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ABSTRACT

While offline goal-conditioned reinforcement learning (GCRL) provides a simple
recipe to train generalist policies from large unlabeled datasets, Offline GCRL
agents trained with sparse rewards typically struggle on long-horizon tasks. Man-
ually designing task-specific reward functions undermines the simplicity, scala-
bility and generality of this paradigm. Moreover, prior approaches to learn re-
wards for effective credit assignment fail to adequately capture goal-reaching in-
formation as tasks scale in complexity. To address this gap, we propose Occu-
pancy Reward Shaping(ORS), a novel reward-shaping approach that leverages
a learned occupancy measure; a distribution that naturally captures complex long-
horizon temporal dependencies between states; and distills goal-reaching infor-
mation from the occupancy measure into a general-purpose reward function for
effective credit assignment. We demonstrate that ORS achieves a 2.3× improve-
ment in performance on average over its base RL algorithm across a diverse set of
long-horizon locomotion and manipulation tasks and outperforms prior state-of-
the-art methods.

1 INTRODUCTION

Figure 1: Average relative normalized
success rates of ORS and baselines on
7 challenging OGBench tasks (Park
et al., 2024a).

A reinforcement learning (RL) agent capable of task general-
ization – excelling over a diverse range of tasks – by learn-
ing purely from offline data is a critical step towards de-
veloping generalist real-world agents. To this end, Goal-
conditioned reinforcement learning (GCRL) offers a simple,
domain-agnostic and scalable framework to train RL agents
from large offline datasets (Liu et al., 2022a; Yang et al., 2023).
While offline GCRL methods in theory have the potential to
learn from sparse rewards, in practice they often struggle to do
so (Liu et al., 2022a). Therefore, the design of well-defined
and meaningful reward functions, called reward shaping, is
fundamental to training performative GCRL agents (Ng et al.,
1999). While progress in GCRL is crucial toward building
general-purpose RL agents, effective reward shaping remains
a central challenge (Yu et al., 2025).

While training offline GCRL algorithms using sparse re-
wards (Park et al., 2024a; Eysenbach et al., 2022; Ding et al.,
2019; Wang et al., 2023a) maintains simplicity, sparse rewards often fail to provide sufficient learn-
ing signals for credit assignment. Consequently, value functions learned with sparse rewards tend
to be noisy, leading to inefficient training and low levels of performance, especially for complex
long-horizon tasks (Park et al., 2023; Ahn et al., 2025). Conversely, hand-crafting reward functions
for each task undermines the simplicity and practicality of offline GCRL. Can we learn reward func-
tions that accurately encode temporal dependencies between states and goal-reaching information
present in offline data? Doing so reduces the need for manual reward design while providing richer
learning signals for credit assignment.

1
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Figure 2: ORS accurately models temporal dependencies by learning the occupancy measure and efficiently
extracts goal-reaching information into a reward function. Lighter dots represent future states farther away
from the agent.

Although there exists a wealth of work in reward shaping to enhance exploration and goal-reaching
performance in online RL (Ma et al., 2024; Mguni et al., 2021; Ma et al., 2025; Devidze et al., 2022;
Wang et al., 2023b; Agarwal et al., 2023), comparatively fewer studies focus on learning rewards for
credit assignment in offline GCRL. Prior works in reward shaping for credit assignment in online
GCRL either do so using neural networks that estimate local temporal distances (Hartikainen et al.,
2019) or by building semi-parametric graphs (Savinov et al., 2018). In offline GCRL, Mezghani et al.
(2023) uses a temporal distance classifier to build graphs of the dataset. Graph building approaches
however, struggle on long-horizon tasks with multimodal state spaces.

This motivates our central challenge of learning a reward function for credit assignment in offline
GCRL that reliably encodes temporal structure, scales gracefully to large and diverse datasets, gener-
alizes across goals and is simple to train. In this paper, we propose a novel reward shaping method,
Occupancy Reward Shaping (ORS), to address this challenge. Instead of using a local distance
classifier to construct a graph to infer global temporal dependencies like in Mezghani et al. (2023),
as illustrated in Fig. 2, ORS harnesses the occupancy measure (Janner et al., 2020; Schramm &
Boularias, 2024; Farebrother et al., 2025) of the dataset policy; the complex high-dimensional dis-
tribution over future states. The occupancy measure directly captures global, long-horizon temporal
dependencies while inherently representing the multi-modality of the state space.

ORS first employs recent advances in generative modeling (Liu et al., 2022b; Lipman et al., 2022)
to accurately estimate the occupancy measure from offline data. Next, ORS utilizes this model
to train a goal-conditioned reward function which, given a state-goal pair, learns rewards that effi-
ciently encode goal-reaching information using a simple objective based on optimal transport (Peyré
et al., 2019). These rewards computed from the dataset occupancy measure are then used to learn
highly effective policies. We provide theoretical guarantees of convergence to the optimal policy
under ORS rewards and analyze how ORS improves the learning dynamics of the value function.
We perform extensive empirical analysis over diverse and complex long-horizon locomotion and
manipulation benchmarks. Our experiments demonstrate that ORS achieves a 2.3× improvement
on average over its base algorithm that uses sparse rewards and 23%-217% average improvements
over prior state-of-the-art methods on challenging tasks from OGBench (Park et al., 2024a).

2 RELATED WORK

Offline GCRL. Offline GCRL has been a long-standing area of research in RL (Kaelbling, 1993;
Schaul et al., 2015), stemming from a necessity to build innovative algorithms taking advantage of
its rich metric structures, probabilistic goal-reaching interpretations and sub-goal compositionality.
As a result, diverse types of algorithms exist in offline GCRL based on behavioral cloning (Yang
et al., 2022; Hejna et al., 2023), actor-critic methods (Kostrikov et al., 2021; Haarnoja et al., 2018),
hind-sight goal relabeling (Andrychowicz et al., 2017) as well as more specialized approaches based
on metric learning (Reichlin et al., 2024; Park et al., 2024c; Wang et al., 2023a), contrastive rein-
forcement learning (Eysenbach et al., 2022), dual RL (Sikchi et al., 2023; Ma et al., 2022) and
hierarchical RL (Park et al., 2023; Zhou & Kao, 2025; Chane-Sane et al., 2021).

To address the challenges posed by long-horizon, sparse-reward tasks, hierarchical RL meth-
ods (Chane-Sane et al., 2021; Park et al., 2023) have a two-level policy structure where the high
level policy predicts sub-goals that a low-level policy learns to reach. Methods such as Ahn et al.
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(2025) address this challenge by learning an n-step critic (De Asis et al., 2018) to effectively reduce
the temporal horizon. In this paper, we propose to address this challenge using reward shaping for
effective credit assignment, making ORS complementary to the methods discussed above.

Reward Shaping. The idea of using reward shaping to facilitate learning dates back to early RL
research and applications (Saksida et al., 1997; Randløv & Alstrøm, 1998). In their canonical
work, Ng et al. (1999) proposes potential-based reward shaping (PBRS) that preserves the opti-
mal policy under shaped rewards. In deep RL, potential functions have been learned using expert
demonstrations (Brys et al., 2015; Kang et al., 2018), transitions (Harutyunyan et al., 2015), or un-
certainty (Li et al., 2025). Another line of research does not follow PBRS and considers reward
shaping as a bonus for exploration (Pathak et al., 2017; Mguni et al., 2021; Wang et al., 2023b;
Agarwal et al., 2023; Ma et al., 2024; Zheng et al., 2024) and as curriculum learning (Andrychowicz
et al., 2017; Eysenbach et al., 2022; Zheng et al., 2023).

In online GCRL, Hartikainen et al. (2019) estimates local temporal distance to provide a dense
reward for credit assignment. We address the challenge of learning shaped rewards for credit assign-
ment in Offline GCRL. The closest work to ours, Mezghani et al. (2023), uses both a local reward
computed with a local temporal distance classifier and a “global” reward computed using shortest
path search on a graph constructed using the local distance classifier. While graph-based methods
scale poorly with task complexity, we learn a single reward function capable of directly encoding
global, long-horizon goal-reaching information for credit assignment by leveraging the occupancy
measure. Our experiments show the effectiveness of ORS over prior state-of-the-art work.

3 BACKGROUND

3.1 NOTATION

Goal-Conditioned Reinforcement Learning: We consider an infinite-horizon controlled Markov
Process (a MDP (Puterman, 2014) without rewards) defined by (S,A, µ, p, γ) with state space S and
action space A. p : S ×A× S → R denotes the transition function while µ denotes the initial state
distribution. The discount factor is denoted by γ ∈ (0, 1). A policy π(a|s) : S×A→ R is a probabil-
ity distribution mapping states to actions. Each policy induces a conditional state-action occupancy
distribution dπ(s+ | s, a) over future states s+: dπ(s+ | s, a) = (1− γ)

∑∞
∆t=1 γ

∆t−1 P(st+∆t =
s+ | s, a, π), which we refer to as the occupancy measure for simplicity.

