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ABSTRACT

In reinforcement learning (RL) with experience replay, experiences stored in a
replay buffer influence the RL agent’s performance. Information about how
these experiences influence the agent’s performance is valuable for various pur-
poses, such as identifying experiences that negatively influence underperforming
agents. One method for estimating the influence of experiences is the leave-one-
out (LOO) method. However, this method is usually computationally prohibitive.
In this paper, we present Policy Iteration with Turn-over Dropout (PIToD), which
efficiently estimates the influence of experiences. We evaluate how accurately
PIToD estimates the influence of experiences and its efficiency compared to LOO.
We then apply PIToD to amend underperforming RL agents, i.e., we use PIToD
to estimate negatively influential experiences for the RL agents and to delete the
influence of these experiences. We show that RL agents’ performance is signifi-
cantly improved via amendments with PIToD.

1 INTRODUCTION

In reinforcement learning (RL) with experience replay, the performance of an RL agent is influ-
enced by experiences. Experience replay (Lin, 1992) is a data-generation mechanism indispensable
in modern off-policy RL methods (Mnih et al., 2015; Hessel et al., 2018; Haarnoja et al., 2018a;
Kumar et al., 2020). It allows an RL agent to learn from past experiences. These experiences in-
fluence the RL agent’s performance (e.g., cumulative rewards) (Fedus et al., 2020). Estimating how
each experience influences the RL agent’s performance could provide useful information for many
purposes. For example, we could improve the RL agent’s performance by identifying and deleting
negatively influential experiences. The capability to estimate the influence of experience will be
crucial, as RL is increasingly applied to tasks where agents must learn from experiences of diverse
quality (e.g., a mixture of experiences from both expert and random policies) (Fu et al., 2020; Yu
et al., 2020; Agarwal et al., 2022; Smith et al., 2023; Liu et al., 2024; Tirumala et al., 2024).

However, estimating the influence of experiences with feasible computational cost is not trivial. One
might consider estimating it by a leave-one-out (LOO) method (left part of Figure 1), which retrains
an RL agent for each possible experience deletion. As we will discuss in Section 3, this method has
quadratic time complexity and quickly becomes intractable due to the necessity of retraining.

In this paper, we present PIToD, a policy iteration (PI) method that efficiently estimates the influence
of experiences (right part of Figure 1). PI is a fundamental method for many RL methods (Section 2).
PIToD is PI augmented with turn-over dropout (ToD) (Kobayashi et al., 2020) to efficiently estimate
the influence of experiences without retraining an RL agent (Section 4). We evaluate how accu-
rately PIToD estimates the influence of experiences and its efficiency compared to the LOO method
(Section 5). We then apply PIToD to amend underperforming RL agents by identifying and deleting
negatively influential experiences (Section 6). To our knowledge, our work is the first to: (i) estimate
the influence of experiences on the performance of RL agents with feasible computational cost, and
(ii) modify RL agents’ performance simply by deleting influential experiences.
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Figure 1: Leave-one-out (LOO) influence estimation method (left part) and our method (right part).
LOO estimates the influence of experiences by retraining an RL agent for each experience deletion.
In contrast, our method estimates the influence of experiences without retraining.

2 PRELIMINARIES

In Section 4, we will introduce our PI method for estimating the influence of experiences in the RL
problem. As preliminaries for this, we explain the RL problem, PI, and influence estimation.

Reinforcement learning (RL). RL addresses the problem of an agent learning to act in an environ-
ment. The environment provides the agent with a state s. The agent responds by selecting an action
a, and then the environment provides a reward r and the next state s′. This interaction between the
agent and environment continues until the agent reaches a terminal state. The agent aims to find a
policy π : S×A → [0, 1] that maximizes cumulative rewards (return). A Q-function Q : S×A → R
is used to estimate the expected return.

Policy iteration (PI). PI is a method for solving RL problems. PI updates the policy and Q-function
by iteratively performing policy evaluation and improvement. Many implementations of policy
evaluation and improvement have been proposed (e.g., Lillicrap et al. (2015); Fujimoto et al. (2018);
Haarnoja et al. (2018a)). In the main part of this paper, we focus on the policy evaluation and
improvement used in Deep Deterministic Policy Gradient (DDPG). In policy evaluation in DDPG,
the Q-function Qϕ : S ×A → R, parameterized by ϕ, is updated as:

(1)ϕ← ϕ−∇ϕE(s,a,r,s′)∼B, a′∼πθ(·|s′)

[(
r + γQϕ̄(s

′, a′)−Qϕ(s, a)
)2]

,

where B is a replay buffer containing the collected experiences, and Qϕ̄ is a target Q-function. In
policy improvement in DDPG, policy πθ, parameterized by θ, is updated as:

(2)θ ← θ +∇θEs∼B, aθ∼πθ(·|s) [Qϕ(s, aθ)] .

Estimating the influence of experiences. Given the policy and Q-functions updated through PI,
we aim to estimate the influence of experiences on performance. Formally, letting ei be the i-th
experience contained in the replay buffer B, we evaluate the influence of ei as

(3)L
(
Qϕ,B\{ei}, πθ,B\{ei}

)
− L (Qϕ,B, πθ,B) ,

where L is a metric for evaluating the performance of the Q-function and policy, Qϕ,B and πθ,B are
the Q-function and policy updated with all experiences contained in B, and Qϕ,B\{ei} and πθ,B\{ei}
are the ones updated with B other than ei. L is defined according to the focus of the experiments.
In this paper, we define L as policy and Q-function loss for the experiments in Section 5, and as
empirical return and Q-estimation bias for the applications in Section 6.

3 LEAVE-ONE-OUT (LOO) INFLUENCE ESTIMATION

What method can be used to estimate the influence of experiences? One straightforward method is
based on the LOO algorithm (Algorithm 1). This algorithm estimates the influence of experiences
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Algorithm 1 Leave-one-out influence estimation for policy iteration

1: given replay buffer B, learned parameters ϕ, θ, and number of policy iteration I .
2: for ei ∈ B do
3: Initialize temporal parameters ϕ′ and θ′.
4: for I iterations do
5: Update Qϕ′ with B\{ei} (policy evaluation).
6: Update πθ′ with B\{ei} (policy improvement).
7: Evaluate the influence of ei as

(4)L (Qϕ′ , πθ′)− L (Qϕ, πθ) .

by retraining the RL agent’s components (i.e., policy and Q-functions) for each experience deletion.
Specifically, it retrains the policy πθ′ and Q-function Qϕ′ using B\{ei} through I policy iterations
(lines 4–6). Here, I equals the number of policy iterations required for training the original policy
πθ and Q-function Qϕ. After retraining the components, the influence of ei is evaluated using Eq. 4
with πθ′ , Qϕ′ and πθ, Qϕ (line 7).

However, in typical settings, Algorithm 1 becomes computationally prohibitive due to retraining.
In typical settings (e.g., Fujimoto et al. (2018); Haarnoja et al. (2018b)), the size of the buffer B is
small at the beginning of policy iteration and increases by one with each iteration. Consequently,
the size of B is approximately equal to the number of iterations I (i.e., |B|≈ I). Since Algorithm 1
retrains the RL agent’s components through I policy iterations for each ei, the total number of policy
iterations across the entire algorithm becomes I2. The value of I typically ranges between 103 and
106 (e.g., Chen et al. (2021a); Haarnoja et al. (2018b)), which makes it difficult to complete all
policy iterations in a realistic timeframe.

In the next section, we will introduce a method to estimate the influence of experiences without
retraining the RL agent’s components.

