
Under review as a conference paper at ICLR 2024

SELECTIVE PERCEPTION: LEARNING CONCISE STATE
DESCRIPTIONS FOR LANGUAGE MODEL ACTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

It is increasingly common for large language models (LLMs) to be applied as ac-
tors in sequential decision making problems in embodied domains such as robotics
and games, due to their general world knowledge and planning abilities. However,
LLMs are not natively trained for embodied decision making problems, and ex-
pressing complex state spaces in text is non-trivial. Exhaustively describing high-
dimensional states leads to prohibitive inference costs and impaired task perfor-
mance due to distracting or irrelevant information. Previous LLM actors avoid the
issue by relying on hand-engineered, task-specific protocols to determine which
features to communicate about a state and which to leave out. In this work, we
propose BLINDER (Brief Language INputs for DEcision-making Responses), a
method for learning to select concise and helpful sets of state features for LLM
actors. BLINDER learns a value function for task-conditioned state descriptions
that approximates the likelihood that a state description will result in optimal ac-
tions. We evaluate BLINDER on the challenging video game NetHack and a real-
world robotic manipulation task. Our method improves task success rate by 77%
and 14% on NetHack and robotic manipulation respectively, reduces model input
length by 83%, and generalizes well to LLM actors of various size and quality.

1 INTRODUCTION

Large Language Models (LLMs) excel at a variety of tasks and have been shown to be skilled actors
for decision making in games and robotic planning (Ichter et al., 2022; Huang et al., 2022b; Liang
et al., 2022; Singh et al., 2022; Skreta et al., 2023; Zhao et al., 2023; Lin et al., 2023; Wake et al.,
2023). The input to an LLM actor typically consists of a description of the current task and state,
and the actor then outputs actions to accomplish the task. For example, consider a robot tasked
with arranging items on a table according to a task specification (Valmeekam et al., 2022). An
LLM actor outputs high-level actions that the robot can take to manipulate the items such as “move
the apple to coordinate X”. While it would be simple to communicate the state of the items using
a camera sensor, most LLM actors require exclusively language-based inputs. Previous work has
side-stepped this problem by either (1) exhaustively describing the state (Valmeekam et al., 2022)
or (2) engineering an ideal input format for the current task (Huang et al., 2022b).

A naive approach to language grounding would be to provide an exhaustive set of textual state
features that describes everything about the state (Valmeekam et al., 2022), independent of the cur-
rent task. While an exhaustive task-agnostic set of state features can be readily fed into an LLM
actor, such inputs can be excessively long and contain potentially distracting features in the state de-
scription. Full state descriptions can impede performance and increase inference costs by including
unnecessary state information.

Alternatively, manually engineered state descriptions for an LLM actor can increase performance
and decrease the length and cost of inputs (Huang et al., 2022b; Liang et al., 2022; Singh et al.,
2022). However, manual descriptions are typically also task-specific. This limits a system’s ability to
generalize to new tasks that may require descriptions of different portions of the state. Additionally,
manual state descriptions assume expert task knowledge, further limiting the application of this
approach in the real world. For state descriptions to be more task-general, without infeasible expert
burden, the system should learn to automatically generate task-conditioned state descriptions.

1

Under review as a conference paper at ICLR 2024

Task: Your task is to pick up and wear a robe.
State Description: [
 You have a +1 club,
 You have a +2 sling,
 Position 37|9,
 You see a robe very near east,
 You see a stairs up adjacent southwest,
 ...
]

Task: Your task is to pick up and wear a robe.
State Description: [
 You see a robe very near east,
 You have 14 uncursed flint stones,
 Position: 37|9
]

Action: Move east.

BLINDER

LLM Actor

Environment

LLM ActorBLINDER

Expert Task
Trajectories

Full State
Description

Selected State
Description

Target
Action (a*)

p(a*|x,τ)

Reward

Task
Description

BLINDER Training

Figure 1: BLINDER selects optimal state descriptions, reducing context length and removing dis-
tracting information. BLINDER is trained via RL by learning to maximize the probability of optimal
actions from an LLM actor, as shown on the right.

We propose BLINDER (Brief Language INputs for DEcision-making Responses), a method for
learning to automatically select task-conditioned state descriptions from a set of task-independent
state features. For example, consider a robot tasked with arranging fruit by size. The set of state
features may include items other than fruit on the table or attributes of the fruit not relevant to size.
BLINDER selects state features relevant to the position and the size of each fruit. By selecting
relevant state features for the LLM actor’s state description, BLINDER improves performance and
decreases input length and compute costs. This reduction in context length can further be applied to
environments where there are exponentially many features.

Unlike prior work, BLINDER automatically constructs state descriptions without requiring task-
specific prompt engineering. We frame the construction of state descriptions as a reinforcement
learning (RL) problem, as shown in Figure 1. Given a small set of expert task demonstrations—
including task descriptions, exhaustive state features, and expert actions—and an LLM actor, we
assign rewards to proposed state descriptions using the likelihood of expert actions from the actor.
We train a value model with these rewards, and, at inference time, we maximize value to select state
descriptions for new tasks, unseen during training.

We evaluate BLINDER on challenging NetHack (Küttler et al., 2020) and robotic item arrange-
ment tasks. Notably, all of our evaluation is done on held out test tasks that were not demonstrated
during training. By finetuning an LLM to represent our value function, we find that BLINDER
generalizes well to tasks that include novel entities and task compositions. We also show that BLIN-
DER’s learned state descriptions are intuitive enough to generalize across LLM actors, allowing us
to train with one LLM actor and evaluate on another. In our experiments, BLINDER compared with
exhaustive state descriptions reduces context lengths by 83%. We also compare with zero-shot sum-
maries of exhaustive state descriptions from an LLM 4x larger than BLINDER’s. Our experiments
show that BLINDER outperforms both baselines by an average of 77% and 14% for NetHack and
robotic tasks respectively. Finally, we compare with hand-engineered state descriptions and show
that BLINDER performs competitively despite not relying on the expert knowledge that manual
descriptions require.

