Under review as a conference paper at ICLR 2025

A DISCRETE ACTOR AND CRITIC FOR REINFORCEMENT
LEARNING ON CONTINUOUS TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving continuous reinforcement learning (RL) tasks typically requires models
with continuous action spaces, as discrete models face challenges such as the curse
of dimensionality. Inspired by discrete controlling signals in control systems, such
as pulse-width modulation, we investigated RL models with discrete action spaces
with performance comparable to continuous models on continuous tasks. In this
paper, we propose an RL model with a discrete action space, designed a discrete
actor that outputs action distributions and twin discrete critics for value distribution
estimation. We also developed both the training method and exploration strategy
for this model. The model successfully solved BipedalWalkerHardcore-v3, a
continuous robot control task in a complex environment, achieved a higher score
than the state-of-the-art baselines and comparable results across various other
control tasks.

1 INTRODUCTION

Reinforcement Learning (RL) typically applies discrete action space for discrete tasks and continuous
action space for continuous tasks. For discrete tasks, such as Atari games, Q-learning and its variances
exhaustively evaluate only a small number of actions. For continuous tasks, such as motion control
tasks, evaluating all possible action is not possible, hence RL models with discrete action space can
suffer from the curse of dimensionality (Kober et al., 2014; Lillicrap et al., 2016). To avoid this
problem, models for continuous tasks directly output actions with continuous values (Lillicrap et al.,
2016; Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Kuznetsov et al., 2020).

However, in the context of the control system, using discrete
signals for control is widely adopted. For example, pulse- 15
width modulation (PWM) is used for motor control and light
control. PWM represents signals with zeros and ones (some-
times also with -1), which is purely discrete. However, by vary-
ing the ratio of the time discrete values are presented, PWM
can approximate continuous signals (Figure 1) (Yu et al., 1997)
and control motors precisely (Hughes and Drury, 2013). For
light-emitting diode (LED), because of its nonlinear relations
between its luminous intensity and input voltage, control with 5
continuous voltage is even harder than with PWM controlled 0 ° Time(my *
voltage (Esteki et al., 2023). PWM linearises the relations by

switching either on or off the light and controls intensities by
the time ratio, simplifying the control complexity. Hence, the
discrete signals have been proved useful for control tasks.

— Voltage —-. Current

Voltage / Current

Figure 1: Discrete voltages applied
on an indicator results in continues
current.

Based on this fact, a reinforcement learning model with a

discrete action space can perform similarly on continuous tasks as continuous models. With idea, we
proposed a model with discrete action space for continuous tasks.

We designed a discrete actor module, modified a Categorical DQN (C51) (Bellemare et al., 2017),
proposed twin discrete critic networks inspired by TD3 (Fujimoto et al., 2018), and composed them
together. The actor outputs the probability of action atoms which are from even discretization of
actions. C51 is an example of Distributional Reinforcement Learning (Distributional RL) which can
be used in modeling the distribution of reward returns of partially observable problems. It adopts

Under review as a conference paper at ICLR 2025

discrete value distribution and updates the probability of value categories instead of fitting a curve,
hence it can withstand strong reward impacts.

The model can solve various continuous tasks with performance near state-of-the-art (SOTA) models.
For BipedalWalkerHardcore-v3, with discrete value distribution, our model with discrete action space
achieve higher scores than SOTA models. Our model achieved an average score of 324.8 on 10,000
trials, the highest currently (May. 2024) on the Leaderboard (OpenAl).

2 RELATED WORK

The following Deep RL algorithms have been applied in continuous tasks. DDPG (Lillicrap et al.,
2015) effectively applies Q-learning principles to continuous action spaces for Deep RL. TD3 (Fuji-
moto et al., 2018) an extension of DDPG, utilizes twin critic networks to address value overestimation.
SAC (Haarnoja et al., 2018) employs stochastic continuous actor and entropy regularization. TQC
(Kuznetsov et al., 2020), building upon QR-DQN (Dabney et al., 2018b), integrates an actor and
employs a truncated mixture mechanism to mitigate value overestimation. DDPG, TD3, SAC, TQC,
and PPO have demonstrated commendable performance in MuJoCo tasks (Towers et al., 2023).
Stable Baselines 3 (Raffin et al., 2021) and CleanRL (Huang et al., 2022) offer reliable implementa-
tions of these fundamental Deep RL algorithms, and we used some of them for comparison in our
experiments.

Distributional RL models focus on modeling the distribution of cumulative rewards rather than only
an expected scalar. C51 (Bellemare et al., 2017) employs a discrete value distribution for building
its critic network. QR-DQN (Dabney et al., 2018b) and IQN (Dabney et al., 2018a) utilize quantile
regression to detail the distribution of stochastic reward returns. These methodologies, despite their
varied mathematical constructs for their critic networks, predominantly affirm theoretical convergence
under Wasserstein Metric (Vaserstein, 1969) and have notable performance on Atari tasks.

Some previous works resemble a few aspects of our work but differently. D4PG (Barth-Maron et al.,
2018) proposed a C51 with an actor module. Our work, however, diverges by investigating discretized
action spaces, moving away from the conventional assumption that action variables conform to a
normal distribution. SAC-Discrete (Christodoulou, 2019) broadens the scope of SAC to discrete
action spaces, thus enhancing the model’s capacity to use action entropy for exploration.