4 POLICY ITERATION WITH TURN-OVER DROPOUT (PITOD)

In this section, we present Policy Iteration with Turn-over Dropout (PIToD), which estimates the
influence of experiences without retraining. The concept of PIToD is shown in Figure 2, and an
algorithmic description of PIToD is shown in Algorithm 2. Inspired by ToD (Kobayashi et al.,
2020), PIToD uses masks and flipped masks to drop out the parameters of the policy and Q-function.
Further details are provided in the following paragraphs.

Masks and flipped masks. PIToD uses mask mi and flipped mask wi, which are binary vectors
uniquely associated with experience ei. The mask mi consists of elements randomly initialized
to 0 or 1. mi is used to drop out the parameters of the policy and Q-function during PI with ei.
Additionally, the flipped mask wi is the negation of mi, i.e., wi = 1 −mi. wi is used to drop out
the parameters of the policy and Q-function for estimating the influence of ei.

Policy iteration with the mask (lines 5–6 in Algorithm 2). PIToD applies mi to the policy and
Q-function during PI with ei. It executes PI with variants of policy evaluation (Eq. 1) and improve-
ment (Eq. 2) where masks are applied to the parameters of the policy and Q-function. The policy
evaluation for PIToD is

(5)ϕ← ϕ−∇ϕEei=(s,a,r,s′,i)∼B, a′∼πθ,mi
(·|s′)

[(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2]
.

The policy improvement for PIToD is

(6)θ ← θ +∇θEei=(s,i)∼B, aθ,mi
∼πθ,mi

(·|s) [Qϕ,mi
(s, aθ,mi

)] .

Here, Qϕ,mi
and πθ,mi

are the Q-function and policy to which the mask mi is applied. In Eq. 5
and Eq. 6, for inputs from ei, Qϕ,mi

and πθ,mi
compute their outputs without using the parameters

that are dropped out by mi. Thus, the parameters dropped out by mi (i.e., the parameters obtained
by applying wi) are expected not to be influenced by ei. More theoretically, if Qϕ,mi

and πθ,mi

3
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Figure 2: The concept of PIToD. PIToD uses mask mi and flipped mask wi. It applies mi to the
policy and Q-function for PI with ei. Additionally, it applies wi to the policy and Q-function for
estimating the influence of ei.

Algorithm 2 Policy iteration with turn-over dropout (PIToD)

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B; Set
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′. Define an experience using i′

as: ei′ = (s, a, r, s′, i′); B ← B
⋃
{ei′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Update ϕ with gradient descent using

∇ϕ

∑
(s,a,r,s′,i)

(
r + γQϕ̄,mi

(s′, a′)−Qϕ,mi
(s, a)

)2
, a′ ∼ πθ,mi

(·|s′).

6: Update θ with gradient ascent using

∇θ

∑
(s,i)

Qϕ,mi
(s, aθ,mi

), aθ,mi
∼ πθ,mi

(·|s).

7: if i′%Iie = 0 then
8: For ei ∈ B, estimate the influence of ei using

L (Qϕ,wi , πθ,wi)− L (Qϕ, πθ) or L (Qϕ,wi , πθ,wi)− L (Qϕ,mi , πθ,mi) .

are dominantly influenced by ei, the parameters obtained by wi are provably not influenced by ei
(see Appendix A for details). Based on this theoretical property, we estimate the influence of ei by
applying wi to policy and Q-functions (see the next paragraph for details).

Estimating the influence of experience with flipped mask (lines 7–8 in Algorithm 2). PIToD
periodically estimates the influence of ei by applying wi to the policy and Q-function. It estimates
the influence of ei (Eq. 3) as

(7)L (Qϕ,wi , πθ,wi)− L (Qϕ, πθ) ,

where the first term is the performance when ei is deleted, and the second term is the performance
with all experiences. Qϕ,wi

and πθ,wi
are the Q-function and policy with dropout based on wi.

Qϕ and πθ are the Q-function and policy without dropout. For the second term, if we want to
highlight the influence of ei more significantly, the term can be evaluated by alternatively using the
masked policy and Q-functions: L (Qϕ,mi , πθ,mi). The influence estimation is performed every Iie
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iterations (line 7 in Algorithm 2). These influence estimations by PIToD do not require retraining
for each experience deletion, unlike the LOO method.

Implementation details for PIToD. For the experiments in Sections 5 and 6, each mask element
is initialized to 0 or 1, drawn from a discrete uniform distribution, to minimize overlap between
the masks (see Appendix B for details). Additionally, we implemented PIToD using Soft Actor-
Critic (Haarnoja et al., 2018b) for these experiments (see Appendix C for details).

5 EVALUATIONS FOR PITOD

In the previous section, we introduced PIToD, a method that efficiently estimates the influence of
experiences. In this section, we evaluate its accuracy in influence estimation (Section 5.1) and its
computational efficiency (Section 5.2).

5.1 HOW ACCURATELY DOES PITOD ESTIMATE THE INFLUENCE OF EXPERIENCES?
EVALUATIONS WITH SELF-INFLUENCE

In this section, we evaluate how accurately PIToD estimates the influence of experiences by focusing
on their self-influence. Self-influence is the influence of an experience on prediction performance
using that same experience. We define self-influences on policy evaluation and on policy improve-
ment. The self-influence of an experience ei := (s, a, r, s′, i) on policy evaluation is

Lpe,i(Qϕ,wi
)− Lpe,i(Qϕ,mi

), (8)

where Lpe,i(Q) =
(
r + γQϕ̄,mi

(s′, a′)−Q(s, a)
)2

, a′ ∼ πθ,mi
(·|s′).

Here, Lpe,i represents the temporal difference error based on ei. The self-influence of ei on policy
improvement is

Lpi,i(πθ,wi
)− Lpi,i(πθ,mi

), where Lpi,i(π) = Qϕ,mi
(s, a′), a′ ∼ π(·|s). (9)

Here, Lpi,i represents the Q-value estimate based on ei.

We evaluate whether PIToD has correctly estimated the influence of experiences by examining the
signs (positive or negative) of the values of Eq. 8 and Eq. 9. If PIToD has correctly estimated the
influence of experiences, the value of Eq. 8 should be positive. Qϕ,mi

is optimized by PIToD to min-
imize Lpe,i (line 5 in Algorithm 2), while Qϕ,wi

is not. Therefore, Lpe,i(Qϕ,mi
) ≤ Lpe,i(Qϕ,wi

),
implying that Eq. 8 ≥ 0. Conversely, if PIToD has correctly estimated, the value of Eq. 9 should
be negative. πθ,mi

is optimized by PIToD to maximize Lpi,i (line 6 in Algorithm 2), while πθ,wi
is

not. Therefore, Lpi,i(πθ,mi
) ≥ Lpi,i(πθ,wi

), which implies that Eq. 9 ≤ 0.

We periodically evaluate the ratio of experiences for which PIToD has correctly estimated self-
influence in the MuJoCo environments (Todorov et al., 2012). The MuJoCo tasks for this evaluation
are Hopper, Walker2d, Ant, and Humanoid. In this evaluation, 5000 policy iterations (i.e., lines 3–6
of Algorithm 2) constitute one epoch, with 125 epochs allocated for Hopper and 300 epochs for the
others. At each epoch, we (i) calculate the self-influence (Eq. 8 and Eq. 9) of experiences stored in
the replay buffer and (ii) record the ratio of experiences for which PIToD has correctly estimated
self-influence.