2 RELATED WORK

2.1 LANGUAGE FOR STATE DESCRIPTIONS

Language has been viewed as a promising medium for communicating task requirements (Chevalier-
Boisvert et al., 2019; Anderson et al., 2018; Ku et al., 2020; Shridhar et al., 2020) or state information
(Andreas et al., 2017; Tam et al., 2022; Mu et al., 2022) due to its compositionality and interpretabil-
ity. Since the prevalence of LLMs for planning and decision making, it has become essential to de-

2

Under review as a conference paper at ICLR 2024

scribe state features in langauge to better ground LLM plans in the environment state (Huang et al.,
2022b). However, grounding is a nontrivial task especially in spatial and real world settings.

2.2 FOUNDATIONAL MODELS FOR PLANNING

LLMs have recently become popular for planning and high-level decision making in robotic tasks
(Ichter et al., 2022; Huang et al., 2022a; 2023; Vemprala et al., 2023) and other sequential decision
making benchmarks (Nottingham et al., 2023; Kim et al., 2023; Liu et al., 2023a; Liang et al.,
2023). However, LLMs are not natively grounded in the state of the environment when prompted
for planning, resulting in sometimes nonsensical actions. While some learned grounding techniques
exist (Ichter et al., 2022), the most straightforward way to ground LLMs in state is to include state
descriptions in the LLM context (Huang et al., 2022b). Many LLM applications for robotics achieve
this by defining a formal language for planning that includes definitions for state features (Liang
et al., 2022; Singh et al., 2022; Skreta et al., 2023; Zhao et al., 2023; Lin et al., 2023; Wake et al.,
2023). Utilizing multimodal models—which accomplish grounding by using both visual and textual
inputs—may be posited as an alternative approach for planning within foundational models Driess
et al. (2023); Guhur et al. (2023). Although multi-modal models offer a promising solution to the
grounding problem, current multimodal models tend to be domain-specific Guhur et al. (2023); Jiang
et al. (2022) and lack robustness across tasks. Additionally, these models are not as widely available
for public use Reed et al. (2022); Driess et al. (2023). Consequently, the use of text-only models,
which are easily accessible, continues to be a crucial approach for addressing planning tasks.

2.3 LEARNING INPUTS FOR PRETRAINED MODELS

An extensive range of studies investigate efficient techniques for learning effective input for a variety
of pretrained language models (Liu et al., 2023b; Qiu et al., 2020) in discrete (Shin et al., 2020; Liu
et al., 2023b; Schick & Schütze, 2020; Gao et al., 2021b; Shi et al., 2022) or continuous (Qin &
Eisner, 2021; Liu et al., 2021; Lester et al., 2021; Zhong et al., 2021) input space. This line of work
is also studied in pretrained vision models (Gao et al., 2021a; Zhou et al., 2022a; Ju et al., 2022;
Zhou et al., 2022b; Yao et al., 2021).

Among these prompt tuning methods, Deng et al. (2022) use RL to optimize the prompt for a variety
of NLP tasks. Perhaps the closest work to our own is that of Zhang et al. (2023), which introduces an
RL agent trained to edit language models input at test time for solving NLP benchmarks in a more
sample-efficient way. Their approach differs significantly from our own and focuses on static NLP
tasks rather than sequential tasks. However, the prospect of applying similar techniques to modify
the state description in sequential tasks could serve as a potential avenue for our future work.

Recent methods have explored the idea of compressing input tokens for shorter context length (Mu
et al., 2023; Chevalier et al., 2023), which is related to our effort to learn pruned state descriptions but
does not meet the needs of sequential decision making nor maintain intuitive inputs that generalize
between models.

3 BACKGROUND

It is important to distinguish the two levels of decision-making present when selecting state descrip-
tions for an LLM actor. At one level of decision-making, the LLM actor LLM : X × T → A
receives a task description string τ ∈ T and state description x ∈ X as input, and the LLM ac-
tor outputs an environment action a ∈ A to execute. The set of possible state descriptions X is the
power set of all possible state feature strings ω ∈ Ω, X = {x|x ⊆ Ω}. Each linguistic feature ω ∈ Ω
is a minimal atomic statement that describes some aspect of the environment’s state. For example,
a given ω may indicate the presence of an object in a scene (Huang et al., 2022b), the completion of
subgoals (Nottingham et al., 2023), or an attribute of or relationship between environment entities.

Independent from the LLM actor’s decision making, BLINDER selects which subset of possible
features in Ω to include in the state description x. We frame the selecting of state descriptions as a
RL problem with a Markov Decision Process (MDP) in which state descriptions are assembled one
feature at a time. In this MDP, the state at step t consists of the state description so far xt ∈ X ,
and the action space includes individual features ωt ∈ Ω̂ to add to xt and form the updated state

3

Under review as a conference paper at ICLR 2024

description xt+1. Here Ω̂ ⊆ Ω is the subset of all possible state features that are factually true in the
current environment state. This description-building MDP has deterministic transitions where each
step adds a new state feature to the state description. We define our transition function P : X ×Ω →
X as P (xt, ωt) = xt ∪ {ωt}. Our reward function R : X × T → R represents the likelihood that a
state description yields an optimal target action from the LLM actor (See Section 4.2). Finally, we
learn a policy π : X × T → Ω̂ that iteratively constructs task-conditioned state descriptions.

4 BLINDER

We propose learning to automatically select a state description x from an exhaustive set of factual
state features Ω̂ given a task τ . Our goal is to automatically learn optimal state descriptions without
requiring hand-engineered descriptions for each task nor datasets of annotated examples of state
descriptions. Instead, we suggest a method that learns to select state descriptions for both seen and
novel tasks that avoid distracting information and reduce the input length for LLM actors.

