
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

WHICH EXPERIENCES ARE INFLUENTIAL FOR RL
AGENTS? EFFICIENTLY ESTIMATING THE INFLUENCE
OF EXPERIENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL) with experience replay, experiences stored in a
replay buffer influence the RL agent’s performance. Information about how
these experiences influence the agent’s performance is valuable for various pur-
poses, such as identifying experiences that negatively influence underperforming
agents. One method for estimating the influence of experiences is the leave-one-
out (LOO) method. However, this method is usually computationally prohibitive.
In this paper, we present Policy Iteration with Turn-over Dropout (PIToD), which
efficiently estimates the influence of experiences. We evaluate how accurately
PIToD estimates the influence of experiences and its efficiency compared to LOO.
We then apply PIToD to amend underperforming RL agents, i.e., we use PIToD
to estimate negatively influential experiences for the RL agents and to delete the
influence of these experiences. We show that RL agents’ performance is signifi-
cantly improved via amendments with PIToD.

1 INTRODUCTION

In reinforcement learning (RL) with experience replay, the performance of an RL agent is influ-
enced by experiences. Experience replay (Lin, 1992) is a data-generation mechanism indispensable
in modern off-policy RL methods (Mnih et al., 2015; Hessel et al., 2018; Haarnoja et al., 2018a;
Kumar et al., 2020). It allows an RL agent to learn from past experiences. These experiences in-
fluence the RL agent’s performance (e.g., cumulative rewards) (Fedus et al., 2020). Estimating how
each experience influences the RL agent’s performance could provide useful information for many
purposes. For example, we could improve the RL agent’s performance by identifying and deleting
negatively influential experiences. The capability to estimate the influence of experience will be
crucial, as RL is increasingly applied to tasks where agents must learn from experiences of diverse
quality (e.g., a mixture of experiences from both expert and random policies) (Fu et al., 2020; Yu
et al., 2020; Agarwal et al., 2022; Smith et al., 2023; Liu et al., 2024; Tirumala et al., 2024).

However, estimating the influence of experiences with feasible computational cost is not trivial. One
might consider estimating it by a leave-one-out (LOO) method (left part of Figure 1), which retrains
an RL agent for each possible experience deletion. As we will discuss in Section 3, this method has
quadratic time complexity and quickly becomes intractable due to the necessity of retraining.

In this paper, we present PIToD, a policy iteration (PI) method that efficiently estimates the influence
of experiences (right part of Figure 1). PI is a fundamental method for many RL methods (Section 2).
PIToD is PI augmented with turn-over dropout (ToD) (Kobayashi et al., 2020) to efficiently estimate
the influence of experiences without retraining an RL agent (Section 4). We evaluate how accu-
rately PIToD estimates the influence of experiences and its efficiency compared to the LOO method
(Section 5). We then apply PIToD to amend underperforming RL agents by identifying and deleting
negatively influential experiences (Section 6). To our knowledge, our work is the first to: (i) estimate
the influence of experiences on the performance of RL agents with feasible computational cost, and
(ii) modify RL agents’ performance simply by deleting influential experiences.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Leave-one-out (LOO) influence estimation method (left part) and our method (right part).
LOO estimates the influence of experiences by retraining an RL agent for each experience deletion.
In contrast, our method estimates the influence of experiences without retraining.

2 PRELIMINARIES

In Section 4, we will introduce our PI method for estimating the influence of experiences in the RL
problem. As preliminaries for this, we explain the RL problem, PI, and influence estimation.

Reinforcement learning (RL). RL addresses the problem of an agent learning to act in an environ-
ment. The environment provides the agent with a state s. The agent responds by selecting an action
a, and then the environment provides a reward r and the next state s′. This interaction between the
agent and environment continues until the agent reaches a terminal state. The agent aims to find a
policy π : S×A → [0, 1] that maximizes cumulative rewards (return). A Q-function Q : S×A → R
is used to estimate the expected return.

Policy iteration (PI). PI is a method for solving RL problems. PI updates the policy and Q-function
by iteratively performing policy evaluation and improvement. Many implementations of policy
evaluation and improvement have been proposed (e.g., Lillicrap et al. (2015); Fujimoto et al. (2018);
Haarnoja et al. (2018a)). In the main part of this paper, we focus on the policy evaluation and
improvement used in Deep Deterministic Policy Gradient (DDPG). In policy evaluation in DDPG,
the Q-function Qϕ : S ×A → R, parameterized by ϕ, is updated as:

(1)ϕ← ϕ−∇ϕE(s,a,r,s′)∼B, a′∼πθ(·|s′)

[(
r + γQϕ̄(s

′, a′)−Qϕ(s, a)
)2]

,

where B is a replay buffer containing the collected experiences, and Qϕ̄ is a target Q-function. In
policy improvement in DDPG, policy πθ, parameterized by θ, is updated as:

(2)θ ← θ +∇θEs∼B, aθ∼πθ(·|s) [Qϕ(s, aθ)] .

Estimating the influence of experiences. Given the policy and Q-functions updated through PI,
we aim to estimate the influence of experiences on performance. Formally, letting ei be the i-th
experience contained in the replay buffer B, we evaluate the influence of ei as

(3)L
(
Qϕ,B\{ei}, πθ,B\{ei}

)
− L (Qϕ,B, πθ,B) ,

where L is a metric for evaluating the performance of the Q-function and policy, Qϕ,B and πθ,B are
the Q-function and policy updated with all experiences contained in B, and Qϕ,B\{ei} and πθ,B\{ei}
are the ones updated with B other than ei. L is defined according to the focus of the experiments.
In this paper, we define L as policy and Q-function loss for the experiments in Section 5, and as
empirical return and Q-estimation bias for the applications in Section 6.

3 LEAVE-ONE-OUT (LOO) INFLUENCE ESTIMATION

What method can be used to estimate the influence of experiences? One straightforward method is
based on the LOO algorithm (Algorithm 1). This algorithm estimates the influence of experiences

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Algorithm 1 Leave-one-out influence estimation for policy iteration

1: given replay buffer B, learned parameters ϕ, θ, and number of policy iteration I .
2: for ei ∈ B do
3: Initialize temporal parameters ϕ′ and θ′.
4: for I iterations do
5: Update Qϕ′ with B\{ei} (policy evaluation).
6: Update πθ′ with B\{ei} (policy improvement).
7: Evaluate the influence of ei as

(4)L (Qϕ′ , πθ′)− L (Qϕ, πθ) .

by retraining the RL agent’s components (i.e., policy and Q-functions) for each experience deletion.
Specifically, it retrains the policy πθ′ and Q-function Qϕ′ using B\{ei} through I policy iterations
(lines 4–6). Here, I equals the number of policy iterations required for training the original policy
πθ and Q-function Qϕ. After retraining the components, the influence of ei is evaluated using Eq. 4
with πθ′ , Qϕ′ and πθ, Qϕ (line 7).

However, in typical settings, Algorithm 1 becomes computationally prohibitive due to retraining.
In typical settings (e.g., Fujimoto et al. (2018); Haarnoja et al. (2018b)), the size of the buffer B is
small at the beginning of policy iteration and increases by one with each iteration. Consequently,
the size of B is approximately equal to the number of iterations I (i.e., |B|≈ I). Since Algorithm 1
retrains the RL agent’s components through I policy iterations for each ei, the total number of policy
iterations across the entire algorithm becomes I2. The value of I typically ranges between 103 and
106 (e.g., Chen et al. (2021a); Haarnoja et al. (2018b)), which makes it difficult to complete all
policy iterations in a realistic timeframe.

In the next section, we will introduce a method to estimate the influence of experiences without
retraining the RL agent’s components.

4 POLICY ITERATION WITH TURN-OVER DROPOUT (PITOD)

In this section, we present Policy Iteration with Turn-over Dropout (PIToD), which estimates the
influence of experiences without retraining. The concept of PIToD is shown in Figure 2, and an
algorithmic description of PIToD is shown in Algorithm 2. Inspired by ToD (Kobayashi et al.,
2020), PIToD uses masks and flipped masks to drop out the parameters of the policy and Q-function.
Further details are provided in the following paragraphs.

Masks and flipped masks. PIToD uses mask mi and flipped mask wi, which are binary vectors
uniquely associated with experience ei. The mask mi consists of elements randomly initialized
to 0 or 1. mi is used to drop out the parameters of the policy and Q-function during PI with ei.
Additionally, the flipped mask wi is the negation of mi, i.e., wi = 1 −mi. wi is used to drop out
the parameters of the policy and Q-function for estimating the influence of ei.

Policy iteration with the mask (lines 5–6 in Algorithm 2). PIToD applies mi to the policy and
Q-function during PI with ei. It executes PI with variants of policy evaluation (Eq. 1) and improve-
ment (Eq. 2) where masks are applied to the parameters of the policy and Q-function. The policy
evaluation for PIToD is

(5)ϕ← ϕ−∇ϕEei=(s,a,r,s′,i)∼B, a′∼πθ,mi
(·|s′)

[(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2]
.

