
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMSEARCHER: TRAINING LLMS TO REASON,
SEARCH AND MANAGE MEMORY VIA END-TO-END
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional search agents concatenate the entire interaction history into the LLM
context, preserving information integrity but producing long, noisy contexts, re-
sulting in high computation and memory costs. In contrast, using only the cur-
rent turn avoids this overhead but discards essential information. This trade-off
limits the scalability of search agents. To address this challenge, we propose
MemSearcher, an agent workflow that iteratively maintains a compact memory
and combines the current turn with it. At each turn, MemSearcher fuses the
user’s question with the memory to generate reasoning traces, perform search
actions, and update memory to retain only information essential for solving the
task. This design stabilizes context length across multi-turn interactions, im-
proving efficiency without sacrificing accuracy. To optimize this workflow, we
introduce multi-context GRPO, an end-to-end RL framework that jointly opti-
mize reasoning, search strategies, and memory management of MemSearcher
Agents. Specifically, multi-context GRPO samples groups of trajectories under
different contexts and propagates trajectory-level advantages across all conver-
sations within them. Trained on the same dataset as Search-R1, MemSearcher
achieves significant improvements over strong baselines on seven public bench-
marks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct rela-
tive average gains. Notably, the 3B-based MemSearcher even outperforms 7B-
based baselines, demonstrating that striking a balance between information in-
tegrity and efficiency yields both higher accuracy and lower computational over-
head. Our code and models will be publicly available.

1 INTRODUCTION

Large Language Models (LLMs) (Team, 2024; Achiam et al., 2023) have demonstrated impressive
performance in understanding and generating natural language, as well as in solving complex tasks
in the real world. Despite their strengths, LLMs still exhibit notable shortcomings in addressing
knowledge-acquisition tasks (Wei et al., 2024; He et al., 2024). These shortcomings arise from their
insufficient long-tailed and up-to-date knowledge in specific domains and susceptibility to halluci-
nations (Xu et al., 2024; Zhang et al., 2025c).

A promising strategy to mitigate these issues is to integrate search engines with LLMs, allowing
them to access external and up-to-date information. Considerable efforts have been devoted to this
area in recent years. In Retrieval-Augmented Generation (RAG) methods (Gao et al., 2023; Zhao
et al., 2024), a search engine is used to select relevant documents according to the the input of
the LLM, and the retrieved documents are fed into the LLM context to generate the final response.
While straightforward, these methods often rely on predefined pipelines (Zhou et al., 2025a; Zhu
et al., 2025b) and do not fully explore the potential of LLMs in leveraging search engines. To
address this limitation, search agents, which treat a search engine as a tool, have been developed.

A representative paradigm to build search agents is ReAct (Yao et al., 2023). In ReAct, the inter-
actions between the agent and the search engine are modeled as a multi-turn conversation, which
means that the entire interaction history is incorporated into the context of the agent’s backbone
LLM. This paradigm provides the agent with fine-grained information—including all reasoning pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cesses, performed actions and corresponding tool responses from previous interactions—to support
more effective decision-making. However, the continuously appended interaction history leads to
unbounded growth of the context of the LLM, which substantially increases the GPU memory and
computational overhead.

In this paper, we introduce MemSearcher, an agentic workflow that maintains a compact, iteratively
updated memory throughout interactions, preserving only the information deemed essential for ad-
dressing the user’s question. At each turn, MemSearcher provides the backbone LLM with two
succinct inputs, the user question and a compact memory, rather than the entire, ever-growing in-
teraction history. The LLM first generates the reasoning trace and performs an action based on it.
After the new observation is returned to the agent by the environment, the LLM then functions as a
memory manager to update the memory based on the previous memory and the current interaction.
Since the number of tokens in the memory is restricted by a predefined maximum length, this de-
sign keeps per-turn contexts short and stable while preserving salient facts and intermediate findings
across multi-turn reasoning and interactions.

Since current LLMs have not been optimized under the MemSearcher workflow, they are not
yet capable of mastering it. We employ Reinforcement Learning (RL) (Wiering & Van Otterlo,
2012) to train MemSearcher agents, which enables models to improve by leveraging their self-
generated samples as optimization targets. Among RL algorithms, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) has recently emerged as the most widely adopted method, as it
improves LLM abilities while optimizing the GPU memory usage of Proximal Policy Optimization
(PPO) (Schulman et al., 2017). We extend vanilla GRPO to multi-context GRPO to facilitate the
training of MemSearcher agents, whose trajectories consist of multiple conversations under different
contexts. Specifically, multi-context GRPO propagates trajectory-level advantages to each conversa-
tion among them and subsequently treats every conversation as an independent optimization target.
This extension enables a stable and scalable training for MemSearcher-based agents.

We use the same data as Search-R1 (Jin et al., 2025) to train MemSearcher from scratch on
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, and conduct extensive evaluation on a range of
public knowledge-acquisition benchmarks that need reasoning and external information retrieval.
Our MemSearcher agents demonstrate significant improvement over the baseline methods, yielding
11% and 12% increases on different models, respectively. Moreover, MemSearcher also achieves
higher efficiency than the ReAct paradigm. Compared to ReAct-based search agents, which exhibits
a steady increase in token numbers with interaction turns, our MemSearcher agents maintain nearly
constant token counts within contexts.

We summarize our main contributions as follows.

• We introduce MemSearcher, an agentic workflow that leverages the backbone LLM as a
memory manager to iteratively maintain a compact memory, preserving only the essential
information necessary for answering the user’s question and thereby eliminating the need
to append the entire interaction history to the LLM context.