4.1 SELECTING STATE DESCRIPTIONS

Algorithm 1 State Description Selection

Require: Vθ, τ, Ω̂, π
x0 ← ∅
t← 0
while |Ω̂− xt| > 0 do

ω∗
t ← π(xt, τ, Ω̂)

if Vθ(xt ∪ {ω∗
t }) > Vθ(xt) then

xt+1 ← xt ∪ {ωt}
t← t+ 1

else
break

end if
end while
xf ← xt

return xf

Our method, BLINDER, defines a value-based policy,

π(xt, τ, Ω̂) = argmax
ω∗

t ∈(Ω̂−xt)

Vθ(xt ∪ {ω∗
t }, τ), (1)

that selects unused state features ω∗
t ∈ Ω̂− xt to add to

xt. Vθ : X × T → R is a value function trained to ap-
proximate the return of a state description (see Section
4.2). Since the transition model P (xt, ωt) = xt ∪ {ωt}
is known and deterministic, we can use a state value
function directly to define our policy.

We use π to construct a state description x out of state
features ω. Starting with x0 = ∅, π iteritively adds
ω∗
t to xt as long as it increases in value and there are

still state features to add (see Algorithm 1). Once no
state features remain, Ω̂ − xt = ∅, or no added state
feature increases the value of the state description, we terminate and use the last xt as the final state
description, xf . This state description is then used to prompt the LLM actor for the next action in
the downstream task,

LLM : xf × τ → a. (2)

4.2 STATE DESCRIPTION VALUE

The key to BLINDER is learning a useful and general value function Vθ. We first define the reward
function R used to train Vθ.

We propose using action likelihood from an LLM actor to define rewards for BLINDER. We collect
a set of expert trajectories composed of state features, task descriptions, and target actions De =

{(Ω̂0, τ0, a
∗
0), (Ω̂1, τ1, a

∗
1), ...} and define the following sparse reward function,

R(xt, τ) =

Ea∗∼(De|xt⊂Ω̂,τ)

[
LLM(a∗|xt, τ)

]
if xt = xf

0 otherwise,
(3)

where a∗ is sampled from tuples in De with matching τ and where xf is a valid subset of Ω̂.
Intuitively, we reward BLINDER to maximize the likelihood that xf elicits the same action from the
LLM actor as the target action a∗ from the expert trajectory.

4

Under review as a conference paper at ICLR 2024

Task Description Manual Zeroshot BLINDER

Drink the potion
and navigate to the
stairs down.

You see a stairs down
very near east.

You see a stairs down
very near east. You see
a lava very near north
northeast.

You see a stairs down very
near east. You have 20
uncursed flint stones (in
quiver pouch). Time: 5.
Constitution: 13.

Pick up and eat the
apple.

You see a apple very
near east southeast.

You have an apple. You see a apple very near
east southeast. You have
a blessed +2 sling (alter-
nate weapon; not wielded).
Time: 1. Condition: None.

Table 1: Qualitative example output from BLINDER and baselines. Blue text indicates the most
relevant information for a task, while red text indicates distracting or inaccurate information for the
current task. Note that zeroshot descriptions often contain information that hinders performance.
Although BLINDER sometimes includes unnecessary information, any extra included state features
do not distract from the current task.

Although R depends on a specific LLM actor, we find in our experiments that BLINDER selects
intuitive state features, consistently removing the most distracting information and including the
most relevant information as illustrated in Table 1. In contrast, previous work that optimizes inputs
for a frozen LLM often learns nonsensical language inputs (Shin et al., 2020). BLINDER generates
intuitive state descriptions due, in part, to being constrained to the set of grounded state features.
Because of this, we find that BLINDER generalizes well to other LLM actors. In Section 6.1, we
demonstrate that we can train BLINDER with a smaller LLM actor and then use it to improve the
performance of a larger black-box LLM actor.

4.3 LEARNING THE VALUE FUNCTION

To learn Vθ, we choose to finetune a pretrained LLM with a value head to maintain generalizability
to new tasks and state features. While we refer to x as a set, the text input to Vθ is ordered using
x’s insertion order. Given a dataset of precollected experience DV = {(τ0, x0

t , r
0
f), (τ

1, x1
t , r

1
f), ...}

where rif = R(xi
f , τ

i), BLINDER optimizes Vθ with the loss:

JV (θ) = Eτ,xt,rf∼DV

[
L
(
Vθ(xt, τ), rf

)
+ ϕ

]
(4)

L is a loss metric for the value (we implement quantile regression), and ϕ is a Kullback-Leibler
penalty for normalizing Vθ, commonly used when finetuning LLMs with RL (Stiennon et al., 2020;
Leblond et al., 2021). In practice, evaluating the reward function R(xt, τ) requires running infer-
ence on an expensive LLM actor. To lower training costs, we collect DV only once prior to training
using a random policy πr. Trading off accuracy for computational efficiency, we train Vθ to model
Vπr as a cost-effective approximation of the greedy optimal value function Vπ∗ . Despite this, BLIN-
DER still learns to produce highly effective and concise state descriptions that improve LLM actor
performance and are competitive with manually engineered state descriptions.

5 EXPERIMENT SETUP

In each of our experiments, BLINDER is trained on a set of training tasks and is provided five
expert trajectories for each task. The trajectories are then used to generate rewards and train the
value function for BLINDER.

We use two different LLM actors in our experiments. (1) Our zeroshot flan-T5 actor is a three
billion parameter flan-t5-xl model (Chung et al., 2022). This is the model BLINDER uses for
training. For each action, a, at each environment step, we calculate the geometric mean of the logits
of the tokens in a and use this to sample an action from the LLM actor. (2) our Fewshot GPT3.5

5

Under review as a conference paper at ICLR 2024

Eat
Pear

Wear
Shoes

Lava cross
Potion

Lava cross
Ring

Lava cross
Boots

Task

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

Zeroshot flan-T5-xl Actor

Eat
Pear

Wear
Shoes

Lava cross
Potion

Lava cross
Ring

Lava cross
Boots

Task

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Fewshot GPT3.5-turbo Actor
State Description

full
zeroshot
BLINDER

Figure 2: Success rate on NetHack test tasks using zeroshot and fewshot actors. We compare BLIN-
DER against two baselines: (1) using the full state description and (2) instructing a zeroshot LLM
to summarize the full state description. Although BLINDER is trained to optimize inputs for the
flan-T5 actor, it generalizes well to the much larger GPT3.5 Turbo Actor.

