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ABSTRACT

Graph self-supervised learning (GSSL) has demonstrated strong potential for
generating expressive graph embeddings without the need for human annota-
tions, making it particularly valuable in domains with high labeling costs such
as molecular graph analysis. However, existing GSSL methods mostly focus
on node- or edge-level information, often ignoring chemically relevant substruc-
tures which strongly influence molecular properties. In this work, we propose
Graph Semantic Predictive Network (GraSPNet), a hierarchical architecture that
predicts both node and semantically meaningful fragments of a graph in the em-
bedding space. GraSPNet decomposes molecular graphs into meaningful frag-
ments without relying on predefined chemical vocabulary and learns graph repre-
sentations through message-passing graph neural networks. It further captures
fragment-level semantics by encoding fragment information and modeling in-
teractions through node-fragment and fragment-fragment message passing. By
performing masked prediction of node and fragment features in semantic space,
GraSPNet captures structural information at multiple resolutions. Experiments
show that GraSPNet is both expressive and generalizable, outperforming existing
state-of-the-art methods on multiple molecular property prediction benchmarks in
transfer learning settings. The code will be released upon acceptance.

1 INTRODUCTION

Graphs are a powerful tool for representing structured and complex non-Euclidean data in the real
world, as they naturally capture relationships and dependencies between entities (Ma & Tang, 2021;
Bacciu et al., 2020). Techniques such as Graph Neural Networks (GNNs) have demonstrated no-
table success in this context, enabling models to capture both local and global structural informa-
tion (Corso et al., 2024). Molecules are inherently graph-structured data, where atoms and chemical
bonds are represented as nodes and edges, respectively. Molecular representation learning focuses
on deriving meaningful embeddings of molecular graphs, forming the foundation for a wide range
of applications, including molecular property prediction (You et al., 2020), drug discovery (Gilmer
et al., 2017), and retrosynthesis (Yan et al., 2020). However, the costly process of labeling molec-
ular properties and the scarcity of task-specific annotations underscore the need for self-supervised
learning approaches in molecular representation.

In self-supervised learning, supervisory signals are derived directly from the input data, typically fol-
lowing either invariance-based or generative-based paradigms (Liu et al., 2021). These approaches
aim to learn mutual information between different views of a graph by applying node-level and edge-
level augmentations (Zhang et al., 2021a), or to reconstruct certain characteristics of the graph from
original or corrupted inputs (Kipf & Welling, 2016b; Hou et al., 2022). However, for graph classi-
fication tasks such as molecular property prediction, chemically meaningful substructures—such as
functional groups—often play a decisive role in determining molecular behavior (Ju et al., 2023).
While reconstructing atoms (nodes) and bonds (edges) helps capture local structure, it may fail to en-
code higher-level semantics that are critical for downstream tasks requiring a deeper understanding
of molecular graphs.
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Figure 1: An example of hierarchical representation learning on molecular graph. The molecule
is represented as a string-based notations (SMILES) and encoded at three semantic levels—node
(atoms), fragment (e.g., functional groups), and graph to support various downstream tasks.

The main challenge lies in preserving different levels of semantic information within graph data.
Figure 1 illustrates the hierarchy of representation learning in molecular graph analysis, progressing
from chemical representations to graph-level embeddings and ultimately to downstream tasks. In
other domains, such as natural language processing and computer vision, tokenizer is commonly
used to divide input data into smaller units—such as words or pixel patches—that encapsulate se-
mantically meaningful information for representation learning (Vaswani et al., 2017; Dosovitskiy
et al., 2021). Methods that adaptively adjust the size and position of patches to capture richer seman-
tic regions from images further underscore the importance of semantic preservation in data (Chen
et al., 2021). In graphs composed of nodes with relational connections, clusters of interconnected
nodes often carry significant information and serve as key indicators of the graph’s overall charac-
teristics (Milo et al., 2002). Therefore, the exploration of fragment-level semantic information in
graphs is of great importance. Although fragment-based representation learning techniques have
been proposed, they often rely on discrete fragment counting (Kashtan et al., 2004), which may
lack chemical validity, or on generative processes that are computationally intensive (Tang et al.,
2020; Zhang et al., 2021b). Consequently, a more efficient and generalized method for capturing
rich semantic information in graphs remains largely unexplored.

In this work, we focus on the problem of extracting semantically rich representations from large pre-
trained molecular structure datasets. We aim to address the following question: How can we better
utilize the hierarchical semantic information in large unlabeled molecule graph databases and gener-
alize to various downstream tasks? We propose Graph Semantic Predictive Network (GraSPNet),
a hierarchical pretraining method based on predicting the representations of nodes and fragments
without relying on pre-defined chemical vocabularies. In contrast to previous approaches that fo-
cus on reconstructing node-level inputs or predicting node representations, GraSPNet utilizes both
nodes and fragments representation as prediction targets, benefiting from information at multiple
resolutions. By incorporating a hierarchical context and target encoder, the model is guided to learn
representations that capture multiple levels of semantic information, including fine-grained node
features and structures, node–fragment dependencies, and coarse-grained fragment patterns.