• We develop search agents based on MemSearcher, and utilize multi-context GRPO, a nat-
ural extension of GRPO, to optimize LLMs to reason, leverage search engines and manage
memory simultaneously. Multi-context GRPO provides end-to-end RL training for trajec-
tories that contain multiple conversations under different contexts.

• We use the same data as Search-R1 to train our search agents. The evaluation on seven
public benchmarks demonstrates the effectiveness and efficiency of our method, with two
LLMs achieving average relative improvements of 11% and 12%, respectively. Compared
with ReAct-based search agents, which exhibit a nearly linear increase in token numbers
during interactions, MemSearcher agents maintain lower and more stable token counts.

2 BACKGROUND

2.1 PRELIMINARY: REACT

ReAct (Yao et al., 2023), which integrates reasoning and acting, has become the most popular
paradigm for building LLM-based agents Jin et al. (2025); Chen et al. (2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 � LLM Tool

question
<think>...</think>
<tool_call>...
</tool_call>

<tool_response>
...
</tool_response>

LLM

<memory>
...
</memory>

 �

question
<memory>...
</memory>

LLM

<memory>
...
</memory>

…

…

 � LLM

question
<memory>...
</memory>

<think>...
</think>
answer

…
Turn 1 Turn 2 Turn �

Turn �
 � LLM Tool

question
<think>...</think>
<tool_call>...
</tool_call>

<tool_response>
...
</tool_response>

Turn 1

LLM

<think>...</think>
<tool_call>...
</tool_call>

Tool

<tool_response>
...
</tool_response>

LLM

<think>...
</think>
answer

…

…

Turn 2

Figure 1: Comparison between ReAct (Top) and MemSearcher (Bottom). The dashed box illustrates
the content included in the LLM context. While ReAct continuously appends all thoughts, actions
and observations into the LLM context, MemSearcher iteratively updates a compact memory that
retains only the essential information.

As shown in Figure 1 (Top), the core idea of ReAct is straightforward: a ReAct trajectory is a
multi-turn conversation, and each turn is an interaction between the LLM agent and the environ-
ment, containing thought, action, and observation. At each turn, the LLM first generates a thought
within <think> </think>, and then performs an action in <tool call> </tool call>,
to interact with the environment, after which the environment provides an observation between
<tool response> </tool response> in response to the performed action.

Specifically, we assume that at the i-th turn, the agent generates a thought ti, takes an action ai, and
receives an observation oi. In particular, o0 = q represents the observation prior to the first turn,
where q denotes the user’s question. Then, the context to the LLM is as follows:

ci = (q, t1, a1, o1, · · · , ti−1, ai−1, oi−1). (1)

At the i-th turn, the agent generates the thought ti and performs the corresponding action ai, follow-
ing policy π(ti, ai|ci).

2.2 LIMITATIONS OF REACT

Although straightforward and simple, this paradigm leads to a continuous increase in the number
of tokens in the LLM context, due to its design of appending all previous thoughts, actions and
observations. This increase is almost linear with the number of interaction turns, placing significant
pressure on the inference of LLMs. For example, Liu et al. (2023) find that LLMs do not reliably
make use of information from long contexts. Hsieh et al. (2024) demonstrate that LLMs exhibit
large performance drops as the context length increases. Wu et al. (2024) reveal that LLMs show a
significant accuracy drop on memorizing information across sustained multi-turn interactions. In ad-
dition, in the context of search agents, the observations are passages retrieved by the search engine,
which often include substantial noise and information irrelevant to answering the user’s question.
This further constrains the performance and scalability of ReAct-based search agents. Moreover, the
linear growth in the number of tokens leads to increased memory consumption and computational
overhead. Since the computational complexity of LLMs scales as O(n2) with the number of tokens
n, the computational cost of these search agents increases quadratically with the number of interac-
tion turns. Consequently, more efficient and scalable approaches for building search agents need to
be explored.

3 METHOD

3.1 OVERVIEW OF MEMSEARCHER

The MemSearcher workflow is illustrated in Figure 1 (Bottom). At the i-th turn, the LLM receives
only two inputs: the user’s question q, enclosed within <question> </question> tags, and a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

q

Search
Engine

Policy
LLM

Rollout

…
Group

Computation

Reward
Fuction

Reference
LLM

R1

R2

RG

…

T1 T1,1 … T1,n1 A1,1

A2,1

AG,1

…

…

…

…

A1,n1

A2,n2

AG,nG

…
T2 T2,1 … T2,n2

TG TG,1 … TG,nG

A1

A2

AG

…

KL

Figure 2: Multi-context GRPO. In rollout, we sample a group of trajectories {Ti}Gi=1 for question q.
The i-th trajectory Ti consists of multiple conversations {Ti,j}ni

j=1 under different contexts. Then,
we compute rewards {Ri}Gi=1, and derive the trajectory-level advantages {Ai}Gi=1 from these re-
wards. We propagate trajectory-level advantages to each conversation within them, i.e. Ai,j = Ai,
and treat each conversation as an independent optimization target to update the policy LLM.

compact memory mi−1 expressed in natural language, between <memory> </memory>, which
encapsulates all the relevant information considered helpful to answer the question so far. In partic-
ular, the memory m0 prior to the first turn is empty. Therefore, the context to the LLM at the i-th is
formulated as:

ci = (q,mi−1). (2)

After reading the user’s question and the previous memory, the LLM generates a thought ti enclosed
within <think> </think> and performs an action ai between <tool call> </tool call>
tags, following policy π(ti, ai|ci). As the action is executed, the environment returns the observation
oi within <tool response> </tool response> tags to the agent.