Turbo actor uses gpt3.5-turbo-0301* to select actions from a list of admissible actions given
a task and state description and several fewshot examples. Unless otherwise stated, this model uses
six-shot examples. We use this model to evaluate BLINDER’s ability to generalize between LLM
actors. BLINDER itself finetunes a 780 million parameter flan-t5-large model for its value
function. See Appendix B for model prompting details.

5.1 BASELINES

Previous NLP approaches for learning LLM inputs focus on maximizing performance on a dataset
by conditioning on a special set of learned uninterpretable tokens. As a result, we have to define our
own baselines for comparison. As an initial baseline, we compare state descriptions from BLINDER
with exhaustive state descriptions. We refer to the exhaustive state description that includes all
feaures of Ω̂ as the “full” state description in our experiments. We obtain “full” state descriptions
Ω̂ for NetHack from the natural language wrapper recommended by Küttler et al. (2020)†. The
resulting sets of state features vary in size in the range 30 ≤ |Ω̂| ≤ 40. For our robotic task, we
use a list of the pairwise spatial relationship of each object to every other object, totalling 90 state
features for our task setup. These “full” states contain mostly irrelevent or distracting information
(see Tables 6 and 7 in the appendix). On average, BLINDER removes 83% of the original state
features.

We also compare state descriptions from BLINDER to those of a zeroshot flan-t5-xl model
(Chung et al., 2022) prompted to summarize relevant state features from Ω̂. We refer to these
as “zeroshot” state descriptions in our experiments. Note that this model has 4x the number of
parameters as the flan-t5-large model we use to train BLINDER. Using a flan-t5-large
model for the zeroshot baseline failed to produce useful descriptions.

Additionally, we compare with hand-engineered state descriptions. To create these, we specify a set
of relevant keywords for each task. Then, we include all state features that contain those keywords.
We refer to this baseline as “manual” state descriptions in our experiments. Because such summaries
have to be manually designed for each task, this baseline is not usually available for test tasks and
would not generalize across tasks like BLINDER does.

*https://platform.openai.com/docs/models/gpt-3-5
†https://github.com/ngoodger/nle-language-wrapper

6

https://platform.openai.com/docs/models/gpt-3-5
https://github.com/ngoodger/nle-language-wrapper

Under review as a conference paper at ICLR 2024

Eat
Pear

Wear
Shoes

Lava cross
Potion

Lava cross
Ring

Lava cross
Boots

Task

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Zeroshot flan-T5-xl Actor
State Description

manual
BLINDER

Figure 3: We compare automatic BLIN-
DER state descriptions to expert, manually
specified state descriptions. BLINDER has
competitive performance with manual state
descriptions, even outperforming it on the
multi-step lava crossing tasks.

500 1000 1500 2000 2500

Context Length Per Action

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

1
3

6
2

4
5

1
3

6

2
4 5

Fewshot GPT3.5-turbo Actor
State Description

full
BLINDER

Figure 4: Average success rate across all
NetHack tasks as a function of context
length. Markers indicate the number of few-
shot examples provided to the LLM actor,
and error bars show standard error across
random sets of fewshot examples.

6 NETHACK EXPERIMENTS

We evaluate BLINDER on NetHack tasks using the Minihack library (Samvelyan et al., 2021).
NetHack, recently proposed as a testbed for AI research (Küttler et al., 2020), is a grid-based dun-
geon crawler with complex dynamics and large observation and action spaces. We select a set
of five training tasks from the Minihack environment zoo: Room-Monster-5x5, Eat, Wear,
LavaCross-Levitate-Potion-Inv, and LavaCross-Levitate-Ring-Inv. We use
just 25 expert trajectories for training with a total of 148 pairs of states and expert actions that
required under an hour for a human annotator to collect.

We design five difficult custom test tasks to evaluate the performance of BLINDER. Two tasks,
Eat pear and Wear shoes, are variants of the Eat and Wear training tasks but with different
target items, larger rooms, monsters, and distractor items. We also define three Lava cross test
tasks. Unlike the training variants of this task, the item needed to cross the lava does not start in the
player inventory, necessitating improved multi-step planning from the LLM actor. The boots variant
of the lava cross task was not seen during training. See Appendix C for an example trajectory.

6.1 BLINDER GENERALIZATION

Figure 2 shows success rate on test tasks in the NetHack domain, comparing BLINDER to other
baselines that can generalize to unseen tasks. BLINDER consistently outperforms or matches these
baselines when providing descriptions for the flan-T5 actor that it was trained with. BLINDER also
generalizes well to the much larger GPT3.5 Turbo actor, despite being trained on data from the T5
actor. The GPT3.5 Turbo actor with BLINDER state descriptions outperforms both baselines on
three of five tasks.

BLINDER also performs competitively against our manual baseline that is engineered to only in-
clude task relevant information in the state description. Figure 3 shows BLINDER outperforming
the manual baseline in three of five novel tasks. Notably these are the tasks that require multi-step
planning by first picking up the target item and second using it to cross the lava. We hypothesize that
BLINDER does better on these tasks by learning that different state features are relevant at different
points in a trajectory.

Overall, BLINDER demonstrates that it can learn to generalize state descriptions for new tasks of
increasing complexity that involve entities not seen during training. It is also able to generate state
descriptions that are intuitive enough to generalize to new LLM actors. This allows our method to
be trained using smaller local models and then deployed with large black-box models.

7

Under review as a conference paper at ICLR 2024

Task Description:
Arrange the objects in order:
ball, apple, toothpaste

State Description:
The apple is to the left of and beyond the
ball. Position E is to the right of the ball.
... The orange is to the right of the ball ...