The objective of GCRL is to reach any goal, g ∈ S , from another state s ∈ S in the minimum
number of steps. A goal-conditioned policy π(a|s, g) : S × S × A → R maps states and goals to
actions. Formally, the aim is to learn π∗(a|s, g) that maximizes Eτ∼p(τ |g)

∑∞
t=0 γ

tδg(st) where t
is the timestep, p(τ | g) = µ(s0)π(a0 | s0, g)p(s1 | s0, a0) · · · p(si | si−1, ai−1) · · · and δg is a
Dirac Delta at goal g. In this paper, we focus on the offline GCRL setting. In particular, agents
cannot interact with the environment for learning but have access to an offline dataset of trajectories
D, where each trajectory is τ = (s0, a0, s1, a1, . . . , ; , sT ). We denote the dataset behavioral policy
by πD(a | s) and the dataset occupancy measure corresponding to πD by dπD (s+ | s, a).
Flow Matching: Flow matching aims to learn to sample from a distribution pdata, given a fi-
nite number of samples x(1), ..., x(N) ∈ Rd drawn from pdata. Flow matching transforms a
base distribution p0, which is typically a simple Isotropic Gaussian N (0, Id) at time t = 0 to
the target data distribution pdata(x) at t = 1. This transformation is defined by a velocity field
vθ(t, x) : [0, 1] × Rd → Rd, parameterized by a neural network and having a corresponding flow
ψθ(t, x) : [0, 1]×Rd → Rd which is a unique solution to the Ordinary Differential Equation (ODE):

d

dt
ψθ(t, x) = vθ

(
t, ψθ(t, x))

)
The velocity field is trained to minimize:

min
θ

Ex0∼N (0,Id), x1∼p(x), t∼Unif([0,1]) ∥vθ(t, xt)− (x1 − x0)∥22 (1)

where Unif([0, 1]) denotes uniform sampling between 0 and 1 and xt = (1 − t)x0 + t x1 is the
linear interpolation between x0 and x1. On convergence, vθ(t, xt) learns the velocity field which
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transforms samples from p0 to samples from pdata by numerically integrating the ODE. In this
paper, following Lipman et al. (2024); Park et al. (2025), we use linear interpolation between base
and target distributions and uniform time sampling. As in Park et al. (2025), we find that the Euler
method is sufficient for solving the ODE.

3.2 MOTIVATION

In this section, we analyze the key factors limiting the performance of GCRL algorithms trained with
sparse rewards. GCRL learns a policy π(a|s, g) that selects actions to maximize a goal-conditioned
value function V (s, g). We examine the learning dynamics of V (s, g) under sparse rewards.

Figure 3: Average non-monotonicity with sparse
rewards (rate of V̂ (si, g) > V̂ (si+1, g)) (y-axis),
increases as a function of noise σv (x-axis) over
expert trajectories on antmaze-giant-navigate.

Given a goal g, initial state s0, the optimal pol-
icy π∗(a∗|s, g), and the optimal trajectory τ∗ =
{s0, s1, ..., sT = g} induced by π∗, the opti-
mal value function is monotonically non-decreasing
along τ∗: ∀si, sj ∈ τ∗, V ∗(sj , g) ≥ V ∗(si, g) ⇐⇒
j ≥ i. However, non-monotonicity often arises
in practice due to sampling or approximation er-
rors (Park et al., 2023; Ahn et al., 2025). A high
degree of non-monotonicity in the learned V̂ (s, g)
can cause the policy extracted from it to get stuck
in sub-optimal regions of the state space, especially
when g is distant from s. We hypothesize that in
long-horizon tasks, under sparse rewards, V̂ (s, g)
exhibits a high level of non-monotonicity, critically
impairing policy performance.

Figure 4: V̂ (s, g) (y-axis) with sparse rewards vs
time (x-axis) over 5 expert trajectories (each line
a trajectory) from antmaze-giant-navigate. Even
at small amounts of noise σv , V̂ (s, g) becomes
increasingly noisy with the horizon.

To evaluate this hypothesis, we analytically com-
pute V̂ (s, g) along expert trajectories of varying
lengths on the antmaze-giant-navigate task from
OGBench (Park et al., 2024a) used in Ahn et al.
(2025). We choose antmaze-giant-navigate as it is
characterized by long horizons and sparse rewards.
Each trajectory has a unique goal and we visualize
them in Appendix B.3. To simulate errors in value
estimation and analyze the effects of these errors
over various levels of noise σv , we inject multiplica-
tive noise into the TD backups:
V̂ (s, g)← r(s, a∗, g)+γ ∗

(
V̂ (s′, g)+ϵ∗ V̂ (s′, g)

)
,

ϵ ∼ N (0, σv), with γ = 0.99.

Figure 3 plots average non-monotonicity in V̂ (s, g)
with varying σv , computed as the average rate at
which V̂ (si+1, g) < V̂ (si, g) along each trajectory. Figure 4 plots V̂ (s, g) over the expert tra-
jectories for σv = 0.0005. The results indicate that under sparse rewards, non-monotonicity in
V̂ (s, g) is high even under small σv; and increases with σv and the planning horizon. This raises a
central question which we aim to address with our algorithm:

How do we design reward functions that encode long-horizon temporal structure, mitigate value
non-monotonicity, and enable more effective policy learning in long-horizon, sparse-reward tasks?

4 OCCUPANCY REWARD SHAPING FOR OFFLINE GCRL

Having motivated the need for effective reward shaping in Sec. 3.2, we explain the novel method-
ology behind ORS in Sec. 4.1 and Sec. 4.2. We provide a theoretical analysis of the optimality
guarantees of ORS in Sec. 4.3 and summarize our method in Sec. 4.4.

As we mentioned earlier, ORS leverages a learned model of the dataset occupancy measure to
capture complex multi-modal distributions over possible future states. Crucially, given a state-action
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pair s, a and goal g, ORS compresses temporal information from the occupancy measure into a
goal-conditioned reward function proportional to the squared Wasserstein-2 distance between the
occupancy measure and the Dirac delta at g. By doing so, ORS stitches together long-horizon goal-
reaching information from multiple trajectories, generalizing to diverse goals and providing a rich
learning signal to train goal-conditioned policies. We train each component as follows:

4.1 LEARNING THE OCCUPANCY MEASURE

The state-action conditioned occupancy measure over future states of the dataset policy πD has the
following recursive form (Sutton, 1995; Janner et al., 2020; Schramm & Boularias, 2024):

dπD
θ (s+ | s, a) = (1− γ) p(s′ | s, a) + γ dπD

θ−
(s+ | s′, a′), ∀(s, a, s′, a′) ∈ D (2)

This recursive form, reminiscent of temporal difference learning, allows learning dπD (s+ | s, a)
parameterized by θ as a mixture over two components: 1. the transition function and 2. a target
dπD (s+ | s′, a′) over subsequent future states under πD (parameterized by θ−, a time-delayed
version of θ). This approach naturally stitches together future states under intersecting trajectories
inD. To accurately represent the multi-modality inherent in dπD and to enable efficient computation
of the ORS reward function (explained in Sec. 4.2), we learn dπD using a flow matching model with
the following loss (Farebrother et al., 2025) :

Lflow(θ) = (1− γ)Lnext(θ) + γ Lfuture(θ); ∀ (s, a, s′, a′) ∈ D (3)

Lnext(θ) = E s′=x1∼D
x0∼N (0, Id)
t∼Unif([0,1])

[
∥vθ(t, s, a, xt)− (x1 − x0)∥22

]
;

Lfuture(θ) = Es+=x1∼d
πD
θ−

(.|s′,a′)
x0∼N (0, Id)
t∼Unif([0,1])

[∥∥vθ(t, s, a, xt)− sg[vθ−(t, s
′, a′, xt)]

∥∥2
2

]
.

where Lnext(θ) is the standard flow matching loss over the transition function and Lfuture(θ)
regresses the velocity field vθ(t, s, a, xt) towards a bootstrapped estimate of the velocity field of
dπD
θ−

(s+|s′, a′) represented by vθ−(t, s
′, a′, xt). sg represents the stop-gradient operation.