Evaluation results (Figure 3) show that the ratio of experiences for which the self-influence (Eq. 8
and Eq. 9) is correctly estimated exceeds the chance rate of 0.5. For self-influence on policy evalu-
ation (Eq. 8), the ratio of correctly estimated experiences is higher than 0.9 across all environments.
Furthermore, for self-influence on policy improvement (Eq. 9), the ratio of correctly estimated expe-
riences exceeds 0.7 in Hopper, 0.8 in Walker2d and Ant, and 0.9 in Humanoid. These results suggest
that PIToD estimates the influence of experiences more accurately than random estimation.

Figure 3 also shows that in policy improvement, the ratio of correctly estimated experiences tends
to be higher in higher-dimensional environments (Hopper < Walker = Ant < Humanoid). This
suggests that the policy tends to fit more significantly to each experience in higher-dimensional en-
vironments. Additionally, in both policy evaluation and improvement, the ratio gradually decreases
as the epoch progresses. As the epoch progresses, the ratio of experiences to the policy and Q-
network size increases. We hypothesize that this makes tracking the influence of each experience
more difficult.
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Figure 3: The ratio of experiences for which PIToD correctly estimated self-influence. The left-
hand figure displays this ratio in policy evaluation cases, where a positive self-influence value (i.e.,
Eq. 8 ≥ 0) is correct. The right-hand figure displays the ratio in policy improvement cases, where a
negative self-influence value (i.e., Eq. 9 ≤ 0) is correct. In both figures, the vertical axis represents
the ratio of correctly estimated experiences, and the horizontal axis shows the number of epochs. In
both cases, the ratio of correctly estimated experiences surpasses the chance rate of 0.5.
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(a) Distribution of self-influence on policy evaluation (Eq. 8).
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(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 4: Distribution of self-influence on policy evaluation and policy improvement. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences to
1.0 for the most recent experiences. This index corresponds to the normalized i used in Algorithm 2.
The horizontal axis represents the number of epochs. The color bar represents the value of self-
influence. Interpretation of this figure: For example, if the value of self-influence for ei in policy
evaluation cases is 2 · 108, this indicates that the value of Lpe,i(Qϕ,wi

) is 2 · 108 larger than that
of Lpe,i(Qϕ,mi

). Key insight: In policy evaluation, experiences with high self-influence tend to
concentrate on older ones (with smaller normalized experience indexes) as the epochs progress.

Supplementary analysis. How are experiences that exhibit significant self-influence distributed?
Figure 4 shows the distribution of self-influence across experiences. From the figure, we see that
in policy evaluation, the self-influence of older experiences (with smaller normalized experience
indexes) becomes more significant as the epoch progresses. Conversely, for policy improvement,
we observe no clear pattern in the distribution of influential experiences.
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Figure 5: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO. The left
figure shows the time for both PIToD and LOO. The right figure shows the time for PIToD alone to
allow readers to see the details of PIToD’s time more clearly. The results show that the time required
for LOO increases quadratically with the number of epochs, whereas the time required for PIToD
increases linearly.

5.2 HOW EFFICIENTLY DOES PITOD ESTIMATE THE INFLUENCE OF EXPERIENCES?
EVALUATION FOR COMPUTATIONAL TIME

We evaluate the computational time required for influence estimation with PIToD and compare it
to the estimated time for LOO. To measure the computational time for PIToD, we run the method
under the same settings as in the previous section and record its wall-clock time. For comparison,
we also evaluate the estimated time required for influence estimation using LOO (Section 3). To
estimate the time for LOO, we record the average time required for one policy iteration with PIToD
and multiply this by the total number of policy iterations required for LOO 1.

The evaluation results (Figure 5) show that PIToD significantly reduces computational time com-
pared to LOO. The time required for LOO increases quadratically as epochs progress, taking, for
example, more than 4 · 107 seconds (≈ 462 days) up to 300 epochs in Humanoid. In contrast, the
time required for PIToD increases linearly, taking about 1.4·105 seconds (≈ one day) for 300 epochs
in Humanoid.

6 APPLICATION OF PITOD: AMENDING POLICIES AND Q-FUNCTIONS BY
DELETING NEGATIVELY INFLUENTIAL EXPERIENCES

In the previous section, we demonstrated that PIToD can accurately and efficiently estimate the
influence of experiences. What scenarios might benefit from this capability? In this section, we
demonstrate how PIToD can be used to amend underperforming policies and Q-functions.

We amend policies and Q-functions by deleting experiences that negatively influence performance.
We evaluate the performance of policies and Q-functions based respectively on returns and Q-
estimation biases (Fujimoto et al., 2018; Chen et al., 2021a). The influence of an experience ei
on the return, Lret, is evaluated as follows:

Lret(πθ,wi)− Lret(πθ), where Lret(π) = Eat∼π(·|st)

[∑
t=0

γtr(st, at)

]
. (10)

Here, st is sampled from an environment. In our setup, Lret is estimated using Monte Carlo returns
collected by rolling out policies πθ,wi

and πθ. The influence of ei on Q-estimation bias, Lbias, is
1The total number of policy iterations for LOO is I2, as discussed in Section 3. However, in the practical

implementation of PIToD used in our experiments, we divide the experiences in the buffer into groups of
5000 experiences and estimate the influence of each group (Appendix C). For a fair comparison with this
implementation, we use I2

5000
instead of I2 as the total number of policy iterations for LOO.
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Figure 6: Results of policy amendments (left) and Q-function amendments (right) in underperform-
ing trials. The solid lines represent the post-amendment performances: return for the policy (left;
i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the
pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)). These fig-
ures demonstrate that the amendments improve returns in Hopper and Walker2d, and reduce biases
in Ant and Humanoid.

evaluated as follows:

(11)
Lbias(Qϕ,wi

)− Lbias(Qϕ),

where Lbias(Q) = Eat∼πθ(·|st),at′∼πθ(·|st′ )

∑
t=0

∣∣∣Q(st, at)−
∑

t′=t γ
t′r(st′ , at′)

∣∣∣
|
∑

t′=t γ
t′r(st′ , at′)|

 .

Here, Lbias quantifies the discrepancy between the estimated and true Q-values using their L1 dis-
tance. Based on Eq. 10 and Eq. 11, we identify and delete the experience e∗ that has the strongest
negative influence on them. We apply w∗, which maximizes Eq. 10, to the policy to delete e∗. Ad-
ditionally, we apply w∗, which minimizes Eq. 11, to the Q-function to delete e∗. The algorithmic
description of our amendment process is presented in Algorithm 4 in Appendix D.

We evaluate the effect of the amendments on trials in which the policy and Q-function underperform.
We run ten learning trials with the amendments (Algorithm 4) and evaluate (i) Lret(πθ,w∗) for the
two trials in which the policy scores the lowest returns Lret(πθ) and (ii) Lbias(Qϕ,w∗) for the two
trials in which the Q-function scores the highest biases Lbias(Qϕ). The average scores of Lret(πθ,w∗)
and Lbias(Qϕ,w∗) for these underperforming trials are shown in Figure 6. The average scores of
Lret(πθ,w∗) and Lbias(Qϕ,w∗) for all ten trials are shown in Figure 11 in Appendix E.

The results of the policy and Q-function amendments (Figure 6) show that performance is improved
through the amendments. From the policy amendment results (left part of Figure 6), we see that the
return (Lret) is significantly improved in Hopper and Walker. For example, in Hopper, the return
before the amendment (the blue dashed line) is approximately 1000, but after the amendment (the
blue solid line), it exceeds 3000. Additionally, from the Q-function amendment results (right part of
Figure 6), we see that the Q-estimation bias (Lbias) is significantly reduced in Ant and Humanoid.
For example, in Humanoid, the estimation bias of the Q-function before the amendment (the red
dashed line) is approximately 30 during epochs 250–300, but after the amendment, it is reduced to
approximately 20 (the red solid line).