2 RELATED WORK

Pretraining on Graphs. GNNs are a class of deep learning models designed to capture complex
relationships by aggregating the features of the local neighbors of the node through neural net-
works (Hamilton et al., 2017; Kipf & Welling, 2016a). To alleviate the generalization problem of
graph-based learning, graph pretraining has been actively explored to benefit from large databases
of unlabeled graph data. Pretraining methods on graphs can be categorized as contrastive methods
and generative methods. Graph contrastive learning methods (You et al., 2020; Zhu et al., 2021;
You et al., 2021; Zhao et al., 2021; Yu et al., 2022) learn invariant representations under graph aug-
mentations, while generative methods like Graph Autoencoders (Hinton & Zemel, 1993; Pan et al.,
2018; Wang et al., 2017; Park et al., 2019; Salehi & Davulcu, 2020) rely on reconstruction objec-
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tives from the input graph. Recently, masked autoencoder frameworks (He et al., 2022) including
GraphMAE (Hou et al., 2022), S2GAE (Tan et al., 2023), MaskGAE (Li et al., 2023) where certain
node or edge attributes are perturbed and encoders and decoders are trained to reconstruct them with
the remaining graph.

Fragment-based GNN. Representation learning on molecules has made use of hand-crafted rep-
resentation including molecular descriptors, string-based notations, and image (Zeng et al., 2022).
Besides the node- and graph-level methods which represent atoms as nodes and bonds as edges,
fragment-based approaches explicitly modeling molecular substructures to learn higher-order se-
mantics. Existing methods mostly generate fragments based on pre-defined knowledge or purely
geometric structure and learn fragment representations through autoregressive processes (Zhang
et al., 2021b; Jin et al., 2020; Rong et al., 2020). These methods treat fragments merely as graph to-
kenizer (Liu et al., 2024), decomposing molecules into various of reconstruction units without fully
incorporating fragment-level semantics into the learned representation.

3 PRELIMINARIES

Given a graph G = V,A,X , where V is the set of N nodes (atoms), A ∈ RN×N is the adjacency
matrix, and X = [x1, x2, · · · , xN ]⊤ ∈ RN×D is the node feature matrix. Each entry Aij ∈ 0, 1
indicates the presence (Aij = 1) or absence (Aij = 0) of a chemical bond between atoms i and j.
Each node feature xi represents an atom’s properties, encoding its individual characteristics.

3.1 GRAPH NEURAL NETWORK

Graph Neural Network relies on message passing to learn useful representations for node based on
their neighbors. Given an input graph G = {V,A,X}, the node embedding is calculated by:

Hk=M(A,H(k−1);W (k))=ReLU(ω(Ã)H(k−1)W (k−1)), (1)

where Ã = A + I , D̃ =
∑

j Ãij and W (k) ∈ Rd×d is a trainable weight matrix. ω(Ã) is the nor-
malization operator that represents the GNN’s aggregation function. An additional readout function
R combines the final node embeddings into a graph embedding HG, which is formalized as:

HG = READOUT(Hk
v |v ∈ V ), (2)

where V is the node set and k denotes the layer index. READOUT is a permutation-invariant pool-
ing function, such as summation. The resulting graph representation HG captures global structural
and node-level semantic information of the graph and can be used for various downstream tasks.

3.2 MASKED GRAPH MODELING

Masked Graph Modeling (MGM) aims to pre-train a graph encoder using component masking for
downstream applications. Specifically, it masks out some components (e.g., atoms, bonds, and frag-
ments) of the molecules and then trains the model to predict them given the remaining components.
Given a graph G = {V,A,X}, the general learning objective of MGM can be formulated as:

LMGM = −EVm∈V

[ ∑
v∈Vm

log p(Ṽm | V \ Vm)

]
, (3)

where Vm denotes the masked components of graph V and V \ Vm are the remaining components.

4 METHODOLOGY

The fundamental architecture of the GraSPNet is illustrated in Figure 3. In general, the architecture
is designed to predict the representations of multiple semantic target by leveraging the learned rep-
resentations of a context graph with missing information. In this section, we detail the design and
implementation choices for each component of the architecture.

3
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Figure 2: Illustration of our graph fragmentation process. The left figure shows graph G1 and G2

which can not be distinguished by WL test while higher-level fragment graph F1 and F2 exhibit
different connections that can be distinguished by WL. The right figure shows an example of our
graph fragmentation. The ring is first selected, followed by the extraction of multiple paths. The
articulation points are designated as unique fragment types to prevent cycles in the fragment graph.

4.1 GRAPH FRAGMENTATION

Understanding data semantics is often considered essential in machine learning (Fei et al., 2023).
Graph fragmentation methods aim to decompose an entire graph into structurally informative sub-
graphs that are closely related to the graph’s properties. This hierarchical structure is crucial for
enhancing the expressiveness of GNNS.