4.2 LEARN A GENERALIZABLE GOAL-CONDITIONED REWARD FUNCTION

Given the occupancy measure dπD and a goal g, we propose to learn a goal-conditioned reward func-
tion rW (s, a, g) as the distributional similarity measure between dπD (s+|s, a) and δg . Taking into
account the high degree of non-overlap in supports of dπD and δg , we represent rW (s, a, g) using
the negative squared Wasserstein-2 distance (W 2

2 (., .)) instead of distributional similarity measures
such as KL Divergence. We can now state the following:
Proposition 1. Under assumptions on goal reachability, dynamics and dataset quality, for any
(s, a, g), the reward function:

rW (s, g) = Ea∼πD(·|s)r
W (s, a, g) = −Ea∼πD(·|s)W

2
2 (δg, d

πD (s+ | s, a))

is monotonically non-decreasing in shortest-path distance towards goal g defined as the minimum
number of steps required to reach g from s. Moreover:

rW (s, a∗, g) ≥ rW (s, a, g); a∗ ∼ π∗(·|s, g).

The assumptions and proof are provided in Appendix A.3 and Appendix A.4. This formulation
captures not only how far the center of mass of dπD (s+ | s, a)) is from g, but also how spread out
dπD (s+ | s, a)) is with respect to g: if state A and state B are both 5 transitions away from g but
stateA has more future states that are farther away from the goal than stateB, rewards will be higher
for state B. Intuitively, this gives a finite, information-rich reward rW (s, a, g) for credit assignment
that is higher for states with s+ closer to g under D. We now explain how to compute it efficiently.

While computing W 2
2 (δg, d

πD (s+ | s, a)) exactly involves an intractable integral, we show that it is
possible to estimate rW (s, a, g) using a finite number of samples as follows:
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Algorithm 1: Occupancy Reward Shaping.

Input: Occupancy model dπD
θ , reward function rWψ , learning rate η

// Training the occupancy model:
1 for each iteration t = 1 to N do
2 Sample (s, a, s′, a′) ∼ D;
3 Compute Lflow(θ) (Eq. 3) and update θ ← θ − η∇θLflow(θ);
4 end
// Training the reward function:

5 for each iteration t = 1 to N do
6 Sample (s, a, g) ∼ D;
7 Compute Lrew(ψ) (Eq. 5) and update ψ ← ψ − η∇ψLrew(ψ);
8 end

Proposition 2. The flow matching loss between dπD (s+ | s, a) and δg can be used to approximate
the squared Wasserstein-2 distance between the two distributions:

W 2
2 (δg, d

πD (s+ | s, a)) = E g=x1∼δg
x0∼N (0, Id)
t∼Unif([0,1])

∥v(t, s, a, xt)− (x1 − x0)∥22 (4)

where v(t, s, a, xt) is the velocity field corresponding to dπD (s+|s, a) at time t. The proof is in
Appendix A.5. As mentioned in Sec. 4.1, this further justifies our choice of using a flow matching
model to learn the occupancy measure. Using the learned dπD

θ from Sec. 4.1, we can now estimate
rW (s, a, g) using a neural network ψ:

Lrew(ψ) = Es,a,g∼D

[∥∥∥∥ ˆrWψ(s, a, g)−
[
− E g=x1∼δg

x0∼N (0, Id)
t∼Unif([0,1])

∥vθ(t, s, a, xt)− (x1 − x0)∥22

]∥∥∥∥2
2

]
(5)

4.3 ANALYSIS

Theorem 1. Under assumptions on goal reachability, dynamics and dataset quality, for any (s, g),
the greedy goal-conditioned policy πgreedy(a|s, g) with respect to Q∗(s, a, g) computed under
rW (s, a, g) is optimal and reaches g in the minimum number of steps.

Please refer to Appendix A.6 for the proof. Notably, this shows that ORS converges to the optimal
policy under rewards computed solely using the dataset occupancy measure dπD . ORS thus enables
efficient use of the rich goal-reaching information present in the dataset occupancy measure without
having to estimate the new occupancy measure at each intermediate policy improvement step.

4.4 METHOD SUMMARY

ORS has 3 stages: 1. Train the flow matching occupancy model dπD
θ using Eq. 3; 2. Train the reward

function rWψ using Eq. 5; and 3. Train a goal-conditioned policy using any offline GCRL algorithm
that uses a TD-learning critic. Stages 1 and 2 that involve learning dπD

θ and rWψ are summarized in
Alg. 1. Further details on architecture and hyperparameters are provided in Appendix B.5.

5 EXPERIMENTS

In this section, we present an extensive empirical analysis of ORS across a variety of challenging
long-horizon offline GCRL tasks. We then conduct detailed analyses and ablations to dissect key
design choices underlying our algorithm.

Tasks: For our empirical analysis, we use OGBench (Park et al., 2024a), a benchmark specifically
built for evaluating offline GCRL algorithms. We choose OGBench over older benchmarks such

6
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Table 1: ORS vs baselines: Overall average (binary) success rate (%) across the 5 testtime goals over 8 seeds
per task per algorithm. We report the 95% bootstrapped C.I. size after the ± sign.

Dataset GCBC GC-IVL QRL CRL GC-IQL Go-Fresh ORS (ours)
antmaze-large-navigate 25 ± 3 18 ± 3 64 ± 18 90 ± 4 34 ± 4 88 ± 3 88 ± 7
cube-double-play 1 ± 1 36 ± 3 1 ± 0 10 ± 2 40 ± 5 17 ± 6 45 ± 7
puzzle-4x4-play 0 ± 0 13 ± 2 0 ± 0 0 ± 0 26 ± 3 74 ± 6 70 ± 5
scene-play 5 ± 1 42 ±4 5 ± 1 19 ± 2 51 ± 4 56 ± 10 80 ± 4
antmaze-giant-navigate 0 ± 0 0 ± 0 9 ± 4 39 ± 8 0 ± 0 30 ± 10 56 ± 9
cube-triple-play 0 ± 0 1 ± 1 0 ± 0 6 ± 3 7 ± 3 18 ± 5 37 ± 8
puzzle-4x5-play 0 ± 0 7 ± 1 0 ± 0 1 ± 0 14 ± 1 20 ± 1 20 ± 0
puzzle-4x6-play 0 ± 0 10 ± 2 0 ± 0 4± 1 12 ± 1 17 ± 4 20 ± 2
antmaze-large-explore 0 ± 0 8 ± 6 0 ± 0 0 ± 0 1 ± 1 38 ± 10 22 ± 7
puzzle-4x4-noisy 0 ± 0 20 ± 3 0 ± 0 0 ± 0 29 ± 7 50 ± 5 56 ± 7
scene-noisy 1 ± 1 26 ± 5 9 ± 1 1 ± 1 26 ± 2 34 ± 5 40 ± 5
cube-triple-noisy 1 ± 1 9 ± 1 1 ± 0 3 ± 1 2 ± 1 5 ± 4 22 ± 7
Mean 2.8 15.8 7.4 14.4 20.2 37.3 46.3

as Fu et al. (2020); Tarasov et al. (2023) for its task diversity, its realistic and challenging long-
horizon sparse-reward tasks that are not saturated as of 2025, and its comprehensive multi-goal
evaluation. We evaluate ORS over locomotion tasks on AntMaze environments of different sizes
and over manipulation tasks on the Cube, Scene and Puzzle environments with varying levels of
task complexity and planning horizon. We provide a detailed explanation of tasks in Appendix B.1.

Baselines: We compare ORS against a set of representative baselines included in OGBench. These
include Goal Conditioned Behavioral Cloning (GCBC) (Ghosh et al., 2019); Goal-Conditioned Im-
plicit Q Learning (GCIQL) (Kostrikov et al., 2021) and Goal-Conditioned Implicit Value Learning
(GCIVL) (Park et al., 2023) which approximate value functions using expectile regression (Newey
& Powell, 1987) and recover policies using behavior-constrained deterministic policy gradient
(DDPG + BC) and advantage-weighted regression (AWR), respectively (Park et al., 2024b). Quasi-
metric RL (QRL) (Wang et al., 2023a) learns a specialized quasimetric goal-conditioned value func-
tion with a dual objective. Contrastive RL (CRL) (Eysenbach et al., 2022) fits a Monte Carlo goal-
conditioned value function using contrastive learning and extracts a greedy policy from it.