There were explorations connecting continuous action Neunert et al. (2020) explores a feasible ap-
proach for the unified control of discrete and continuous action variables based on the MPO algorithm.
Metz et al. (2019) decomposes multi-dimensional action variables into a sequence of decision-making
processes for discrete variables, though this method risks oversimplifying complex tasks and can
lead to increased computational demands. Tang and Agrawal (2020) advocates for the discretization
of continuous action spaces, which can enhance the performance of on-policy algorithms such as
PPO, albeit at the potential expense of capturing continuous dynamics accurately. Luo et al. (2023)
emphasizes the benefits of discretizing action spaces in offline reinforcement learning and examines
potential solutions, but highlighted data and computational load challenges, impacting real-world
performance. Farebrother et al. (2024) argues that the cross-entropy loss function, compared to the
mean squared error loss function, is more effective for training Critic networks in reinforcement
learning, especially for models with large parameter counts like Transformers. However, it presents
difficulties in transitioning to environments that require continuous representations.

3 PRELIMINARIES

This section covers relevant prior work and essential concept basis in our model. To maintain
consistency, the mathematical symbols in this paper align closely with those used in (Bellemare
et al., 2017), which has some notations with a style different from typical machine learning. For
convenience, we provide Table 3 for a reference of symbols.

3.1 DISCRETE VALUE DISTRIBUTION

For a stochastic transition process (z,a) — (&’,a’) in an environment, x represents the observed
current state of the environment, and a specifies the action taken in response to . The resulting

Under review as a conference paper at ICLR 2025

state distribution is denoted &’. A stochastic policy output an action distribution a@’, and the actual
action a’ taken in the task will be sampled from a’. The value Z associated with the process
oy A D ot A
(z,a) — (&',a’) is formularized using a recursive equation: Z(xz,a) = R(x,a) + vZ(&',a’),
where R(x,a) represents the stochastic reward function of the environment and ~ denotes the

discount rate.

Figure 2: Operations to update Z. (a) The current value distribution of Z. (b) Discount factor v
changes the shape in the dimension of atoms. (c) The current reward R shifts the distribution in the
dimension of atoms. (d) The resulting distribution R + «vZ is mapped back to the original atoms by
®. Adapted from (Bellemare et al., 2017)

In the Categorical DQN, the value Z is conceptualized as a random variable with a discrete value
distribution. To update the distribution, Bellemare et al. (2017) proposed an updating rule (Figure
2). The number of discrete atoms N € N denotes the granularity of discretization required for the
value domain, and the bounds Vi rn, Varax € R specify the lower and upper limits of the values,
respectively. The set of discrete atoms is constructed as {z; = Vayry + (i — 1) Azli = 1,2,--- N},
with the interval Az calculated by W The probability of each discrete atom’s occurrence

is determined using a neural network © : X x A — R thatis, Z(z,a|®) = z; w.p. pi(z,a) =

(O(=,a)); . - . .
W For a tuple of a stochastic transition ¢t = (x, a,r, '), a Bellman update is applied
J
to each discrete atom z;, designated as 7 z; := r + 7z;. The probability associated with 7 z;,

denoted pj(x’, 7(x’)), is then redistributed amongst adjacent discrete atoms. The i element of
the resultant projected discrete probability distribution ®7 Z(x, a|®) is: P(®T Z(x, a|0) = z;) =
Tl MAX —z;
Z;V:l 1- % pj(z’, m(x")) The notation [-]% signifies that the value is constrained
0
within the interval [a, b]. For an elaborate exposition and validation of these concepts, please consult

the original paper (Bellemare et al., 2017).

3.2 CLIPPED DOUBLE Q-LEARNING FOR ACTOR-CRITIC

TD3 (Fujimoto et al., 2018) adopts Double Q-learning to reduce the overestimation bias of Q-value.
TD3 is composed of three networks: Qq, (2, @), Qu, (€, a), and w4 (). The twin Q networks,
Qp, (x, a) and Qy, (x, a), though initially having distinct parameters, are trained concurrently with
the same learning signals. () serves as the actor network. The TD3 update procedure for a data
batch involves three steps:

First, utilize the twin networks for a more precise estimate of the reward return, denoted as y.
y 7+ ymini=1» Qus (', 1y (z') + €), where 4j is the i target critic network’s delayed
updated parameters, ¢’ is the Target actor network’s delayed updated parameters, and € is minor
noise.

Then apply the mean squared error loss function to align the twin Q networks with the corrected Q-
value 7, thus the 7™ critic network’s parameters 4; is updated following 1p; < ; — E Dt Vs (y—
Qu,; (x,a))?, where « is the learning rate, B is the batch size, and ¢ ~ D signifies a batch of transition
samples from the Replay Buffer, t = (z, a,r, x’).

Finaly, the actor network, 7 (), learns based on Qy, (x, @) independently of Qy, (x, @), where ¢
denotes the actor network’s parameters: ¢ <~ ¢+ 5 >, p VoTep(T)VaQuyp, (T, T (T))|la=ry (a)-

Under review as a conference paper at ICLR 2025

4 MODELS & METHODS

Our model (Figure 3) extends previous work by addressing its limitations to improve the algorithm’s
performance and robustness by multidimensional discrete action space, clipped double Q-learning for
discrete value distribution, corresponding learning rule for critic and actor, and balancing exploration
and exploitation.