The widely used WL-test (Leman & Weisfeiler, 1968) which captures structural differences between
graphs by repeatedly updating node labels based on their neighbors had been proved to be the ex-
pressiveness upper bound of message passing network (Xu et al., 2019). Higher-level fragmentation
graph with nodes and fragments representation together with the interaction between them is more
expressiveness and can be more powerful than 2-WL test in distinguish graph isomorphic. As il-
lustrated in Figure 2, WL-test fails to distinguish between G1 and G2 where both graphs exhibit
symmetric structures at the atom level, leading to identical label refinement through WL iterations.
However, as for their corresponding fragment graphs, F1 forms a simple two-node graph, while F2

includes a three-node chain with a distinct central ‘path’ fragment. This structural asymmetry is
detectable by the WL test on the fragment level, enabling better discrimination of molecular graphs.

Existing fragmentation methods are typically rule-based procedures, including BRICS (Degen et al.,
2008) and RECAP (Lewell et al., 1998) which follow chemical heuristics but often generate large,
sparse vocabularies with low-frequency or unique fragments, limiting generalization. Others, like
METIS (Karypis & Kumar, 1998), use graph partitioning algorithm to minimize edge cuts may dis-
rupt chemically meaningful structures and produce non-deterministic, molecule-specific fragments.

To construct a fragmented graph with high expressiveness and strong generalization ability, the
fragmentation method should both capture key structural fragments and generalize across diverse
molecular graphs. We propose a fragmentation strategy that decomposes each molecule into rings,
paths and articulation points, forming a higher-level graph that supports learning both fragment
representations and their structural relationships. Specifically, given the SMILES of a molecule, we
transform it into graph with G = {V,A,X} using RDKIT where V and A are atoms (nodes) and
bonds (edges) respectively, X is the corresponding atom feature. V is then divided into subgraphs
V1, . . . , Vm where m is the number of generated fragments using the following three steps. Ring
extraction. We first identify all minimal rings in the molecular graph and form the first type of
subgraphs, each corresponding to a ring. Path extraction. For the remaining nodes and edges, we
extract paths in which all intermediate nodes have degree of 2, while the endpoints may have other
degrees. These form the second type of subgraphs. Articulation point extraction. Finally, any
remaining nodes with degree greater than 3 are selected as individual articulation-point subgraphs.

This process results in a set of overlapping subgraphs, where each node is assigned to exactly one
subgraph, except for connector nodes that bridge two adjacent substructures. Figure 2 illustrates an
example of our fragmentation method. This design preserves topological information and prevent
most circles in the fragmentation graph, enabling effective fragment-level representation learning.

All fragments induce a new fragment node set V f , with an associated adjacency matrix Af ∈
[0, 1]m×m representing the connectivity between fragments and Anf ∈ [0, 1]n×m mapping the orig-
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Figure 3: Overview of the Graph Semantic Predictive Network (GraSPNet) framework. The original
molecule is fragmented to form a higher-level fragment graph. Masked node and fragment graphs
are input into the context encoder, while the target encoder processes the original unmasked graphs.
The predictor uses context representations to predict node and fragment embeddings, and the loss
minimizes the distance between the prediction and the target encoder’s representations.

inal node to fragments. Specifically, ∀(i, j),

Af
ij = 0 ⇒ V f

i ∩ V f
j = ∅, Af

ij = 1 ⇒ V f
i ∩ V f

j ̸= ∅,

indicating whether two fragments share overlapping nodes. The size of the overlapping corresponds
to the minimum cut value between the two fragment in the original graph.

4.2 MODEL

Based on the given graph with fragmentation, we proposed GraSPNet which is a predictive archi-
tecture focused on learning fragmentation level information. The model is constructed by nodes and
fragmentation encoding, context encoder, target encoder, and predictor which is shown in Figure 3.

4.2.1 FRAGMENT ENCODING

We first introduce the graph information encoding which includes both node encoding and frag-
mentation encoding. Previous work generate fragment embeddings by aggregating nodes or one hot
encoder. To achieve better generalization and ensure that similar fragmentations share similar initial
features, we follow the (Wollschläger et al., 2024) by incorporating the fragment class and size into
the embedding. Formally, the fragment embeddings are generated as:

hf = W1 ·X(f)∥α · (W2 ·X(f)), (4)

where hf is the fragment embedding, W1,W2 are two learnable encoding matrix, X(f) is the one-
hot initial vector representing fragment type, scaling factor α is equals to the fragment size.