After receiving oi, MemSearcher overwrites the previous memory to a updated one for the next turn.
The LLM are asked to carefully reads oi and incorporates any new information that helps to answer
the question, while preserving all relevant details from the previous memory mi−1. The resulting
memory are denoted as mi.

Different from ReAct, which continuously concatenates all historical thoughts, actions and observa-
tions into the LLM context, MemSearcher compresses only the essential information into a compact
memory. Since the number of tokens in the memory never exceeds a predefined maximum length,
MemSearcher maintains the context within a few thousands of tokens while retaining important
information through iterative updates of the memory. This process continues iteratively, until the
maximum number of interactions is reached or sufficient information is gathered and the LLM gen-
erates a final answer as its action.

Specifically, under the setting of search agents designed to solve knowledge-acquisition tasks by
leveraging search engines as tools, action ai takes one of the following two forms: (1) providing
a final answer in \boxed{} to the user’s question and terminating the interactions, (2) issuing a
search engine call with a query to obtain additional information to answer the question. If the latter
is chosen, the observation oi is the relevant passages retrieved from search engines in response to
the search query.

3.2 RL TRAINING ALGORITHM

In this subsection, we introduce multi-context GRPO, the training algorithm of our MemSearcher
agents. Figure 2 illustrates the overview of multi-context GRPO.

We use end-to-end reinforcement learning (RL) to train our MemSearcher agents, since it allows
models to evolve themselves through their self-generated samples. In contrast, Supervised Fine-
Tuning (SFT) requires costly, carefully curated high-quality trajectories, such as Li et al. (2025a);
Sun et al. (2025b); Wu et al. (2025); Schick et al. (2023). For RL, we utilize Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), as it optimizes the memory usage of Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and has recently become the most widely adopted RL
algorithm for RLVR due to its effectiveness (Guo et al., 2025).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Vanilla GRPO samples a group of trajectories {T1, T2, · · · , TG} for each question q, and then opti-
mizes the policy model πθ by maximizing the following objective:

JGRPO(θ) = E[q ∼ D, {Ti}Gi=1 ∼ πθold(·|q)]

1

G

G∑
i=1

(min (ri(θ)Ai, clip (ri(θ), 1− ϵ, 1 + ϵ)Ai)− βDKL (πθ||πref)) ,
(3)

where

ri(θ) =
πθ(Ti|q)
πθold(Ti|q)

. (4)

Ai represents the normalized advantage, calculated by using the rewards {R1, R2, · · · , RG} within
each group:

Ai =
Ri −mean({R1, R2, · · · , RG})

std({R1, R2, · · · , RG})
. (5)

In the training of MemSearcher, each trajectory consists of multiple conversations under different
LLM contexts. Therefore, we extend the vanilla GRPO algorithm to a natural extension, multi-
context GRPO, as illustrated in Figure 2. Specifically, we assume that trajectory Ti contains ni

conversations, represented as {Ti,1, Ti,2, · · · , Ti,ni
}. According to Section 3.1, the j-th conversation

can be represented as:

Ti,j =

{
(q,mi,j−1, ti,j , ai,j , oi,j ,mi,j), if j = 1, 2, · · · , ni − 1

(q,mi,j−1, ti,j , ai,j), if j = ni
(6)

where memories mi,j−1 and mi,j , thought ti,j and action ai,j are generated by the policy model,
and observation oi,j is the retrieved text from the search engine.

We compute reward Ri for each trajectory, and calculate its advantage Ai within the group using
Equation 5. Then, we uniformly propagate this advantage to all conversations whithin the trajectory,
and use each conversation as an independent target to optimize the policy model. The training
objective is formulated as:

JGRPO(θ) = E[q ∼ D, {Ti,j}Gi=1 ∼ πθold(·|q,mi,j−1)]

1∑G
i=1 ni

G∑
i=1

ni∑
j=1

(min (ri,j(θ)Ai,j , clip (ri,j(θ), 1− ϵ, 1 + ϵ)Ai,j)− βDKL (πθ||πref)) ,

(7)

where

ri,j(θ) =
πθ(Ti,j |q,mi,j−1)

πθold(Ti,j |q,mi,j−1)
and Ai,j = Ai. (8)

Notably, conversation ti,j consists of tokens from both the policy model and the search engine. Fol-
lowing previous RL-based search agents, such as Search-R1 (Jin et al., 2025) and ReSearch (Chen
et al., 2025), we use loss masking for the tokens from the search engine, ensuring the policy gradient
objective is computed only over model-generated tokens and thereby stabilizing RL training.

3.3 REWARD MODELING

The reward serves as the primary training signal in RL, guiding the optimization process of models.
During the training of MemSearcher, we only adopt a simple reward function on the generated
samples. Similar to DeepSeek-R1 (Guo et al., 2025), our reward function considers two parts:
format reward and answer reward.

• Format Reward: It checks whether the rollout correctly follows our predefined format, including
the correctness of usage of tags and the existence of \boxed{} in the answer.

• Answer Reward: A rule-based reward assesses the correctness of the model’s response. It is
calculated by using the F1 score between the final answer inside \boxed{} and the ground truth.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison. Exact Match (EM) is used as the evaluation metric. The best per-
formance is highlighted in bold, while the second-best performance is indicated with an underline.
Among these methods, R1-Searcher and ZeroSearch interact with the realistic web environment dur-
ing their evaluation, while other methods, including MemSearcher, interact only with local knowl-
edge base. MemSearcher based on Qwen2.5-3B-Instruct achieves a higher average score than other
methods based on Qwen2.5-7B-Instruct.