4.1 MULTIDIMENSIONAL DISCRETE ACTOR

Our model is based on discrete action space
across multiple dimensions. A one-dimensional

. . D . . Our Model
continuous action space is discretized into m (@A)
discrete action atoms {ai,as, - ,a;,},m € Agent }re\“
N,where N denotes the set of natural numbers.
i . R . . Critic1] [Critic2 i
Then the discretization is applied to each dimen- [critict] [critica] Environment
sion of a n-dimensional continuous action space, tea‘“\ z/ﬂ:ﬂ"’/
Lo) act
so an action in this new cgscrete space A can Actor] —4— /@%/
be noted as a matrix A = [a;,az, -+ ,a,]", ¥

where each row is one-hot coding of the corre-
sponding action dimension. This shape is conve-
nient to match the action probability distribution Figure 3: Algorithmic Framework Overview
A, which will be used as the output of policy net-

work, and the sum of each row of A'is 1. When A
we sample A from A, each row in A is sampled from the probability of the corresponding row in A.

In this action space, there exist m™ discrete potential actions. Given such an extensive search space,
employing exhaustive search methods such as those used by traditional DQN algorithms to find the
maximal Q-value is not feasible. In this study, we propose modeling the agent’s stochastic behavior
within the action space .4 by utilizing an action probability matrix, therefore we set the actor as
m: X — R"™ thatis,

pi(x) pi2(z) - pim(z)
D pa1(x) pa2(®) -+ pam(w)
nl(x) Pn2 (CC) T pnm(m)
where p;;(x) > 0, Z;nzl pij(x) =1 for ¢=1,2,---,n,and is an observed state. This 7

characterizes a stochastic multi-dimensional discrete actor. A later section will detail how to use a
neural network to approximate 7. Please note that, in the original continuous action space, the action
dimensions are independent, so in A, the elements between rows are also independent.

4.2 CLIPPED DOUBLE Q-LEARNING FOR DISCRETE VALUE DISTRIBUTION

We discussed TD3’s approach to mitigating overestimation by Double Q-learning in the earlier
sections. Here we modify it for the discrete value distribution.

Double Q-learning uses two critic networks , Oy, (, A) and O, (x, A), and one actor network
mp(x).It also has target networks Oy (x, A), Oy (x, A), and 7y (x) correspond to the main
networks for stability in training. The subscripts above, 11,1, @, 11,15, and ¢’, denote the

parameters of corresponding networks. Given a transition tuple t = (x, A, r, 2’), we consider how
to effectively utilize these target networks to yield an updated estimation of the value distribution,

T Z(x, fl|@¢1, Oy). With O and O, for A" = 14 (2'), we derive OZ(x’, A’|@¢;) as:

o (Owy @A)k

Il

P(Z(x', A'|©y) = z1) . 2)
i N (Oy(x,A%));

> j €

A set of procedures (Figure 4) is proposed to leverage the twin critic networks with a discrete value

distribution. (a) Firstly, the two critic networks estimate discrete value distributions according to

Under review as a conference paper at ICLR 2025

a’, respectively. (b) Secondly, the distributions are accumulated respectively. (c) Then for each
category across the cumulative distributions, the one with a higher probability is selected to form
a new cumulative distribution, by which the value is less susceptible to overestimation. (d) Finally,
each category of the new cumulative distribution, except the first one, is subtracted by the former one,
mapping it back to discrete value distribution.

(@)

Figure 4: Clipped Double Discrete Value Distribution

In procedure (b) cumulative the distribution in (a). For a discrete value distribution Z, P(Z €
{21,202, ,2k}) = Z?Zl P(Z = zj). For the k™ value atom, the third and fourth procedures can
be presented as:

Ck if k=1

Cr — Ck—1 if k>1 3)

P(Z(a!, A|Oyy, Oyy) = 21) = {

where c,=max;—; 2 P(Z(a:',fl’|@¢£) € {z1,22, -+ ,2}). For the transition sample ¢t =
(2, A,r,x') and the ™ value atom, the Bellman Operation is as follows:

1

P(@%Z(w7 Al@d’ﬂ’ @wé) = zl) = Z VXIZN P(Z(;L'” A/‘G’d’i’@’d’é) = Zj)
j=1

N L I — =
0

“

where A notes the actual action taken rather than a probability distribution, and
QT Z(x, Al©y;, Oyy) is the corrected discrete value distribution used in training O, and Oy, .

Section 4.1 introduced the multidimensional discrete actor. The actor outputs action distribution
by a probability matrix. This matrix serves as a direct input for the action component of the critic
network, enabling it to model the impact of stochastic actions characterized by multidimensional
discrete probability distributions. With the above discussion, the critic network’s update rule for a
data batch with size B and ¢ = 1, 2 is defined as:

Zl 2 ‘I)%Z(ZB,A|@,¢,117@,¢,§), Zg 2 Z(CL',A‘@,,[,)

@
P; P — B tZ;VwiDKL(Zﬂ\Zﬂ

&)

where Dy represents KL divergence, furthermore, Vo, Dxr(Z1||Z2) = — Zjvzl Pz, =
2j)Vy, log P(Zy = z;). In this equation, we eliminate terms that are independent of ;, thus
obtaining a form consistent with cross-entropy loss. Z; denotes the new estimation of the value distri-
bution procured from the twin critic networks, and Zs is the critic network’s resultant output. In this
way, every critic’s output is refined to align with the corrected value Z;, reducing the overestimation
bias.

