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Abstract

The identification of Dialog Acts (DA)
through sequence labeling systems is an im-
portant part of Spoken Dialog (SD) under-
standing. Nowadays DA recognition has
gained attention given its importance in Chat-
bot training, since understanding the role that
a user’s message plays in a message is crucial
in order to respond in an appropriate and help-
ful way. In this work, we perform DA classi-
fication adapted to SD, which we implement
using 2 BERT models (Bidirectional Encoder
Representations from Transformers). We eval-
uate the models on 3 DA databases from the
SILICONE benchmark1, and we compare the
models’ performances by obtaining their accu-
racy, their average training time and their loss.

1 Introduction

Dialog act classification is a vital component of
chatbot systems that enable them to interpret and
respond appropriately to user inputs in a conversa-
tional context. Dialog act classification involves
the identification of the underlying intention or
purpose behind a user’s utterance in a conversa-
tion. For example, in a customer service chatbot
system, a user’s input might be classified as a re-
quest for information, a complaint, or a question
about a particular product or service.

Accurate dialog act classification is crucial for
chatbot systems as it enables them to provide the
most relevant and helpful response to the user’s in-
put (Colombo et al., 2021b; Jalalzai* et al., 2020;
Colombo* et al., 2019). Furthermore, it facilitates
a smooth and natural conversation flow that can
lead to higher user satisfaction and engagement.

With the increasing popularity of chatbot sys-
tems in various domains, such as customer service,

*These authors contributed equally to this work
1Sequence labellIng evaLuatIon benChmark fOr spoken

laNguagE

healthcare, and education, the importance of di-
alog act classification has only grown. As such,
there has been a significant amount of research
in recent years focused on developing more accu-
rate and efficient dialog act classification methods.
These advances have helped improve the overall
performance of chatbot systems, leading to more
effective and engaging interactions between users
and chatbots.

1.1 Problem Framing

Following the notation from (Colombo* et al.,
2020; Colombo, 2021), in linguistics and in nat-
ural language understanding, a dialog D is defined
as a sequence of conversations C:

D = (C1, C2, C3, ..., C|D|)

Each conversation is composed of multiple utter-
ances U and can be defined as follows:

Ci = (U1, U2, ..., U|Ci|)

A Dialog Act (DA) represents the speaker’s inten-
tion in delivering an utterance (Dopp, 1962), and
each utterance Ui is associated with a unique DA
label yi.

The goal of this paper is to use Spoken Dia-
logue (SD) datasets to predict the DA Classifica-
tion Yi of each conversation Ci as the sequence
of labels yi corresponding to each utterance Yi =
(y1, y2, ..., y|Ci|).

In order to predict the DA classification on SD
data, we will use different sizes of the BERT pre-
trained encoder model (Devlin et al., 2018). These
models will be evaluated on 3 out of the 5 DA
datasets that are a part of the SILICONE bench-
mark(Godfrey et al., 1992; Li et al., 2017a; Leech
and Weisser, 2003a; Busso et al., 2008; Passon-
neau and Sachar., 2014; Thompson et al., 1993;



Poria et al., 2018; Shriberg et al., 2004a; Mck-
eown et al., 2013)2, each with a different size
and set of labels (Chapuis et al., 2020a). Exam-
ples of extracts from a dialog from one of the DA
databases used in training and their respective la-
bels are found in Table 1.

DA recognition is largely used in training Chat-
bots and technologies such as ChatGPT. This is
due to the fact that the analysis of the DA of a
user’s message allows for building a natural lan-
guage system that provides an appropriate and
helpful response to the user’s requests, therefore
avoiding the generic response problem (Kumar
et al., 2018).

The models and the corresponding training
were developed in Python, using the Pytorch im-
plementation of the BERT models provided by the
Hugging Face transformers library (Wolf et al.,
2020). Our code is available on GitHub3.