The policy improvement for PIToD is

(6)θ ← θ +∇θEei=(s,i)∼B, aθ,mi
∼πθ,mi

(·|s) [Qϕ,mi
(s, aθ,mi

)] .

Here, Qϕ,mi
and πθ,mi

are the Q-function and policy to which the mask mi is applied. In Eq. 5
and Eq. 6, for inputs from ei, Qϕ,mi

and πθ,mi
compute their outputs without using the parameters

that are dropped out by mi. Thus, the parameters dropped out by mi (i.e., the parameters obtained
by applying wi) are expected not to be influenced by ei. More theoretically, if Qϕ,mi

and πθ,mi

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: The concept of PIToD. PIToD uses mask mi and flipped mask wi. It applies mi to the
policy and Q-function for PI with ei. Additionally, it applies wi to the policy and Q-function for
estimating the influence of ei.

Algorithm 2 Policy iteration with turn-over dropout (PIToD)

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B; Set
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′. Define an experience using i′

as: ei′ = (s, a, r, s′, i′); B ← B
⋃
{ei′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Update ϕ with gradient descent using

∇ϕ

∑
(s,a,r,s′,i)

(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2
, a′ ∼ πθ,mi

(·|s′).

6: Update θ with gradient ascent using

∇θ

∑
(s,i)

Qϕ,mi
(s, aθ,mi

), aθ,mi
∼ πθ,mi

(·|s).

7: if i′%Iie = 0 then
8: For ei ∈ B, estimate the influence of ei using

L (Qϕ,wi , πθ,wi)− L (Qϕ, πθ) or L (Qϕ,wi , πθ,wi)− L (Qϕ,mi , πθ,mi) .

are dominantly influenced by ei, the parameters obtained by wi are provably not influenced by ei
(see Appendix A for details). Based on this theoretical property, we estimate the influence of ei by
applying wi to policy and Q-functions (see the next paragraph for details).

Estimating the influence of experience with flipped mask (lines 7–8 in Algorithm 2). PIToD
periodically estimates the influence of ei by applying wi to the policy and Q-function. It estimates
the influence of ei (Eq. 3) as

(7)L (Qϕ,wi , πθ,wi)− L (Qϕ, πθ) ,

where the first term is the performance when ei is deleted, and the second term is the performance
with all experiences. Qϕ,wi

and πθ,wi
are the Q-function and policy with dropout based on wi.

Qϕ and πθ are the Q-function and policy without dropout. For the second term, if we want to
highlight the influence of ei more significantly, the term can be evaluated by alternatively using the
masked policy and Q-functions: L (Qϕ,mi , πθ,mi). The influence estimation is performed every Iie

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

iterations (line 7 in Algorithm 2). These influence estimations by PIToD do not require retraining
for each experience deletion, unlike the LOO method.

Implementation details for PIToD. For the experiments in Sections 5 and 6, each mask element
is initialized to 0 or 1, drawn from a discrete uniform distribution, to minimize overlap between
the masks (see Appendix B for details). Additionally, we implemented PIToD using Soft Actor-
Critic (Haarnoja et al., 2018b) for these experiments (see Appendix C for details).

5 EVALUATIONS FOR PITOD

In the previous section, we introduced PIToD, a method that efficiently estimates the influence of
experiences. In this section, we evaluate its accuracy in influence estimation (Section 5.1) and its
computational efficiency (Section 5.2).

5.1 HOW ACCURATELY DOES PITOD ESTIMATE THE INFLUENCE OF EXPERIENCES?
EVALUATIONS WITH SELF-INFLUENCE

In this section, we evaluate how accurately PIToD estimates the influence of experiences by focusing
on their self-influence. Self-influence is the influence of an experience on prediction performance
using that same experience. We define self-influences on policy evaluation and on policy improve-
ment. The self-influence of an experience ei := (s, a, r, s′, i) on policy evaluation is

Lpe,i(Qϕ,wi
)− Lpe,i(Qϕ,mi

), (8)

where Lpe,i(Q) =
(
r + γQϕ̄,mi

(s′, a′)−Q(s, a)
)2

, a′ ∼ πθ,mi
(·|s′).

Here, Lpe,i represents the temporal difference error based on ei. The self-influence of ei on policy
improvement is

Lpi,i(πθ,wi
)− Lpi,i(πθ,mi

), where Lpi,i(π) = Qϕ,mi
(s, a′), a′ ∼ π(·|s). (9)

Here, Lpi,i represents the Q-value estimate based on ei.

We evaluate whether PIToD has correctly estimated the influence of experiences by examining the
signs (positive or negative) of the values of Eq. 8 and Eq. 9. If PIToD has correctly estimated the
influence of experiences, the value of Eq. 8 should be positive. Qϕ,mi

is optimized by PIToD to min-
imize Lpe,i (line 5 in Algorithm 2), while Qϕ,wi

is not. Therefore, Lpe,i(Qϕ,mi
) ≤ Lpe,i(Qϕ,wi

),
implying that Eq. 8 ≥ 0. Conversely, if PIToD has correctly estimated, the value of Eq. 9 should
be negative. πθ,mi

is optimized by PIToD to maximize Lpi,i (line 6 in Algorithm 2), while πθ,wi
is

not. Therefore, Lpi,i(πθ,mi
) ≥ Lpi,i(πθ,wi

), which implies that Eq. 9 ≤ 0.

We periodically evaluate the ratio of experiences for which PIToD has correctly estimated self-
influence in the MuJoCo environments (Todorov et al., 2012). The MuJoCo tasks for this evaluation
are Hopper, Walker2d, Ant, and Humanoid. In this evaluation, 5000 policy iterations (i.e., lines 3–6
of Algorithm 2) constitute one epoch, with 125 epochs allocated for Hopper and 300 epochs for the
others. At each epoch, we (i) calculate the self-influence (Eq. 8 and Eq. 9) of experiences stored in
the replay buffer and (ii) record the ratio of experiences for which PIToD has correctly estimated
self-influence.

Evaluation results (Figure 3) show that the ratio of experiences for which the self-influence (Eq. 8
and Eq. 9) is correctly estimated exceeds the chance rate of 0.5. For self-influence on policy evalu-
ation (Eq. 8), the ratio of correctly estimated experiences is higher than 0.9 across all environments.
Furthermore, for self-influence on policy improvement (Eq. 9), the ratio of correctly estimated expe-
riences exceeds 0.7 in Hopper, 0.8 in Walker2d and Ant, and 0.9 in Humanoid. These results suggest
that PIToD estimates the influence of experiences more accurately than random estimation.

Figure 3 also shows that in policy improvement, the ratio of correctly estimated experiences tends
to be higher in higher-dimensional environments (Hopper < Walker = Ant < Humanoid). This
suggests that the policy tends to fit more significantly to each experience in higher-dimensional en-
vironments. Additionally, in both policy evaluation and improvement, the ratio gradually decreases
as the epoch progresses. As the epoch progresses, the ratio of experiences to the policy and Q-
network size increases. We hypothesize that this makes tracking the influence of each experience
more difficult.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio

policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 3: The ratio of experiences for which PIToD correctly estimated self-influence. The left-
hand figure displays this ratio in policy evaluation cases, where a positive self-influence value (i.e.,
Eq. 8 ≥ 0) is correct. The right-hand figure displays the ratio in policy improvement cases, where a
negative self-influence value (i.e., Eq. 9 ≤ 0) is correct. In both figures, the vertical axis represents
the ratio of correctly estimated experiences, and the horizontal axis shows the number of epochs. In
both cases, the ratio of correctly estimated experiences surpasses the chance rate of 0.5.

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

0

1

2

3

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

0.2

0.4

0.6

0.8

1.0

1.2

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

0

1

2

3

4

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

0.25

0.50

0.75

1.00

1.25

1.50

In
flu

en
ce

×108

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

4

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

6

4

2

0

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

1.25

1.00

0.75

0.50

0.25

0.00

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

5

4

3

2

1

0

In
flu

en
ce

×102

(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 4: Distribution of self-influence on policy evaluation and policy improvement. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences to
1.0 for the most recent experiences. This index corresponds to the normalized i used in Algorithm 2.
The horizontal axis represents the number of epochs. The color bar represents the value of self-
influence. Interpretation of this figure: For example, if the value of self-influence for ei in policy
evaluation cases is 2 · 108, this indicates that the value of Lpe,i(Qϕ,wi

) is 2 · 108 larger than that
of Lpe,i(Qϕ,mi

). Key insight: In policy evaluation, experiences with high self-influence tend to
concentrate on older ones (with smaller normalized experience indexes) as the epochs progress.