We also compare ORS to several methods designed for long-horizon, sparse-reward settings: Go-
Fresh (Mezghani et al., 2023) learns a shaped reward as a sum of a local reward from a temporal
distance classifier between states and a global reward computed by shortest-path search on a graph
constructed with the local distance classifier. Hierarchical Implicit Q Learning (HIQL) (Park et al.,
2023) trains a low-level policy to reach goals sampled from a high-level policy, both trained via a
single GCIVL-style value function. n-step GCIQL and n-step GCIQL-OTA use different tech-
niques to learn a GCIQL critic using n-step TD learning (De Asis et al., 2018; Ahn et al., 2025).
While ORS uses a non-hierarchical policy and can be easily integrated with both the above meth-
ods, these baselines ensure a standalone comparison of our method against two key strategies to
horizon reduction in RL. Both ORS and Go-Fresh use GCIQL with a Gaussian policy, owing to its
popularity and simplicity and to ensure fair comparison. We build on the codebase of OGBench and
make use of the official implementation for Go-Fresh. All algorithms use a goal-sampling scheme
based on (Andrychowicz et al., 2017) provided in OGBench. Appendix B.2-B.6 provides additional
information on baselines, particularly, on GCIQL and n-step returns, and on hyperparameters used.

5.1 RESULTS

Performance is measured by average (binary) success rates on 5 test-time goals of each task. We
train algorithms to convergence and average the results over 8 seeds. We list the number of training
iterations per task in Appendix B.4. We discuss the results below:

How effective is ORS at offline GCRL? ORS achieves the best performance on most tasks, with
especially large gains on more complex domains. Table 1 summarizes results over 12 offline lo-
comotion and manipulation datasets, where *-play/*-navigate denote noisy expert datasets and *-
noisy/*-explore denote highly sub-optimal datasets (Park et al., 2024a).
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Table 2: ORS vs long-horizon sparse-reward offline GCRL strategies on 7 challenging long-horizon tasks:
Overall average (binary) success rate (%) across the 5 testtime goals over 8 seeds per task per algorithm. We
report the 95% bootstrapped C.I. size after the ± sign.

Dataset HIQL n-step GCIQL n-step GCIQL-OTA Go-Fresh ORS (ours)
antmaze-large-navigate 91 ± 2 53 ± 9 90 ± 4 88 ± 3 88 ± 7
antmaze-giant-navigate 72 ± 7 1 ± 1 26 ± 5 30 ± 10 56 ± 9
antmaze-large-explore 0 ± 0 0 ± 0 0 ± 0 38 ± 10 22 ± 7
cube-triple-play 3 ± 2 1 ± 1 2 ± 2 18 ± 5 37 ± 8
puzzle-4x6-play 3 ± 1 14 ± 3 15 ± 3 17 ± 4 20 ± 2
cube-triple-noisy 2 ± 1 2 ± 1 2 ± 1 5 ± 4 22 ± 7
puzzle-4x6-noisy 2 ± 1 12 ± 6 15 ± 3 19 ± 4 19 ± 1
Mean 24.7 11.9 21.4 30.7 37.7

ORS achieves a 2.3× improvement in performance on average over its base algorithm GCIQL
that uses sparse rewards. While we see that GCIQL/GCIVL struggle on locomotion and QRL/CRL
struggle on manipulation, ORS consistently outperforms these baselines on both domains. ORS out-
performs Go-Fresh on the majority of tasks, demonstrating the effectiveness of occupancy-based re-
ward shaping over graph-based reward shaping, especially in tasks such as antmaze-giant-navigate
and cube-triple-play that are characterized by very long horizons and high task complexity. We also
see that ORS remains effective even under highly sub-optimal data in the *-noisy/*-explore datasets.
Notably, only ORS and Go-Fresh produce non-zero performance on antmaze-large-explore. Al-
though Go-Fresh outperforms ORS on this task, we hypothesize that this could be because of the
additional local rewards used by Go-Fresh.

How does ORS compare to other strategies for long-horizon, sparse-reward offline GCRL? On
average, ORS demonstrates better performance than both HIQL and n-step returns on 7 complex
long-horizon tasks with varying data quality, producing 1.5× and 1.8× improvements respectively.
While hierarchical RL methods like HIQL are especially effective on antmaze-large/giant-
navigate, they have relatively poor performance on manipulation tasks and neither HIQL nor n-step
returns achieve non-zero performance on antmaze-large-explore. Compared to Go-Fresh, ORS
generally produces stronger performance underscoring the effectiveness of its occupancy-based
reward shaping. While this does not mean that ORS is a replacement for hierarchical RL or
n-step returns, the strong performance of ORS with a simple non-hierarchical policy and its
complementarity with these methods highlight its usefulness.

Figure 5: Left: ORS leads to lower average non-monotonicity at lower noise levels (σv) over expert trajectories
compared to using sparse rewards or just using V̂ (, g) = rW (s, g); Center: ORS induces less noisy estimates
of V̂ (s, g) over expert trajectories even for long horizons; and Right: ORS rewards over 5000 state-action pairs
(denoted as dots) for a single fixed goal (denoted as x) smoothly decay in magnitude with temporal distance
from goal. All plots in this figure are computed over antmaze-giant-navigate.

Does ORS improve value learning? Having demonstrated the effectiveness of ORS, we next ana-
lyze how occupancy-shaped rewards influence the learning dynamics of the induced value function
on antmaze-giant-navigate. Following the setup in Sec. 3.2, we analytically compute the noisy
value function induced by ORS rewards under varying noise levels σv . Figure 5 (left) reports how
the average non-monotonicity V̂ (s, g) varies with σv for sparse rewards, ORS, and a variant that
directly uses V̂ (s, g) = rW (s, g). Relative to sparse rewards, ORS exhibits value non-monotonicity
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that an order of magnitude smaller at lower noise levels. V̂ (s, g) induced by ORS over the same 5
trajectories in Sec. 3.2 is plotted in Fig. 5 (center), showing estimates that are much less noisy than
sparse-reward V̂ (s, g) over long horizons. As evidenced from Tables 1 and 2, this improvement in
value learning translates to better performance. Finally, Figure 5 (right) plots ORS rewards for a
fixed goal over 5000 uniformly sampled state-action pairs, each state displayed in the figure by its
x-y position in the maze. ORS reward magnitudes decay smoothly with increasing temporal distance
from goal, with dark dots corresponding to states (eg. ends of trajectories) temporally very distant
from goal.

How do different design choices affect ORS performance? We now examine some key design
choices behind ORS through ablation studies. First, we ablate over the choice of reward function and
Q-function by comparing ORS against a version that uses state-only rewards rW (s, g) named ORS-
s and a variant that uses the reward function itself as the Q-function, i.e., Q(s, a, g) = rW (s, a, g)
named ORS-r. We keep the base algorithm the same.

Figure 6: ORS vs ORS-s vs ORS-r over 5 testtime
goals and 8 seeds on scene-play (error bars show
95% bootstrapped CI)

In experiments on the manipulation task scene-play
in Fig. 6, ORS performs best, showing the impor-
tance of learning a Q-function that is a cumulative
sum over rW (s, a, g), especially when the task in-
volves stitching over trajectories to learn the optimal
Q∗. We hypothesize that the poor performance of
ORS-r is due to high non-monotonicity in Q, as evi-
denced by our analysis in Fig. 5.

We also ablate the performance of ORS over vary-
ing values of the expectile parameter κ of GCIQL
which is crucially linked to the density of rewards
and stitching capability (Kostrikov et al., 2021), in
Table 3. In locomotion tasks, performance is higher
at lower values of κ. We hypothesize that this is due

to the rich learning signal from dense rewards of ORS. In manipulation tasks, as task complexity in-
creases, the κ at which we get best performance increases, potentially due to increased multimodality
and stitching required for optimal behavior (Kostrikov et al., 2021) .

6 CONCLUSION Dataset κ=0.6 κ=0.75 κ=0.9
antmaze-giant-navigate 56 ± 9 15 ± 6 1 ± 1
puzzle-4x4-play 70 ± 5 40 ± 4 21 ± 3
scene-play 70 ± 5 80 ± 4 71 ± 7
cube-triple-play 4 ± 3 27 ± 12 37 ± 8

Table 3: Performance of ORS over varying values of κ.

In this paper, we introduce Occu-
pancy Reward Shaping, a novel reward-
shaping algorithm for offline GCRL
that utilizes the dataset occupancy mea-
sure to efficiently and accurately dis-
till goal-reaching information into a
learned goal-conditioned reward function. Unlike prior work that relies on graph-building, ORS
scales effectively with task complexity and enables learning performative policies over datasets of
varying quality. ORS is simple to implement on top of existing GCRL algorithms and achieves
state-of-the-art results over diverse challenging locomotion and manipulation tasks.

Limitations. In long-horizon tasks with highly combinatorial state spaces and very few ways to
achieve task success (e.g. a large multi-step combination lock puzzle), effectiveness of reward shap-
ing methods and more broadly, RL, is diminished by virtue of being sample-based. In such regimes,
particularly in the offline setting, even ORS rewards may provide limited signal since the occupancy
measure has a high Wasserstein distance from goal for almost all states. Addressing this challenge
will likely require learning the occupancy measure over a filtered set of “useful” future states, using
larger datasets and potentially augmenting the ORS reward with local rewards that capture short-
range state dependencies. This is an important direction for future work.