Methods NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.
Qwen2.5-3B-Instruct
Direct Answer 10.6 28.8 10.8 14.9 24.4 2.0 2.4 13.4
CoT 2.3 3.2 0.5 2.1 2.1 0.2 0.0 1.5
IRCoT 11.1 31.2 20.0 16.4 17.1 6.7 24.0 18.1
RAG 34.8 54.4 38.7 25.5 22.6 4.7 8.0 27.0
Search-o1 23.8 47.2 26.2 22.1 21.8 5.4 32.0 25.5
Search-R1 34.1 54.5 37.8 32.4 31.9 10.3 26.4 32.5
ReSearch 20.4 33.5 17.3 35.6 39.3 17.3 37.6 28.7
AutoRefine 43.6 59.7 44.7 40.4 38.0 16.9 33.6 39.6
ZeroSearch 41.4 57.4 44.8 27.4 30.0 9.8 11.1 31.7

MemSearcher 47.0 63.8 47.9 43.9 43.5 17.9 42.4 43.8
Qwen2.5-7B-Instruct
Direct Answer 13.4 40.8 14.0 18.3 25.0 3.1 12.0 18.1
CoT 4.8 18.5 5.4 9.2 11.1 2.2 23.2 10.6
IRCoT 22.4 47.8 30.1 13.3 14.9 7.2 22.4 23.9
RAG 34.9 58.5 39.2 29.9 23.5 5.8 20.8 30.4
Search-o1 15.1 44.3 13.1 18.7 17.6 5.8 29.6 20.6
Search-R1 39.3 61.0 39.7 37.0 41.4 14.6 36.8 38.5
ReSearch 40.9 63.7 44.6 43.5 47.6 22.3 42.4 43.6
R1-Searcher 40.4 52.2 41.0 44.2 51.3 15.8 36.8 40.2
ZeroSearch 43.6 65.2 48.8 34.6 35.2 18.4 27.8 39.1

MemSearcher 52.7 68.1 47.8 50.8 48.6 25.8 48.8 48.9

The reward function is formulated as:

R =


0, if format is incorrect
0.1, if format is correct but F1(apred, agold) is 0
F1(apred, agold), if format is correct and F1(apred, agold) is not 0

(9)

where apred is the final answer extracted from the model’s response, agold is the ground truth, and
F1(apred, agold) is the F1 score between apred and agold.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Baselines. We compare MemSearcher against three categories of baseline methods, including: (1)
Inference without retrieval, such as Direct inference and Chain-of-Thought (CoT) reasoning (Wei
et al., 2022); (2) Inference with Retrieval, such as RAG (Lewis et al., 2020), IRCoT (Trivedi et al.,
2022a), and Search-o1 (Li et al., 2025b); (3) RL-based search agents, such as Search-R1 (Jin et al.,
2025), ReSearch (Chen et al., 2025), AutoRefine (Shi et al., 2025), R1-Searcher (Song et al., 2025),
and ZeroSearch (Sun et al., 2025a). Among these baselines, R1-Searcher and ZeroSearch interact
with the realistic web environment via Google Web Search during their evaluation.

Benchmarks and Evaluation Metrics. We compare MemSearcher and the baseline methods on
a range of public benchmarks that encompass search with reasoning challenges, such as Natural
Questions (NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
2022), Bamboogle (Press et al., 2022), Musique (Trivedi et al., 2022b), HotpotQA (Yang et al.,
2018), and 2WikiMultiHopQA (Ho et al., 2020). We use Exact Match (EM) as the evaluation
metric, where the prediction is correct if it matches the ground truth answer exactly.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10
Turn

0

2k

4k

6k

8k

10k

12k

14k

16k

Av
er

ag
e

To
ke

ns

MemSearcher-Qwen-3B-Instruct
MemSearcher-Qwen-7B-Instruct
ReSearch-Qwen-3B-Instruct
ReSearch-Qwen-7B-Instruct

Figure 3: Comparison of the average token number in the LLM context between MemSearcher and
ReAct-based ReSearch.

2 4 8
Turn

0

4

8

12

16

20

24

Pe
ak

 M
em

or
y

(G
B)

Search Agents on Qwen2.5-3B-Instruct
ReSearch
MemSearcher

2 4 8
Turn

0

5

10

15

20

25

30

Pe
ak

 M
em

or
y

(G
B)

24GB

Search Agents on Qwen2.5-7B-Instruct
ReSearch
MemSearcher

Figure 4: Peak GPU memory usage (GB) comparison between MemSearcher and ReSearch.

Implementation Details. We conduct our training and evaluation on Qwen2.5-3B-Instruct and
Qwen2.5-7B-Instruct. We use the 2018 Wikipedia dump (Karpukhin et al., 2020) as the knowledge
source and E5 (Wang et al., 2022) as the retriever. We conduct the training based on verl (Sheng
et al., 2025), constrain the model to an 8K context window, and set the maximum tokens in the
memory to 1,024 tokens. For training, we follow Search-R1, using its fully open training data,
including the training splits of two datasets, NQ (Kwiatkowski et al., 2019) and HotpotQA (Yang
et al., 2018), to form the dataset for training. Within the datasets used for training, NQ is a general
question answering dataset, while HotpotQA is a multi-hop question answering dataset. For eval-
uation, we systematically test MemSearcher and the baseline methods on seven datasets, covering
both in-domain and out-of-domain scenarios. This setup enables us to rigorously assess not only
how well the models generalize to questions that resemble the training distribution, but also how
robust they are when applied to domains that differ from the training data. Such a comprehensive
evaluation provides deeper insights into the effectiveness of our approach under varied conditions.