What kinds of experiences negatively influence policy or Q-function performance? Policy perfor-
mance: Some experiences negatively influencing returns are associated with stumbling or falling.
An example of such experiences in Hopper is shown in the video “PIToD-Hopper.mp4,” which is
included in the supplementary material. Q-function performance: Experiences negatively influ-
encing Q-estimation bias tend to be older experiences. The lower part of Figure 12 in Appendix E
shows the distribution of influences on Q-estimation bias in each environment. For example, in the
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Humanoid environment, we observe that older experiences often have a negative influence (high-
lighted in darker colors).

Additional experiments. We analyzed the correlation between the experience influences (i.e.,
Eq. 10 and Eq. 11) (Appendix F). Additionally, we performed amendments for other environments
and RL agents using PIToD (Appendix G and Appendix H).

7 RELATED WORK

Influence estimation in supervised learning. Our research builds upon prior studies that esti-
mate the influence of data within the supervised learning (SL) regime. In Section 4, we introduced
our method for estimating the influence of data (i.e., experiences) in RL settings. Methods that
estimate the influence of data have been extensively studied in the SL research community. Typ-
ically, these methods require SL loss functions that are twice differentiable with respect to model
parameters (e.g., Koh & Liang (2017); Yeh et al. (2018); Hara et al. (2019); Koh et al. (2019);
Guo et al. (2020); Chen et al. (2021b); Schioppa et al. (2022)). However, these methods are not
directly applicable to our RL setting, as such SL loss functions are unavailable. In contrast, turn-
over dropout (ToD) (Kobayashi et al., 2020) estimates the influence without requiring differentiable
SL loss functions. We extended ToD for RL settings (Sections 4, 5, and 6). For this extension of
ToD, we provided a theoretical justification (Appendix A) and considered practical implementations
(Appendix C).

Influence estimation in off-policy evaluation (OPE). A few studies in the OPE community have
focused on efficiently estimating the influence of experiences (Gottesman et al., 2020; Lobo et al.,
2022). These studies are limited to estimating the influence on policy evaluation using nearest-
neighbor or linear Q-functions. In contrast, our study estimates influence on a broader range of
performance metrics (e.g., return or Q-estimation bias) using neural-network-based Q-functions and
policies.

Prioritized experience replay (PER). In PER, the importance of experiences is estimated to pri-
oritize experiences during experience replay. The importance of experiences is estimated based
on criteria such as TD-error (Schaul et al., 2016; Fedus et al., 2020) or on-policyness (Novati &
Koumoutsakos, 2019; Sun et al., 2020). Some readers might think that PER resembles our method.
However, PER fundamentally differs from our method, as it cannot efficiently estimate or disable
the influence of experiences in hindsight.

Interpretable RL. Our method (Section 4) estimates the influence of experiences, thereby providing
a certain type of interpretability. Previous studies in the RL community have proposed interpretable
methods based on symbolic (or relational) representation (Džeroski et al., 2001; Yang et al., 2018;
Lyu et al., 2019; Garnelo et al., 2016; Andersen & Konidaris, 2017; Konidaris et al., 2018), inter-
pretable proxy models (e.g., decision trees) (Degris et al., 2006; Liu et al., 2019; Coppens et al.,
2019; Zhu et al., 2022), saliency explanation (Zahavy et al., 2016; Greydanus et al., 2018; Mott
et al., 2019; Wang et al., 2020; Anderson et al., 2020), and sparse kernel models (Dao et al., 2018) 2.
Unlike these studies, our study proposes a method to estimate the influence of experiences on RL
agent performance. This method helps us, for example, identify influential experiences when RL
agents perform poorly, as demonstrated in Section 6.

8 CONCLUSION AND LIMITATIONS

In this paper, we proposed PIToD, a policy iteration (PI) method that efficiently estimates the influ-
ence of experiences (Section 4). We demonstrated that PIToD (i) accurately estimates the influence
of experiences (Section 5.1), and (ii) significantly reduces the time required for influence estimation
compared to the leave-one-out (LOO) method (Section 5.2). Furthermore, we applied PIToD to
identify and delete negatively influential experiences, which improved the performance of policies
and Q-functions (Section 6).

2For a comprehensive review of interpretable RL, see Milani et al. (2024).
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We believe that our work provides a solid foundation for understanding the relationship between
experiences and RL agent performance. However, it has several limitations. Details on these limita-
tions and directions for future work are summarized in Appendix I.
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A IMPORTANT THEORETICAL PROPERTY OF PITOD

In this section, we theoretically prove the following property of PIToD: “Assuming that the policy
πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions Qϕ,wi and πθ,wi ,
which use the flipped mask wi, are unaffected by the gradients associated with experience ei.” This
property is important as it justifies the use of the flipped mask wi to estimate the influence of ei in
PIToD.

First, we define key terms for our theoretical proof:
Experience: We define an experience ei as ei = (s, a, r, s′, i), where s is the state, a is the action,
r is the reward, s′ is the next state, and i is a unique identifier. We also define another experience as
ei′ , where i′ is a unique identifier.
Parameters: At the j-th iteration of Algorithm 2 (lines 3–6), we define the parameters of the Q-
function and policy that are not dropped by the mask mi′ as ϕj,mi′ and θj,mi′ , respectively. Addi-
tionally, We define parameters that are dropped by mi′ as ϕj,wi′ and θj,wi′ .
Policy and Q-function: We define the policy and Q-function, where all parameters except ϕj,mi′

and θj,mi′ are set to zero (i.e., dropped), as Qϕj,m
i′

and πθj,m
i′

. Similarly, the policy and Q-function,
where all parameters except ϕj,wi′ and θj,wi′ are zero, are defined as Qϕj,w

i′
and πθj,w

i′
.

Next, we introduce two assumptions required for our proof. The first assumption is for the policy
and Q-function with masks.

Assumption 1. Qϕj,m
i′

and πθj,m
i′

can be replaced by Qϕ′
j,m

i′
and πθ′

j,m
i′

, whose parameters

ϕ′
j,mi′

and θ′j,mi′
satisfy the following gradient properties:

The property of ϕ′
j,mi′

is as follows:

∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2

, a′ ∼ πθ′
j,mi

(·|s′)

= ∇ϕ′
j,m

i′

(
r + γQϕ̄′

j,mi

(s′, a′)−Qϕ′
j,mi

(s, a)
)2
· I(i = i′), a′ ∼ πθ′

j,mi
(·|s′).

Here, I is an indicator function that returns 1 if the specified condition (i.e., i = i′) is true and 0
otherwise.

The property of θ′j,mi′
is as follows:

∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a), a ∼ πθ′

j,mi
(·|s)

= ∇θ′
j,m

i′
Qϕ′

j+1,mi
(s, a) · I(i = i′), a ∼ πθ′

j,mi
(·|s).

Intuitively, Assumption 1 can be interpreted as “Qϕj,m
i′

and πθj,m
i′

are dominantly influenced by
the experience ei′ (i.e., the influence of other experiences is negligible).”

The second assumption is for ϕj,wi′ and θj,wi′ :

Assumption 2. For the gradient with respect to ϕj,wi′ , the following equation holds:

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
, a′ ∼ πθ′

j,mi
(·|s′)

= ∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′). (12)

For the gradient with respect to θj,wi′ , the following equation holds:

∇θj,w
i′
Qϕj+1,mi

(s, a), a ∼ πθj−1,mi
(·|s)

= ∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s). (13)

Intuitively, Assumption 2 can be interpreted as “When updating parameters by using ei, the param-
eters dropped out (i.e., ϕj,wi

and θj,wi
) are not influenced by the gradient that is calculated with

ei.”
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Based on the above assumptions, we will derive the property of PIToD described at the beginning
of this section 3. Some readers may think that Assumption 2 corresponds to this property. However,
in addition to Assumption 2, we must guarantee that the components used to create target signals
for Eq. 12 and Eq. 13 (i.e., the components highlighted in red below) are also not influenced by ei
when i ̸= i′. Otherwise, ϕj,wi

and θj,wi
might still be updated by using components influenced by

ei even when i ̸= i′.