Action:
move the apple to position E

position E

position J

Figure 5: Segmented image of the robotic object arrangement task with example task and state
descriptions and action. Objects are labeled and localized, relationships between objects are listed
as state features, and an LLM actor chooses an object to move to an empty position.

6.2 EFFECTIVE CONTEXT USE

Most LLM actors have a limited input size, or context length, with which they are effective. Also,
longer contexts result directly in more expensive compute. Success often requires effective use of
context length, and with shorter state descriptions we can apply the freed context to improving the
quality of our LLM actor.

t5 actor
2 items

t5 actor
3 items

t5 actor
4 items

gpt actor
2 items

gpt actor
3 items

gpt actor
4 items

Task

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Item Arrangement Task
State Description

full
zeroshot
BLINDER

Figure 6: Success rates on our robotic object ar-
rangement task when using BLINDER vs. base-
lines for state descriptions. The actor is tasked
with arranging two, three, or four items. The
GPT3.5 Turbo Actor once again outperforms the
T5 actor, and BLINDER continues to generalize
well despite being trained with the T5 actor.

Figure 4 shows how BLINDER drastically re-
duces context length by a factor of 6x and al-
lows more effective use of our fewshot LLM ac-
tor’s context. Shorter context lengths translate
directly to cheaper inference time and costs.
Also, with shorter contexts, we can include
more fewshot examples and improve LLM ac-
tor performance.

7 ROBOTIC EXPERIMENTS

We also evaluate BLINDER on a real-world
robotic object arrangement task. In this task,
several objects must be rearranged on a table
in order from left to right. The table is divided
into a 2x5 grid of 10 possible positions where
individual objects may reside. Various distrac-
tor objects are also placed in this grid to com-
plicate the state space. BLINDER is trained
using 25 expert demonstrations arranging two
or three items. We evaluate on arranging two,
three, or four items from a set of items not seen
during training. See Appendix D for more de-
tails on the robitic task setup.

The robot environment uses an object segmen-
tation model to map visual observations to natural language labels as shown in Figure 5. Detected
object labels and coordinates are used to generate a set of text features Ω̂ describing spatial rela-
tionships between each object in the scene. For example, a table with an apple, banana, and orange
arranged from left to right would result in the features the orange is to the right of the apple, the
banana is to the left of the orange, etc. The locations of any empty grid positions are also included
in Ω̂.

8

Under review as a conference paper at ICLR 2024

In this environment, the actions available to the LLM actor consist of specifying both which object
to move and which unoccupied grid position to move it to. Our setup has ten possible grid positions
and seven to nine objects, creating 90 state features in Ω̂, and 9-21 admissible actions at each step.
Note that state descriptions for the robotic arrangement tasks are 3x longer on average than the
NetHack task (see Tables 6 and 7). After the LLM actor selects an action, the robot then executes
the low-level control to move the specified object to its new grid position.

Figure 6 shows the benefit of using BLINDER to select state descriptions for this task. Like our
NetHack task, we compare to “full” and “zeroshot” baselines with zeroshot T5 and fewshot GPT3.5
Turbo actors. As with before, we use BLINDER trained with the T5 actor to generate descriptions
for the GPT3.5 Turbo actor, and BLINDER successfully generalizes between actors. In fact, we
found that the T5 actor struggled across the board to perform well at this task, likely due to the
spatial and sequential reasoning required. However, consistent with the results from our NetHack
experiments, BLINDER successfully selects state descriptions that improve actor performance fur-
ther supporting the general applicability of our method.

8 DISCUSSION & CONCLUSION

Most prior work that evaluates the potential for using LLMs as actors in sequential decision making
tasks ignore the issue of defining state descriptions. Instead they use exhaustive non-optimal state
descriptions (Valmeekam et al., 2022) or hand-engineered task-specific state descriptions (Huang
et al., 2022b; Liang et al., 2022; Singh et al., 2022). However, for LLM actors to be deployed in
real world settings as general problem solvers, they will need to the ability to filter state features for
novel tasks automatically. Specifically, in environments where the number of state spaces can be ex-
ponentially high. To this end, we introduce Brief Language INputs for DEcision-making Responses
(BLINDER).

We not only show that selecting learned state descriptions improves actor performance by reduc-
ing distracting information, but we also demonstrate how the decreased context length can provide
additional benefits. We show that the tasks can be performed with a very small model. In our exper-
iments, our methods reduce the needed context length for decision making by a factor of 6x, which
can translate directly to decreased inference costs. Alternatively, the additional context space can
be applied to including more in-context examples and further improving performance of fewshot
actors.

We believe that using LLM output to learn intuitive, textual inputs can be a powerful method for
improving prompting and context efficiency. While our method focuses on selecting a prompt from
an existing set of textual features, we encourage additional research that extends this idea to free-
form summaries or feature abstractions. These ideas are also not limited to sequential decision
making and should be researched in the context of other problem domains as well.

LLMs are being applied to a greater number of problems that require increasingly large context
lengths. We believe that learning task-conditioned LLM input is a powerful method for improving
performance and decreasing inference costs. We hope to encourage continued research into using
LLM contexts more efficiently through methods such as pruning, summarization, and retrieval.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. arXiv preprint
arXiv:1711.00482, 2017.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning

9

Under review as a conference paper at ICLR 2024

with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean,
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369–3391, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.
222.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021a.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3816–3830, Online, August 2021b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.
acl-long.295.

Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel, Makarand Tapaswi, Ivan Laptev, and
Cordelia Schmid. Instruction-driven history-aware policies for robotic manipulations. In Con-
ference on Robot Learning, pp. 175–187. PMLR, 2023.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5356–5364, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In 6th Annual Conference on Robot Learning, 2022b.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for robot control. arXiv preprint arXiv:2303.00855, 2023.

Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Her-
zog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey
Levine, Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T Toshev, Vin-
cent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn,
Omar Cortes, Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jor-
nell Quiambao, Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Kyle
Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy

10

https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/2210.11416
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295

Under review as a conference paper at ICLR 2024

Zeng, and Chuyuan Kelly Fu. Do as i can, not as i say: Grounding language in robotic affor-
dances. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.
net/forum?id=bdHkMjBJG_w.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2022.

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models
for efficient video understanding. In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXV, pp. 105–124. Springer, 2022.

Charles C Kemp, Aaron Edsinger, Henry M Clever, and Blaine Matulevich. The design of stretch: A
compact, lightweight mobile manipulator for indoor human environments. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 3150–3157. IEEE, 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 4392–4412, 2020.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 7671–7684. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/569ff987c643b4bedf504efda8f786c2-Paper.pdf.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 8410–8434, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Pete Florence, Andy Zeng, et al.
Code as policies: Language model programs for embodied control. In Workshop on Language
and Robotics at CoRL 2022, 2022.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434, 2023.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023b.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too, 2021.

11

https://openreview.net/forum?id=bdHkMjBJG_w
https://openreview.net/forum?id=bdHkMjBJG_w
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://aclanthology.org/2021.emnlp-main.243

Under review as a conference paper at ICLR 2024

Pierre Manceron. Ikpy, May 2022. URL https://doi.org/10.5281/zenodo.6551158.
If you use this software, please cite it using the metadata from this file.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. arXiv preprint
arXiv:2202.08938, 2022.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2023.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep?: Embodied decision making
using language guided world modelling. arXiv preprint arXiv:2301.12050, 2023.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft
prompts. In Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 5203–5212, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.410.
URL https://aclanthology.org/2021.naacl-main.410.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, 63(10):
1872–1897, 2020.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Ec-
cles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?
id=1ikK0kHjvj. Featured Certification, Outstanding Certification.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification and
natural language inference. arXiv preprint arXiv:2001.07676, 2020.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good prompt
too? arXiv preprint arXiv:2212.10539, 2022.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans
using large language models. In Second Workshop on Language and Reinforcement Learning,
2022.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen,
Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful
prompts: Instruction guided task programming with verifier-assisted iterative prompting. arXiv
preprint arXiv:2303.14100, 2023.

12

https://doi.org/10.5281/zenodo.6551158
https://aclanthology.org/2021.naacl-main.410
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj

Under review as a conference paper at ICLR 2024

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Allison Tam, Neil Rabinowitz, Andrew Lampinen, Nicholas A Roy, Stephanie Chan, DJ Strouse,
Jane Wang, Andrea Banino, and Felix Hill. Semantic exploration from language abstractions
and pretrained representations. Advances in Neural Information Processing Systems, 35:25377–
25389, 2022.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Microsoft, 2023.

Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu, and Katsushi Ikeuchi. Chatgpt
empowered long-step robot control in various environments: A case application. arXiv preprint
arXiv:2304.03893, 2023.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Cpt:
Colorful prompt tuning for pre-trained vision-language models. arXiv preprint arXiv:2109.11797,
2021.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompt editing via reinforcement learning. In The Eleventh International Conference
on Learning Representations, 2023.

Xufeng Zhao, Mengdi Li, Cornelius Weber, Muhammad Burhan Hafez, and Stefan Wermter. Chat
with the environment: Interactive multimodal perception using large language models. arXiv
preprint arXiv:2303.08268, 2023.

Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5017–5033, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.398. URL
https://aclanthology.org/2021.naacl-main.398.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16816–16825, June 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

13

https://github.com/facebookresearch/detectron2
https://aclanthology.org/2021.naacl-main.398

Under review as a conference paper at ICLR 2024

APPENDIX

A BLINDER DETAILS

Figure 7: Performance on NetHack domain tasks with the T5 actor over the course of BLINDER
training.

Hyperparameter Value

γ 1
lr 1e-6
batch size 4
KL regularization coefficient 1
max state description length (nethack) 10
max state description length (robot) 5

Table 2: BLINDER training hyperparameters

Table 2 shows hyperparameters used during BLINDER training. We finetune a flan-t5-large
model with a value head after the final hidden state in the decoder. We prompt the model with the
following instructions to take advantage of flan-T5’s instruction finetuning:

Describe the relevant information from the game state for
the current task. Your current task is to [task description].

We finetune on monte carlo value estimates from the datasets described in Section 4.2. We also
upsample instances from environment steps with less common actions. Figure 7 shows LLM actor
success rate on NetHack test tasks throughout training.

B ACTOR DETAILS

B.1 T5 ACTOR

We prompt a pretrined flan-t5-xl model with the below prompts for use as an LLM actor:

NetHack Domain:

You are playing the rogue-like game NetHack. Your task is to
[task description]. You can move north, south, east, west,
northeast, southeast, southwest, or northwest. You can attack
monsters adjacent to you, pick up items under you, zap wands,
eat food, wear armor, use keys, drink potions, and put on
rings. [state description]
You choose to:

14

Under review as a conference paper at ICLR 2024

Robot Domain:

You are controlling a helpful household robot. Your task is to
[task description]. You can move items from their current
positions to empty positions indicated by their cooresponding
letter. [state description]
You choose to:

At each task step, we compute the likelihood of the admissible actions, normalize the probabilities
using the softmax function, and then sample an action to execute in the environment.

B.2 GPT ACTOR

Our fewshot actor is a gpt3.5-turbo-0301 model prompted with the below system messages:

NetHack Domain:

You are playing the rogue-like game NetHack. You can move north,
south, east, west, northeast, southeast, southwest, or
northwest. You can attack monsters adjacent to you, pick up
items under you, zap wands, eat food, wear armor, use keys,
drink potions, and put on rings.

Robot Domain:

You are controlling a helpful household robot. You can move
items from their current positions to empty positions indicated
by their cooresponding letter.

We provide fewshot examples and prompt the actor with the below prompt:

Your task is to [task description].

Game Description:
[state description]

Choose the best action:
[list of admissible actions]

The model generates an admissible action that is executed in the environment.