4.2 MAIN RESULTS

In Table 1, we provide a comprehensive performance comparison between MemSearcher and the
baseline methods across the evaluated benchmarks. Several key observations can be drawn from
these results: (1) When trained on the same datasets as Search-R1, MemSearcher consistently out-
performs the baseline methods, demonstrating the superior effectiveness of our method. These per-
formance improvements are consistently observed across both in-distribution benchmarks such as
NQ and HotpotQA, and out-of-distribution benchmarks, such as TriviaQA, PopQA, 2WikiMulti-
HopQA, Musique and Bamboogle. (2) Remarkably, even when using a smaller backbone model, i.e.
Qwen2.5-3B-Instruct, MemSearcher achieves an average EM score 43.8 on the seven benchmarks,
higher than those of the baseline methods based on the lager model, i.e. Qwen2.5-7B-Instruct,
suggesting that MemSearcher makes more effective use of model capacity. (3) Furthermore, Mem-
Searcher surpasses the baseline methods that rely on the realistic web search engine. Specifically,
MemSearcher achieves superior performance compared to R1-Searcher and ZeroSearch, both of
which depend on Google Web Search to retrieve external information during their evaluation.

In addition to the improvement in performance, MemSearcher also achieves superior token effi-
ciency compared with ReAct-based search agents, since it eliminates the need to append all historical
thoughts, actions and observations into the LLM context, as discussed in Section 3. To validate this,
we record the number of tokens in the LLM contexts of MemSearcher and ReAct-based ReSearch

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison between models with and without training. Exact Match (EM) is used as the
evaluation metric. The better performance is highlighted in bold.

Methods General QA Multi-Hop QA
NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

Qwen2.5-3B-Instruct
w/o training 16.4 23.8 22.5 11.9 11.0 3.7 11.2 14.4
w/ training 47.0 63.8 47.9 43.9 43.5 17.9 42.4 43.8
Qwen2.5-7B-Instruct
w/o training 22.1 41.2 23.5 27.4 27.8 11.6 27.2 25.8
w/ training 52.7 68.1 47.8 50.8 48.6 25.8 48.8 48.9

0 25 50 75 100 125 150 175 200
Step

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Re
w

ar
d

MemSearcher-Qwen-7B-Instruct
MemSearcher-Qwen-3B-Instruct

(a) Training Reward

0 25 50 75 100 125 150 175 200
Step

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Re
w

ar
d

MemSearcher-Qwen-7B-Instruct
MemSearcher-Qwen-3B-Instruct

(b) Validation Reward

Figure 5: Training and validation reward during training. The validation is conducted on a part of
development set of HotpotQA with 100 randomly selected samples, and conducted every 20 steps
during training. The curves are smoothed for clarity.

at each turn and calculate their average across the evaluated datasets. The results are illustrated in
Figure 3. Compared to ReSearch, which exhibits an almost linear increase in token consumption
during the interaction process, MemSearcher maintains substantially lower and more stable token
counts. The efficiency gain is primarily attributed to the design of MemSearcher, which iteratively
updates a compact memory as context to preserve only the essential information for the question
throughout the interactions. Moreover, we present the preak GPU memory usage comparison in
Figure 4. We can observe that MemSearcher supports more scalable and cost-efficient multi-turn
interactions in search agents.

4.3 FURTHER ANALYSIS

4.3.1 DO WE NEED RL TRAINING?

To investigate the impact of RL training on the performance of MemSearcher, we perform a com-
parative analysis. The baselines are Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct models, both of
which are integrated with the MemSearcher workflow but do not undergo RL training. As shown in
Table 2, the models without RL training demonstrate a pronounced performance degradation across
all evaluated benchmarks. This observation highlights the necessity of RL training in equipping
models with the ability to effectively interact with both the search engine and memory, thereby
enhancing their overall functionality and task-solving ability.

4.3.2 TRAINING AND VALIDATION REWARD.

We present the curves of training and validation reward in Figure 5, which offer an intuitive view of
the models’ learning dynamics during training. For the validation, we construct a validation dataset
by randomly sampling 100 examples from the development set of HotpotQA. We conduct validation
at fixed intervals, specifically every 20 training steps. The observed reward patterns reveals the
following two phases of learning: (1) Early stage (first 25 steps). In this phase, the reward increases
sharply. This improvement indicates that the models rapidly acquire the fundamental ability to
interact effectively with the search engine and memory. (2) Later stage (after 25 steps). In contrast,
the reward grows at a more gradual pace. This improvement suggests that the models are refining
their strategy, progressively enhancing its capacity to exploit the search engine and manage memory.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The difference between these two stages underscores the transition from basic skill acquisition to
more advanced optimization of reasoning behaviors.