∇ϕj,w
i′

(
r + γQϕ̄j,mi

(s′, a′)−Qϕj,mi
(s, a)

)2
· I(i ̸= i′), a′ ∼ πθ′

j,mi
(·|s′).

∇θj,w
i′
Qϕj+1,mi

(s, a) · I(i ̸= i′), a ∼ πθj,mi
(·|s).

Based on Assumption 1, we can ensure that these red-highlighted components are not influenced by
ei when i ̸= i′.

Based on Assumption 1, the following theorem holds:

Theorem 1. Given that, for j > 0, the parameters ϕ′
j,mi′

and θ′j,mi′
are updated in the same way

as the original parameters ϕj,mi′ and θj,mi′ , according to Eq. 5 and Eq. 6, the following equation
holds:

ϕ′
j,mi′

← ϕ′
j−1,mi′

−
∑

(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′).

θ′j,mi′
← θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s).

Proof.

ϕ′
j,mi′

← ϕ′
j−1,mi′

−∇ϕ′
j−1,m

i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2

,

a′ ∼ πθ′
j−1,mi

(·|s′)
(1)
= ϕ′

j−1,mi′
−

∑
(s,a,r,s′,i)

∇ϕ′
j−1,m

i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕ′
j−1,mi

(s, a)
)2
· I(i = i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

θ′j,mi′
← θ′j−1,mi′

−∇θ′
j−1,m

i′

∑
(s,a,r,s′,i)

Qϕ′
j,mi

(s, a), a ∼ πθ′
j−1,mi

(·|s)

(1)
= θ′j−1,mi′

−
∑

(s,a,r,s′,i)

∇θ′
j−1,m

i′
Qϕ′

j,mi
(s, a) · I(i = i′), a ∼ πθ′

j−1,mi
(·|s)

(1) Apply Assumption 1.

This theorem implies that Qϕ′
j,m

i′
and πθ′

j,m
i′

are dominantly influenced by the experience ei′ for
j > 0. Thus, if the red-highlighted components above can be replaced with these components, we
can say that ϕj,wi

and θj,wi
are not influenced by gradients depending on ei in both cases of i = i′

and i ̸= i′. Below, we will show that such a replacement is doable.

Based on Assumptions 1 and 2, the following theorem holds:

3“Assuming that the policy πθ and the Q-function Qϕ are updated according to Algorithm 2, the functions
Qϕ,wi and πθ,wi , which use the flipped mask wi, are unaffected by the gradients associated with experience
ei.”
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Theorem 2. For any j > 0, the parameters ϕj,wi′ and θj,wi′ in Algorithm 2 are updated as follows:

ϕj,wi′ ← ϕj−1,wi′ −
∑

(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

θj,wi′ ← θj−1,wi′ −
∑

(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

Proof. For ϕj,wi′ ,

ϕj,wi′ ← ϕj−1,wi′ −∇ϕj−1,w
i′

∑
(s,a,r,s′,i)

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
,

a′ ∼ πθj−1,mi
(·|s′)

(1)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθj−1,mi
(·|s′)

(2)
= ϕj−1,wi′ −

∑
(s,a,r,s′,i)

∇ϕj−1,w
i′

(
r + γQϕ̄′

j−1,mi

(s′, a′)−Qϕj−1,mi
(s, a)

)2
· I(i ̸= i′),

a′ ∼ πθ′
j−1,mi

(·|s′)

(1) Apply Assumption 2. (2) Apply Assumption 1.

Similarly, for θj,wi′ ,

θj,wi′ ← θj−1,wi′ −∇θj−1,w
i′

∑
(s,a,r,s′,i)

Qϕj,mi
(s, a), a ∼ πθj−1,mi

(·|s)

(1)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕj,mi

(s, a) · I(i ̸= i′), a ∼ πθj−1,mi
(·|s)

(2)
= θj−1,wi′ −

∑
(s,a,r,s′,i)

∇θj−1,w
i′
Qϕ′

j,mi
(s, a) · I(i ̸= i′), a ∼ πθj−1,mi

(·|s)

This theorem implies that:

(i) When i = i′, neither θj,wi′ nor ϕj,wi′ is influenced by gradients dependent on experience
ei′ .

(ii) When i ̸= i′, θj,wi′ and ϕj,wi′ are updated without depending on the components that
might be influenced by ei′ .

Therefore, we conclude that “Qϕ,wi′ and πθ,wi′ , and consequently Qϕ,wi
and πθ,wi

, are not influ-
enced by the gradients related to the experiences ei′ and ei, respectively.”

B ANALYZING AND MINIMIZING OVERLAP IN ELEMENTS OF MASKS

In our method (Section 4), each experience is assigned a mask. If there is significant overlap in the
elements of different masks, one experience could significantly interfere with other experiences. In
this section, we discuss (i) the expected overlap between the masks of experiences ei and ei′ and (ii)
the dropout rate that minimizes this overlap.

For discussion, we introduce the following definitions and assumptions. We define the mask size
as M , and the number of overlapping elements between masks as m. We assume that each mask
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element is independently initialized as 0 with probability p (i.e., dropout rate) and 1 with probability
1− p.

Below, we derive the probability and expected number of overlaps in the mask elements.
Probability of m overlaps. First, we calculate the probability that a specific position in the masks
of ei and ei′ has the same value. The probability that both elements of the masks have 0 at the same
position is p · p = p2. Similarly, the probability that both elements have 1 at the same position is
(1− p) · (1− p) = (1− p)2. Therefore, the probability q that the values at a specific position in the
masks are the same is

q = p2 + (1− p)2 = 2p2 − 2p+ 1. (14)

The probability that the masks have m overlaps follows the binomial distribution:(
M

m

)
qm(1− q)M−m. (15)

Expected number of overlaps. Using Eq.14 and Eq.15, the expected number of overlaps can be
represented as

(16)
M∑

k =0

k

(
M

k

)
qk(1− q)M−k = Mq

= M(2p2 − 2p+ 1).

For better understanding, we show a plot of Eq. 16 values with respect to p and M in Figure 7.
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Figure 7: The distribution of the expected number of overlaps (Eq. 16) with respect to the dropout
rate p and mask size M . For clarity, we plot the expected overlap rate (m/M ) instead of the expected
number of overlaps m.

The dropout rate of p = 0.5 minimizes the expected number of overlaps. Since Eq. 16 is convex
in p, the value of p that minimizes the expected overlap is determined by solving dM(2p2−2p+1)

dp = 0.
As a result, we find that p = 0.5 minimizes the expected overlap. With p = 0.5, we can expect a
50% overlap between the two masks. Figure 8 shows the probability of the overlap rate m/M with
p = 0.5 for various values of M . From this figure, we see that the probability of having a between
0-50% overlap is very high, while the probability of having a between 50-100% overlap is very low,
regardless of the value of M .
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Figure 8: The probability of the overlap rate m/M with p = 0.5 for various values of M .
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Algorithm 3 SAC version of PI with group mask in PIToD

1: Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, and an empty replay buffer B.
2: for i′ = 0, ..., I do
3: Take action a ∼ πθ(·|s); Observe reward r and next state s′; Define an experience using the

group identifier i′′ ← ⌊i′/5000⌋ as ei′′ = (s, a, r, s′, i′′); B ← B
⋃
{ei′′}.