4.2.2 CONTEXT ENCODER

We design our context encoder to leverage hierarchical representation learning. To train the encoder,
a destructive data augmentation is applied by randomly masking nodes and fragments in the input
graph. The masking process is modeled as a Bernoulli distribution applied independently to each
nodes and fragments which is defined formally as follows:

Vm ∼ Bernoulli(p),

where p < 1 is the masking ratio. We denote the masked node set as Vm and the remaining node set
as V − Vm. The fragment masked set are define as V F

m with the same p.
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The input node features Xn ∈ Rdn×1 are projected into d-dimensional embedding through a linear
embedding layer:

hn
i = Wn ·Xn

i + b,

where Wn ∈ Rd×dn and b ∈ Rd are learnable parameters. hf is generated from Equation 4.

Given the initial node and fragment embeddings, we apply a series of L message-passing layers,
where both node and fragment representations are iteratively updated using a graph neural net-
work. The message-passing procedure in the encoder consists of four components: Mn→n, Mn→f ,
Mf→f , and Mf→n, which denote message passing from nodes to nodes, nodes to fragments, frag-
ments to fragments, and fragments to nodes, respectively. Here, Mn→n corresponds to standard
message passing over the original atom nodes, while the remaining components collectively form
the fragment-level message passing layer.

For each layer, the node representations are first updated through node-level message passing. If
a fragment layer is applied, the updated node features are then aggregated into the fragments to
which each node belongs. Subsequently, higher-level fragment message passing is performed to
capture structural information based on fragment representations and their connectivity. Finally,
the updated fragment features are injected back into the corresponding node representations. The
message passing between nodes and fragments can be represented as:

H
(l)
node = f

(l)
node

(
(Anode, H

(l−1)
node ),W

(l)
0

)
, H

(l)
frag = fnode-frag

(
(Anode-frag, H

(l−1)
frag , H

(l)
node,W

(l)
1

)
,

H
(l)
frag = ffrag

(
(Afrag,pool(H

(l)
frag)),W

(l)
2

)
, H

(l)
node = f

(l)
frag-node

(
(Afrag-node, H

(l)
node, H

(l)
frag),W

(l)
3

)
,

where l is the layer index, W0,W1,W2,W3 ∈ Rd×d are learnable weight matrices of the lth mes-
sage passing layer with feature dimension d. Let Anode ∈ Rn×n denote the original adjacency matrix
of the molecular graph. The matrices Anode-frag, Afrag-node ∈ Rn×m and Afrag ∈ Rm×m represent the
node-to-fragment mapping, fragment-to-node mapping, and the adjacency between fragments, re-
spectively, where n is the number of nodes and m is the number of fragments. Function f

(l)
node

and f
(l)
frag denotes the l-th node-level and fragment-level message-passing layer, which can be any

standard GNN architecture (e.g., GCN, GIN). ffrag-node denote a fragment-level message passing,
implemented using an MLP and guided by the fragment connectivity and node-fragment associa-
tions. The aggregation from node features to fragment features is defined via a pooling function:
hp = 1

|Vp|
∑

i∈Vp
hl
i,p ∈ Rd where 1 ≤ p ≤ m and Vp is the set of nodes assigned to fragment p.

4.2.3 TARGET REPRESENTATION

The target encoder adopts the same architecture as the context encoder, incorporating both node
and fragment encoding along with k layers of message passing with fragment layer to learn repre-
sentations of the original input graph enriched with higher-level semantic information. To prevent
representation collapse, we use a lighter version of the context encoder with fewer layers and update
its parameters using an Exponential Moving Average (EMA) of the context encoder parameters.

4.3 PREDICTOR AND LOSS

Given the learned node representations Zn and fragment representations Zf from the context en-
coder, the objective is to capture richer semantic information beyond individual node embeddings.
Our prediction model consists of two components: node representation prediction and fragment
representation prediction.

For node prediction, we first remove the representations of masked nodes from the context output.
The remaining node embeddings are passed through a k-layer message passing network to predict
the target node representations. Unlike a simple MLP decoder, this approach encourages the encoder
to capture topological dependencies rather than merely reconstructing individual node features. The
prediction is defined as: Ẑn = g(A,Zcontext

n ;W ), where g denotes the message passing function
and A is the node adjacency matrix. For fragment prediction, a k-layer MLP is used to predict the
target fragment embeddings from the context output: Ẑf = MLP (Zcontext

f ;W ).
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Table 1: Evaluation on molecular property prediction tasks. For each downstream dataset, we report
the mean and standard deviation of the ROC-AUC (%) scores over three random scaffold splits. The
best and second best scores are marked bold and underline, respectively.