C EXAMPLE TRAJECTORIES

Table 3 shows a successful NetHack trajectory for the “Lava Crossing: Potion” task, and tables 4
and 5 show successful trajectories for the robot arrangement task with three and four target items.
All examples were collected with the fewshot GPT3.5 Turbo actor.

15

Under review as a conference paper at ICLR 2024

Time Image Selected State Description Action

t=0
You see a effervescent potion very near south
southwest. You see a stairs down near east south-
east. You see a lava near south southeast. You have
a +2 sling (alternate weapon; not wielded).

move southwest

t=1

You see a effervescent potion very near south
southwest. You see a stairs down near east south-
east. You see a lava near south southeast. You
have a +2 sling (You see a effervescent potion adja-
cent south. You have a +2 sling (alternate weapon;
not wielded). Score: 0. You have an uncursed +0
leather armor (being worn). You have 16 uncursed
flint stones (in quiver pouch).

move south

t=2
You see here an effervescent potion. You have a
+2 sling (alternate weapon; not wielded). Score: 0.
Depth: 1.

pick up an efferves-
cent potion

t=3
f - an effervescent potion. You have a +2 sling (al-
ternate weapon; not wielded). Score: 0. Encum-
brance: Unencumbered.

drink an efferves-
cent potion

t=4 Dexterity: 13. You have 16 uncursed flint stones
(in quiver pouch). You have 25 uncursed rocks.

move east

t=5 Dexterity: 13. You have 16 uncursed flint stones
(in quiver pouch). You have 25 uncursed rocks.

move east

t=6 Dexterity: 13. You have 16 uncursed flint stones
(in quiver pouch). You have 25 uncursed rocks.

move east

t=7 Dexterity: 13. You have 16 uncursed flint stones
(in quiver pouch). You have 25 uncursed rocks.

move east

t=8
You see a stairs down adjacent northeast. You have
16 uncursed flint stones (in quiver pouch). You
have 25 uncursed rocks.

move northeast

t=9 - -

Table 3: Here, our fewshot actor is prompted with “Your task is to pick up and drink the potion
and navigate to the stairs down.”. The table shows a NetHack visualization alongside selected state
descriptions and the action selected by the LLM actor.

16

Under review as a conference paper at ICLR 2024

Time Image Grid Selected
State Description Action

t=0
position A is to the left
of the doughnut. posi-
tion A is to the left of
and behind the ball.

move the ball to posi-
tion A.

t=1
position I is behind
position J. the dough-
nut is to the left of po-
sition I.

move the doughnut to
position I.

t=2
position G is to the left
of the doughnut. posi-
tion G is to the right of
the ball.

move the soda to posi-
tion G.

t=3 - -

Table 4: Successful trajectory for the task “Arrange the objects in the order: ball, soda, doughnut.”
The items relevant to the task are highlighted – green color denotes correct alignment and red means
incorrect alignment.

Time Image Grid Selected
State Description Action

t=0

the bottle is to the
right of position C.
position C is behind
the toothpaste. posi-
tion C is to the right of
and behind the ball.

move the ball to posi-
tion C.

t=1

position B is to the
left of the toothpaste.
the ball is behind the
toothpaste. position F
is to the right of posi-
tion B. the orange is to
the right of position B.
the soda is to the right
of the ball.

move the toothpaste to
position B.

t=2 - -

Table 5: Successful trajectory for the task “Arrange the objects in the order: toothpaste, ball, bottle,
soda.” Notably, BLINDER can be generalized to arranging an unseen number of items.

17

Under review as a conference paper at ICLR 2024

(a) RGB image (left) and corresponding segmentation result (right).

(b) Labels assigned to empty cells.

(c) The grid layout corresponding to
RGB image on the left.

Figure 8

D ROBOT TASK DETAILS

D.1 ROBOT DETAILS

For the robotics experiment, we use the Stretch RE2 (Kemp et al., 2022) from Hello Robot Inc.
Stretch is a lightweight, low-cost mobile manipulator equipped with a variety of sensors, including
an RGB-D camera and a 2D LiDAR (see Figure 9). The Stretch uses an Intel RealSense D435i
camera to collect RGB and depth images of the table and we use both the onboard RP-LiDAR A1
and an added HTC Vive motion tracker for position estimates.

D.2 ENVIRONMENT DETAILS
motion tracker

RGBD
camera

LiDAR

(a) RGB (b) Depth

Figure 9: Stretch RE2.

The goal of the robot manipulation task is to rearrange several
objects on a table in a target order from left to right. Objects
may each occupy and be placed in predefined locations in a 2-
row by 5-column grid on the table. Target object arrangements
are defined by the horizontal order of each item, and an ob-
ject’s final row location does not affect task success. A trial is
successful if the robot arranges the objects in a specified order
in 10 actions or less.

To investigate the generalization ability of BLINDER, we test
on held-out items not seen during training. Additionally, while
agents are tasked with arranging only two or three items during
training, they are evaluated on arranging two, three, and four
items at test time.

D.2.1 OBSERVATION SPACE

Using LLMs as high-level planners requires natural language
input, however object locations are perceived by the Stretch
robot with camera inputs. We apply a pipeline to parse im-
age observations to a canonical state representation and then
to natural language state descriptions.

Given an RGB image of the table, we detect table objects with
an off-the-shelf semantic segmentation mask and determine
their 3D location using a corresponding depth image. The locations of grid cells are implicitly
defined relative to the table. The canonical state we extract describes which objects are in which
grid cells. For segmentation, we use a Mask R-CNN (He et al., 2017) model with a ResNet-101-
FPN backbone pre-trained on LVIS (Gupta et al., 2019) using the Detectron2 library (Wu et al.,
2019). Figure 8a shows an example of an RGB image and its corresponding segmentation result.
Figure 8c shows the parsed grid state corresponding to the image in Figure 8a.