4: Sample experiences {(s, a, r, s′, i), ...} from B (Here, ei = (s, a, r, s′, i)).
5: Compute target yi:

yi = r + γ

(
min
j=1,2

Qϕ̄j ,mi
(s′, a′)− α log πθ,mi

(a′|s′)
)
, a′ ∼ πθ,mi

(·|s′).

6: for j = 1, 2 do
7: Update ϕj with gradient descent using

∇ϕj

∑
(s,a,r,s′,i)

(
Qϕj ,mi(s, a)− yi

)2
.

8: Update target networks with ϕ̄j ← ρϕ̄j + (1− ρ)ϕj .
9: Update θ with gradient ascent using

∇θ

∑
(s,a,r,s′,i)

(
1

2

2∑
i=1

Qϕj ,mi(s, aθ,mi)− α log πθ,mi(a|s)

)
, a, aθ,mi ∼ πθ,mi(·|s).

C PRACTICAL IMPLEMENTATION OF PITOD FOR SECTION 5 AND SECTION 6

In this section, we describe the practical implementation of PIToD. Specifically, we explain (i) the
soft actor-critic (SAC) (Haarnoja et al., 2018b) version of PI with a mask, (ii) group mask, and (iii)
key implementation decisions to improve learning. This practical implementation is used in our
experiments (Section 5 and Section 6).

(i) SAC version of PI with a mask. The SAC version of PI with masks is presented in Algorithm 3.
The mask is applied to the policy and Q-functions during policy evaluation (lines 5–8) and policy
improvement (line 9). For the policy evaluation, two Q-functions Qϕj

, where j ∈ {1, 2}, are updated
as:

ϕj ← ϕj

−∇ϕj
Eei=(s,a,r,s′,i)∼B, a′∼πθ,mi

(·|s′)

[(
r+ γ

(
min
j′=1,2

Qϕ̄j′ ,mi
(s′, a′)− α log πθ,mi

(a′|s′)
)

−Qϕj ,mi
(s, a)

)2
]
.

(17)

This is a variant of Eq. 1 that uses clipped double Q-learning with two target Q-functions Qϕ̄j′ ,mi

and entropy bonus α log πθ,mi
(a′|s′). Additionally, for policy improvement, policy πθ is updated as

θ ← θ +∇θEei=(s,i)∼B, aθ,mi
,a∼πθ,mi

(·|s)

1

2

2∑
j=1

Qϕj ,mi
(s, aθ,mi

)− α log πθ,mi
(a|s)

 .

(18)

This is a variant of Eq. 2 that uses the entropy bonus.

(ii) Group Mask. In our preliminary experiments, we found that the influence of a single expe-
rience on performance was negligibly small. To examine more significant influences, we shifted
our focus from the influence of individual experiences to grouped experiences. To estimate the in-
fluence of grouped experiences, we organize experiences into groups and assign a mask to each
group. Specifically, we treated 5000 experiences as a single group. This grouping process was im-
plemented by assigning a group identifier to each experience, calculated as i′′ ← ⌊i′/5000⌋ (line 3
of Algorithm 3).
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Figure 9: Network architectures for policy and Q-function. The policy network takes states as
inputs and outputs the parameters of the policy distribution (mean and variance for a Gaussian
distribution). The Q-function network takes state-action pairs as inputs and outputs Q-estimates.
These networks incorporate macro-block dropout and layer normalization. Macro-block dropout.
Our architecture utilizes an ensemble of 20 multi-layer perceptrons (MLPs), applying dropout with
masks (and flipped masks) to each MLP’s output. Layer normalization. Layer normalization is
applied after every activation (ReLU) layer in each MLP.

(iii) Key implementation decisions to improve learning. In our preliminary experiments, we
found that directly applying masks and flipped masks to dropping out the parameters of the policy
and Q-function degrades learning performance. To address this issue, we implemented macro-block
dropout and layer normalization (Figure 9). Macro-block dropout. Instead of applying dropout to
individual parameters, we apply dropout at the block level. Specifically, we group several parameters
into a “block” and apply dropout to these blocks. In our experiment, we used an ensemble of 20
multi-layer perceptrons (MLPs) for the policy and Q-function, and treated each MLP’s parameters
as a single block. Layer normalization. We applied layer normalization (Ba et al., 2016) after each
activation (ReLU) layer. Recent works show that layer normalization improves learning in a wide
range of RL settings (e.g., Hiraoka et al. (2022); Ball et al. (2023); Nauman et al. (2024)).

To evaluate the effect of our key implementation decisions, we compare four implementations of
Algorithm 3:

1. PIToD applies vanilla dropout with masks to each parameter of the policy and Q-function.
2. PIToD+LN applies layer normalization to the policy and Q-function.
3. PIToD+MD applies macro-block dropout to the policy and Q-function.
4. PIToD+LN+MD applies layer normalization and macro-block dropout to the policy and Q-

function.

These implementations are compared based on the empirical returns obtained in test episodes.

The comparison results (Figure 10) indicate that the implementation with our key decisions
(PIToD+LN+MD) achieves the highest returns in each environment.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

0 25 50 75 100 125
epoch

0

1

2

3

re
tu

rn

1e3 Hopper-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

2

4

6

re
tu

rn

1e3 Walker2d-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

4

2

0

2

4

6

re
tu

rn

1e3 Ant-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

0 100 200 300
epoch

0

1

2

3

4

re
tu

rn

1e3 Humanoid-v2
PIToD
PIToD+LN
PIToD+MD
PIToD+LN+MD

Figure 10: Ablation study results. The vertical axis represents returns, and the horizontal axis rep-
resents epochs. In each environment, the implementation with our key decisions (PIToD+LN+MD)
achieves the highest returns.
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D ALGORITHM FOR AMENDING POLICY AND Q-FUNCTION USED IN
SECTION 6

Algorithm 4 Amendment of policy and Q-function using influence estimates. Lines 5–7 are for
policy amendment. Lines 8–10 are for Q-function amendment.

1: Initialize policy parameters θ, Q-function parameters ϕ, and an empty replay buffer B. Set the
influence estimation interval Iie.

2: for i′ = 0, ..., I iterations do
3: Execute environment interaction, store experiences, and perform policy iteration as per lines

3–6 of Algorithm 2.
4: if i′%Iie = 0 then
5: Identify w∗ for policy as follows:

w∗ = arg max
wi

Lret (πθ,wi
)− Lret (πθ) .

6: if Lret (πθ,w∗)− Lret (πθ) > 0 then
7: Evaluate the return of the amended policy Lret (πθ,w∗).
8: Identify w∗ for Q-function as follows:

w∗ = arg min
wi

Lbias (Qϕ,wi
)− Lbias (Qϕ) .

9: if Lbias (Qϕ,w∗)− Lbias (Qϕ) < 0 then
10: Evaluate the Q-estimation bias of the amended Q-function Lbias (Qϕ,w∗).
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E SUPPLEMENTARY EXPERIMENTAL RESULTS FOR SECTION 6
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Figure 11: Results of policy amendments (left) and Q-function amendments (right) for all ten tri-
als. The solid lines represent the post-amendment performances: return for the policy (left; i.e.,
Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines show the pre-
amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).
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(a) Distribution of influence on return (Eq. 10).
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(b) Distribution of influence on Q-estimation bias (Eq. 11).