Supplementary analysis. How are experiences that exhibit significant self-influence distributed?
Figure 4 shows the distribution of self-influence across experiences. From the figure, we see that
in policy evaluation, the self-influence of older experiences (with smaller normalized experience
indexes) becomes more significant as the epoch progresses. Conversely, for policy improvement,
we observe no clear pattern in the distribution of influential experiences.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0 100 200 300
epoch

0

1

2

3

4
tim

e
(in

 se
co

nd
s)

1e7
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

tim
e

(in
 se

co
nd

s)

1e5
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 5: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO. The left
figure shows the time for both PIToD and LOO. The right figure shows the time for PIToD alone to
allow readers to see the details of PIToD’s time more clearly. The results show that the time required
for LOO increases quadratically with the number of epochs, whereas the time required for PIToD
increases linearly.

5.2 HOW EFFICIENTLY DOES PITOD ESTIMATE THE INFLUENCE OF EXPERIENCES?
EVALUATION FOR COMPUTATIONAL TIME

We evaluate the computational time required for influence estimation with PIToD and compare it
to the estimated time for LOO. To measure the computational time for PIToD, we run the method
under the same settings as in the previous section and record its wall-clock time. For comparison,
we also evaluate the estimated time required for influence estimation using LOO (Section 3). To
estimate the time for LOO, we record the average time required for one policy iteration with PIToD
and multiply this by the total number of policy iterations required for LOO 1.

The evaluation results (Figure 5) show that PIToD significantly reduces computational time com-
pared to LOO. The time required for LOO increases quadratically as epochs progress, taking, for
example, more than 4 · 107 seconds (≈ 462 days) up to 300 epochs in Humanoid. In contrast, the
time required for PIToD increases linearly, taking about 1.4·105 seconds (≈ one day) for 300 epochs
in Humanoid.

6 APPLICATION OF PITOD: AMENDING POLICIES AND Q-FUNCTIONS BY
DELETING NEGATIVELY INFLUENTIAL EXPERIENCES

In the previous section, we demonstrated that PIToD can accurately and efficiently estimate the
influence of experiences. What scenarios might benefit from this capability? In this section, we
demonstrate how PIToD can be used to amend underperforming policies and Q-functions.

We amend policies and Q-functions by deleting experiences that negatively influence performance.
We evaluate the performance of policies and Q-functions based respectively on returns and Q-
estimation biases (Fujimoto et al., 2018; Chen et al., 2021a). The influence of an experience ei
on the return, Lret, is evaluated as follows:

Lret(πθ,wi)− Lret(πθ), where Lret(π) = Eat∼π(·|st)

[∑
t=0

γtr(st, at)

]
. (10)

Here, st is sampled from an environment. In our setup, Lret is estimated using Monte Carlo returns
collected by rolling out policies πθ,wi

and πθ. The influence of ei on Q-estimation bias, Lbias, is
1The total number of policy iterations for LOO is I2, as discussed in Section 3. However, in the practical

implementation of PIToD used in our experiments, we divide the experiences in the buffer into groups of
5000 experiences and estimate the influence of each group (Appendix C). For a fair comparison with this
implementation, we use I2

5000
instead of I2 as the total number of policy iterations for LOO.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 100 200 300
epoch

0

2

4

6
re

tu
rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 6: Results of policy amendments (left) and Q-function amendments (right) in underperform-
ing trials. The solid lines represent the post-amendment performances: return for the policy (left;
i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the
pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)). These fig-
ures demonstrate that the amendments improve returns in Hopper and Walker2d, and reduce biases
in Ant and Humanoid.

evaluated as follows:

(11)
Lbias(Qϕ,wi

)− Lbias(Qϕ),

where Lbias(Q) = Eat∼πθ(·|st),at′∼πθ(·|st′)

∑
t=0

∣∣∣Q(st, at)−
∑

t′=t γ
t′r(st′ , at′)

∣∣∣
|
∑

t′=t γ
t′r(st′ , at′)|

 .

Here, Lbias quantifies the discrepancy between the estimated and true Q-values using their L1 dis-
tance. Based on Eq. 10 and Eq. 11, we identify and delete the experience e∗ that has the strongest
negative influence on them. We apply w∗, which maximizes Eq. 10, to the policy to delete e∗. Ad-
ditionally, we apply w∗, which minimizes Eq. 11, to the Q-function to delete e∗. The algorithmic
description of our amendment process is presented in Algorithm 4 in Appendix D.

We evaluate the effect of the amendments on trials in which the policy and Q-function underperform.
We run ten learning trials with the amendments (Algorithm 4) and evaluate (i) Lret(πθ,w∗) for the
two trials in which the policy scores the lowest returns Lret(πθ) and (ii) Lbias(Qϕ,w∗) for the two
trials in which the Q-function scores the highest biases Lbias(Qϕ). The average scores of Lret(πθ,w∗)
and Lbias(Qϕ,w∗) for these underperforming trials are shown in Figure 6. The average scores of
Lret(πθ,w∗) and Lbias(Qϕ,w∗) for all ten trials are shown in Figure 11 in Appendix E.

The results of the policy and Q-function amendments (Figure 6) show that performance is improved
through the amendments. From the policy amendment results (left part of Figure 6), we see that the
return (Lret) is significantly improved in Hopper and Walker. For example, in Hopper, the return
before the amendment (the blue dashed line) is approximately 1000, but after the amendment (the
blue solid line), it exceeds 3000. Additionally, from the Q-function amendment results (right part of
Figure 6), we see that the Q-estimation bias (Lbias) is significantly reduced in Ant and Humanoid.
For example, in Humanoid, the estimation bias of the Q-function before the amendment (the red
dashed line) is approximately 30 during epochs 250–300, but after the amendment, it is reduced to
approximately 20 (the red solid line).

What kinds of experiences negatively influence policy or Q-function performance? Policy perfor-
mance: Some experiences negatively influencing returns are associated with stumbling or falling.
An example of such experiences in Hopper is shown in the video “PIToD-Hopper.mp4,” which is
included in the supplementary material. Q-function performance: Experiences negatively influ-
encing Q-estimation bias tend to be older experiences. The lower part of Figure 12 in Appendix E
shows the distribution of influences on Q-estimation bias in each environment. For example, in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Humanoid environment, we observe that older experiences often have a negative influence (high-
lighted in darker colors).

Additional experiments. We analyzed the correlation between the experience influences (i.e.,
Eq. 10 and Eq. 11) (Appendix F). Additionally, we performed amendments for other environments
and RL agents using PIToD (Appendix G and Appendix H).

7 RELATED WORK

Influence estimation in supervised learning. Our research builds upon prior studies that esti-
mate the influence of data within the supervised learning (SL) regime. In Section 4, we introduced
our method for estimating the influence of data (i.e., experiences) in RL settings. Methods that
estimate the influence of data have been extensively studied in the SL research community. Typ-
ically, these methods require SL loss functions that are twice differentiable with respect to model
parameters (e.g., Koh & Liang (2017); Yeh et al. (2018); Hara et al. (2019); Koh et al. (2019);
Guo et al. (2020); Chen et al. (2021b); Schioppa et al. (2022)). However, these methods are not
directly applicable to our RL setting, as such SL loss functions are unavailable. In contrast, turn-
over dropout (ToD) (Kobayashi et al., 2020) estimates the influence without requiring differentiable
SL loss functions. We extended ToD for RL settings (Sections 4, 5, and 6). For this extension of
ToD, we provided a theoretical justification (Appendix A) and considered practical implementations
(Appendix C).

Influence estimation in off-policy evaluation (OPE). A few studies in the OPE community have
focused on efficiently estimating the influence of experiences (Gottesman et al., 2020; Lobo et al.,
2022). These studies are limited to estimating the influence on policy evaluation using nearest-
neighbor or linear Q-functions. In contrast, our study estimates influence on a broader range of
performance metrics (e.g., return or Q-estimation bias) using neural-network-based Q-functions and
policies.

Prioritized experience replay (PER). In PER, the importance of experiences is estimated to pri-
oritize experiences during experience replay. The importance of experiences is estimated based
on criteria such as TD-error (Schaul et al., 2016; Fedus et al., 2020) or on-policyness (Novati &
Koumoutsakos, 2019; Sun et al., 2020). Some readers might think that PER resembles our method.
However, PER fundamentally differs from our method, as it cannot efficiently estimate or disable
the influence of experiences in hindsight.