Utterance Label
Are we supposed to read q
digits at the same time?
No s
Oh okay s

Table 1: Extract of a dialog from the MRDA
database from SILICONE. Labels are: “s” (Statement),
“d” (Declarative Question), “b” (Backchannel), “f”
(Follow-me) or “q” (Question)

2 BERT Model

In order to solve our classification problem,
we use a variant of transformers: the Bidirec-
tional Encoder Representations from Transform-
ers (BERT), introduced by (Devlin et al., 2018). In
contrast to the context-free models like word2vec
(Mikolov et al., 2013), it is a contextual model that
will use other words in the sentence to give a rep-
resentation of each word so that it takes into ac-
count the bidirectional relationship between words
in the same sentence during the training phase.

2.1 The architecture
Regarding its architecture, BERT is a trained
Transformer Encoder stack with originally 12 en-

2SILICONE benchmark can be found in the dataset li-
brary from HuggingFace (Chapuis et al., 2020a) at https:
//huggingface.co/datasets/silicone

3https://github.com/beafarah/NLP_
Intent_Classification

coder layers in the base version and 24 in the large
version. The particularity of BERT is that it was
pre-trained on a large set of unlabelled texts in-
cluding Wikipedia and Book Corpus which con-
tain more than 10,000 books of different gen-
res. This allows us to use this pre-trained model
for various language-based tasks and to fine-tune
these pre-trained models on smaller task-specific
datasets. To understand how this model works, it
is necessary to have a great understanding of how
Transformers work.

A Transformer consists of an encoder to read
the text input and a decoder to predict for the task.
A transformer is a model architecture that relies
entirely on an attention mechanism to learn re-
lationship between input and output. Attention
refers to a neural network structure. It was intro-
duced in 2015 (Luong et al., 2015) to be used for
translation tasks. Attention mechanism allows the
model to focus on every single word in the sen-
tence when choosing how to translate words in
the ouput sentence. The model, thanks to train-
ing data, learns what words are connected to each
other and therefore on which words to focus its at-
tention. The attention mechanism is important for
translation (Vaswani et al., 2017).

Self-attention is also an important concept in
Transformers because it allows neural networks to
really understand a word based on the context of
the other words in the sentence. Self attention is
necessary to to remove all ambiguity and accom-
plish tasks like semantic roles or part of speech
tagging for instance.

In this current paper, we have chosen to com-
pare different BERT models for each DA database
chosen. Following (Devlin et al., 2018) we let
L denote the number of layers (ie transformer
blocks), H the number of hidden states, A the
number of states and P the number of trainable
parameters. We will report results on the follow-
ing models:

Model L H A P (in millions)
BERTMINI 4 256 4 11
BERTSMALL 4 512 8 28

Table 2: BERT models we use in the current paper

These models were firstly introduced in (Turc

https://huggingface.co/datasets/silicone
https://huggingface.co/datasets/silicone
https://github.com/beafarah/NLP_Intent_Classification
https://github.com/beafarah/NLP_Intent_Classification


et al., 2019)4, and are available on GitHub.5. They
were built by reducing the size of the standard
BERT model (BERT BASE). These models are
ideal for environments with restricted computa-
tional resources as they are lighter than the BERT
BASE model (that has L = 12, H = 768, A =
12, P = 110 millions).

Our main objective in running these different
BERT models is to be able to compare their per-
formance, as well as the time that each one takes
to run, for each one of the 3 selected DA datasets.

We chose these two BERT models out of all of
the other possible BERT models because they are
more lightweight than the other usual BERT mod-
els (MEDIUM, BASE and LARGE) which need
more computational time.

2.2 Text Processing

There are some processing steps to make before
building the model, given that BERT expects in-
put text in a specific format. The input to the en-
coder is a sequence of tokens, which are first trans-
formed into vectors and then processed in the neu-
ral network.

Every input embedding contains 3 embeddings:
the position, the segment and the token embed-
dings. For each token, the input representation is
constructed by summing the 3 embeddings. The
position embeddings allows to learn the position
of words in a sentence. The segment embeddings
allows BERT to take sentence pairs as inputs in
order to distinguish between them and accomplish
tasks like Question-Answering. Token embed-
dings are the embedddings learned from the spe-
cific token from the WordPiece token vocabulary.