BBBP Tox21 ToxCast Sider MUV HIV Bace Clintox

No Pre-train 67.8±1.4 73.9±0.8 62.4±0.4 58.3±1.8 73.4±2.5 76.3±1.2 76.8±2.6 62.6±4.4
MAE 68.7±1.3 75.5±0.5 62.0±0.8 58.0±1.0 69.7±1.5 74.2±2.2 77.2±1.6 70.1±3.2

Infomax 69.2±0.7 74.6±0.5 61.8±0.8 60.1±0.7 74.8±1.5 75.0±1.3 76.3±1.8 71.2±2.5
Attr mask 65.6±0.9 77.2±0.4 63.3±0.8 59.6±0.7 74.7±1.9 77.9±1.2 78.3±1.1 77.5±3.1

CP 72.1±1.5 74.3±0.5 63.5±0.3 60.2±1.2 70.2±2.8 74.4±0.8 79.2±0.9 70.2±2.6
ADGCL 70.5±1.8 74.5±0.4 63.0±0.5 59.1±0.9 71.5±2.2 75.9±1.8 74.2±2.4 78.5±3.7
GraphCL 71.4±1.1 74.5±1.0 63.1±0.4 59.4±1.3 73.8±2.0 75.6±0.9 78.3±1.1 75.5±2.4

JOAO 71.8±1.0 74.1±0.8 63.9±0.4 60.8±0.6 74.2±1.2 76.2±1.8 77.2±1.7 79.6±1.4
BGRL 72.5±0.9 75.8±1.0 62.1±0.5 60.4±1.2 76.7±2.8 77.1±1.2 74.7±2.6 65.5±2.3

GraphMAE 71.7±0.8 76.0±0.9 64.8±0.6 60.0±1.0 76.3±1.9 75.9±1.8 81.7±1.6 80.5±2.0
MGSSL 69.7±0.9 76.5±0.3 64.1±0.7 61.5±1.0 76.3±1.9 79.5±1.8 79.7±1.6 80.7±2.1
SimSGT 72.8±0.5 76.8±0.9 65.2±0.8 60.6±0.8 79.0±1.4 77.6±1.9 81.5±1.0 82.0±2.6

GraSPNet 74.4±1.5 77.3±0.8 65.5±0.5 62.5±1.1 78.5±1.3 78.0± 0.8 82.9±3.1 84.1±2.1

The loss function is a commonly used MSE loss to measure the distance between the target encoder
fragment representation and the predicted fragment representation, which is formally written as:

L = α
1

|V n
m|

|V n
m|∑

i=1

D(Ẑi
n, Z

i
n) + (1− α)

1

|V f
m|

|V f
m|∑

i=1

D(Ẑi
f , Z

i
f ),

where V n
m and V f

m denote the masked node and fragment sets, respectively; |V n
m| and |V f

m| represent
their cardinality, D(·) denotes the Euclidean distance between two vectors and α is hyperparameter.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of GraSPNet across
various benchmark datasets, aiming to assess the model’s expressiveness and generalization ability.
We also conduct additional studies on the impact of fragment layer position on performance.

5.1 SETTINGS.

We use the open-source RDKit package to pre-process SMILES strings and perform fragmenta-
tion for various datasets. For pretraining GraSPNet and all baseline models, we leverage 2 million
unlabeled molecules from the ZINC15 database (Sterling & Irwin, 2015). During downstream pre-
diction, only the pre-trained context encoder is used and fine-tuned on each benchmark dataset.
Final predictions are obtained by applying mean pooling over all node representations in a graph,
followed by a linear projection layer. Detailed training configurations are provided in the Appendix.

5.2 EVALUATION AND METRICS

The evaluation focuses on molecular property prediction tasks using benchmark datasets from
MoleculeNet (Wu et al., 2018), a collection compiled from multiple public databases. Specifically,
we select eight classification datasets related to physiological and biophysical property prediction:
BBBP, Tox21, ToxCast, SIDER, ClinTox, MUV, HIV, and BACE. These datasets cover a diverse
range of molecular properties, including blood–brain barrier permeability (BBBP), toxicity predic-
tion (Tox21, ToxCast, ClinTox), adverse drug reactions (SIDER), bio-activity against HIV (HIV),
and binding affinity to drug targets (BACE). We also conduct experiment on regression task datasets
including FreeSolv, ESOL and Lipophilicity which focus on physical chemistry. Detailed descrip-
tions are provided in the Appendix. For downstream tasks, datasets are split 80/10/10% into training,
validation, and test sets using the scaffold split protocol, in line with prior works.
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5.3 BASELINES.

As part of our experimental baselines, we include well-established self-supervised methods from
different categories: contrastive-based methods such as Infomax (Veličković et al., 2018),
ADGCL (Pan et al., 2018), GraphCL (You et al., 2020), and JOAO (You et al., 2021); generative-
based methods including MAE (Kipf & Welling, 2016b), ContextPred (Hu et al., 2020a), and
GraphMAE (Hou et al., 2022); predictive methods like Attribute Masking (You et al., 2020),
BGRL (Thakoor et al., 2021), and SimSGT (Liu et al., 2024); as well as fragment-based method,
MGSSL (Zhang et al., 2021b), HiMOL (Zang et al., 2023) and S-CGIB (Lee et al., 2025). We
provide a comparative evaluation of these baselines against our proposed method.