5 RELATED WORK

5.1 LARGE LANGUAGE MODELS WITH SEARCH ENGINES

Although Large Language Models (LLMs) (Team et al., 2025; Comanici et al., 2025; Zeng et al.,
2025) have made significant progress in solving complex tasks in the real world (Guo et al., 2024),
they often lack knowledge in specific domains (Peng et al., 2023; Li et al., 2023). To address these
issues, Retrieval-Augmented Generation (RAG) integrates search engines (Xiao et al., 2024; Zhuang
et al., 2024) with LLMs to provide relevant external information. In a typical RAG pipeline (Lewis
et al., 2020; Yue et al., 2024; Xiong et al., 2025), a search engine first selects relevant documents
based on the input query, and then the retrieved content is fed into an LLM to produce responses.
Previous studies on RAG guides LLMs through processes such as search query generation and de-
composition (Yu et al., 2022; Press et al., 2022). Although RAG enhances the performance of
LLMs, it faces challenges related to the retrieval of irrelevant information (Zhu et al., 2025a; Jin
et al., 2024a) and the absence of sufficiently useful context (Jiang et al., 2023). In addition to RAG,
another approach to integrate external search engines with LLMs is to treat search engines as tools
and LLMs as agents, named search agent (Zong et al., 2024). For example, ReAct (Yao et al., 2023)
integrates search into the reasoning process by interleaving it with Chains-of-Thought (CoT) (Wei
et al., 2022) steps. Recent studies (Jin et al., 2025; Chen et al., 2025; Zheng et al., 2025) develop
agentic reinforcement learning (RL) (Zhang et al., 2025b) for search agents, based on multi-turn
chat. Although effective, current RL-based search agents (Wu et al., 2025; Tao et al., 2025) primar-
ily adhere to the ReAct workflow, lacking the exploration of more efficient paradigms.

5.2 CONTEXT MANAGEMENT

Most LLM agents utilize ReAct (Yao et al., 2023) for context management, which incorporates the
entire interaction history between the LLM and the environment into the LLM context. While
simple, it leads to prolonged token sequences and reduced efficiency. To address these issues,
memory mechanisms are proposed to manage the context of LLMs. RAG-style memory sys-
tems (Jimenez Gutierrez et al., 2024; Zhong et al., 2024) treat memory as an external knowledge
source, similar to that in RAG, and use predefined management strategies to store, integrate and
retrieve relevant information (Zhu et al., 2023). Token-level memory systems (Jin et al., 2024b;
Zhou et al., 2025b; Orlicki, 2025) equip models with explicit, trainable context managers and op-
timize them via SFT or RL algorithms such as PPO (Schulman et al., 2017), allowing agents to
regulate their memory at the token level. For example, Wang et al. (2024) and Wang et al. (2025)
maintain a fixed set of latent tokens serves as memory, and Yang et al. (2024) equip LLMs with
a forget-resistant memory for evolving context. MemAgent (Yu et al., 2025) reforms long-context
processing as an agent task, maintains a token-level memory alongside the LLM to compress long-
context inputs into more concise, informative summaries. Structured memory systems (Zeng et al.,
2024) organize and encode information in structured representation, such as knowledge graph in
Zep (Rasmussen et al., 2025), the atomic memory units in A-MEM (Xu et al., 2025), and the hierar-
chical graph-based memory in Mem0 (Chhikara et al., 2025) and G-Memory (Zhang et al., 2025a).
In this paper, we utilize the backbone LLM of search agents as a memory manager, and optimize it
for reasoning, action, and memory management via end-to-end multi-context GRPO algorithm.

6 CONCLUSION

In this paper, we propose MemSearcher, an agentic workflow that retains a compact memory as LLM
context throughout the interaction process between the agent and the environment, thereby eliminat-
ing the need to append all historical thoughts, actions and observations, as in the ReAct paradigm.
We utilize a natural extension of GRPO, namely multi-context GRPO, to optimize search agents
based on our workflow in an end-to-end fashion. These agents demonstrate superior performance
across a range of public benchmarks compared with previous ReAct-based baselines, while main-
taining nearly constant token consumption during interactions with the environment, highlighting
more scalable and cost-efficient multi-turn interactions in search agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We affirm our strict adherence to the ICLR Code of Ethics in all aspects of this work. Our research
does not involve human participants, personal data, or sensitive information. The datasets used (e.g.,
NQ, HotpotQA, and other public QA benchmarks) are entirely publicly available and widely used
within the research community, ensuring no privacy or security concerns arise.

Our experiments are focused on algorithmic innovation in context management and reinforcement
learning (RL) for large language model (LLM)-based agents. While our methods aim to improve
computational efficiency and accuracy, care should be taken if applying them in domains where
model outputs may have real-world impact. We advise thorough assessment of fairness, reliability,
and bias mitigation in any such downstream use. Finally, we intend to make our code and models
publicly available to promote transparency and foster ongoing research integrity.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All datasets used in our experiments
are publicly available and described in Section 4.1 of this paper. Implementation details, including
models, hyperparameters, training procedures, and evaluation metrics, are described in Section 4.1
as well as in Appendix A.2. Additionally, we will release all code and trained models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
ment learning. arXiv preprint arXiv:2503.19470, 2025.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413,
2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yancheng He, Shilong Li, Jiaheng Liu, Yingshui Tan, Weixun Wang, Hui Huang, Xingyuan Bu,
Hangyu Guo, Chengwei Hu, Boren Zheng, et al. Chinese simpleqa: A chinese factuality evalua-
tion for large language models. arXiv preprint arXiv:2411.07140, 2024.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532–59569, 2024.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context llms meet rag: Overcoming
challenges for long inputs in rag. arXiv preprint arXiv:2410.05983, 2024a.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang, Wenyue Hua, Ruixiang Tang, William Yang
Wang, and Yongfeng Zhang. Disentangling memory and reasoning ability in large language
models. arXiv preprint arXiv:2411.13504, 2024b.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025a.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025b.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the fourth ACM international conference on AI in finance, pp. 374–382, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 7, 2022.