Training a critic network to fit a categorical distribution with a cross-entropy loss is more stable than
directly fitting a curve with a mean squared error loss. This phenomenon is probably because the
probability in categorical distribution is confined between 0 and 1, while the reward itself can be one
hundred times larger in magnitude. In the case of Bipedalwalker tasks, falling down causes a large
punishment (-100), which affects the learning of the critic during walking (typically from -0.3 to 0.3).
During fitting this type of multimodal distribution, each peak causes a similar impact to learning of
other peaks like outliers.

Under review as a conference paper at ICLR 2025

4.3 PoLICY LEARNING

We assume that the distribution of actions in a task is not a unimodal distribution, especially for tasks
like BipedalWalkerHardcore-v3 which has changing terrains. Therefore, we discretize the action
space as described in Section 4.1. To train the actor robustly, the actor is trained with a similar loss
function for training the critic networks as introduced in Section 4.2, thereby contributing to the
overall stability of the model.

Like other RL models with actor-critic architecture, the actor is updated to maximize the Q-value
predicted by a critic network. Differently, in our model, the output of the critic networks is probability,
so the cumulative distribution can be used as the objective. More specifically, for the k™ value atom,

P(Z(x, 1y (x)[Oy,) € {21,22,--- 2}) = 0
P(Z(x, 7 (2)|Oy,) € {2k11, 212, 2N }) = 1.

The notation “—" here denotes a trend or movement toward a value. The goal is for the policy to
minimize the probability of Z occurring at lower-value atoms while maximizing it at higher-value
atoms. With the binary cross-entropy loss applied, the Policy Learning rules are established thus:

(6

N N
¢<_¢+%ZZV¢[Ologpj+1log(l—pj)] =¢+%ZZV¢IOg(1_Pj))

t~D j=1 t~D j=1

where
pi 2 P(Z(®,7(x)|Op,) € {21,722, ,}) ®

4.4 EXPLORATION

Policy improvement constitutes a fundamental component of actor learning; similarly, exploitation
also plays an important role. This study introduces a heuristic exploration method inspired by failure,
which harnesses nociceptive information to enhance policy exploration strategies.

Definition 4.1. Given an action distribution A = 7(x), the action entropy is defined as:
D n
==Y Zpu z) log pij () ©)
=1 j=1
Additionally, H(A) has a calculable upper bound:

HE nlogm > H(A) Vr:x —RY™ (10)

Our objective is to correlate the action entropy with confidence levels. Specifically, increase the
action entropy ’H(/l) when there is a higher probability occurrence at lower discretization atoms
within the discrete value distribution. To achieve this, we introduce an entropy exploration term. The
proposed update rule for the actor is as follows:

H(mg(@))

O — o + 22 Z 5V
~D
v Neip o Hre(@) (an
s 1 if maxigen yorhey = S5
0 otherwise

where p; is same to in Equ equation 8 , 8 > 0 is the coefficient for the entropy term, 0 < h <1
regulates the scale of action entropy. An action entropy threshold, & ~—1hpj. is assigned to each
discrete atom of the value distribution such that the entropy exploration term will only activate when
the action entropy H (7 (x)) falls below this threshold. This threshold decreases as j increases,
which means that atoms of higher values have lower thresholds.

We also use the cumulative distribution p; to represent the confidence level of the agent with respect to
the current state z. It should be noted that for the 5" value atom of a high-confidence agent, p; should
be a small scalar since it represents the probability between the 1™ atom and the j® atom, which

Under review as a conference paper at ICLR 2025

is the lower value range. We use p; to correct the action entropy H (7 (x)), so the low-confidence
agent will increase it to seek various solutions with respect to state x, however, the high-confidence
one will not.

Integrating this with the prior section’s material, the comprehensive update rule for the actor is:

O e Hrg(®) "
Pedt 5D D Velog(l—p)+ 5 D sV (12)

t~D j=1 t~D H

During data collection in the training phase, the model also keeps track of the most recent time when
each action atom is executed. In half of the episodes, before actions are executed, for each of the
action dimensions, with a given small probability, the model replaces the action atom with the atom
that is not executed for the longest time. The typical probability we chose is about 0.05/n where n is
the number of action dimensions.

5 EXPERIMENTS

We tested our model on continuous control of several tasks, including BipedalWalkerHardcore-v3
and MuJoCo tasks, and evaluated the performance of this discrete model. We also took SAC, TD3,
and TQC, which are popular off-policy algorithms for continuous tasks, as baselines and applied
them to the same tasks for comparisons. Experiments are conducted on a desktop workstation with
the Intel® Core ™i9-12900 Processor, 64GB RAM, and the NVIDIA® GeForce RTX ™4090.

Mouse Steering=1.0

Cheese: 1.0(50%), 0.0(50%)
Trap: -1.0(100%)

(a) A trap or cheese problem. (b) The BipedalWalkerHardcore-v3 task.