LLM usage: We used LLMs to aid in LaTeX formatting while writing the paper.
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Reproducibility Statement: We provide an anonymised .zip to our source code in supplementary
material. To ensure reliable comparison, each RL algorithm is evaluated over 8 random seeds and
95% bootstrapped CIs are reported as error bars in tables and plots. Additional information on
baselines is provided in Appendix B.2-B.6. We state this information in Sec. 5.1 of the main paper.
All proofs are in Appendix A and assumptions are stated in Appendix A.3. We state this in Sec. 4.2
of the main paper.
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Appendices
A PROOFS

We introduce notation in Sec. A.1. We then provide common setup used for all proofs in Sec. A.2.
We introduce the assumptions used in Sec. A.3. Sec. A.4, A.5 and A.6 provide the proofs for
Proposition1, Proposition2 and Theorem1, respectively.

A.1 NOTATION

• Shortest-path distance: We use step∗(s, g) to denote the minimum number of steps to
reach g from s. We define level sets:

Sk = {s ∈ S : step∗(s, g) = k}, k = 0, 1, 2, . . .

Clearly, S0 = {g}. Under deterministic dynamics, there exists an action a∗ at state s such
that p(. | s, a∗) ∈ Sk−1 whenever s ∈ Sk, k ≥ 1.

A.2 COMMON SETUP FOR PROOFS

The squared Wasserstein-2 distance between two probability measures µ and ν is defined as:

W 2
2 (µ, ν) = inf

λ∈Λ(µ,ν)

∫
∥x− y∥2dλ(x, y)

where Λ(µ, ν) is the set of all joint measures with marginals µ and ν.

We consider the special case where one measure is a Dirac delta, µ = δg , located at a single point
g. In this case, any valid transport plan must move all mass from the point g. This removes the need
for optimization, as the transport plan is uniquely determined to be the product measure Λ(x, y) =
δg(x)ν(y).

Substituting this unique plan into the definition yields:

W 2
2 (δg, ν) =

∫ ∫
∥y − x∥2δg(x)ν(y)dxdy

=

∫
∥y − g∥2ν(y)dy (by the sifting property of δg(x))

The result is the expected squared Euclidean distance from the point g to the distribution ν.

By replacing the general measure ν with the specific transition probability dπD (s+ | s, a) and
renaming the integration variable, we obtain the final form:

W 2
2 (δg, d

πD (s+ | s, a)) =
∫
∥s+ − g∥2dπD (ds+ | s, a)

With this setup, we now define

Φ(s, g) := ∥s− g∥2, MπD (s, a, g) :=

∫
Φ(s+, g) dπD (ds+ | s, a).

Then
rW (s, a, g) = −MπD (s, a, g).

Recall the expanded form of dπ:
dπD (s+ | s, a) = (1− γ) p(s′ | s, a) + γ dπD (s+ | s′, a′), ∀(s, a, s′, a′) ∈ D

Now, substitute into the definition of Mπ as an integral, and under the assumption of deterministic
dynamics:

MπD (s, a, g) =

∫
Φ(s+, g) dπD (ds+ | s, a)

=

∫
Φ(s+, g)

[
(1− γ)δs′(s+ = s′) + γdπD (s+ | s′, a′)

]
ds+
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Using the linearity of the integral, we decompose the above expression into two terms:

MπD (s, a, g) = (1− γ)Φ(s′, g) + +γ

∫
Φ(s+, g)dπD (s+ | s′, a′) ds+

= (1− γ)Φ(s′, g) + γMπD (s′, a′, g).

It is notable that MπD (s, a, g) resembles a squared goal-conditioned Wasserstein-2 distance ana-
logue of the successor representation (Machado et al., 2023).

We also define the state-only version MπD (s, g) = Ea∼πD(.|s)M
πD (s, a, g)

A.3 ASSUMPTIONS

This section lists the assumptions we use to develop our proofs:
Assumption A.1 (Deterministic dynamics). We assume that the environment dynamics are deter-
ministic: For any state s ∈ S and action a ∈ A, the state transition probability p(s′ | s, a) is a point
mass distribution, concentrated on the unique successor state f(s, a). That is,

p(· | s, a) = δf(s,a)(·).

Remark A.1. This is a common assumption made for the sake of analytical tractability in founda-
tional reinforcement learning theory. It allows for a clear analysis of the core properties of value
functions and policies without the complexities introduced by stochasticity. This assumption serves
as a standard basis for theoretical analysis in related work, for instance, in Hartikainen et al. (2020).

Assumption A.2 (One-step reachability).

∀k ≥ 1, ∀s ∈ Sk, ∃ a∗(s) such that s′|s, a∗ ∈ Sk−1.

Remark A.2. This assumption is inherent to the definition of a well-posed shortest-path problem.
It simply formalizes that the goal is reachable and a shortest path exists from all relevant states.

Assumption A.3. The potential function Φ(s, g) is strongly monotonic with respect to the shortest-
path distance step∗(s, g). For any two states sa, sb, if step∗(sa, g) ≤ step∗(sb, g), then

Φ(sa, g) ≤ Φ(sb, g).

Furthermore, for any k ≥ 1, if s1 ∈ Sk−1 and s2 ∈ Sk, there exists a constant ∆Φ > 0 such that

Φ(s2, g) ≥ Φ(s1, g) + ∆Φ.

Remark A.3. This assumption ensures that the signal provided by the Wasserstein distance is strong
and informative, providing a non-trivial cost increase when moving away from the goal.

Assumption A.4 (Layer monotonicity of πD). We assume the offline policy πD is consistent with
the shortest-path layer structure. For any k ≥ 1, if s1 ∈ Sk−1 and s2 ∈ Sk, their successors under
πD, s′1 = f(s1, πD(s1)) and s′2 = f(s2, πD(s2)) must maintain their relative layer ordering. That
is,

step∗(s′1, g) ≤ step∗(s′2, g).

Remark A.4. Assumption A.4 is a condition on the quality of the offline data, which is a standard
requirement for obtaining theoretical guarantees in the offline RL setting (Zhan et al., 2022).
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A.4 MONOTONICITY OF GOAL-CONDITIONED REWARD FUNCTION (PROPOSITION 1)

Proposition. The reward function:

rW (s, g) = Ea∼πD(·|s)r
W (s, a, g) = −Ea∼πD(·|s)W

2
2 (δg, d

πD (s+ | s, a))

is monotonically non-decreasing in shortest-path distance towards goal g and:

rW (s, a∗, g) ≥ rW (s, a, g); a∗ ∼ π∗(·|s, g).

We prove the proposition in two parts: We first prove that rW (s, g) is monotonically non-decreasing
in shortest-path distance to goal and then show that rW (s, a∗, g) ≥ rW (s, a, g) for any (s, a, g).
Recall that we define the shortest-path distance in terms of the layer index k and show that
rW (s, a, g) = −W 2

2 (δg, d
πD (s+ | s, a)) = −MπD (s, a, g) in Sec. A.2. We can now re-write

the first part of the proposition as:

1 (Layer Monotonicity of MπD ). Under Assumptions A.1, A.3 and A.4, the function MπD is mono-
tonically non-decreasing with respect to the shortest-path layer index k. For goal g and any k ≥ 1,
if s1 ∈ Sk−1 and s2 ∈ Sk, we have:

MπD (s1, g) ≤MπD (s2, g).

It is important to note that the indices k here are such that k = 0 refers to the goal state, i.e. index
k − 1 defines a state closer to goal than index k.

Proof. Let us define the Bellman operator TπD which maps a functionM to a new function TπDM :

(TπDM)(s, g) = (1− γ)Φ(f(s, πD(s)), g) + γM(f(s, πD(s)), g).

We prove this statement by analyzing the properties of the Bellman evaluation operator TπD asso-
ciated with the policy πD.

The functionMπD is the unique fixed point of this operator, satisfyingMπD = TπD (MπD ). The ex-
istence and uniqueness of this fixed point, and the convergence of value iteration (Mi+1 = TπDMi)
to it from any starting function M0, is guaranteed by the Banach Fixed-Point Theorem. This is
because the operator TπD is a contraction mapping due to the discount factor γ < 1.

To show this, we take any two functions Ma,Mb and measure the distance between their outputs
under the supremum norm ∥Ma −Mb∥∞ = maxs |Ma(s)−Mb(s)|:

∥TπDMa − TπDMb∥∞ = max
s

∣∣(1− γ)Φ(s′, g) + γMa(s
′, g)−

(
(1− γ)Φ(s′, g) + γMb(s

′, g)
)∣∣

= max
s
γ|Ma(s

′, g)−Mb(s
′, g)| where s′ = f(s, πD(s))

≤ γmax
z∈S
|Ma(z, g)−Mb(z, g)|

= γ∥Ma −Mb∥∞.