Figure 12: Distribution of influence on return and Q-estimation bias for all ten trials. The vertical
axis represents the normalized experience index, which ranges from 0.0 for the oldest experiences
to 1.0 for the most recent experiences. The horizontal axis represents the number of epochs. The
color bar represents the value of influence.
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Figure 13: The number of environment interactions required for policy amendments in Section 6.
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F ANALYSIS OF THE CORRELATION BETWEEN THE INFLUENCES OF
EXPERIENCES

In Sections 5 and 6, we estimated the influences of experiences on performance (e.g., return or Q-
estimation bias). In Appendix B, we discussed how the dropout rate of masks elements relates to the
overlap between the masks. In this section, we analyze two points: (i) the correlation between the
influences of experiences within each performance metric, and (ii) how the dropout rate of masks
affects this correlation 4.

We calculate the correlation between the experience influences for each performance metric used
in Sections 5 and 6. In these sections, we estimated the influences of experiences on policy evalu-
ation (Lpe,i), policy improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias). We treat the
influences of experiences on each metric at each epoch as a vector of random variables, where each
element represents the influence of a single experience. We calculate the Pearson correlation be-
tween these elements. The influence values observed in the ten learning trials are used as samples.
In the following discussion, we focus on the average value of the correlations between the pairs of
vector elements.

(i) The correlation between the influences of experiences. The correlation between the influences
of experiences is shown in Figure 14. The figure shows that the correlation tends to approach zero
as the number of epochs increases. For return and bias, the correlation converges to zero early in
the learning process, regardless of the environments. For policy evaluation and improvement, the
degree of correlation convergence varies significantly across environments.
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Figure 14: Correlation between the influences of experiences on policy evaluation (Lpe,i), policy
improvement (Lpi,i), return (Lret), and Q-estimation bias (Lbias) for each epoch in each environment.
The vertical axis represents the average correlation of experience influences, ranging from -1.0 to
1.0. The horizontal axis represents the number of epochs.

(ii) The relationship between the correlation and the dropout rate. We evaluated the correlations
between the influences of experiences by varying the dropout rate of the masks. Specifically, we
evaluated the correlations using PIToD with four different dropout rates:
DR0.5: PIToD with a dropout rate of 0.5, which is the setting used in the main experiments of this
paper.
DR0.25: PIToD with a dropout rate of 0.25.
DR0.1: PIToD with a dropout rate of 0.1.
DR0.05: PIToD with a dropout rate of 0.05.
The correlations for these cases in the Hopper environment are shown in Figure 15. The results
imply that the impact of the dropout rate on the correlation depends significantly on the specific
performance metric. For instance, we do not observe a significant impact of the dropout rate in
policy evaluation or policy improvement. In contrast, for return, we observe that the correlation
increases as the dropout rate decreases.

4Note that we focus on analyzing the correlation independently for each performance metric and do not
examine correlations across different metrics.
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Figure 15: Correlation between the influences of experiences at each epoch in the Hopper environ-
ment. The vertical axis represents the average correlation of experience influences. The horizontal
axis represents the number of learning epochs. Each label in the legend corresponds to a dropout
rate for masks. For example, “DR0.5” means a dropout rate of 0.5 (half of the elements in each
mask are set to zero), and “DR0.1” means a dropout rate of 0.1 (10% of the elements in each mask
are set to zero).
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G AMENDING POLICIES AND Q-FUNCTIONS IN DM CONTROL
ENVIRONMENTS WITH ADVERSARIAL EXPERIENCES

In Section 6, we applied PIToD to amend policies and Q-functions in the MuJoCo (Todorov et al.,
2012) environments.

In this section, we apply PIToD to amend policies and Q-functions in DM control (Tunyasuvunakool
et al., 2020) environments with adversarial experiences. We focus on the DM control environments:
finger-turn hard, hopper-stand, hopper-hop, fish-swim, cheetah-run, quadruped-run, humanoid-run,
and humanoid-stand. In these environments, we introduce adversarial experiences. An adversarial
experience contains an adversarial reward r′, which is a reversed and magnified version of the orig-
inal reward r: r′ = −100 · r. These adversarial experiences are designed to (i) disrupt the agent’s
ability to maximize original rewards and (ii) have greater influence than other non-adversarial ex-
periences stored in the replay buffer. At 150 epochs (i.e., in the middle of training), the RL agent
encounters 5000 adversarial experiences. In these environments, we amend policies and Q-functions
as in Section 6.

The results of the policy and Q-function amendments (Figures 16 and 17) show that performance
is improved by the amendments. The policy amendment results (Figure 16) show that returns are
improved, particularly in fish-swim. Additionally, the Q-function amendment results (Figure 17)
show that the Q-estimation bias is significantly reduced in finger-turn hard, hopper-stand, hopper-
hop, fish-swim, cheetah-run, and quadruped-run.
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Figure 16: Results of policy amendments in DM control environments with adversarial experiences.
The solid lines represent the post-amendment return for the policy (i.e., Lret(πθ,w∗)). The dashed
lines show the pre-amendment return (i.e., Lret(πθ)).

Can PIToD identify adversarial experiences? PIToD identifies adversarial experiences as (i)
strongly influential experiences for policy evaluation and (ii) positively influential experiences for
Q-estimation bias. Policy evaluation: Figure 18 shows the distribution of influences on policy
evaluation. We observe that adversarial experiences have a strong influence (highlighted in lighter
colors), except in humanoid-run. Q-estimation bias: Figure 19 shows the distribution of influences
on Q-estimation bias. Interestingly, we observe that adversarial experiences have a strong positive
influence (highlighted in lighter colors). Namely, these adversarial experiences contribute to reduc-
ing Q-estimation bias. However, after introducing adversarial experiences (i.e., after epoch 150),
we also observe experiences with a negative influence. We hypothesize that adversarial experiences
hinder the learning from other experiences.
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Figure 17: Results of Q-function amendments in DM control environments with adversarial expe-
riences. The solid lines represent the post-amendment bias for the Q-function (i.e., Lbias(Qϕ,w∗)).
The dashed lines show the pre-amendment bias (i.e., Lbias(Qϕ)).
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Figure 18: Distribution of influence on policy evaluation (Eq. 8) in DM control environments with
adversarial experiences.
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Figure 19: Distribution of influence on Q-estimation bias (Eq. 11) in DM control environments with
adversarial experiences.
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G.1 ADDITIONAL EXPERIMENTAL IN DM CONTROL ENVIRONMENTS WITH ADVERSARIAL
EXPERIENCES
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Figure 20: Distribution of influence on policy improvement (Eq. 9) in DM control environments
with adversarial experiences.
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Figure 21: Distribution of influence on return (Eq. 10) in DM control environments with adversarial
experiences.
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Figure 22: The ratio of experiences for which PIToD correctly estimated influence on policy evalu-
ation (Eq. 8).
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Figure 23: The ratio of experiences for which PIToD correctly estimated influence on policy im-
provement (Eq. 9).
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Figure 24: Wall-clock time required for influence estimation by PIToD and LOO. The solid line
represents the time for PIToD, and the dashed line represents the estimated time for LOO.
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Figure 25: Wall-clock time required for influence estimation by PIToD.
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H AMENDING THE POLICIES AND Q-FUNCTIONS OF DROQ AND RESET
AGENTS

In Section 6, we amended the SAC agent using PIToD. In this section, we apply PIToD to amend
other RL agents.