Interpretable RL. Our method (Section 4) estimates the influence of experiences, thereby providing
a certain type of interpretability. Previous studies in the RL community have proposed interpretable
methods based on symbolic (or relational) representation (Džeroski et al., 2001; Yang et al., 2018;
Lyu et al., 2019; Garnelo et al., 2016; Andersen & Konidaris, 2017; Konidaris et al., 2018), inter-
pretable proxy models (e.g., decision trees) (Degris et al., 2006; Liu et al., 2019; Coppens et al.,
2019; Zhu et al., 2022), saliency explanation (Zahavy et al., 2016; Greydanus et al., 2018; Mott
et al., 2019; Wang et al., 2020; Anderson et al., 2020), and sparse kernel models (Dao et al., 2018) 2.
Unlike these studies, our study proposes a method to estimate the influence of experiences on RL
agent performance. This method helps us, for example, identify influential experiences when RL
agents perform poorly, as demonstrated in Section 6.

8 CONCLUSION AND LIMITATIONS

In this paper, we proposed PIToD, a policy iteration (PI) method that efficiently estimates the influ-
ence of experiences (Section 4). We demonstrated that PIToD (i) accurately estimates the influence
of experiences (Section 5.1), and (ii) significantly reduces the time required for influence estimation
compared to the leave-one-out (LOO) method (Section 5.2). Furthermore, we applied PIToD to
identify and delete negatively influential experiences, which improved the performance of policies
and Q-functions (Section 6).

2For a comprehensive review of interpretable RL, see Milani et al. (2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

We believe that our work provides a solid foundation for understanding the relationship between
experiences and RL agent performance. However, it has several limitations. Details on these limita-
tions and directions for future work are summarized in Appendix I.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In Proc.
NeurIPS, 2022.

Garrett Andersen and George Konidaris. Active exploration for learning symbolic representations.
In Proc. NeurIPS, 2017.

Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed
Irvine, Souti Chattopadhyay, Matthew Olson, Alan Fern, and Margaret Burnett. Mental models
of mere mortals with explanations of reinforcement learning. ACM Transactions on Interactive
Intelligent Systems, 10(2):1–37, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. arXiv preprint arXiv:2302.02948, 2023.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applica-
tions. Applied Sciences, 2021.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double Q-
learning: Learning fast without a model. In Proc. ICLR, 2021a.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
data relevance analysis for interpreting deep neural networks. In Proc. AAAI, 2021b.

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, and Ann Nowe. Distilling deep reinforce-
ment learning policies in soft decision trees. In Proc. IJCAI Workshop on Explainable Artificial
Intelligence, 2019.

Giang Dao, Indrajeet Mishra, and Minwoo Lee. Deep reinforcement learning monitor for snapshot
recording. In proc. ICMLA, 2018.

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the structure of factored
markov decision processes in reinforcement learning problems. In Proc. ICML, 2006.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Proc. ICLR, 2023.

Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine
learning, 43(1):7–52, 2001.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In Proc. ICML, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proc. ICML, 2018.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement
learning. arXiv preprint arXiv:1609.05518, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo Celi, Emma Brunskill, and Fi-
nale Doshi-Velez. Interpretable off-policy evaluation in reinforcement learning by highlighting
influential transitions. In Proc. ICML, 2020.

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding
atari agents. In Proc. ICML, 2018.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proc. ICML, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, and Pieter Abbeel. Soft actor-critic algorithms and applica-
tions. arXiv preprint arXiv:1812.05905, 2018b.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with SGD.
In Proc. NeurIPS, 2019.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proc. AAAI, 2018.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout Q-functions for doubly efficient reinforcement learning. In Proc. ICLR, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–
1476, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.

Sosuke Kobayashi, Sho Yokoi, Jun Suzuki, and Kentaro Inui. Efficient estimation of influence of a
training instance. arXiv preprint arXiv:2012.04207, 2020.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proc. ICML, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. In Proc. NeurIPS, 2019.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial Intelligence
Research, 61:215–289, 2018.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Proc. NeurIPS, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293–321, 1992.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
learning with linear model U-trees. In Proc. ECML-PKDD, 2019.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe rein-
forcement learning. Journal of Data-centric Machine Learning Research, 2024.

Elita Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin, and Himabindu Lakkaraju. Data poi-
soning attacks on off-policy policy evaluation methods. In proc. UAI, 2022.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In Proc. AAAI, 2019.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learn-
ing: A survey and comparative review. ACM Comput. Surv., 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.
Towards interpretable reinforcement learning using attention augmented agents. In Proc NeurIPS,
2019.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of rein-
forcement learning. In Proc. ICML, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In Proc. ICML, 2022.

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In Proc.
ICML, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Proc. ICLR, Puerto Rico, 2016.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In Proc. AAAI, 2022.

Laura M. Smith, J. Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey
Levine. Learning and adapting agile locomotion skills by transferring experience. In Proc. RSS,
2023.

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experience replay. In Proc. AAAI, 2020.

Dhruva Tirumala, Thomas Lampe, Jose Enrique Chen, Tuomas Haarnoja, Sandy Huang, Guy Lever,
Ben Moran, Tim Hertweck, Leonard Hasenclever, Martin Riedmiller, Nicolas Heess, and Markus
Wulfmeier. Replay across experiments: A natural extension of off-policy RL. In Proc. ICLR,
2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In Proc. IROS, pp. 5026–5033. IEEE, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm˙control: Software and tasks for
continuous control. Software Impacts, 2020. ISSN 2665-9638.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Yuyao Wang, Masayoshi Mase, and Masashi Egi. Attribution-based salience method towards inter-
pretable reinforcement learning. In Proc. AAAI–MAKE, 2020.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. PEORL: integrating symbolic planning
and hierarchical reinforcement learning for robust decision-making. In Proc. IJCAI, 2018.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. In Proc. NeurIPS, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Proc. CoRL, 2020.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding DQNs. In
Proc. ICML, 2016.

Yuanyang Zhu, Xiao Yin, and Chunlin Chen. Extracting decision tree from trained deep reinforce-
ment learning in traffic signal control. IEEE Transactions on Computational Social Systems,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A IMPORTANT THEORETICAL PROPERTY OF PITOD

In this section, we theoretically prove the following property of PIToD: “Assuming that the policy
πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions Qϕ,wi and πθ,wi ,
which use the flipped mask wi, are unaffected by the gradients associated with experience ei.” This
property is important as it justifies the use of the flipped mask wi to estimate the influence of ei in
PIToD.

First, we define key terms for our theoretical proof:
Experience: We define an experience ei as ei = (s, a, r, s′, i), where s is the state, a is the action,
r is the reward, s′ is the next state, and i is a unique identifier. We also define another experience as
ei′ , where i′ is a unique identifier.
Parameters: At the j-th iteration of Algorithm 2 (lines 3–6), we define the parameters of the Q-
function and policy that are not dropped by the mask mi′ as ϕj,mi′ and θj,mi′ , respectively. Addi-
tionally, We define parameters that are dropped by mi′ as ϕj,wi′ and θj,wi′ .
Policy and Q-function: We define the policy and Q-function, where all parameters except ϕj,mi′

and θj,mi′ are set to zero (i.e., dropped), as Qϕj,m
i′

and πθj,m
i′

. Similarly, the policy and Q-function,
where all parameters except ϕj,wi′ and θj,wi′ are zero, are defined as Qϕj,w

i′
and πθj,w

i′
.

Next, we introduce two assumptions required for our proof. The first assumption is for the policy
and Q-function with masks.

Assumption 1. Qϕj,m
i′

and πθj,m
i′

can be replaced by Qϕ′
j,m

i′
and πθ′

j,m
i′

, whose parameters

ϕ′
j,mi′

and θ′j,mi′
satisfy the following gradient properties:

The property of ϕ′
j,mi′

is as follows:

∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2

, a′ ∼ πθ′
j,mi

(·|s′)

= ∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2
· I(i = i′), a′ ∼ πθ′

j,mi
(·|s′).

Here, I is an indicator function that returns 1 if the specified condition (i.e., i = i′) is true and 0
otherwise.

The property of θ′j,mi′
is as follows:

∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a), a ∼ πθ′

j,mi
(·|s)

= ∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a) · I(i = i′), a ∼ πθ′

j,mi
(·|s).

Intuitively, Assumption 1 can be interpreted as “Qϕj,m
i′

and πθj,m
i′

are dominantly influenced by
the experience ei′ (i.e., the influence of other experiences is negligible).”

The second assumption is for ϕj,wi′ and θj,wi′ :

Assumption 2. For the gradient with respect to ϕj,wi′ , the following equation holds:

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
, a′ ∼ πθ′

j,mi
(·|s′)

= ∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′). (12)

For the gradient with respect to θj,wi′ , the following equation holds:

∇θj,w
i′
Qϕj+1,mi

(s, a), a ∼ πθj−1,mi
(·|s)

= ∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s). (13)

Intuitively, Assumption 2 can be interpreted as “When updating parameters by using ei, the param-
eters dropped out (i.e., ϕj,wi

and θj,wi
) are not influenced by the gradient that is calculated with

ei.”