5.4 MOLECULE PROPERTY PREDICTION.

The molecule property prediction tasks follows the setting and we use the same node encoder struc-
ture with 5 layers of graph isomorphism network (GIN) along with batch normalization for each
layer. The higher-level fragment message passing layer is constructed with 2 layers of GIN to
avoid over-squashing in smaller fragment graph. Table 11 reports the ROC-AUC (%) scores for
eight molecular property prediction benchmarks using different self-supervised pretraining strate-
gies. Overall, GraSPNet consistently achieves the best or second-best performance across most
tasks, demonstrating its strong generalization ability.

Across most datasets, pretraining helps significantly. Compared with the baseline without pre-
training, all self-supervised methods improve ROC-AUC, highlighting the benefit of pretraining
on molecular graphs. GraSPNet outperforms all competing methods on BBBP (74.4%), Tox21
(77.3%), ToxCast (65.5%), Sider (62.5%), Bace (82.9%), and Clintox (84.1%), indicating superior
transferability to diverse biochemical endpoints. On MUV, SimSGT achieves the highest ROC-AUC
(79.0%), followed closely by GraSPNet (78.5%). For HIV, MGSSL leads with 79.5%, while GraSP-
Net is second-best (78.0%). Compared to earlier contrastive learning approaches such as GraphCL,
JOAO, and ADGCL, GraSPNet yields clear improvements (e.g., +3–5% on BBBP and Clintox).
These results suggest that GraSPNet better captures transferable molecular semantics, especially
for small datasets like BBBP and Clintox where pretraining benefits are most pronounced. Fur-
thermore, its robust performance across both toxicity-related (Tox21, Sider) and bioactivity-related
(HIV, Bace) benchmarks indicates its adaptability across heterogeneous molecular tasks.

We further compare our method with other fragment-based approaches, as reported in Table 10.
Our method achieves the best performance on Clintox (82.5) and MUV (78.5), and ranks second
on HIV and BBBP. Compared with S-CGIB, which relies on aggregating one-hop subgraphs of
each node for pre-training and fine-tuning, our approach generates meaningful fragmentations that
enable more effective representation learning while avoiding the high memory overhead of subgraph
enumeration. In contrast to MGSSL, which constructs fragments dynamically during training and
thus incurs substantial computational cost, our method performs fragmentation in a more efficient
manner, leading to faster training without sacrificing predictive accuracy.

Apart from classification tasks, we also reports fine-tuning performance on three regression bench-
marks from physical chemistry as shown in Table 5 in Appendix, measured by RSE (lower is better).
Our method achieves the best results on all three tasks. These results highlight GraSPNet’s ability to
capture higher-level molecular semantics that are critical for modeling fundamental physical chem-
istry properties such as solubility and lipophilicity.

Overall, these results demonstrate that our approach consistently improves predictive performance
across multiple datasets, highlighting the strength of incorporating fragment-level message passing,
while also identifying areas for future enhancement on specific molecular tasks.

5.5 ABLATION STUDY.

Table 2 presents an ablation study on four molecular property prediction datasets: clintox, bbbp,
sider, and bace. The baseline GINE model performs moderately across all tasks. Removing frag-
ment information during masked node reconstruction (“w/o F”) results in noticeable performance
drops on most datasets, highlighting the contribution of chemically meaningful fragments to rep-
resentation learning. Excluding higher-level message passing (“w/o Higher-MP”) further degrades
performance, demonstrating the importance of multi-level interaction modeling. The full model,
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Table 2: Ablation study on molecular prediction
tasks. w/o F: without fragment information. w/o
H-MP: without higher-level MP.

Type Clintox BBBP Sider Bace

GINE 71.8 70.2 59.6 76.9
w/o F 78.9 71.3 60.0 80.7
w/o H-MP 81.9 72.8 61.3 81.2
Full 84.1 74.2 62.5 82.9

Table 3: Comparison with other fragment-
based methods on four molecular property
prediction benchmarks.

Clintox MUV HIV BBBP

MGSSL 80.7 76.3 79.5 69.7
S-CGIB 74.6 74.1 77.3 85.4
HiMOL 80.8 76.3 77.1 70.5
Ours 82.5 78.5 78.0 74.4

which incorporates both fragment-aware masking and hierarchical message passing, consistently
achieves the best results across all tasks, indicating that both components are complementary and
essential for effective molecular representation learning.

5.6 FRAGMENT LAYER ANALYSIS.
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Figure 4: Performance of incorporating fragment
information after different GINE layers in the con-
text encoder.