José I Orlicki. Beyond words: A latent memory approach to internal reasoning in llms. arXiv
preprint arXiv:2502.21030, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, Nima PourNejatian, Anthony B Costa, Cheryl
Martin, Mona G Flores, Ying Zhang, Tanja Magoc, et al. A study of generative large language
model for medical research and healthcare. NPJ digital medicine, 6(1):210, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a tem-
poral knowledge graph architecture for agent memory. arXiv preprint arXiv:2501.13956, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, and Xiang
Wang. Search and refine during think: Autonomous retrieval-augmented reasoning of llms. arXiv
preprint arXiv:2505.11277, 2025.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
searching. arXiv preprint arXiv:2505.04588, 2025a.

Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
web-powered reasoning trajectory synthesis. arXiv preprint arXiv:2505.16834, 2025b.

Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
information-seeking formalization. arXiv preprint arXiv:2507.15061, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022a.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022b.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, et al. Memoryllm: Towards self-updatable large language models. arXiv
preprint arXiv:2402.04624, 2024.

Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan Gut-
freund, Rogerio Feris, and Zexue He. M+: Extending memoryllm with scalable long-term mem-
ory. arXiv preprint arXiv:2502.00592, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
arXiv preprint arXiv:2411.04368, 2024.

Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
Benchmarking chat assistants on long-term interactive memory. arXiv preprint arXiv:2410.10813,
2024.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
agency. arXiv preprint arXiv:2505.22648, 2025.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang, Haolin Liu, Yifan Yang, Fangyuan Chen, Zhixing
Song, Dengyu Wang, Minjia Zhang, et al. Rag-gym: Optimizing reasoning and search agents
with process supervision. arXiv preprint arXiv:2502.13957, 2025.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models. arXiv preprint arXiv:2401.11817, 2024.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu, Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo
Wang, Zeyun Tang, Shichao Song, et al. Memory3: Language modeling with explicit memory.
arXiv preprint arXiv:2407.01178, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
multi-conv rl-based memory agent. arXiv preprint arXiv:2507.02259, 2025.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are
strong context generators. arXiv preprint arXiv:2209.10063, 2022.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong
Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval aug-
mented generation. arXiv preprint arXiv:2410.04343, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of llm agents.
arXiv preprint arXiv:2412.15266, 2024.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
Tracing hierarchical memory for multi-agent systems. arXiv preprint arXiv:2506.07398, 2025a.

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025b.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in large
language models. Computational Linguistics, pp. 1–46, 2025c.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on Information Systems, 42(4):1–60, 2024.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang,
Sicong Liang, Xilin Liu, Yuchi Ma, et al. In-depth analysis of graph-based rag in a unified
framework. arXiv preprint arXiv:2503.04338, 2025a.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
for efficient long-horizon agents. arXiv preprint arXiv:2506.15841, 2025b.

Rongzhi Zhu, Xiangyu Liu, Zequn Sun, Yiwei Wang, and Wei Hu. Mitigating lost-in-retrieval
problems in retrieval augmented multi-hop question answering. arXiv preprint arXiv:2502.14245,
2025a.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-
world environments via large language models with text-based knowledge and memory. arXiv
preprint arXiv:2305.17144, 2023.

Zulun Zhu, Tiancheng Huang, Kai Wang, Junda Ye, Xinghe Chen, and Siqiang Luo. Graph-based
approaches and functionalities in retrieval-augmented generation: A comprehensive survey. arXiv
preprint arXiv:2504.10499, 2025b.

Ziyuan Zhuang, Zhiyang Zhang, Sitao Cheng, Fangkai Yang, Jia Liu, Shujian Huang, Qingwei Lin,
Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Efficientrag: Efficient retriever for multi-hop
question answering. arXiv preprint arXiv:2408.04259, 2024.

Chang Zong, Yuchen Yan, Weiming Lu, Jian Shao, Eliot Huang, Heng Chang, and Yueting Zhuang.
Triad: A framework leveraging a multi-role llm-based agent to solve knowledge base question
answering. arXiv preprint arXiv:2402.14320, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

We used OpenAI’s ChatGPT to help polish the language and improve the readability of the
manuscript. Specifically, ChatGPT was used for grammar checking and sentence rephrasing. We
list our prompt for using OpenAI’s ChatGPT to help polish writing as follows.

Prompt for Using OpenAI’s ChatGPT to Help Polish Writing

Below is a paragraph from an academic paper. Polish the
writing to meet the academic style,improve the spelling,
grammar, clarity, concision and overall readability.
Furthermore, list all modification and explain the
reasons to do so in markdown table. \\

Paragraph: {paragraph}

A.2 TRAINING HYPERPARAMETERS

We train MemSearcher agents with full parameter optimization and gradient checkpointing. We
show some important training hyperparameters in Table 3.

Table 3: Training details of MemSearcher.

Parameter Value
Learning Rate 1e-6
Train Batch Size 256
Number of Training Epochs 1
Number of Rollout 5
Rollout Temperature 1.0
KL Loss Coefficient 0.001
Clip Ratio 0.2

A.3 DETAILS OF EVALUATED DATASETS

We evaluate MemSearcher agents on the following public question answering datasets:

• Natural Questions (NQ) (Kwiatkowski et al., 2019), a QA dataset with questions consisting of
real anonymized, aggregated queries issued to the Google search engine.

• TriviaQA (Joshi et al., 2017), a large scale challenging dataset with relatively complex, compo-
sitional questions, requireing more reasoning to find answers.