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Based on the above assumptions, we will derive the property of PIToD described at the beginning
of this section 3. Some readers may think that Assumption 2 corresponds to this property. However,
in addition to Assumption 2, we must guarantee that the components used to create target signals
for Eq. 12 and Eq. 13 (i.e., the components highlighted in red below) are also not influenced by ei
when i ̸= i′. Otherwise, ϕj,wi

and θj,wi
might still be updated by using components influenced by

ei even when i ̸= i′.

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′).

∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s).

Based on Assumption 1, we can ensure that these red-highlighted components are not influenced by
ei when i ̸= i′.

Based on Assumption 1, the following theorem holds:

Theorem 1. Given that, for j > 0, the parameters ϕ′
j,mi′

and θ′j,mi′
are updated in the same way

as the original parameters ϕj,mi′ and θj,mi′ , according to Eq. 5 and Eq. 6, the following equation
holds:

ϕ′
j,mi′

← ϕ′
j−1,mi′

−
∑

(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′).

θ′j,mi′
← θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s).

Proof.

ϕ′
j,mi′

← ϕ′
j−1,mi′

−∇ϕ′
j−1,m

i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2

,

a′ ∼ πθ′
j−1,mi

(·|s′)
(1)
= ϕ′

j−1,mi′
−

∑
(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

θ′j,mi′
← θ′j−1,mi′

−∇θ′
j−1,m

i′

∑
(s,a,r,s′,i)

Qϕ′
j,mi

(s, a), a ∼ πθ′
j−1,mi

(·|s)

(1)
= θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s)

(1) Apply Assumption 1.

This theorem implies that Qϕ′
j,m

i′
and πθ′

j,m
i′

are dominantly influenced by the experience ei′ for
j > 0. Thus, if the red-highlighted components above can be replaced with these components, we
can say that ϕj,wi

and θj,wi
are not influenced by gradients depending on ei in both cases of i = i′

and i ̸= i′. Below, we will show that such a replacement is doable.

Based on Assumptions 1 and 2, the following theorem holds:

3“Assuming that the policy πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions
Qϕ,wi and πθ,wi , which use the flipped mask wi, are unaffected by the gradients associated with experience
ei.”

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Theorem 2. For any j > 0, the parameters ϕj,wi′ and θj,wi′ in Algorithm 2 are updated as follows:

ϕj,wi′ ← ϕj−1,wi′ −
∑

(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

θj,wi′ ← θj−1,wi′ −
∑

(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

Proof. For ϕj,wi′ ,

ϕj,wi′ ← ϕj−1,wi′ −∇ϕj−1,w
i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
,

a′ ∼ πθj−1,mi
(·|s′)

(1)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθj−1,mi
(·|s′)

(2)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

(1) Apply Assumption 2. (2) Apply Assumption 1.

Similarly, for θj,wi′ ,

θj,wi′ ← θj−1,wi′ −∇θj−1,w
i′

∑
(s,a,r,s′,i)

Qϕj,mi
(s, a), a ∼ πθj−1,mi

(·|s)

(1)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕj,mi

(s, a) · I(i ̸= i′), a ∼ πθj−1,mi
(·|s)

(2)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

This theorem implies that:

(i) When i = i′, neither θj,wi′ nor ϕj,wi′ is influenced by gradients dependent on experience
ei′ .

(ii) When i ̸= i′, θj,wi′ and ϕj,wi′ are updated without depending on the components that
might be influenced by ei′ .

Therefore, we conclude that “Qϕ,wi′ and πθ,wi′ , and consequently Qϕ,wi
and πθ,wi

, are not influ-
enced by the gradients related to the experiences ei′ and ei, respectively.”

B ANALYZING AND MINIMIZING OVERLAP IN ELEMENTS OF MASKS

In our method (Section 4), each experience is assigned a mask. If there is significant overlap in the
elements of different masks, one experience could significantly interfere with other experiences. In
this section, we discuss (i) the expected overlap between the masks of experiences ei and ei′ and (ii)
the dropout rate that minimizes this overlap.

For discussion, we introduce the following definitions and assumptions. We define the mask size
as M , and the number of overlapping elements between masks as m. We assume that each mask

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

element is independently initialized as 0 with probability p (i.e., dropout rate) and 1 with probability
1− p.

Below, we derive the probability and expected number of overlaps in the mask elements.
Probability of m overlaps. First, we calculate the probability that a specific position in the masks
of ei and ei′ has the same value. The probability that both elements of the masks have 0 at the same
position is p · p = p2. Similarly, the probability that both elements have 1 at the same position is
(1− p) · (1− p) = (1− p)2. Therefore, the probability q that the values at a specific position in the
masks are the same is

q = p2 + (1− p)2 = 2p2 − 2p+ 1. (14)

The probability that the masks have m overlaps follows the binomial distribution:(
M

m

)
qm(1− q)M−m. (15)

Expected number of overlaps. Using Eq.14 and Eq.15, the expected number of overlaps can be
represented as

(16)
M∑

k =0

k

(
M

k

)
qk(1− q)M−k = Mq

= M(2p2 − 2p+ 1).

For better understanding, we show a plot of Eq. 16 values with respect to p and M in Figure 7.

200 400 600 800 1000
mask size M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dr
op

ou
t r

at
e

49.6

54.4

59.2

64.0

68.8

73.6

78.4

83.2

88.0

ov
er

la
p

ra
te

 (%
)

Figure 7: The distribution of the expected number of overlaps (Eq. 16) with respect to the dropout
rate p and mask size M . For clarity, we plot the expected overlap rate (m/M) instead of the expected
number of overlaps m.

The dropout rate of p = 0.5 minimizes the expected number of overlaps. Since Eq. 16 is convex
in p, the value of p that minimizes the expected overlap is determined by solving dM(2p2−2p+1)

dp = 0.
As a result, we find that p = 0.5 minimizes the expected overlap. With p = 0.5, we can expect a
50% overlap between the two masks. Figure 8 shows the probability of the overlap rate m/M with
p = 0.5 for various values of M . From this figure, we see that the probability of having a between
0-50% overlap is very high, while the probability of having a between 50-100% overlap is very low,
regardless of the value of M .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

200 400 600 800 1000
mask size M

20

40

60

80

100

ov
er

la
p

ra
te

 (%
)

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

Pr
ob

ab
ilit

y

Figure 8: The probability of the overlap rate m/M with p = 0.5 for various values of M .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 3 SAC version of PI with group mask in PIToD

1: Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, and an empty replay buffer B.
2: for i′ = 0, ..., I do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′; Define an experience using the

group identifier i′′ ← ⌊i′/5000⌋ as ei′′ = (s, a, r, s′, i′′); B ← B
⋃
{ei′′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Compute target yi:

yi = r + γ

(
min
j=1,2

Qϕ̄j ,mi
(s′, a′)− α log πθ,mi

(a′|s′)
)
, a′ ∼ πθ,mi

(·|s′).

6: for j = 1, 2 do
7: Update ϕj with gradient descent using

∇ϕj

∑
(s,a,r,s′,i)

(
Qϕj ,mi(s, a)− yi

)2
.

8: Update target networks with ϕ̄j ← ρϕ̄j + (1− ρ)ϕj .
9: Update θ with gradient ascent using

∇θ

∑
(s,a,r,s′,i)

(
1

2

2∑
i=1

Qϕj ,mi(s, aθ,mi)− α log πθ,mi(a|s)

)
, a, aθ,mi ∼ πθ,mi(·|s).

C PRACTICAL IMPLEMENTATION OF PITOD FOR SECTION 5 AND SECTION 6

In this section, we describe the practical implementation of PIToD. Specifically, we explain (i) the
soft actor-critic (SAC) (Haarnoja et al., 2018b) version of PI with a mask, (ii) group mask, and (iii)
key implementation decisions to improve learning. This practical implementation is used in our
experiments (Section 5 and Section 6).

(i) SAC version of PI with a mask. The SAC version of PI with masks is presented in Algorithm 3.
The mask is applied to the policy and Q-functions during policy evaluation (lines 5–8) and policy
improvement (line 9). For the policy evaluation, two Q-functions Qϕj

, where j ∈ {1, 2}, are updated
as:

ϕj ← ϕj

−∇ϕj
Eei=(s,a,r,s′,i)∼B, a′∼πθ,mi

(·|s′)

[(
r+ γ

(
min
j′=1,2

Qϕ̄j′ ,mi
(s′, a′)− α log πθ,mi

(a′|s′)
)

−Qϕj ,mi
(s, a)

)2
]
.

(17)

This is a variant of Eq. 1 that uses clipped double Q-learning with two target Q-functions Qϕ̄j′ ,mi

and entropy bonus α log πθ,mi
(a′|s′). Additionally, for policy improvement, policy πθ is updated as

θ ← θ +∇θEei=(s,i)∼B, aθ,mi
,a∼πθ,mi

(·|s)

1

2

2∑
j=1

Qϕj ,mi
(s, aθ,mi

)− α log πθ,mi
(a|s)

 .