Figure 5: Two of the tasks. (a) Averaging two good choices results in a bad choice. Our model does
not make this mistake. (b) The robot parkours with our model.

5.1 TRAP OR CHEESE PROBLEM

We designed a toy task called "Trap or Cheese" to illustrate that continuous models averaging good
actions can result in a bad action, but our model does not have this problem. As shown in Figure 5(a),
there is a trap in front of the mouse, behind which lies a piece of cheese. When the mouse chooses to
move straight ahead, it falls into the trap and dies, resulting in a reward of -1.0. When the mouse
chooses to turn left or right, it can bypass the trap and reach the cheese. However, there is a 50%
chance that the cheese has expired and cannot be eaten, resulting in a reward of 0.0. If the cheese is
not expired, the reward is 1.0. Obviously, a normal mouse would not choose to walk into the trap.

Both SAC and our model are tested in this task. The results show that SAC tends to unhesitatingly
choose the middle route and walk into the trap, with an average score staying at -1.0. In contrast,
our discrete can learn the correct strategy, with an average score staying at 0.5. This simple task is
difficult for SAC because, although its critic network can learn that moving forward is a very bad
choice, since moving forward can be considered as an average of moving left and right, SAC still
chooses to move forward. This problem could widely exist in continuous RL models which tend to
average best actions. The BipedalWalkerHardcore task shares a similar property when stepping over
obstacles. Hence, we suspect it is the reason why continuous model cannot solve this task as well as
our model. We will discuss it further in later sections.

5.2 BIPEDALWALKERHARDCORE-V3

The BipedalWalkerHardcore-v3 (Towers et al., 2023) task is one of the benchmarks in OpenAl Gym.
Compared to other motion control tasks in OpenAl Gym, the challenges in BipedalWalkerHardcore-

Under review as a conference paper at ICLR 2025

v3 are from its variation of terrains, partial observability, and high penalty when falling. The task’s
objective is to control the joints of a planar bipedal robot to walk through complex terrains involving
randomly generated obstacles like ladders, stumps, and pitfalls. An agent has to find and learn
different motions for each type of obstacle. The robot’s observation of the environment is by a
LIDAR that only returns 10 Lidar rangefinder measurements of the immediate terrain, hence the
environment is partially observable by the agent. The task also provides substantial penalties for
robot falls simulating “nociceptive stimuli", which disturbs convergence of the critic network, and
potentially hinders skill acquisition. As per (Wei and Ying, 2021), adapting TD3(Fujimoto et al.,
2018) to BipedalWalkerHardcore-v3 necessitates reducing these penalties.

We trained our model and baselines on the BipedalWalkerHardcore-v3 task for 20 million time steps.
Figure 6 left shows the reward returns during training. Our model outperformed the baseline models.
In an evaluation configuration, our model achieved a mean score of 324.8 in 10,000 trials. We present
the training curves of our model and baseline models in Figure ?? and provide a summary of their
final evaluation results in 10,000 trials in Table 1.

400 —— SB3-SAC 400 Ours
. —— SB37TD3 . —— Single Critic
€ 3001 — sg3Tac €300 — Normal Actor
E Ours E
200 200
L /Jw 2
B 100 D100
© 0 ©
=-100 S
0,00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
frames 1e7 frames 1le7

Figure 6: The rewards during training in BipedalWalkerHardcore-v3 task. Left: Comparison between
our model and baselines. Right: Ablation experiments.

Table 1: BipedalWalkerHardcore-v3 Evaluation

Task Ours SB3-SAC SB3-TD3 SB3-TQC
BipedalWalkerHardcore-v3 324.8 £ 31.6 5.1 £97.3 -20.1 =224 2179 +£120.3

To understand the necessity for each module, we performed ablation studies on
BipedalWalkerHardcore-v3 (Figure 6 right). We disabled our twin critic networks, the out-
comes of which are depicted by the curve labeled “Single Critic". Following D3PG (Barth-Maron
et al., 2018), we substituted our discrete actor with a conventional continuous action actor based on
our twin critic network. The results are depicted by the curve labeled “Normal Actor". The results
suggest that the different modules proposed in our model are necessary for the model’s performance.

5.3 MulJoCo

Although during building our model, we mainly tested it on a task with strong reward outliers and
changing environments that need risky actions, we would also evaluate it in typical continuous control
tasks that are more consistent. Experiments were conducted within MuJoCo (Towers et al., 2023) on
a series of tasks, including Ant, HalfCheetah, Hopper, Humanoid, and Walker2D. These tasks are to
control a corresponding type of robot for a forward motion. Because the environment is just level
terrain, observation of the environment around the robot is not necessary. Hence, the state of the task
is fully accessible with proprioceptors, odometry, and accelerometers as the task provided, and the
tasks exhibit a pronounced Markovian property.

Although discretizing a continuous action space can decrease control precision and increase the
difficulty of problem-solving, we did not observe a cliff-like drop in the performance of the model
proposed in this paper on MuJoCo tasks. However, its learning efficiency may decrease, requiring
more data and training steps. In Figure 7, we present the training curves of the proposed model in the
MuJoCo tasks. The light-shaded area represents the scores obtained by the model during training and
exploration, while the solid line depicts the average scores obtained by the model over 100 tests in the
testing environment during training. Due to the random selection of actions and the addition of noise

Under review as a conference paper at ICLR 2025

Table 2: MuJoCo Evaluation. The data of SAC, TD3, TQC is from (Kuznetsov et al., 2020).