Since γ < 1, the operator is a contraction. Therefore, the sequence converges to the unique fixed
point MπD .

Now, we prove that the operator TπD preserves the property of monotonicity. Let M be an arbitrary
function that is monotonically non-decreasing with respect to the layer index k. We must show that
the resulting function TπDM is also monotonic.

Let s1 ∈ Sk−1 and s2 ∈ Sk. Let their successors be s′1 = f(s1, πD(s1)) and s′2 = f(s2, πD(s2)).
We want to show that (TπDM)(s1, g) ≤ (TπDM)(s2, g).

Consider the difference:

(TπDM)(s2, g)− (TπDM)(s1, g) = (1− γ)[Φ(s′2, g)− Φ(s′1, g)] + γ[M(s′2, g)−M(s′1, g)].

By Assumption A.4, we have step∗(s′1, g) ≤ step∗(s′2, g). Now we analyze the two terms in the
difference:
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• By Assumption A.3, the condition step∗(s′1, g) ≤ step∗(s′2, g) directly implies that
[Φ(s′1, g) ≤ Φ(s′2, g)]. The first term [Φ(s′2, g)− Φ(s′1, g)] is non-negative.

• By our premise for this step, the function M is monotonic. Since d∗(s′1, g) ≤ d∗(s′2, g), it
follows that M(s′1, g) ≤ M(s′2, g). Thus, the second term [M(s′2, g) −M(s′1, g)] is also
non-negative.

Since both terms are non-negative, their sum is non-negative, and thus (TπDM)(s1, g) ≤
(TπDM)(s2, g). This proves that the operator TπD preserves monotonicity.

The value iteration process starts with an initial value function M0(s) = 0 for all s. The zero func-
tion is trivially monotonic. Since the operator TπD preserves monotonicity, the entire sequence of
value functions {M0,M1,M2, . . . } generated byMi+1 = TπDMi consists of monotonic functions.
The final value function MπD is the limit of this sequence, and the limit of a sequence of monotonic
functions is also monotonic.

Therefore, MπD is monotonically non-decreasing with respect to the layer index k.

It follows that rW (s, g) = −MπD (s, g) is monotonically non-decreasing in shortest-path distance
towards goal g.

We now prove the second part. Similar to part 1, we can re-write in terms of MπD as follows:

2 (Optimal actions under MπD (s, a, g)). Under Assumptions A.1-A.4 and the layer monotonicity of
MπD , for any state s ∈ Sk with k ≥ 1, any optimal, shortest-path-inducing, action a∗ ∼ π∗(.|s, g),
and any non-optimal action abad, the function MπD is strictly smaller for the shortest-path action.
That is,

MπD (s, a∗, g) < MπD (s, abad, g).

Proof. Let s∗ = f(s, a∗) and sbad = f(s, abad). By definition, s∗ ∈ Sk−1 and sbad ∈ Sj for some
j ≥ k. We analyze the difference ∆M =MπD (s, abad, g)−MπD (s, a∗, g):

∆M =
[
(1− γ)Φ(sbad, f) + γMπD (sbad, g)

]
−
[
(1− γ)Φ(s∗, g) + γMπD (s∗, g)

]
= (1− γ)[Φ(sbad, g)− Φ(s∗, g)]︸ ︷︷ ︸

Term 1

+ γ[MπD (sbad, g)−MπD (s∗, g)]︸ ︷︷ ︸
Term 2

For Term 1, since s∗ ∈ Sk−1 and sbad ∈ Sj with j ≥ k, by Assumption A.3, we have Φ(sbad, g) ≥
Φ(s∗, g) + ∆Φ. Thus, Term 1 is strictly positive and bounded below by (1− γ)∆Φ > 0.

For Term 2, since s∗ ∈ Sk−1 and sbad ∈ Sj with j ≥ k, by Lemma 1, we have MπD (s∗, g) ≤
MπD (sbad, g). Thus, Term 2 is non-negative.

The sum of a strictly positive term and a non-negative term is strictly positive. Therefore, ∆M > 0.

It follows that rW (s, a∗, g) > rW (s, abad, g) or equivalently, rW (s, a∗, g) ≥ rW (s, a, g), where a
can be any action in D at state s, which concludes the proof.

A.5 FLOW MATCHING LOSS AS AN UNBIASED ESTIMATOR OF SQUARED WASSERSTEIN-2
METRIC (PROPOSITION 2)

Proposition. The flow matching loss between dπD (s+ | s, a) and δg can be used to approximate the
squared Wasserstein-2 distance between the two distributions:

W 2
2 (δg, d

πD (s+ | s, a)) = E g=x1∼δg
x0∼N (0, Id)
t∼Unif([0,1])

∥v(t, s, a, xt)− (x1 − x0)∥22 (6)

We start from the definition of squared Wasserstein-2 distance in Sec. A.2. In our case, µ
corresponds to δg and ν corresponds to dπD

θ (s+ | s, a). For a given (s, a, g), we can write the
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following (Park et al., 2025; Lv et al., 2025):

E g=x1∼δg
x0∼N (0, Id)
t∼Unif([0,1])

[
∥vdπD (t, s, a, xt)− (x1 − x0)∥22

]
≥ inf
λ∈Λ(δg,d

πD
θ )

∫
∥x−s+∥2dλ(x, s+) =W 2

2 (δg, d
πD
θ (s+ | s, a))

(7)

As µ = δg , a point mass centered at g, the transport plan is uniquely determined to be the product
measure λ(x, s+) = δg(x)d

πD
θ (s+ | s, a) (Sec. A.2). As a result, the equality holds and we get:

W 2
2 (δg, d

πD
θ (s+ | s, a)) = E g=x1∼δg

x0∼N (0, Id)
t∼Unif([0,1])

[
∥vdπD (t, s, a, xt)− (x1 − x0)∥22

]
(8)

A.6 OPTIMALITY OF ORS POLICY (PROOF OF THEOREM 1)

Theorem. Under assumptions on goal reachability, dynamics and dataset quality, for any (s, g),
the greedy goal-conditioned policy πgreedy(a|s, g) with respect to Q∗(s, a, g) computed under
rW (s, a, g) is optimal and reaches g in the minimum number of steps.

The optimal action-value function, Q∗(s, a, g), for the reward rW (s, a, g) is the unique fixed point
of the Bellman optimality operator:

Q∗(s, a, g) = rW (s, a, g) + γmax
a′

Q∗(f(s, a), a′, g).

The corresponding optimal state-value function is V ∗(s, g) = maxa′ Q
∗(s, a′, g). πgreedy is the

policy that greedily maximizes Q∗(s, a, g):

πgreedy(a|s, g) := argmax
a

Q∗(s, a, g) = argmin
a
{MπD (s, a, g)− γV ∗(f(s, a), g)}.

Lemma A.1 (Layer-wise Monotonicity of the Optimal Value Function V ∗). Under Assump-
tions A.1-A.4 and layer monotonicity of MπD (Sec. A.4), the value function of the optimal shortest-
path policy, V ∗(s, g), is strictly monotonically non-decreasing with the shortest-path layer index
(i.e., the value is strictly higher for states closer to the goal). For any k ≥ 1, if s1 ∈ Sk−1 and
s2 ∈ Sk, we have:

V ∗(s1, g)− V ∗(s2, g) ≥ (1− γk−1)∆Φ > 0.

Consequently, it holds that V ∗(s2, g) < V ∗(s1, g).

Proof. Let π∗ denote the optimal shortest-path policy. For the sake of clarity, we write that for any
state s and goal g, let a∗(s) = π∗(a∗|s, g). We first establish the difference in the one-step cost for
taking a shortest-path action from two adjacent layers.

Let sa ∈ Sj−1 and sb ∈ Sj for any j ≥ 1. Let their successors under π∗ be s′a = f(sa, a
∗(sa)) ∈

Sj−2 and s′b = f(sb, a
∗(sb)) ∈ Sj−1. Consider the difference in their one-step costs:

∆Mstep =MπD (sb, a
∗(sb), g)−MπD (sa, a

∗(sa), g)

=
[
(1− γ)Φ(s′b, g) + γMπD (s′b, g)

]
−
[
(1− γ)Φ(s′a, g) + γMπD (s′a, g)

]
= (1− γ)[Φ(s′b, g)− Φ(s′a, g)] + γ[MπD (s′b, g)−MπD (s′a, g)].