(18)

This is a variant of Eq. 2 that uses the entropy bonus.

(ii) Group Mask. In our preliminary experiments, we found that the influence of a single expe-
rience on performance was negligibly small. To examine more significant influences, we shifted
our focus from the influence of individual experiences to grouped experiences. To estimate the in-
fluence of grouped experiences, we organize experiences into groups and assign a mask to each
group. Specifically, we treated 5000 experiences as a single group. This grouping process was im-
plemented by assigning a group identifier to each experience, calculated as i′′ ← ⌊i′/5000⌋ (line 3
of Algorithm 3).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 9: Network architectures for policy and Q-function. The policy network takes states as
inputs and outputs the parameters of the policy distribution (mean and variance for a Gaussian
distribution). The Q-function network takes state-action pairs as inputs and outputs Q-estimates.
These networks incorporate macro-block dropout and layer normalization. Macro-block dropout.
Our architecture utilizes an ensemble of 20 multi-layer perceptrons (MLPs), applying dropout with
masks (and flipped masks) to each MLP’s output. Layer normalization. Layer normalization is
applied after every activation (ReLU) layer in each MLP.

(iii) Key implementation decisions to improve learning. In our preliminary experiments, we
found that directly applying masks and flipped masks to dropping out the parameters of the policy
and Q-function degrades learning performance. To address this issue, we implemented macro-block
dropout and layer normalization (Figure 9). Macro-block dropout. Instead of applying dropout to
individual parameters, we apply dropout at the block level. Specifically, we group several parameters
into a “block” and apply dropout to these blocks. In our experiment, we used an ensemble of 20
multi-layer perceptrons (MLPs) for the policy and Q-function, and treated each MLP’s parameters
as a single block. Layer normalization. We applied layer normalization (Ba et al., 2016) after each
activation (ReLU) layer. Recent works show that layer normalization improves learning in a wide
range of RL settings (e.g., Hiraoka et al. (2022); Ball et al. (2023); Nauman et al. (2024)).

To evaluate the effect of our key implementation decisions, we compare four implementations of
Algorithm 3:

1. PIToD applies vanilla dropout with masks to each parameter of the policy and Q-function.
2. PIToD+LN applies layer normalization to the policy and Q-function.
3. PIToD+MD applies macro-block dropout to the policy and Q-function.
4. PIToD+LN+MD applies layer normalization and macro-block dropout to the policy and Q-

function.

These implementations are compared based on the empirical returns obtained in test episodes.

The comparison results (Figure 10) indicate that the implementation with our key decisions
(PIToD+LN+MD) achieves the highest returns in each environment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

0 25 50 75 100 125
epoch

0

1

2

3

re
tu

rn

1e3 Hopper-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3 Walker2d-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

4

2

0

2

4

6

re
tu

rn

1e3 Ant-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

1

2

3

4

re
tu

rn

1e3 Humanoid-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

Figure 10: Ablation study results. The vertical axis represents returns, and the horizontal axis rep-
resents epochs. In each environment, the implementation with our key decisions (PIToD+LN+MD)
achieves the highest returns.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

D ALGORITHM FOR AMENDING POLICY AND Q-FUNCTION USED IN
SECTION 6

Algorithm 4 Amendment of policy and Q-function using influence estimates. Lines 5–7 are for
policy amendment. Lines 8–10 are for Q-function amendment.

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B. Set the
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Execute environment interaction, store experiences, and perform policy iteration as per lines

3–6 of Algorithm 2.
4: if i′%Iie = 0 then
5: Identify w∗ for policy as follows:

w∗ = arg max
wi

Lret (πθ,wi
)− Lret (πθ) .

6: if Lret (πθ,w∗)− Lret (πθ) > 0 then
7: Evaluate the return of the amended policy Lret (πθ,w∗).
8: Identify w∗ for Q-function as follows:

w∗ = arg min
wi

Lbias (Qϕ,wi
)− Lbias (Qϕ) .

9: if Lbias (Qϕ,w∗)− Lbias (Qϕ) < 0 then
10: Evaluate the Q-estimation bias of the amended Q-function Lbias (Qϕ,w∗).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

E SUPPLEMENTARY EXPERIMENTAL RESULTS FOR SECTION 6

0 100 200 300
epoch

0

2

4

6

re
tu

rn
1e3

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.0

0.5

1.0

1.5

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 11: Results of policy amendments (left) and Q-function amendments (right) for all ten tri-
als. The solid lines represent the post-amendment performances: return for the policy (left; i.e.,
Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the pre-
amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

3.0

2.5

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

3.0

2.5

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

2.0

1.5

1.0

0.5

In
flu

en
ce

×103

(a) Distribution of influence on return (Eq. 10).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

0

2

4

6

8

In
flu

en
ce

×10 2

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

1

0

1

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

3

2

1

0

1

2

3

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 11).

Figure 12: Distribution of influence on return and Q-estimation bias for all ten trials. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences
to 1.0 for the most recent experiences. The horizontal axis represents the number of epochs. The
color bar represents the value of influence.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

en
vi

ro
nm

en
t i

nt
er

ac
tio

n

1e6
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 13: The number of environment interactions required for policy amendments in Section 6.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

F ANALYSIS OF THE CORRELATION BETWEEN THE INFLUENCES OF
EXPERIENCES

In Sections 5 and 6, we estimated the influences of experiences on performance (e.g., return or Q-
estimation bias). In Appendix B, we discussed how the dropout rate of masks elements relates to the
overlap between the masks. In this section, we analyze two points: (i) the correlation between the
influences of experiences within each performance metric, and (ii) how the dropout rate of masks
affects this correlation 4.

We calculate the correlation between the experience influences for each performance metric used
in Sections 5 and 6. In these sections, we estimated the influences of experiences on policy evalu-
ation (Lpe,i), policy improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias). We treat the
influences of experiences on each metric at each epoch as a vector of random variables, where each
element represents the influence of a single experience. We calculate the Pearson correlation be-
tween these elements. The influence values observed in the ten learning trials are used as samples.
In the following discussion, we focus on the average value of the correlations between the pairs of
vector elements.

(i) The correlation between the influences of experiences. The correlation between the influences
of experiences is shown in Figure 14. The figure shows that the correlation tends to approach zero
as the number of epochs increases. For return and bias, the correlation converges to zero early in
the learning process, regardless of the environments. For policy evaluation and improvement, the
degree of correlation convergence varies significantly across environments.

0 100 200 300
epoch

2

0

2

4

av
er

ag
e

co
rre

la
tio

n

1e 1 policy evaluation
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

1

0

1

2

3

4

av
er

ag
e

co
rre

la
tio

n

1e 1 policy improvement
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

co
rre

la
tio

n

return
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

co
rre

la
tio

n

bias
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 14: Correlation between the influences of experiences on policy evaluation (Lpe,i), policy
improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias) for each epoch in each environment.
The vertical axis represents the average correlation of experience influences, ranging from -1.0 to
1.0. The horizontal axis represents the number of epochs.

(ii) The relationship between the correlation and the dropout rate. We evaluated the correlations
between the influences of experiences by varying the dropout rate of the masks. Specifically, we
evaluated the correlations using PIToD with four different dropout rates:
DR0.5: PIToD with a dropout rate of 0.5, which is the setting used in the main experiments of this
paper.
DR0.25: PIToD with a dropout rate of 0.25.
DR0.1: PIToD with a dropout rate of 0.1.
DR0.05: PIToD with a dropout rate of 0.05.
The correlations for these cases in the Hopper environment are shown in Figure 15. The results
imply that the impact of the dropout rate on the correlation depends significantly on the specific
performance metric. For instance, we do not observe a significant impact of the dropout rate in
policy evaluation or policy improvement. In contrast, for return, we observe that the correlation
increases as the dropout rate decreases.

4Note that we focus on analyzing the correlation independently for each performance metric and do not
examine correlations across different metrics.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

0 25 50 75 100 125
epoch

1

0

1

2

3

av
er

ag
e

co
rre

la
tio

n

1e 1 policy evaluation
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e

co
rre

la
tio

n

1e 1 policy improvement
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

co
rre

la
tio

n

return
DR0.5
DR0.25
DR0.1
DR0.05

0 25 50 75 100 125
epoch

0.2

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

co
rre

la
tio

n

bias
DR0.5
DR0.25
DR0.1
DR0.05

Figure 15: Correlation between the influences of experiences at each epoch in the Hopper environ-
ment. The vertical axis represents the average correlation of experience influences. The horizontal
axis represents the number of learning epochs. Each label in the legend corresponds to a dropout
rate for masks. For example, “DR0.5” means a dropout rate of 0.5 (half of the elements in each
mask are set to zero), and “DR0.1” means a dropout rate of 0.1 (10% of the elements in each mask
are set to zero).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

G AMENDING POLICIES AND Q-FUNCTIONS IN DM CONTROL
ENVIRONMENTS WITH ADVERSARIAL EXPERIENCES

In Section 6, we applied PIToD to amend policies and Q-functions in the MuJoCo (Todorov et al.,
2012) environments.