2.3 Pre-training tasks

BERT is pre trained on two Nature Language Pro-
cessing tasks: Masked Language Modelling and
Next Sentence Prediction (Devlin et al., 2018). In-
stead of predicting the next word in a sequence like
models that were trained on a left-to-right context,
the BERT model “masks” words in a sentence and
then tries to predict them. Masking means taking
into account both the previous and next tokens at
the same time to consider the full context of the
sentence to predict the masked word.

4They are meant for uncased data in English, and were
trained with WordPiece masking

5https://github.com/google-research/
bert

In addition to Masked Language Models, BERT
is also trained on the task of Next Sentence Pre-
diction which is useful for tasks like question an-
swering. The idea is that the model gets as input
pairs of sentence and it learns if the second sen-
tence comes after the first one in the original text
as well or if it is random. To improve accuracy,
the model is trained on those both masked LM and
Next Sentence Prediction together.

3 Experiments Protocol

3.1 Datasets
Following (Chapuis et al., 2020b), we chose to
evaluate our models on the SILICONE6 bench-
mark, which gathers datasets designed for train-
ing and evaluating natural language understand-
ing systems designed for spoken language. SIL-
ICONE is a collection of Dialogue-Act (DA) and
Emotion/Sentiment (E/S) annotated datasets, each
with a different size and set of labels.

In this current paper, we have performed la-
belling tasks for DA datasets from the SILICONE
benchmark. The DA databases in which we per-
formed classification were the following:

• BT OASIS Corpus: This DA database con-
tains 636 dialogues and 15067 utterances in
total, and gathers the transcripts of live calls
made to the BT and operator services. Each
utterance can be classified into one out of
42 possible labels, and the distribution of the
data in each category can be seen in Figure
1 in the Annex. Following (Chapuis et al.,
2020b), we use a random train/dev/test split 7

where the training accounts for 80% of the di-
alogues (508), test and validation correspond
to 10% each (64 dialogues). This corpus was
introduced by (Leech and Weisser, 2003b).

• The Daily Dialog Dataset (DyDA) : Pro-
duced by (Li et al., 2017b), this database is
a multiturn dialogue between people in their
everyday life which contains 102 979 utter-
ances. Each utterance is classified as one of
the 4 following labels : “commissive” (0),
“directive” (1), “inform” (2) or “question”
(3). As shown in graph 2, most of the utter-
ances are labelled as information and ques-

6SILICONE stands for Sequence labellIng evaLuatIon
benChmark fOr spoken laNguagE

7Split made originally in https://github.com/
NathanDuran/BT-Oasis-Corpus
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tion. We have used the train/validation/test
split introduced by the authors in (Li et al.,
2017b).

• ICSI MRDA Corpus (MRDA): Introduced
in (Shriberg et al., 2004b), the MRDA dataset
gathers scripts from multi-party meetings. It
contains a total of 109229 utterances, which
are separated into train, validation and test
sets according to the official split introduced
by the authors. The utterances are classified
according to 5 possible labels: “s” (0: State-
ment/Subjective statement), “d” (1: Declara-
tive Question), “b” (2: Backchannel), “f” (3:
Follow-me) or ”q” (4: Question). We can see
in Figure 3 (in the Annex) the distribution of
the labels in the training set. We notice that
the dataset is unbalanced, as approximately
60% of the training data is classified in the
category “s”.

For each one of the DA datasets, we use the avail-
able official split into a respective train, test and
validation dataset. Table 3 summarizes the num-
ber of utterances in each of them.

Dataset Intention Train Test Validation
Oasis 42 12076 1478 1513
MRDA 5 83944 15470 9815
Dyda 4 87170 7740 8069

Table 3: Summary of the DA databases

3.2 Loss function

Following Tensorflow’s tutorial for training a
BERT model8, we decided to use the Cross
Entropy loss function for training. This func-
tion measures the performance of a classification
model as follows:

L(X, Ŷ ) =
n∑

i=1

−yilog(pi) (1)

Where pi is the Softmax probability for class i,
yi is the true label of input X , Ŷ = (p1, ..., pn)
and n is the number of classes.