We evaluate two PIToD implementations: DroQToD and ResetToD.
DroQToD is a PIToD implementation based on DroQ (Hiraoka et al., 2022). DroQ is the SAC
variant that applies dropout and layer normalization to the Q-function. DroQToD differs from the
original PIToD implementation (Appendix C) in that it has a dropout layer after each weight layer
in the Q-function. The dropout rate is set to 0.01 as in Hiraoka et al. (2022). Layer normalization
is already included in the Q-function of the original PIToD implementation; thus, no additional
changes are made to it.
ResetToD is a PIToD implementation based on the periodic reset (Nikishin et al., 2022; D’Oro
et al., 2023) of the Q-function and policy parameters. ResetToD differs from the original PIToD
implementation in that it resets the parameters of the Q-function and policy every 105 steps.

The policies and Q-functions of these implementations are amended as in Section 6 (i.e., the amend-
ment process follows Algorithm 4 in Appendix D).

The results of the policy and Q-function amendments (Figures 26 and 27) show that the performance
of both DroQToD and ResetToD is significantly improved after the amendments. Return: For
DroQToD, the return is significantly improved after amendment, especially in Hopper (the left side
of Figure 26). For ResetToD, the return is significantly improved across all environments (the left
side of Figure 27). Q-estimation bias: For DroQToD, the estimation bias is significantly reduced
after amendment, especially in Humanoid (the right side of Figure 26). For ResetToD, the estimation
bias is reduced in the early stages of training (epochs 0–10) in Ant and Walker2d (the right side of
Figure 27).
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Figure 26: Results of policy amendments (left) and Q-function amendments (right) for DroQToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).

What experiences negatively influence Q-function or policy performance in the case of DroQToD?
Regarding Q-function performance, older experiences negatively influence Q-estimation bias in the
early stages of training (the lower part of Figure 31 in Appendix H.1). Regarding policy perfor-
mance, some experiences negatively influencing returns are associated with wobbly movements.
An example of such experiences in the Humanoid environment is shown in the video “DroQToD-
Humanoid.mp4,” which is included in the supplementary material.
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Figure 27: Results of policy amendments (left) and Q-function amendments (right) for ResetToD in
underperforming trials. The solid lines represent the post-amendment performances: return for the
policy (left; i.e., Lret(πθ,w∗)) and bias for the Q-function (right; i.e., Lbias(Qϕ,w∗)). The dashed lines
show the pre-amendment performances: return (left; i.e., Lret(πθ)) and bias (right; i.e., Lbias(Qϕ)).
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H.1 ADDITIONAL EXPERIMENTAL RESULTS FOR DROQTOD
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Figure 28: The ratio of experiences for which DroQToD correctly estimated self-influence.
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(a) Distribution of self-influence on policy evaluation (Eq. 8).
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(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 29: Distribution of self-influence on policy evaluation and policy improvement.
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Figure 30: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.
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(a) Distribution of influence on return (Eq. 10).
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Figure 31: Distribution of influence on return and Q-estimation bias for all ten trials.
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H.2 ADDITIONAL EXPERIMENTAL RESULTS FOR RESETTOD
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Figure 32: The ratio of experiences for which ResetToD correctly estimated self-influence.
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(a) Distribution of self-influence on policy evaluation (Eq. 8).
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(b) Distribution of self-influence on policy improvement (Eq. 9).

Figure 33: Distribution of self-influence on policy evaluation and policy improvement.
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Figure 34: Results of policy amendments (left) and Q-function amendments (right) for all ten trials.
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(a) Distribution of influence on return (Eq. 10).
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(b) Distribution of influence on Q-estimation bias (Eq. 11).

Figure 35: Distribution of influence on return and Q-estimation bias for all ten trials.
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I LIMITATIONS AND FUTURE WORK

Refining implementation decisions for PIToD. PIToD employs a dropout rate of 0.5 (Section 4
and Appendix B), which often leads to degradation in learning performance. To mitigate this issue,
we have considered various design choices in the implementation of PIToD (Appendix C). However,
further refinement may still be necessary to improve the practicality of PIToD.

Overlap of experience masks. PIToD assigns each experience a randomly generated binary mask
(Section 4). When there is significant overlap between the elements of masks, applying the flipped
mask to delete the influence of a specific experience also deletes the influence of other experiences.
For example, if the masks mi and mi′ corresponding to the experiences ei and ei′ have a 100% over-
lap, applying the flipped mask wi completely deletes the influence of both ei and ei′ . Additionally,
significant overlap between masks may hinder the fulfillment of Assumption 1 and thus compromise
the theoretical property derived in Section A. We set the dropout rate of the mask elements to mini-
mize this overlap, but a 50% overlap can still occur (Appendix B). Developing practical methods to
reduce mask overlap across experiences would be an important direction for future work.

Invasiveness of PIToD. PIToD introduces invasive changes to the base PI method (e.g., DDPG or
SAC) to equip it with efficient influence estimation capabilities (Section 4). Specifically, PIToD
incorporates turn-over dropout, which may affect the learning outcomes of the base PI method.
Consequently, PIToD may not be suitable for estimating the influence of experiences on the original
learning outcomes of the base PI method. One direction for future work is to explore non-invasive
influence estimation methods.

Exploring surrogate evaluation metrics for amendments. To amend RL agents in Section 6,
we used the return-based evaluation metric Lret, which requires additional environment interactions
for evaluation. In our case, evaluating Lret required as many as 3 · 106 interactions (Figure 13 in
Appendix E). These additional interactions may become a bottleneck in settings where interacting
with environments is costly (e.g., real-world or slow simulator environments). Exploring surrogate
evaluation metrics that do not require additional interactions is an interesting research direction.

Exploring broader applications of PIToD. In this paper, we applied PIToD to amend RL agents
in single-task RL settings (Section 6, Appendix G, and Appendix H). However, we believe that the
potential applications of PIToD extend beyond single-task RL settings. For instance, it could be
applied to multi-task RL (Vithayathil Varghese & Mahmoud, 2020) (including multi-goal RL (Liu
et al., 2022) or meta RL (Beck et al., 2023)), continual RL (Khetarpal et al., 2022), safe RL (Gu
et al., 2022), offline RL (Levine et al., 2020), or multi-agent RL (Canese et al., 2021). Investigating
the broader applicability of PIToD in these settings is a promising direction for future work. Addi-
tionally, in this paper, we estimated the influence of experiences by assigning masks to experiences.
We may also be able to estimate the influence of specific hyperparameter values by assigning masks
to those values. Exploring such applications is another promising direction for future work.
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J COMPUTATIONAL RESOURCES USED IN EXPERIMENTS

For our experiments in Section 5.2, we used a machine equipped with two Intel Xeon CPUs E5-
2667 v4 and five NVIDIA Tesla K80 GPUs. For the experiments in Section G, we used a machine
equipped with two Intel Xeon Gold 6148 CPUs and four NVIDIA V100 SXM2 GPUs.

K HYPERPARAMETER SETTING

The hyperparameter setting for our experiments (Sections 5 and 6) is described in Table 1. We set
different values of Iie in Sections 5 and 6. In Section 5, we use computationally lighter implementa-
tions of evaluation metric L (i.e., Lpe,i and Lpi,i), which allows us to perform influence estimation
more frequently; thus, we set a value of 5000 for Iie. On the other hand, in Section 6, we use heavier
implementations of L (i.e., Lret and Lbias), and thus set a value of 50000 for Iie.

Table 1: Hyperparameter settings

Parameter Value
optimizer Adam (Kingma & Ba, 2015)
learning rate 0.0003
discount rate γ 0.99
target-smoothing coefficient ρ 0.005
replay buffer size 2 · 106
number of hidden layers for all networks 2
number of hidden units per layer 128
mini-batch size 256
random starting data 5000
replay (update-to-data) ratio 4
masking (dropout) rate 0.5
influence estimation interval Iie 5000 for Section 5 and 50000 for Section 6
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