In this section, we apply PIToD to amend policies and Q-functions in DM control (Tunyasuvunakool
et al., 2020) environments with adversarial experiences. We focus on the DM control environments:
finger-turn hard, hopper-stand, hopper-hop, fish-swim, cheetah-run, quadruped-run, humanoid-run,
and humanoid-stand. In these environments, we introduce adversarial experiences. An adversarial
experience contains an adversarial reward r′, which is a reversed and magnified version of the orig-
inal reward r: r′ = −100 · r. These adversarial experiences are designed to (i) disrupt the agent’s
ability to maximize original rewards and (ii) have greater influence than other non-adversarial ex-
periences stored in the replay buffer. At 150 epochs (i.e., in the middle of training), the RL agent
encounters 5000 adversarial experiences. In these environments, we amend policies and Q-functions
as in Section 6.

The results of the policy and Q-function amendments (Figures 16 and 17) show that performance
is improved by the amendments. The policy amendment results (Figure 16) show that returns are
improved, particularly in fish-swim. Additionally, the Q-function amendment results (Figure 17)
show that the Q-estimation bias is significantly reduced in finger-turn hard, hopper-stand, hopper-
hop, fish-swim, cheetah-run, and quadruped-run.

0 100 200 300
epoch

0

2

4

6

8

re
tu

rn

1e2
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e2
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 16: Results of policy amendments in DM control environments with adversarial experiences.
The solid lines represent the post-amendment return for the policy (i.e., Lret(πθ,w∗)). The dashed
lines show the pre-amendment return (i.e., Lret(πθ)).

Can PIToD identify adversarial experiences? PIToD identifies adversarial experiences as (i)
strongly influential experiences for policy evaluation and (ii) positively influential experiences for
Q-estimation bias. Policy evaluation: Figure 18 shows the distribution of influences on policy
evaluation. We observe that adversarial experiences have a strong influence (highlighted in lighter
colors), except in humanoid-run. Q-estimation bias: Figure 19 shows the distribution of influences
on Q-estimation bias. Interestingly, we observe that adversarial experiences have a strong positive
influence (highlighted in lighter colors). Namely, these adversarial experiences contribute to reduc-
ing Q-estimation bias. However, after introducing adversarial experiences (i.e., after epoch 150),
we also observe experiences with a negative influence. We hypothesize that adversarial experiences
hinder the learning from other experiences.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0
bi

as

1e1
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0.0

0.2

0.4

0.6

0.8

1.0

bi
as

1e2
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 17: Results of Q-function amendments in DM control environments with adversarial expe-
riences. The solid lines represent the post-amendment bias for the Q-function (i.e., Lbias(Qϕ,w∗)).
The dashed lines show the pre-amendment bias (i.e., Lbias(Qϕ)).

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 finger-turn_hard

1

2

3

4

5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-stand

0.2

0.4

0.6

0.8

1.0

1.2

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-hop

2

4

6

8

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 fish-swim

0.5

1.0

1.5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 cheetah-run

0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 quadruped-run

0.5

1.0

1.5

2.0

2.5

In
flu

en
ce

×106

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-stand

0.00

0.25

0.50

0.75

1.00

1.25

1.50
In

flu
en

ce
×105

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d

ex
pe

rie
nc

e
in

de
x 1e 1 humanoid-run

0.00

0.25

0.50

0.75

1.00

1.25

In
flu

en
ce

×105

Figure 18: Distribution of influence on policy evaluation (Eq. 8) in DM control environments with
adversarial experiences.

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 finger-turn_hard

0

2

4

6

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-stand

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-hop

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 fish-swim

0.00

0.25

0.50

0.75

1.00

1.25

In
flu

en
ce

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 cheetah-run

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 quadruped-run

0.5

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×101

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-stand

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×10 1

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-run

0

1

2

3

In
flu

en
ce

×10 2

Figure 19: Distribution of influence on Q-estimation bias (Eq. 11) in DM control environments with
adversarial experiences.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

G.1 ADDITIONAL EXPERIMENTAL IN DM CONTROL ENVIRONMENTS WITH ADVERSARIAL
EXPERIENCES

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 finger-turn_hard

3

2

1

0

1

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-stand

1.25

1.00

0.75

0.50

0.25

0.00

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-hop

3

2

1

0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 fish-swim

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 cheetah-run

8

6

4

2

0
In

flu
en

ce

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d

ex
pe

rie
nc

e
in

de
x 1e 1 quadruped-run

3

2

1

0

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-stand

6

4

2

0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-run

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

Figure 20: Distribution of influence on policy improvement (Eq. 9) in DM control environments
with adversarial experiences.

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 finger-turn_hard

3

2

1

0

1

2

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-stand

4

3

2

1

0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 hopper-hop

1.0

0.8

0.6

0.4

0.2

0.0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 fish-swim

0.0

0.5

1.0

1.5

2.0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 cheetah-run

3

2

1

0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 quadruped-run

3

2

1

0

1

2

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-stand

2.5

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

×102

0 100 200 300
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 humanoid-run

5

4

3

2

1

0

In
flu

en
ce

×101

Figure 21: Distribution of influence on return (Eq. 10) in DM control environments with adversarial
experiences.

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 22: The ratio of experiences for which PIToD correctly estimated influence on policy evalu-
ation (Eq. 8).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
policy improvement

finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 23: The ratio of experiences for which PIToD correctly estimated influence on policy im-
provement (Eq. 9).

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

tim
e

(in
 se

co
nd

s)

1e7
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0.0

0.5

1.0

1.5

2.0

tim
e

(in
 se

co
nd

s)
1e7

cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 24: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO.

0 100 200 300
epoch

0

2

4

6

tim
e

(in
 se

co
nd

s)

1e4
finger-turn_hard
hopper-stand
hopper-hop
fish-swim

0 100 200 300
epoch

0

2

4

6

tim
e

(in
 se

co
nd

s)

1e4
cheetah-run
quadruped-run
humanoid-stand
humanoid-run

Figure 25: Wall-clock time required for influence estimation by PIToD.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

H AMENDING THE POLICIES AND Q-FUNCTIONS OF DROQ AND RESET
AGENTS

In Section 6, we amended the SAC agent using PIToD. In this section, we apply PIToD to amend
other RL agents.

We evaluate two PIToD implementations: DroQToD and ResetToD.
DroQToD is a PIToD implementation based on DroQ (Hiraoka et al., 2022). DroQ is the SAC
variant that applies dropout and layer normalization to the Q-function. DroQToD differs from the
original PIToD implementation (Appendix C) in that it has a dropout layer after each weight layer
in the Q-function. The dropout rate is set to 0.01 as in Hiraoka et al. (2022). Layer normalization
is already included in the Q-function of the original PIToD implementation; thus, no additional
changes are made to it.
ResetToD is a PIToD implementation based on the periodic reset (Nikishin et al., 2022; D’Oro
et al., 2023) of the Q-function and policy parameters. ResetToD differs from the original PIToD
implementation in that it resets the parameters of the Q-function and policy every 105 steps.

The policies and Q-functions of these implementations are amended as in Section 6 (i.e., the amend-
ment process follows Algorithm 4 in Appendix D).

The results of the policy and Q-function amendments (Figures 26 and 27) show that the performance
of both DroQToD and ResetToD is significantly improved after the amendments. Return: For
DroQToD, the return is significantly improved after amendment, especially in Hopper (the left side
of Figure 26). For ResetToD, the return is significantly improved across all environments (the left
side of Figure 27). Q-estimation bias: For DroQToD, the estimation bias is significantly reduced
after amendment, especially in Humanoid (the right side of Figure 26). For ResetToD, the estimation
bias is reduced in the early stages of training (epochs 0–10) in Ant and Walker2d (the right side of
Figure 27).

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

4

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 26: Results of policy amendments (left) and Q-function amendments (right) for DroQToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

What experiences negatively influence Q-function or policy performance in the case of DroQToD?
Regarding Q-function performance, older experiences negatively influence Q-estimation bias in the
early stages of training (the lower part of Figure 31 in Appendix H.1). Regarding policy perfor-
mance, some experiences negatively influencing returns are associated with wobbly movements.
An example of such experiences in the Humanoid environment is shown in the video “DroQToD-
Humanoid.mp4,” which is included in the supplementary material.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

0 100 200 300
epoch

0

1

2

3

4

5

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0.00

0.25

0.50

0.75

1.00

1.25

bi
as

1e1
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 27: Results of policy amendments (left) and Q-function amendments (right) for ResetToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

H.1 ADDITIONAL EXPERIMENTAL RESULTS FOR DROQTOD

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 28: The ratio of experiences for which DroQToD correctly estimated self-influence.