Task Ours SAC TD3 TQC
Ant 6988 6160 5680 8010
HalfCheetah 13800 12410 15120 18090
Hopper 4118 2860 3310 3710

Humanoid 9992 7760 5400 9540
Walker2D 5775 5760 5110 7030

for exploration during training, the variance in scores is relatively large. However, during testing
on the evaluation set, we always choose the action with the highest probability output by the actor.
Therefore, the scores obtained during testing are often better than those obtained during training.

8000 14000

12000
6000

2000 000

(a) Ant-v5 (b) HalfCheetah-v5 (c) Hopper-v5

(d) Humanoid-v5 (e) Walker2d-v5

Figure 7: MuJoCo Training return

6 CONCLUSION & DISCUSSION

In this paper, we proposed an off-policy Deep RL model with a stochastic discrete actor and critics.
By approximating continuous values and actions with discrete distributions, this model can capture
multimodal distribution in action and value spaces and solves BipedalWalkerHardcore-v3 with the
state-of-the-art performance (see the (OpenAl) Leaderboard). The model also has performance near
to baselines such as TQC, TD3, and SAC in various tasks.

Through this model and experiments, our curiosity about whether a discrete RL model can learn
continuous tasks is confirmed. Given discrete control signals can be applied to real-world control
systems, a RL model with discrete action space can also be applied to continuous control tasks.
Although action resolution become lower, with the new ability to explore and learn multimodal
action distribution, as well as distributional-RL-style critics, the model can solve a task with strong
punishments and HRHR actions.

We noticed that, in BipedalWalkerHardcore-v3 task, the reward returns of TD3 and SAC are much
lower than TQC and our model. A possible reason is that TD3 and SAC failed to predict return by
high-risk-high-return (HRHR) actions, such as climbing over a box. A successful HRHR action will
result in a high return, but a failed one will result in a high punishment, which is much worse than
doing nothing. Hence the returns follow a multimodal distribution. TD3 and SAC focus on modeling
the scalar expectation but not the distribution of returns. Hence, it is can similar situation to the

Under review as a conference paper at ICLR 2025

“Trap or Cheese” problem. Models using scalar return expectation tend to believe if a high reward is
conditioned on two different actions, it is also conditioned on the middle of actions. Our model uses
discrete return expectations and does not have this problem.

Our model also benefits from the concept of discrete actions. In BipedalWalkerHardcore-v3, it
successfully learned a realistic and human-like gait without modification of the reward functions,
whereas baselines tend to master a gait similar to quadrupeds. One reason is that our model explores
the action space with a discrete distribution, which can approximate a multimodal distribution. For
example, when the walker tries to step over a large stump, it is better to either jump or maintain
balance conservatively. A moderate walk likely results in a meaningless fall. Typical models with
continuous actors, such as TQC, adopt Gaussian distribution or the Ornstein-Uhlenbeck process, are
limited in action exploratory and its refinement, and tend to master a limping gait.

The stochastic discrete actor also allows for expansive and efficacious exploration of the action space
and facilitates the acquisition of a natural, harmonious gait resembling human bipedal alternating
stepping. Furthermore, the model displays adaptive gait transitions when faced with a diverse
array of challenging obstacles, mitigating the risk of toppling; for instance, opting for energy-
efficient alternating stepping on even terrain and ascending ladders, transitioning to a safer gait when
descending ladders, modifying its step length for minor stumps, and initiating climbing maneuvers
for large stumps. Allowing multiple gaits in the same situation helps in exploration and learning in
complex environments, so a robot can switch between different motion primitives, or gaits, instead of
forgetting one to relearn another one.

As a preliminary trial to apply discrete actions to RL models for continuous tasks, our model may
not achieve the best performance. A possible improvement of this work is interpolation between
discrete actions. That is, using a kernel to map multiple discrete actions to a continuous action, could
improve the resolution of the actions. As shown in experiments and discussed, our model is suitable
for robot tasks with complex interactions with the environment. In real-world tasks, environments are
usually complex and robots need to interact with them. Hence, this model can potentially facilitate
the application of robots in the real world. It is worth investigating in the future.

REFERENCES

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., Tb, D., Muldal, A., Heess,
N., and Lillicrap, T. (2018). Distributed distributional deterministic policy gradients. arXiv preprint
arXiv:1804.08617.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449-458. PMLR.

Christodoulou, P. (2019). Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018a). Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096-1105. PMLR.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R. (2018b). Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Esteki, M., Khajehoddin, S. A., Safaee, A., and Li, Y. (2023). LED Systems Applications and LED
Driver Topologies: A Review. IEEE Access, 11(April):38324-38358.

Farebrother, J., Orbay, J., Vuong, Q., Taiga, A. A., Chebotar, Y., Xiao, T., Irpan, A., Levine, S., Castro,
P. S., Faust, A., Kumar, A., and Agarwal, R. (2024). Stop regressing: Training value functions via
classification for scalable deep rl.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587-1596. PMLR.