18

Under review as a conference paper at ICLR 2024

Next, we construct a natural language state description from the current grid layout by listing spatial
relationships between each grid cell and every other grid cell. Spatial relationships include left,
right, behind, and beyond. For grid cells that are populated, the residing object labels are used as
identifiers for the grid cells. Table 7 shows an example of a grid state being converted to a full
natural language state description.

D.2.2 ACTION SPACE

The high-level action defined for object arrangement follows the format “move object name to
empty position name”. In our experiments, the Stretch robot achieves this by using 3D object co-
ordinates obtained from segmented RGB-D camera images in combination with IKPy (Manceron,
2022), a python library for inverse kinematics.

19

Under review as a conference paper at ICLR 2024

NetHack Full State Description
“You have a +1 club (weapon in hand). You have a +2 sling (alternate weapon; not wielded).
You have 16 uncursed flint stones (in quiver pouch). You have 25 uncursed rocks. You have
an uncursed +0 leather armor (being worn). Strength: 22/19. Dexterity: 13. Constitution: 15.
Intelligence: 9. Wisdom: 10. Charisma: 6. Depth: 1. Gold: 0. HP: 16/16. Energy: 2/2. AC:
8. XP: 1/0. Time: 1. Position: 36—9. Hunger: Not Hungry. Monster Level: 0. Encumbrance:
Unencumbered. Dungeon Number: 0. Level Number: 1. Score: 0. Alignment: Neutral.
Condition: None. You see a vertical wall far east. You see a stairs down near east southeast.
You see a horizontal wall near southeast and south. You see a lava near south southeast. You
see a southwest corner near southwest. You see a vertical wall near west. You see a horizontal
wall very near north, northeast, and northwest. You see a lava very near east northeast, east,
east southeast, and southeast. You see a effervescent potion very near south southwest. Hello
Agent, welcome to NetHack! You are a neutral human Caveman”

Table 6: The “Lava Cross: Potion” NetHack task observation and full state description.

Grid Full State Description
“position E is behind the water bottle. position E is to the left of and behind the apple. position
E is to the left of and behind the soda. position E is to the left of position G. position E is to
the left of the doughnut. position E is to the right of and behind the bottle. position E is to the
right of and behind the orange. position E is to the right of the ball. position E is to the right of
the toothpaste. position G is behind the soda. position G is to the left of and behind the apple.
position G is to the left of the doughnut. position G is to the right of and behind the bottle.
position G is to the right of and behind the orange. position G is to the right of and behind
the water bottle. position G is to the right of position E. position G is to the right of the ball.
position G is to the right of the toothpaste. the apple is beyond the doughnut. the apple is to
the right of and beyond position E. the apple is to the right of and beyond position G. the apple
is to the right of and beyond the ball. the apple is to the right of and beyond the toothpaste. the
apple is to the right of the bottle. the apple is to the right of the orange. the apple is to the right
of the soda. the apple is to the right of the water bottle. the ball is behind the bottle. the ball
is to the left of and behind the apple. the ball is to the left of and behind the orange. the ball
is to the left of and behind the soda. the ball is to the left of and behind the water bottle. the
ball is to the left of position E. the ball is to the left of position G. the ball is to the left of the
doughnut. the ball is to the left of the toothpaste. the bottle is beyond the ball. the bottle is to
the left of and beyond position E. the bottle is to the left of and beyond position G. the bottle
is to the left of and beyond the doughnut. the bottle is to the left of and beyond the toothpaste.
the bottle is to the left of the apple. the bottle is to the left of the orange. the bottle is to the
left of the soda. the bottle is to the left of the water bottle. the doughnut is behind the apple.
the doughnut is to the right of and behind the bottle. the doughnut is to the right of and behind
the orange. the doughnut is to the right of and behind the soda. the doughnut is to the right
of and behind the water bottle. the doughnut is to the right of position E. the doughnut is to
the right of position G. the doughnut is to the right of the ball. the doughnut is to the right of
the toothpaste. the orange is beyond the toothpaste. the orange is to the left of and beyond
position E. the orange is to the left of and beyond position G. the orange is to the left of and
beyond the doughnut. the orange is to the left of the apple. the orange is to the left of the
soda. the orange is to the left of the water bottle. the orange is to the right of and beyond the
ball. the orange is to the right of the bottle. the soda is beyond position G. the soda is to the
left of and beyond the doughnut. the soda is to the left of the apple. the soda is to the right of
and beyond position E. the soda is to the right of and beyond the ball. the soda is to the right
of and beyond the toothpaste. the soda is to the right of the bottle. the soda is to the right of
the orange. the soda is to the right of the water bottle. the toothpaste is behind the orange.
the toothpaste is to the left of and behind the apple. the toothpaste is to the left of and behind
the soda. the toothpaste is to the left of and behind the water bottle. the toothpaste is to the
left of position E. the toothpaste is to the left of position G. the toothpaste is to the left of the
doughnut. the toothpaste is to the right of and behind the bottle. the toothpaste is to the right
of the ball. the water bottle is beyond position E. the water bottle is to the left of and beyond
position G. the water bottle is to the left of and beyond the doughnut. the water bottle is to the
left of the apple. the water bottle is to the left of the soda. the water bottle is to the right of and
beyond the ball. the water bottle is to the right of and beyond the toothpaste. the water bottle
is to the right of the bottle. the water bottle is to the right of the orange”

Table 7: Robot arrangement task observation and full state description.

20

	Introduction
	Related Work
	Language for State Descriptions
	Foundational Models for Planning
	Learning Inputs for Pretrained Models

	Background
	BLINDER
	Selecting State Descriptions
	State Description Value
	Learning the Value Function

	Experiment Setup
	Baselines

	NetHack Experiments
	BLINDER Generalization
	Effective Context Use

	Robotic Experiments
	Discussion & Conclusion
	BLINDER Details
	Actor Details
	T5 Actor
	GPT Actor

	Example Trajectories
	Robot Task Details
	Robot Details
	Environment Details
	Observation space
	Action space