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

0.5

1.0

1.5

2.0

2.5

3.0

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

0.2

0.4

0.6

0.8

1.0

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

0.0

0.5

1.0

1.5

2.0

2.5

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

0

1

2

3

In
flu

en
ce

×105

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

8

6

4

2

0

2

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

4

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

3

2

1

0

In
flu

en
ce

×101

(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 29: Distribution of self-influence on policy evaluation and policy improvement.

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

0

1

2

3

4

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 30: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

2.5

2.0

1.5

1.0

0.5

0.0

0.5
In

flu
en

ce
×103

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d

ex
pe

rie
nc

e
in

de
x 1e 1 Ant-v2

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

2.5

2.0

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

(a) Distribution of influence on return (Eq. 10).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

0

2

4

6

8

In
flu

en
ce

×10 2

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

4

2

0

2

4

6
In

flu
en

ce
×10 1

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d

ex
pe

rie
nc

e
in

de
x 1e 1 Humanoid-v2

1.0

0.5

0.0

0.5

1.0

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 11).

Figure 31: Distribution of influence on return and Q-estimation bias for all ten trials.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

H.2 ADDITIONAL EXPERIMENTAL RESULTS FOR RESETTOD

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
policy evaluation

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

policy improvement

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 32: The ratio of experiences for which ResetToD correctly estimated self-influence.

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

1

2

3

4

5

6

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

0

2

4

6

8

In
flu

en
ce

×105

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

0

1

2

3

4

5

In
flu

en
ce

×104

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

0

1

2

3

4

5

In
flu

en
ce

×105

(a) Distribution of self-influence on policy evaluation (Eq. 8).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

6

4

2

0

2

4

6

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

1

0

1

2

3

In
flu

en
ce

×101

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

6

4

2

0

2

4

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

3

2

1

0

In
flu

en
ce

×101

(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 33: Distribution of self-influence on policy evaluation and policy improvement.

0 100 200 300
epoch

0

1

2

3

4

re
tu

rn

1e3
Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

0 100 200 300
epoch

2

0

2

4

6

8

bi
as

Hopper-v2
Walker2d-v2
Ant-v2
Humanoid-v2

Figure 34: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

1.5

1.0

0.5

0.0

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

1.0

0.5

0.0

0.5

In
flu

en
ce

×103

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Humanoid-v2

8

6

4

2

0

In
flu

en
ce

×102

(a) Distribution of influence on return (Eq. 10).

0 25 50 75 100
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Hopper-v2

0.5

0.0

0.5

1.0

1.5

In
flu

en
ce

×10 1

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Walker2d-v2

1.5

1.0

0.5

0.0

0.5

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8

no
rm

al
ize

d
ex

pe
rie

nc
e

in
de

x 1e 1 Ant-v2

1.5

1.0

0.5

0.0

0.5

1.0

In
flu

en
ce

0 100 200
epochs

0

2

4

6

8
no

rm
al

ize
d

ex
pe

rie
nc

e
in

de
x 1e 1 Humanoid-v2

1.0

0.5

0.0

0.5

1.0

In
flu

en
ce

(b) Distribution of influence on Q-estimation bias (Eq. 11).

Figure 35: Distribution of influence on return and Q-estimation bias for all ten trials.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

I LIMITATIONS AND FUTURE WORK

Refining implementation decisions for PIToD. PIToD employs a dropout rate of 0.5 (Section 4
and Appendix B), which often leads to degradation in learning performance. To mitigate this issue,
we have considered various design choices in the implementation of PIToD (Appendix C). However,
further refinement may still be necessary to improve the practicality of PIToD.

Overlap of experience masks. PIToD assigns each experience a randomly generated binary mask
(Section 4). When there is significant overlap between the elements of masks, applying the flipped
mask to delete the influence of a specific experience also deletes the influence of other experiences.
For example, if the masks mi and mi′ corresponding to the experiences ei and ei′ have a 100% over-
lap, applying the flipped mask wi completely deletes the influence of both ei and ei′ . Additionally,
significant overlap between masks may hinder the fulfillment of Assumption 1 and thus compromise
the theoretical property derived in Section A. We set the dropout rate of the mask elements to mini-
mize this overlap, but a 50% overlap can still occur (Appendix B). Developing practical methods to
reduce mask overlap across experiences would be an important direction for future work.

Invasiveness of PIToD. PIToD introduces invasive changes to the base PI method (e.g., DDPG or
SAC) to equip it with efficient influence estimation capabilities (Section 4). Specifically, PIToD
incorporates turn-over dropout, which may affect the learning outcomes of the base PI method.
Consequently, PIToD may not be suitable for estimating the influence of experiences on the original
learning outcomes of the base PI method. One direction for future work is to explore non-invasive
influence estimation methods.

Exploring surrogate evaluation metrics for amendments. To amend RL agents in Section 6,
we used the return-based evaluation metric Lret, which requires additional environment interactions
for evaluation. In our case, evaluating Lret required as many as 3 · 106 interactions (Figure 13 in
Appendix E). These additional interactions may become a bottleneck in settings where interacting
with environments is costly (e.g., real-world or slow simulator environments). Exploring surrogate
evaluation metrics that do not require additional interactions is an interesting research direction.

Exploring broader applications of PIToD. In this paper, we applied PIToD to amend RL agents
in single-task RL settings (Section 6, Appendix G, and Appendix H). However, we believe that the
potential applications of PIToD extend beyond single-task RL settings. For instance, it could be
applied to multi-task RL (Vithayathil Varghese & Mahmoud, 2020) (including multi-goal RL (Liu
et al., 2022) or meta RL (Beck et al., 2023)), continual RL (Khetarpal et al., 2022), safe RL (Gu
et al., 2022), offline RL (Levine et al., 2020), or multi-agent RL (Canese et al., 2021). Investigating
the broader applicability of PIToD in these settings is a promising direction for future work. Addi-
tionally, in this paper, we estimated the influence of experiences by assigning masks to experiences.
We may also be able to estimate the influence of specific hyperparameter values by assigning masks
to those values. Exploring such applications is another promising direction for future work.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

J COMPUTATIONAL RESOURCES USED IN EXPERIMENTS

For our experiments in Section 5.2, we used a machine equipped with two Intel Xeon CPUs E5-
2667 v4 and five NVIDIA Tesla K80 GPUs. For the experiments in Section G, we used a machine
equipped with two Intel Xeon Gold 6148 CPUs and four NVIDIA V100 SXM2 GPUs.

K HYPERPARAMETER SETTING

The hyperparameter setting for our experiments (Sections 5 and 6) is described in Table 1. We set
different values of Iie in Sections 5 and 6. In Section 5, we use computationally lighter implementa-
tions of evaluation metric L (i.e., Lpe,i and Lpi,i), which allows us to perform influence estimation
more frequently; thus, we set a value of 5000 for Iie. On the other hand, in Section 6, we use heavier
implementations of L (i.e., Lret and Lbias), and thus set a value of 50000 for Iie.

Table 1: Hyperparameter settings

Parameter Value
optimizer Adam (Kingma & Ba, 2015)
learning rate 0.0003
discount rate γ 0.99
target-smoothing coefficient ρ 0.005
replay buffer size 2 · 106
number of hidden layers for all networks 2
number of hidden units per layer 128
mini-batch size 256
random starting data 5000
replay (update-to-data) ratio 4
masking (dropout) rate 0.5
influence estimation interval Iie 5000 for Section 5 and 50000 for Section 6

39

	Introduction
	Preliminaries
	Leave-one-out (LOO) influence estimation
	Policy iteration with turn-over dropout (PIToD)
	Evaluations for PIToD
	How accurately does PIToD estimate the influence of experiences? Evaluations with self-influence
	How efficiently does PIToD estimate the influence of experiences? Evaluation for computational time

	Application of PIToD: amending policies and Q-functions by deleting negatively influential experiences
	Related work
	Conclusion and limitations
	Important theoretical property of PIToD
	Analyzing and minimizing overlap in elements of masks
	Practical implementation of PIToD for Section 5 and Section 6
	Algorithm for amending policy and Q-function used in Section 6
	Supplementary experimental results for Section 6
	Analysis of the correlation between the influences of experiences
	Amending policies and Q-functions in DM control environments with adversarial experiences
	Additional experimental in DM control environments with adversarial experiences

	Amending the policies and Q-functions of DroQ and Reset agents
	Additional experimental results for DroQToD
	Additional experimental results for ResetToD

	Limitations and future work
	Computational resources used in experiments
	Hyperparameter setting