• PopQA (Mallen et al., 2022), a dataset consisting of 14k questions covering factual information
in the long tail.

• Bamboogle (Press et al., 2022), a manually constructed dataset with multi-hop questions, where
all questions are sufficiently difficult to be unanswerable by a single search engine call.

• Musique (Trivedi et al., 2022b), a QA dataset with 25K questions that by require proper multi-
hop reasoning.

• HotpotQA (Yang et al., 2018), a dataset with 113k Wikipedia-based question-answer pairs,
where the questions requires finding and reasoning over multiple supporting documents to an-
swer, and and not constrained to any existing knowledge bases or knowledge schemas.

• 2WikiMultiHopQA (Ho et al., 2020), a multi-hop QA dataset that uses both structured and
unstructured data. It is challenging for multi-hop models and explicitly ensures that multi-hop
reasoning is required.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 CASE STUDY

To provide a more intuitive understanding of the utility of MemSearcher, we present a case study
in Table 4. This case is drawn from the evaluation of MemSearcher based on Qwen2.5-7B-
Instruct. The text enclosed by <think> and </think>, <tool call> and </tool call>,
as well as <memory> and </memory> is generated by the model. The text enclosed by
<tool response> and </tool response> is retrieved from the search engine. This case
demonstrates that the model can effectively maintain a compact memory, retaining only the essen-
tial information necessary to solve the question.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: A case study of MemSearcher.

Question: What was the form of the language that the last name Sylvester comes from, used in the
era of Rotrude’s father, later known as?
Answer: Medieval Latin

Turn 1: <think> To answer this question, I need to find out which language the last name
Sylvester comes from. Let’s start by searching Wikipedia for this information. </think>
<tool call> {”name”: ”wikipedia search”, ”arguments”: {”query”: ”Last name Sylvester
comes from what language”}} </tool call>
<tool response> ”Sylvester (singer)”, Sylvester (singer) Sylvester James Jr. (September
6, 1947December 16, 1988), who used the stage name of Sylvester, was an American singer-
songwriter. Primarily active in </tool response>
<memory> The last name Sylvester comes from the Latin language. </memory>

Turn 2: <think> The memory mentions that the last name Sylvester comes from the Latin lan-
guage. However, it does not provide any information about the form of the Latin language used in
the era of Rotrude’s father, later known as. I need to find out which era Rotrude’s father lived in.
</think>
<tool call> {”name”: ”wikipedia search”, ”arguments”: {”query”: ”Who was Rotrude’s father,
and what was he later known as?”}} </tool call>
<tool response> ”Rotrude”, Rotrude Rotrude (or sometimes referred to as Hruodrud/Hruod-
haid) (775/778 – 6 June 810) was a Frankish princess, the second daughter of Charlemagne from his
marriage to Hildegard. Few clear records </tool response>
<memory> The last name Sylvester comes from the Latin language. Rotrude was a Frankish
princess, the second daughter of Charlemagne from his marriage to Hildegard. </memory>

Turn 3: <think> The memory mentions that the last name Sylvester comes from the Latin lan-
guage. However, it does not provide any information about the form of the Latin language used in
the era of Rotrude’s father, later known as. I need to find out who Charlemagne was. </think>
<tool call> {”name”: ”wikipedia search”, ”arguments”: {”query”: ”Who was Charle-
magne”}} </tool call>
<tool response> ”Charlemagne”, Charlemagne Charlemagne or Charles the Great (2 April 742
– 28 January 814), numbered Charles I, was King of the Franks from 768, King of the Lombards
from 774, and Holy Roman Emperor from </tool response>
<memory> The last name Sylvester comes from the Latin language. Rotrude was a Frankish
princess, the second daughter of Charlemagne from his marriage to Hildegard. Charlemagne was
later known as Holy Roman Emperor. </memory>

Turn 4: <think> The last name Sylvester comes from the Latin language. Charlemagne was
later known as Holy Roman Emperor. The question asks what was the form of the Latin language
used in the era of Rotrude’s father, later known as. Since Rotrude’s father was Charlemagne, and
Charlemagne was later known as Holy Roman Emperor, we need to find out what was the form of
the Latin language used in his era. I will use the wikipedia search function to find this information.
</think>
<tool call> {”name”: ”wikipedia search”, ”arguments”: {”query”: ”Form of Latin language
used in the era of Charlemagne”}} </tool call>
<tool response> ”Medieval Latin”, Medieval Latin Medieval Latin was the form of Latin used
in Roman Catholic Western Europe during the Middle Ages. In this region it served as the primary
written language, though local languages were also written to </tool response>
<memory> The last name Sylvester comes from the Latin language. Rotrude was a Frankish
princess, the second daughter of Charlemagne from his marriage to Hildegard. Charlemagne was
later known as Holy Roman Emperor. The form of Latin language used in the era of Charlemagne
was Medieval Latin. </memory>

Turn 5: <think> The memory mentions that the form of Latin language used in the era of Charle-
magne was Medieval Latin. </think>
The answer to the question is \boxed{Medieval Latin}.

17

	Introduction
	Background
	Preliminary: ReAct
	Limitations of ReAct

	Method
	Overview of MemSearcher
	RL Training Algorithm
	Reward Modeling

	Experiments
	Experiment Setups
	Main Results
	Further Analysis
	Do we need RL Training?
	Training and Validation Reward.

	Related Work
	Large Language Models with Search Engines
	Context Management

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	LLM Usage
	Training Hyperparameters
	Details of Evaluated Datasets
	Case Study