By Assumption 3 (Strong Monotonicity of Φ), since s′a ∈ Sj−2 and s′b ∈ Sj−1, we have [Φ(s′b, g)−
Φ(s′a, g)] ≥ ∆Φ. By Lemma 1 (Layer Monotonicity of MπD ), since s′a ∈ Sj−2 and s′b ∈ Sj−1, we
have [MπD (s′b, g) −MπD (s′a, g)] ≥ 0. Therefore, we have a lower bound on the single-step cost
difference:

MπD (sb, a
∗(sb), g)−MπD (sa, a

∗(sa), g) ≥ (1− γ)∆Φ.

Now, let’s consider the two shortest-path trajectories starting from s1 ∈ Sk−1 and s2 ∈ Sk.
Let τ∗1 = (s1,0, s1,1, . . . , s1,k−1 = g) be the trajectory starting from s1,0 = s1. Let τ∗2 =
(s2,0, s2,1, . . . , s2,k = g) be the trajectory starting from s2,0 = s2. By definition of the shortest-path
policy, we have s1,t ∈ Sk−1−t and s2,t ∈ Sk−t for t ∈ [0, k − 1].
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The value functions are the sum of discounted negative costs:

V ∗(s1, g) = −
k−2∑
t=0

γtMπD (s1,t, a
∗(s1,t), g)

V ∗(s2, g) = −
k−1∑
t=0

γtMπD (s2,t, a
∗(s2,t), g)

Let’s analyze the difference V ∗(s1, g)− V ∗(s2, g):

V ∗(s1, g)− V ∗(s2, g) =

k−1∑
t=0

γtMπD (s2,t, a
∗(s2,t), g)−

k−2∑
t=0

γtMπD (s1,t, a
∗(s1,t), g)

= γk−1MπD (s2,k−1, a
∗(s2,k−1), g) +

k−2∑
t=0

γt
[
MπD (s2,t, a

∗(s2,t), g)−MπD (s1,t, a
∗(s1,t), g)

]
.

For each term in the summation (for t ∈ [0, k − 2]), we have s1,t ∈ Sk−1−t and s2,t ∈ Sk−t.
Applying our single-step cost difference result, we get:

MπD (s2,t, a
∗(s2,t), g)−MπD (s1,t, a

∗(s1,t), g) ≥ (1− γ)∆Φ.

The last term for the τ∗2 trajectory is MπD (s2,k−1, a
∗(s2,k−1), g). Since s2,k−1 ∈ S1, its successor

is g ∈ S0. We know MπD ≥ 0. So we can lower bound the entire difference:

V π
∗

W (s1, g)− V π
∗

W (s2, g) ≥ γk−1 · 0 +
k−2∑
t=0

γt(1− γ)∆Φ

= (1− γ)∆Φ

k−2∑
t=0

γt

= (1− γ)∆Φ
1− γk−1

1− γ
= (1− γk−1)∆Φ.

Since k ≥ 1 and γ ∈ (0, 1), the term (1 − γk−1) is strictly positive. As ∆Φ > 0, the entire lower
bound is strictly positive. This completes the proof.

Theorem A.1 (Equivalence of the Q-learning Optimum and the Shortest Path). Under Assump-
tions A.1-A.4 and noting that rW (s, a∗, g) > rW (s, abad, g) (Sec A.4), the greedy policy with respect
to Q∗ is the optimal shortest-path policy π∗.

Proof. We must show that for any state (s, g), the shortest-path action a∗ = π∗(.|s, g) is the unique
maximizer of the action-value function Q∗(s, a, g) and is therefore, the same action chosen by
πgreedy(. | s, g). That is, for any non-shortest-path action abad ̸= a∗:

Q∗(s, a∗, g) > Q∗(s, abad, g).

Let’s analyze the difference ∆Q = Q∗(s, a∗, g) −Q∗(s, abad, g). Let the successor states be s∗ =
f(s, a∗) and sbad = f(s, abad).

∆Q =
[
rW (s, a∗, g) + γV ∗(s∗, g)

]
−
[
rW (s, abad, g) + γV ∗(sbad, g)

]
=

[
−MπD (s, a∗, g) + γV ∗(s∗, g)

]
−

[
−MπD (s, abad, g) + γV ∗(sbad, g)

]
=

[
MπD (s, abad, g)−MπD (s, a∗, g)

]
︸ ︷︷ ︸

Term 1

+ γ
[
V ∗(s∗, g)− V ∗(sbad, g)

]
︸ ︷︷ ︸

Term 2

We will now analyze the two terms of this expression.

The first term, MπD (s, abad, g) −MπD (s, a∗, g), by part 2 of the proof in Sec. A.4, this term is
guaranteed to be positive.
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We now analyze the second term, γ[V ∗(s∗, g)− V ∗(sbad, g)]. By definition, the successor state s∗
lies in a layer closer to the goal than sbad (i.e., d∗(s∗, g) < d∗(sbad, g)). It therefore follows directly
from Lemma A.1 that

V ∗(sbad, g) < V ∗(s∗, g).

Thus, the term
[
V ∗(s∗, g)− V ∗(sbad, g)

]
is strictly positive.

The difference in Q-values, ∆Q, is the sum of a strictly positive term and a strictly positive term
(Term 2). The sum is therefore strictly positive.

∆Q > 0 i.e Q∗(s, a∗, g) > Q∗(s, abad, g)

This shows that for any state s, the shortest-path action a∗ ∼ π∗(a|s, g) is the unique greedy action
with respect toQ∗. Therefore, the greedy policy with respect toQ∗ must be the optimal shortest-path
policy π∗.

B ADDITIONAL INFORMATION

B.1 TASKS

• Antmaze datasets: Antmaze involves controlling a quadruped Ant robot with 8 degrees
of freedom (DoF) to reach a given goal location in the maze. The agent must learn both
high-level navigation and low-level locomotion skills purely from offline data. We perform
experiments on 3 types of challenging mazes: antmaze-large-navigate, antmaze-giant-
navigate and antmaze-large-explore.
antmaze-giant is twice the size of the large and same size as antmaze-ultra in (Jiang
et al., 2022) designed to substantially challenge long-horizon planning capabilities. Both
antmaze-large-navigate and antmaze-giant-navigate are collected with noisy expert
SAC policies that repeatedly move towards randomly sampled goals (Park et al., 2024a).
antmaze-large-explore features extremely low quality yet high coverage data consisting
of random exploratory trajectories.

• Cube datasets: The cube environments involve manipulation of cube blocks using a robot
arm. We perform experiments on 2 cube-play datasets which are collected using a scripted
policy that repeatedly picks a cube and places it in other random locations or on another
cube: cube-double-play (2 cubes) and cube-triple-play (3 cubes). During evaluation, the
agent is required to perform cube moving, stacking, swapping or permutations according
to the provided goal configuration. This requires learning generalizable pick-and-place
operations with multiple objects and stitching across unstructured data to achieve this. The
task horizon also increases with the number of cubes. We also perform experiments on the
cube-triple-noisy dataset which involves highly sub-optimal data with noisy transitions.

• Puzzle datasets: These environments specifically test out the combinatorial generalization
abilities of the agent (upto 224 puzzle configurations and a much larger state space due to
robotic manipulation on the puzzle) under very long horizons. They require solving the
Lights Out puzzle (Park et al., 2024a), which consists of a 2D grid with buttons in cells,
where pressing buttons toggles the color the that button and buttons around it. The agent has
to achieve an appropriate goal configuration of colors by pressing buttons by controlling a
robot arm. We evaluate algorithms on play datasets of puzzle-4x4, puzzle-4x5 and puzzle-
4x6; and noisy datasets of puzzle-4x4 and puzzle-4x6. These are particularly challenging
tasks (Park et al., 2024a).

• Scene datasets: The scene tasks challenge sequential, long-horizon planning. They in-
volve manipulating diverse objects: a cube, a window, a drawer and two locks. scene-play
features a dataset collected using a scripted policy that randomly interacts with the objects.
At test-time, the agent has to arrange objects into a given goal configuration. These tasks
can involve upto 8 sub-tasks eg. unlock a drawer, then open it, then put a cube in it and
close it again, etc. The agent must therefore be able to stitch together multiple skills to
achieve success. scene-noisy involves the same taskss but the dataset is of substantially
lower quality.
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Figure 7: OGBench tasks.

B.2 ADDITIONAL INFORMATION ON BASELINES

• For baselines provided in the OGBench (Park et al., 2024a) repository, we use the best
hyperparameters provided in the paper. These include: GCBC, GCIVL, GCIQL,
QRL, CRL and HIQL.