Since the fragmentation layer can be placed af-
ter any node-level message passing layer, we
conduct experiments to test the influence of
node-fragment interaction after each layer. The
result is shown in Figure 4. We conduct pre-
training on 20,000 molecules on ZINC and fine-
tune it on 4 downstream tasks: clintox, bbbp,
sider, and bace. We use 5-layer of GINE as
context encoder and add the node-fragment in-
teraction layer and higher-level fragment layer
after each message passing layer. The result
shows that as the depth increases from layer 1
to layer 3, the performance gradually improves
on all datasets, indicating that early layer hier-
archical message passing enriches node repre-
sentations with meaningful local semantical in-
formation, which benefits multiple downstream
performance. Placing the fragment layer after
layer 4 provides marginal gains for BBBP and SIDER but begins to degrade performance on Clin-
Tox and BACE, and adding the fragment layer after layer 5 consistently results in performance dete-
rioration across all tasks. This shows that late layer node and fragment information interaction may
enlarge the influence of over-smoothing and be harmful to downstream performance. Overall, these
results demonstrate that positioning the fragment layer at an intermediate depth achieves the best
trade-off between enriched semantics and avoiding over-smoothing, thereby enhancing fragment-
aware molecular representations.

6 CONCLUSION

In this work, we proposed a fragment-based pretraining framework for molecular graph represen-
tation learning that jointly predicts node and fragment embeddings to capture semantically mean-
ingful graph representations. By introducing fragmentation based on both geometric and chemical
structure, we construct higher-level graph abstractions that are expressive yet maintain a lower vo-
cabulary size, promoting better generalization. The representation is learned through hierarchical
message passing and an embedding prediction objective at both node and fragment levels, enabling
the model to capture semantic information across multiple resolutions. We evaluate our approach
on several benchmark datasets under transfer learning settings and demonstrate competitive perfor-
mance. A limitation of our method is that the fragmentation design is tailored to molecular graphs
and may not generalize well to node classification tasks, such as social networks. In future work,
we plan to incorporate multimodal signals such as 3D molecular structures and natural language
annotations to further explore the benefits of fragmentation in graph learning.
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A DATASETS DESCRIPTION

The benchmark datasets used for downstream prediction tasks are summarized in Table 4, including
their descriptions, number of graphs, and number of prediction tasks.

Table 4: Summary of molecular property prediction benchmarks.
Dataset Description Number of Graphs Number of Tasks
BBBP Blood-brain barrier permeability 2,039 1
Tox21 Toxicology on 12 biological targets 7,831 12
ToxCast Toxicology via high-throughput screening 8,575 617
SIDER Adverse drug reactions of marketed medicines 1,427 27
ClinTox Clinical trial failures due to toxicity 1,478 2
MUV Validation of virtual screening techniques 93,087 17
HIV Ability to inhibit HIV replication 41,127 1
BACE Inhibitors of human β-secretase 1 binding results 1,513 1

B DISTRIBUTION OF FRAGMENTS

The distribution of fragment size and number of each fragments including rings, paths and articula-
tion per graph in pretraining ZINC dataset are shown in Figure 6.
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Figure 5: Distribution of structural components in molecular graphs. Each subplot shows the distri-
bution of (a) fragment sizes, (b) number of rings, (c) number of paths, and (d) number of articulation
points per graph. The x-axis represents the count of each structure, and the y-axis shows the number
of graphs with that count.

C ADDITIONAL EXPERIMENTS

In this section we list the additional experimental result which is mentioned in the main paper.
Table 5 shows the RMSE of regression tasks.
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Figure 6: Distribution of (a) Rings and (b) Paths size in ZINC dataset.

Table 5: Performance comparison on regression tasks in terms of RMSE(↓).
Methods FreeSolv ESOL Lipophilicity
ContextPred 3.195± 0.058 2.190± 0.026 1.053± 0.048
AttrMasking 4.023± 0.039 2.954± 0.087 0.982± 0.052
EdgePred 3.192± 0.023 2.368± 0.070 1.085± 0.061
Infomax 3.033± 0.026 2.953± 0.049 0.970± 0.023
JOAO 3.282± 0.002 1.978± 0.029 1.093± 0.097
GraphCL 3.166± 0.027 1.390± 0.363 1.014± 0.018
GraphFP 2.528± 0.016 2.136± 0.096 1.371± 0.058
MGSSL 2.940± 0.051 2.936± 0.071 1.106± 0.077
GROVE 2.712± 0.327 1.237± 0.403 0.823± 0.027
SimSGT 1.953± 0.038 1.213± 0.032 0.835± 0.037
GraSPNet(Ours) 1.232± 0.05 1.161± 0.37 0.813± 0.052

D FURTHER RELATED WORK

Representation Learning on Molecules. Representation learning on molecules has made use
of hand-crafted representation including molecular descriptors, string-based notations, and im-
age (Zeng et al., 2022). Graph-based representation learning are currently the state-of-the-art meth-
ods as it can capture geometric information in molecule structure. In this setting, molecules are
typically modeled as 2D graphs, where atoms are represented as nodes and bonds as edges, with
associated feature vectors encoding atom and bond types (Hu et al., 2020b). GNN pretraining are
commonly used for molecule representation learning using contrastive learning (You et al., 2020;
2021; Suresh et al., 2021; Xu et al., 2021), auto-encoding (Hou et al., 2022; 2023), masked compo-
nent modeling (Xia et al., 2023; Liu et al., 2024), or denoising (Zaidi et al., 2022; Liu et al., 2022).
At the pretraining level, methods can be categorized into node-level, graph-level, and more recently
fragment-level (Guo et al., 2023). Node-level methods capture chemical information at the atomic
scale but are limited in representing higher-order molecular semantics, while graph-level methods
may overlook fine-grained structural details.