8https://www.tensorflow.org/text/
tutorials/bert_glue

4 Results

In order to evaluate each of the BERT models on
the test data and compare them, we use a met-
ric called Accuracy. Accuracy is one of the most
commonly used metrics in multi-class classifica-
tion problems and it gives us the proportion of cor-
rect predictions of our model out of the set of data.
It is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Where TP and TN correspond to the correctly
classified elements by the model, while FP and
FN are the observations that have been incorrectly
classified.

We trained each model given in section 2.1 with
a number of epochs equal to 5 and batch size equal
to 32. We used the Adam optimizer with a learn-
ing rate of 10−5. We also considered a Dropout
layer for regularization, with a dropout rate equal
to 0.19. This layer helps to prevent the model from
overfitting.

The test accuracy for each model evaluated on
the test set of each dataset is given in Table 4.

Dataset BERTMINI BERTSMALL

Oasis 0.6502 0.6860
MRDA 0.8992 0.8999
Dyda 0.8232 0.8266
Average 0.7908 0.8041

Table 4: Test Accuracy for the BERT models on each
datasets and the average accuracy for each model

To compare the models, we use accuracy and
the average time spent training the model in each
epoch in seconds, which can be seen in Table 5.

Dataset BERTMINI BERTSMALL

Oasis 1120.4 3515.6
MRDA 7668.2 10767
Dyda 3367.4 16212.6

Table 5: Average duration of the training by epoch in
seconds

9We followed the Tensorflow tutorial available
in https://www.tensorflow.org/text/
tutorials/bert_glue

https://www.tensorflow.org/text/tutorials/bert_glue
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5 Discussion/Conclusion

We implement Small BERT and Mini BERT mod-
els on 3 DA datasets: OASIS, MRDA and Dyda.
Results are summarized in Tables 4 and 5. As ex-
pected given the size of the datasets, the average
duration of the training when both models are im-
plemented is the shortest on the OASIS dataset, as
it is the smallest of the 3 datasets. Moreover, the
training duration of the Small BERT is superior
to the MINI one as it contains less hidden states.
However, Table 4 shows that the OASIS Dataset
is associated with the lowest accuracy values for
both models.

When comparing the models, Table 4 highlights
that the model that maximizes the accuracy metric
is Small BERT model for every dataset. Indeed,
the average accuracy is 0.8041 and it’s larger for
Small BERT. Given our resources and the fact that
the Base BERT model is computationally expen-
sive, we decided to use smaller pre-trained BERT
variants which are known for reducing model size
while maintaining a good accuracy. The Small
BERT gives the best accuracy values. On the other
hand, the Mini BERT is associated with a much
lower average training time and slightly lower val-
ues for the accuracy. Regarding computational
time, the Mini BERT is the most suitable when
we want to execute DA recognition on resource-
restricted devices. It can achieve competitive per-
formances when accomplishing natural language
tasks compared to more complex and larger archi-
tectures.

To better understand the performance of those
smaller architectures of the BERT model, it would
be interesting to extent our analysis by implement-
ing the BERT BASE model on the 3 DA datasets
to compare its accuracy with the ones we obtained
with smaller BERT models. However, estimat-
ing this model implies a large computational cost.
An alternative would be the Medium BERT model
which is still more complex than the models we
used but is more lightweight than BERT BASE.

.
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6 Appendix

6.1 DA Datasets labels distributions

Figure 1: OASIS Dataset labels repartition

Figure 2: Dyda Dataset labels repartition

Figure 3: MRDA Dataset labels repartition

6.2 Accuracy of Mini BERT on DA datasets

Figure 4: Accuracy of the Mini BERT on dyda dataset

Figure 5: Accuracy of the Mini BERT on Oasis dataset

Figure 6: Accuracy of the Mini BERT on mrda dataset



6.3 Accuracy of Small BERT on DA datasets

Figure 7: Accuracy of the Small BERT on dyda dataset

Figure 8: Accuracy of the Small BERT on OASIS
dataset

Figure 9: Accuracy of the Small BERT on mrda dataset