• GCIQL: GCIQL is a goal-conditioned variant of Implicit Q Learning (Kostrikov et al.,
2021) that fits the optimal Q∗ using expectile regression (Newey & Powell, 1987). GCIQL
learns Q and V as follows:

LVGCIQL(V ) = E(s,a)∼pD(s,a), g∼pDmixed(g|s)
[
ℓ2κ

(
Q̄(s, a, g)− V (s, g)

)]
,

LQGCIQL(Q) = E(s,a,s′)∼pD(s,a,s′), g∼pDmixed(g|s)

[(
rW (s, a, g) + γV (s′, g)−Q(s, a, g)

)2]
Here, Q̄ is the target Q function (Mnih et al., 2015), κ is the expectile and rW (s, a, g) is the
ORS reward. For policy extraction, we use deterministic policy gradient with a behavioral
regularization (DDPG + BC) (Fujimoto & Gu, 2021):

JDDPG+BC(π) = E(s,a)∼pD(s,a), g∼pDmixed(g|s)
[Q(s, πµ(s, g), g) + α log π(a | s, g)]

where πµ(s, g) = Ea∼π(a|s,g)[a]. We use double-Q learning and normalize the Q values
before policy extraction.

• Go-Fresh (Mezghani et al., 2023): Go-Fresh involves 3 stages: Training the R-Net, a
neural network that learns local temporal distances between states, using R-Net and R-Net
embeddings to create a semi-parametric graph of the offline dataset and then training a
policy. While training a policy, every 1000 iterations of training, Go-Fresh creates a new
dataset where each tuple corresponds to a randomly sampled (s, g) pair from the dataset.
We noticed in initial experiments that even when Go-Fresh is trained using the same GCRL
algorithm as ORS (GCIQL), overall success-rate was close to 0 across tasks. To ensure a
fair and unbiased comparison, we modified the Go-Fresh codebase to have the same goal
sampling strategy from OGBench (detailed in Appendix D of (Park et al., 2024a) and in
the last item of this sub-section) used for all other baselines. This substantially improved
performance and is required to produce non-negligible performance, as reported in Tables 1
and 2.
Furthermore, noticing that Go-Fresh is tested on relatively simpler tasks compared to ours
in their paper (Mezghani et al., 2023), we modify the following hyperparameters to account
for the increased task difficulty, in addition to using best values for other hyperparameters:
We used a memory capacity of 5000 on all tasks which we found to be sufficient (the graph
building stage consistently produced a graph with less than 5000 nodes). We increased the
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R-Net size to an MLP of 64 units (we did not see an improvement in classification accuracy
for large sizes) and used a local distance threshold τ = 10 on all tasks. We also see that
weighing the local reward by a factor of 5 before summing it with the global reward gave
better performance.

• Goal sampling for all algorithms: The same goal-sampling method was used for all base-
lines in this paper as well as ORS and all variations. Goals were sampled in three different
ways according to probabilities from a categorical distribution defined as follows:

– pDcur(g|s): Dirac delta distribution centered at the current state s.
– pDtraj(g|s): goal is sampled from future states of s from the same trajectory with uni-

form sampling.
– pDrand(g|s): goal is uniformly sampled from D.

We provide information on the specific values used in Sec. B.5 and B.6 and Table 4.
• n-step returns: We implement two ways of doing n-step returns in the critic with sparse

rewards (where r(s, g) = −1(s ̸= g) and t is the MDP timestep):

1. n-step GCIQL: Q(st, at, g) =
∑t+n−1
i=t r(st+i, g) + γnQ(st+n, π(at+n|st+n, g), g)

2. n-step GCIQL-OTA (based on the core idea in (Ahn et al., 2025)):
Q(st, at, g) = −1(st+n ̸= g) + γQ(st+n, π(at+n|st+n, g), g)

As evident, we use GCIQL as the base algorithm for n-step return algorithms. We provide
the specific hyperparameters used for each task in Table 4. Please refer to Sec. B.6 for
information on all other common hyperparameters.

Table 4: Specific hyperparameters for best performance with n-step GCIQL and n-step GCIQL-OTA

Dataset α (BC-coefficient) κ (Expectile) n γ Actor (pDcur, p
D
traj, p

D
rand)

puzzle-4x6-play 1.0 0.9 25 0.995 (0, 1, 0)
cube-triple-play 3.0 0.9 50 0.995 (0, 1, 0)
antmaze-large-navigate 0.3 0.9 50 0.995 (0, 1, 0)
antmaze-giant-navigate 0.3 0.9 50 0.995 (0, 1, 0)
puzzle-4x6-noisy 0.03 0.9 25 0.995 (0, 1, 0)
cube-triple-noisy 0.03 0.9 50 0.995 (0, 1, 0)
antmaze-large-explore 0.01 0.9 50 0.995 (0, 0, 1)
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B.3 TRAJECTORY VISUALIZATIONS: ANALYSED TRAJECTORIES

0 1 2 3 4

Figure 8: Expert trajectories of varying lengths on antmaze-giant-navigate used for analysis in Sec. 3.2 and
Sec. 5.1. The green dot represents the starting position and the star represents the goal.

B.4 TRAINING ITERATIONS

Table 5: Training iterations per task. All algorithms are trained for the same number of iterations.

Dataset Training Iterations

cube-double-play 1M
puzzle-4x4-play 1M
scene-play 1M
puzzle-4x5-play 1M
puzzle-4x6-play 1M
cube-triple-play 2M
antmaze-large-navigate 3M
antmaze-giant-navigate 6M

puzzle-4x4-noisy 1M
scene-noisy 1M
puzzle-4x6-noisy 1M
cube-triple-noisy 1M
antmaze-large-explore 6M

B.5 OCCUPANCY AND REWARD MODEL HYPERPARAMETERS

Table 6: Occupancy and reward-model hyperparameters.

Hyperparameter Value

Gradient steps 2M
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0003
Batch size 256
Architecture MLP
MLP size {512, 512, 512, 512}
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True
Target net update rate (occupancy model) 0.005
Discount factor γ (occupancy model) 0.99
Flow steps 22 (antmaze-giant-navigate), 55 (antmaze-large-navigate), 45 (other tasks)
Reward (pDcur, p

D
traj, p

D
rand) ratio for goal sampling (0.2, 0.5, 0.3)

While we tried adding a warm-start stage without bootstrapping to the occupancy model by train-
ing it to predict future states s+ distributed according to a geometric distribution over trajectory
timesteps tτ ∼ Geom(1− γ) starting the current state s:

Lpretrain(θ) = Estτ =x1∼D,tτ∼Geom(1−γ),
x0∼N (0, Id),t∼Unif([0,1])

[
∥vθ(t, s, a, xt)− (x1 − x0)∥22

]
(9)

for the first 1M epochs and then training it using the bootstrapping loss in Sec. 4.1 for next next 1M
epochs, we did not see any improvements from doing this.
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B.6 POLICY TRAINING HYPERPARAMETERS

We first list hyperparameters common to all algorithms in Table 7:

Table 7: Common hyperparameters for policy training.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0003
Batch size 1024
Architecture MLP
MLP size (Actor and Critic) {512, 512, 512}
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True
Target critic update rate 0.005
Critic (pDcur, p

D
traj, p

D
rand) ratio for goal sampling (0.2, 0.5, 0.3)

We then provide specific hyperparameters used for ORS and Go-Fresh (which use GCIQL as the
base algorithm to train policies) in Table 8:

Table 8: Specific hyperparameters for policy training: ORS and Go-Fresh

Dataset α (BC-coefficient) κ (Expectile) γ Actor (pDcur, p
D
traj, p

D
rand) reward scaling for ORS (linear scaling x : (r/x))

puzzle-4x4-play 0.6 0.6 0.99 (0, 1, 0) 0.75
puzzle-4x5-play 0.6 0.6 0.99 (0, 0.5, 0.5) 0.75
puzzle-4x6-play 0.6 0.9 0.99 (0, 0.5, 0.5) 0.25
cube-double-play 0.3 0.75 0.99 (0, 0.5, 0.5) 0.25
cube-triple-play 0.3 0.9 0.99 (0, 0.5, 0.5) 0.25
scene-play 0.3 0.75 0.99 (0, 0.5, 0.5) 0.75
antmaze-large-navigate 0.15 0.6 0.995 (0, 1, 0) 2.0
antmaze-giant-navigate 0.1 0.6 0.995 (0, 1, 0) 2.0
puzzle-4x4-noisy 0.05 0.6 0.99 (0, 1, 0) 0.25
puzzle-4x6-noisy 0.05 0.75 0.99 (0, 1, 0) 0.25
cube-triple-noisy 0.03 0.75 0.99 (0, 0.5, 0.5) 1.0
scene-noisy 0.1 0.75 0.99 (0, 1, 0) 0.25
antmaze-large-explore 0.015 0.9 0.99 (0, 0.5, 0.5) 3.0
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