ) with δ and compute s∆θ

(
xT + δs∆θ (xT )

)
;

4: Compute SAIL objective:
5: LSAIL(xT ) :=

∥∥s∆θ (
xT + δ · s∆θ (xT )

)
− s∆θ (xT )

∥∥2
+ α∥xT ∥2;

6: Update initialization: xT ← xT − η∇xTLSAIL;
7: end while

Details for Our Method. Algorithm 2 provides a pseudo-code for SAIL algorithm. While Algorithm 2 shows the case of
optimizing a single xT , in practice, it can simultaneously search for several memorization-free candidates by collectively
optimizing several initializations in a batch fashion.

To employ SAIL, we need to set α and ℓthres. We set α = 0.05 for Stable Diffusion v1.4 and α = 0.01 for v2.0. In
practice, we observe that the generated results are largely insensitive to α, though keeping α sufficiently small helps
balance the magnitude of two loss terms effectively. In addition, we investigate ℓthres ∈ {7.6, 7.8, 8.2, 8.6, 9} for v1.4 and
{4, 4.5, 5, 5.5, 6} for v2.0.

As the metric proposed by Wen et al. (2024) also captures sharpness, one may consider replacing the first term of LSAIL(xT )
with ∥sθ(xt, c)− sθ(xt)∥2. However, we empirically find that this alternative fails to converge and is therefore ineffective
for mitigation. This may be due to the higher sensitivity of our proposed metric during the initial phase of generation.

Details of prompts in Figure 6. We provide full prompt details with a key prompt detail in bold, starting from top image.

• <i>The Colbert Report<i> Gets End Date

• Björk Explains Decision To Pull <i>Vulnicura<i> From Spotify

• Netflix Hits 50 Million Subscribers

• <em>South Park: The Stick of Truth<em> Review (Multi-Platform)
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E. Additional Qualitative Results for Memorization Mitigation

<i>Breaking Bad<i> Fans Get a Chance to Call Saul with Albuquerque Billboard

35 Possible Titles for the <i>Mrs. Doubtfire<i> Sequel.35 Possible Titles for the <i>Mrs. Doubtfire<i> Sequel.

Will Ferrell, John C. Reilly in Talks for <i>Border Guards<i>

Listen to Ricky Gervais Perform "Slough" as David Brent

Here's Who Ian McShane May Be Playing in <i>Game of Thrones<i> Season Six

Baby Shower Turned Meteor Shower: Anne Hathaway Fights Off Aliens in Sci-Fi Comedy <i>The Shower<i>

Original Ours Ren et al. Wen et al. RNA RTA

Figure 7: Additional qualitative results comparing SAIL with baseline methods. Original prompts are shown for each row
with key elements in bold. All methods use identical initialization per prompt. SAIL effectively mitigates memorization
while preserving prompt details, whereas baseline methods that modify text conditioning exhibit quality degradation.
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Amazing Chesapeake Bay Retriever dog Print Car Seat Covers-Free Shipping

35 Possible Titles for the <i>Mrs. Doubtfire<i> Sequel.Design Art Beautiful View of Paris Paris Eiffel Tower under Red Sky Ultra Glossy Cityscape Circle Wall Art

Full body U-Zip main opening - Full body U-Zip main opening on front of bag for easy unloading when you get to camp

If Barbie Were The Face of The World's Most Famous Paintings

Image of Time Fries when i'm with you Short-Sleeve Unisex T-Shirt - CalvinMade

Sony Won't Release <i>The Interview<i> on VOD

Original Ours Ren et al. Wen et al. RNA RTA

Figure 8: Additional qualitative comparison of SAIL against baseline methods. Each row shows original prompts with key
elements in bold, and all methods share identical initialization per prompt. SAIL successfully mitigates memorization while
preserving prompt details, whereas baseline methods with text conditioning modifications either degrade image quality or
fail to mitigate memorization.
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