10

Under review as a conference paper at ICLR 2025

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on
machine learning, pages 1861-1870. PMLR.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araijo, J. G. (2022).
Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms.
Journal of Machine Learning Research, 23(274):1-18.

Hughes, A. and Drury, B. (2013). Induction Motors — Rotating Field, Slip and Torque. In Electric
Motors and Drives, pages 141-167. Elsevier.

Kober, J., Bagnell, J. A., and Peters, J. (2014). Reinforcement Learning in Robotics: A Survey.
Springer Tracts in Advanced Robotics, 97:9-67.

Kuznetsov, A., Shvechikov, P., Grishin, A., and Vetrov, D. (2020). Controlling overestimation bias
with truncated mixture of continuous distributional quantile critics. In International Conference on
Machine Learning, pages 5556-5566. PMLR.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement learning. In 4¢h International Conference on
Learning Representations, ICLR 2016 - Conference Track Proceedings.

Luo, J., Dong, P., Wu, J., Kumar, A., Geng, X., and Levine, S. (2023). Action-quantized offline
reinforcement learning for robotic skill learning.

Metz, L., Ibarz, J., Jaitly, N., and Davidson, J. (2019). Discrete sequential prediction of continuous
actions for deep rl.

Neunert, M., Abdolmaleki, A., Wulfmeier, M., Lampe, T., Springenberg, J. T., Hafner, R., Romano,
F., Buchli, J., Heess, N., and Riedmiller, M. (2020). Continuous-discrete reinforcement learning
for hybrid control in robotics.

OpenAl. Leaderboard.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1-8.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Tang, Y. and Agrawal, S. (2020). Discretizing continuous action space for on-policy optimization.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., Gouldo, M., Kallinteris,
A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J., Shen, A. T. J., and
Younis, O. G. (2023). Gymnasium.

Vaserstein, L. N. (1969). Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64-72.

Wei, H. and Ying, L. (2021). Fork: A forward-looking actor for model-free reinforcement learning.

Yu, Z., Mohammed, A., and Panahi, I. (1997). Review of three PWM techniques. Proceedings of the
American Control Conference, 1(June):257-261.

11

Under review as a conference paper at ICLR 2025

A MATH SYMBOLS

Table 3: Mathematical Symbols

Symbol

Description

Typical value

Virax
Vi

S e 8

:B\>

R8T

¢
P1, 3, ¢’

<

<
2 €
S) <~

ST PE IS rwe
g)

w
=1
T

Discount factor.

Upper bound of the discrete value.

Lower bound of discrete value.

Random variable for discrete value.

The " discrete value atom of Z.

Sample of current state observation.

An action sample vector.

Distribution of an action vector.

An action distribution matrix of a multidimensional discrete action space,
in which the sum of each row is 1.

An action sample matrix. Each row in A adopts one-hot coding sampled
from the corresponding row in A.

Action distribution for the next state.

Reward from an environment.

Sample of next state observation.

Distribution of the next state observation.

Distribution of a random variable.

A variable in the next time step.

Denotes definition.

Space of state observations.

Space of actions.

Ceiling of =

Number of discrete atoms for Z.

r+~2".

Projecting T Z back to origin discrete value atoms.
The estimated Z from the twin critic networks.
Discrete distribution critic network.

i™ Element of a Vector.

Policy for action selection.

Expected scalar critic network.

Parameters of first and second critic networks.
Parameters of actor network

Parameters for delayed updated networks.
Denotes parameter update.

Gradient of J with respect to w.

Learning rate.

Batch size.

Sample from Replay Buffer.

Number of dimensions in action.

Number of atoms per action dimension.
Entropy of action A.

Maximum entropy of action.

Scaling factor for action entropy.

Coefficient for exploration.

Represents the upper bound.

0.98 or 0.99
1

[Varrn, Varax]

51

<1073
256 or 512

<20

51

< nlogm
nlogm
0.5

0.5

B MATHEMATICAL ANALYSIS OF TRAP CHEESE PROBLEM

We describe the () function of the Trap Cheese problem as:

05 if ae[-1-06,-1+6U[l—-0,1+7]
Q(xo,a)—{_l otherwise

12

(13)

Under review as a conference paper at ICLR 2025

Where § is used to denote the width of the range where high rewards can be obtained, 0 < § < 1.
For convenience, we represent this region with the symbol C(d). We are interested in the maximum
likelihood estimation of the normal distribution @ ~ N (1, 0%) on C(§).