Joint embedding predictive architecture. Joint-Embedding Predictive Architectures (LeCun,
2022; Garrido et al., 2024) are a recently proposed self-supervised learning architecture which com-
bine the idea of both generative and contrastive learning methods. It is designed to capture the
high-level dependencies between the input x and the prediction object y through predicting missing
information in an abstract representation space. The JEPA framework has been implemented for
images (Garrido et al., 2024), videos (Bardes et al., 2023) and audio (Fei et al., 2023) and shows
a superior performance on multiple downstream tasks. It is claimed that JEPA can improve the
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Figure 7: G1 (top left) and graph G2 (top right) with their corresponding higher-level graph on
bottom left and bottom right. Graph G1 and graph G2 that are indistinguishable by 1-WL but
distinguishable by Fragment-WL with higher-level graph.

semantic level of self-supervised representations without extra prior knowledge encoded (Assran
et al., 2023). However previous work mostly focus on downstream tasks performance without ac-
tually provide evidence to support the semantic level comparison. For molecule graph learning, the
natural properties of molecules allow us to evaluate the semantic information contained in the repre-
sentation by detecting specific functional groups detection. This allows us to analyze and compare
the semantic level of learned representation.

E LLM USAGE STATEMENT

We used large language model (LLM) solely for grammar checking and minor language editing. No
part of the research ideation, methodology, analysis, or writing of scientific content relied on LLMs.

F REPRODUCIBILITY

To ensure reproducibility of our results, we provide the hyperparameter configurations used in both
the self-supervised pretraining and downstream fine-tuning stages. Table 6 lists the key architectural
choices, optimization settings, and training details consistently applied across experiments. The
code will be release upon acception.
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Table 6: Hyperparameters for Experiments in Self-supervised learning and fine-tuning
Setting Self-supervised Learning Fine-tuning
Backbone GNN Type GIN GIN
Context Layer 5 5
Target Layer 1 1
PE type None None
Backbone Neurons [300] [300]
Fragment layer [2,3] [2,3]
Batch size {32, 64, 128} {32}
Fragment GNN Type GIN GIN
Projector Neurons [300, 300] [300, 300]
Pooling Layer Global Mean Pool Global Mean Pool
Learning Rate {0.0001} {0.0001, 0.005, 0.001}
EMA {0.996, 1.0} {None}
Masking Ratio {0.35} {0}
Training Epochs {100} {100}

Table 7: Ablation study on articulation point.
Type Clintox BBBP Sider Bace Mean

w/o Arti 70.16 66.84 58.14 77.81 68.24
Full 70.35 67.30 59.61 76.86 68.53

Table 8: Training time.
Model GraphMAE Mole-BERT S2GAE GraphMAE2 SimSGT GraSPNet

Pretrain Time 527 min 2199 min 1763 min 1195 min 645 min 769 min

Table 9: RDKiT fragments prediction accuracy of GraSPNet.
Fragment epoxide lactam morpholine oxazole tetrazole NO ether furan guanido halogen piperdine

Acc 99.5 99.95 99.45 99.10 98.85 99.60 91.75 99.60 99.55 94.35 95.70

Table 10: RDKiT fragments prediction accuracy of GraSPNet.
Fragment thiazole thiophene urea allylic oxid amide amidine azo benzene imidazole imide piperzine pyridine

Acc 99.05 99.70 99.75 95.45 94.65 99.65 99.80 92.25 98.75 99.4 97.2 97.15

Table 11: More baselines.

BBBP Tox21 ToxCast Sider MUV HIV Bace Clintox

GraphLOG 67.2±1.3 76.0±0.8 63.6±0.7 59.8±2.1 72.8±1.8 72.5±1.6 82.8±0.9 76.9±1.9
S2GAE 67.6±2.0 69.6±1.3 58.7±0.8 55.4±1.3 60.1±2.4 68.0±3.8 68.6±2.1 59.6±1.1

Mole-BERT 70.8±0.5 76.6±0.7 63.7±0.5 59.2±1.1 77.2±1.1 76.5±0.8 82.8±1.4 77.2±1.4
GraphMAE2 71.6±1.6 75.9±0.8 65.6±0.7 59.6±0.6 78.5±1.1 76.15±2.2 81.0±1.4 78.8±3.0
GraSPNet 74.4±1.5 77.3±0.8 65.5±0.5 62.5±1.1 78.5±1.3 78.0± 0.8 82.9±3.1 84.1±2.1
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