1 (a=w)?
1ogL:/ log(e 202)da
c(s) 2ro

= —46log(V2mo) — L/ (a — p)’da
()

202

45 log(v/2ror) — %[(1) — (1= 6=)P+ (—1 40— @) — (=1 — 6 —)]

o2

1
—451og(V2m0) — 6—2[6(1 — 11)%6 +26% + 6(1 + p)?6 + 267
g

—46log(V2mo) — %[3(1 + p?) + 67

(14)
Letting 815’5 L — (and 2 lgg L — 0, we can obtain the maximum likelihood estimates for wand o.
dlog L 45p
=% A=0
op o2 (15)
Odlog L 46 49 . 52
S-S B+ =1
oo o 303 3

. ~ ~ 2
Let’s verify whether ji = 0 and 62 = 1 + % is the unique critical point by computing its Hessian
matrix first.

dlogL 9%logL 48 854
ou? oudo — 52 =3

8% log L 8% log L |:8(5C,;u 475(0_2 _62_3) (16)
Oudo do2 o3 ot

. . ~ ~ 2 .
upstitutin =vand o~ = =, W€ obtain:
Substituting ji = 0 and 5% = 1 + & bt

8% log L 8% log L — 4552 0
op? opdo 1+

8% log L 8% log L 0 _ 8(52 =0 (17)

Opdo Oo2 0,6 1+6T

Therefore, fi = 0 and 62 = 1 + % is the unique maximum point on the domain. Although N (i, 52)
is the maximum likelihood estimate for the set C(4) under the assumption of a normal distribution, its
maximum probability density point ji does not yield satisfactory values on the () function; evidently,
Q(xo, 1) = —1. Now we will compute the maximum likelihood estimate again, this time on a
discrete distribution.

Pla=a;)=p;, i=12,m Y p=10, p>=0 (18)
In the case of a discrete distribution, the range of action a is given by A = {a1, a2, - ,a,}, and
ANC(3) # 0.
L= H pi (19)
ANC(5)

According to AM—GM inequality, we have:

13

Under review as a conference paper at ICLR 2025

. ZAmei 1
NC(é b S S (20)
lAnc(>m [ANCEO) — [ANC()]

The two equalities in the above inequality can be attained; therefore, the maximum likelihood estimate
in the case of a discrete distribution is:

1 .
s _ Jmancom i @i €C(0) 21
pi = . 2n
0 otherwise

In the maximum likelihood estimate of a discrete distribution, we take the point a;, with the highest
probability, and obviously it satisfies Q(z¢, ax) = 0.5. Based on the above discussion, we can infer
that when dealing with complex obstacles, discrete distributions might have an advantage over normal
distributions, at least in the context of maximum likelihood estimation.

C IMPLEMENTATION DETAILS

C.1 REWARD NORMALIZATION

Reward Normalization is crucial in the training and convergence of models. The original reward
function, denoted as Ry (x, A), is advised to be transformed into a normalized form Ry (x, A), which
ideally possesses the following characteristics:

RQ(m7A> = ORl(ma A)7 ¢ > 07 sup RZ(;B7A) < 1 (22)
x,A

If a constant C, typically represented as m, can be identified, the following equation
holds: ’

Zy =Ry (x4, Ay) + YRo(@p—1, Ar—1) + 7 Ro(@i—2, Ap) + - -
) 1 (23)

SL+9l 4914 < —

L—7
Taking into account the upper bound mentioned above, we recommend configuring the hyperparame-
ters Visax = 1%

v

C.2 LOGARITHMIC OPERATIONS

If logarithmic operations are directly used to compute the loss function, it will result in significant
precision loss, especially when dealing with very small values. Therefore, directly using the logarithm
operator is unwise; we need to make some transformations on paper to avoid these precision losses.
The technique demonstrated below is the "log sum exp" trick.

log(Z e’) = z* + log(Z S, o* = max z; (24)

1<i<N
1<i<N 1<i<N ==

The above transformation ensures that the values inside the logarithmic operations are greater than 1,
thereby avoiding the problem of significant precision loss when the values are very small. Based on
the above discussion, "log softmax" can be represented as:

o
') =x; —a* —log(Z eV "), ¥ = max (25)

log(
§ . eri 1<i<N
1<i<N 1<i<N 1>

Furthermore, for the logarithmic operation of cumulative distribution, it can be represented as:

14

Under review as a conference paper at ICLR 2025

ZlgigK e ZK<1’§N e’

log(1 = &==—-) = log(_
Z1§¢§N e 21951\7 et
= (™ + log(Z e®i 7)) — (2" + log(Z esTT)) (26)
K<i<N 1<i<N
¥ = max z;, zF = max x;
1<i<N K<i<N

In practice, we found that setting a near-zero lower bound (such as e = 0.0001) for all cumulative
probabilities when constructing the Policy Loss will be more robust. This helps prevent the actor
network from making significant policy changes in pursuit of minor fluctuations in noise.

ZlgigK e

2i<icn €

€ ncick €t D gien e)
2i<i<n €7

z;+log(€) i
Di<i<k € + D k<i<n©

log(1 — (1 —¢)

= log(

27)

= log(:)
219‘31\7 et
—z** + log(Z ewi—i-log(e)—x** + Z ewi—w**) _ (LL'* + IOg(Z ew,i—a:*))
1<i<K K<i<N 1<i<N
o= max i, o = max(lrgniag)}(x; + log(e), RAX, x;)

15

	Introduction
	Related Work
	Preliminaries
	Discrete Value Distribution
	Clipped Double Q-learning for Actor-Critic

	Models & Methods
	Multidimensional Discrete Actor
	Clipped Double Q-learning for Discrete Value Distribution
	Policy Learning
	Exploration

	Experiments
	Trap or Cheese Problem
	BipedalWalkerHardcore-v3
	MuJoCo

	Conclusion & Discussion
	Math Symbols
	Mathematical Analysis of Trap Cheese Problem
	Implementation Details
	Reward Normalization
	Logarithmic Operations

