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Abstract

Online platforms such as YouTube, Instagram heavily rely on recommender systems to decide
what content to present to users. Producers, in turn, often create content that is likely to
be recommended to users and have users engage with it. To do so, producers try to align
their content with the preferences of their targeted user base. In this work, we explore the
equilibrium behavior of producers who are interested in maximizing user engagement. We
study two variants of the content-serving rule for the platform’s recommender system, and
provide a structural characterization of producer behavior at equilibrium: namely, each
producer chooses to focus on a single embedded feature. We further show that specialization,
defined as different producers optimizing for distinct types of content, naturally emerges
from the competition among producers trying to maximize user engagement. We provide a
heuristic for computing equilibria of our engagement game, and evaluate it experimentally.
We highlight i) the performance and convergence of our heuristic, ii) the degree of producer
specialization, and iii) the impact of the content-serving rule on producer and user utilities
at equilibrium and provide guidance on how to set the content-serving rule 1.

1 Introduction

Recommender systems have transformed our interactions with online platforms like Instagram, Spotify, and
YouTube (Stigler Committee, 2019; Qian and Jain, 2022). These systems curate content to enhance user
experiences, fostering user retention and engagement (Goodrow, 2021; Instagram, 2023). This often translates
into increased revenue for the platform. Due to their importance to today’s digital industry, there has been a
large body of work aiming at developing new and improving existing recommendation algorithms, e.g., (Koren
et al., 2009; Li et al., 2010; Lü et al., 2012; Wang and Zhang, 2012; Luo et al., 2014; Covington et al., 2016;
He et al., 2017; Yi et al., 2019).

In 2023, the creator economy, driven largely by these systems, was valued at a staggering $250 billion (Perelli,
2023). Content producers have adapted to this landscape to act strategically (Milli et al., 2023; Merrill and
Oremus, 2021; Mack, 2019). They often compete against each other and tailor their content to maximize
exposure (or how many users does a producer reach) or engagement (or how much users engage with a given

1Code available at https://github.com/krishnacharya/recsys_eq

1

https://openreview.net/forum?id=EWT4GxjGDS
https://github.com/krishnacharya/recsys_eq


Published in Transactions on Machine Learning Research (02/2025)

producer’s content). This competition can be modelled as a game, where understanding the dynamics offers
insights into content creation incentives and phenomena like content specialization. However, comprehending
these dynamics, both theoretically and empirically, presents challenges when considering the complex nature
of user preferences and content strategies in high-dimensional spaces. Finding Nash equilibria is in general a
computationally difficult process, especially as the number of players and the action space increase. In the
case of recommender systems, user preferences and producer contents are represented by high-dimensional
vectors, and the set of possible strategy profiles for the producers rapidly grows intractably large as the size
of the game increases.

In this work, we aim to provide new insights into producer competition and the equilibria of recommender
systems. We take a departure from much of the related literature that aims at understanding equilibria and
dynamics when producers try to maximize exposure (i.e., how many users see their content). We instead
focus on producers interested in maximizing engagement, a metric that encompasses not just exposure but
also how much users interact with content.

Our main goal is to understand the extent and conditions under which content specialization occurs—defined
as different producers choosing to create distinct types of content—instead of all producers producing the
same homogeneous content.

Summary of contributions Our main contributions are as follows:

• In Section 2, we formally introduce our model. We assume producers aim to maximize user engagement
instead of user exposure, where the latter is typical in works characterizing producer equilibria in
recommender systems (Hron et al., 2022; Jagadeesan et al., 2022). We rely on the softmax rule
used in previous work (Hron et al., 2022; Chen et al., 2019) for showing content to users, but also
introduce a new linear-proportional content-serving rule as a baseline for comparison.

• In Section 3, we provide our main theoretical structural characterization result. We mathematically
prove that at equilibrium, producers prefer producing content that targets a single (embedded)
feature at a time, rather than investing across several features.

• In Section 4, we characterize the pure Nash equilibrium with the linear content-serving rule for a
simplified setting in which we assume all users are “single-minded”, i.e. are only interested in a
single type of content. The closed-form equilibrium we derive exhibits specialization, defined as when
different producers split themselves across different types of content, rather than all producing the
same, homogeneous content. While this setting is simplified, we note in the experimental results of
Section 5 that the insights it provides do carry on to the general softmax content-serving rule and to
more general user preferences.

• In Section 5, we present experiments on synthetic data and three real-world datasets—Movielens-100k,
Amazon Music, and Rent the Runway (Harper and Konstan, 2015; Ni et al., 2019; Misra et al.,
2018). First, we introduce a computationally efficient heuristic based on best-response dynamics
(Algorithm 1) for computing pure Nash equilibria of our engagement game. We observe that this
heuristic almost always converges to a pure Nash equilibrium within relatively few steps. Second,
our experiments further characterize producer specialization, showing that it occurs even under more
complex settings than those in Section 4. We then study the effect of the temperature parameter
in the softmax content-serving rule on both producer specialization and utility. Specifically, we
demonstrate that the degree of producer specialization is monotonic with respect to temperature:
higher temperatures (representing greater exploration in the content shown to users) incentivize more
homogeneous content production, while lower temperatures (favoring the most relevant content for
each user) encourages specialization, with producers focusing on distinct types of content. Lastly, we
show that both producer and user utilities decrease monotonically with increasing temperature. A
low softmax temperature yields the highest utility for both producers and users, emphasizing the
benefits of selecting lower temperatures in the softmax content-serving rule.
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1.1 Related work

The study of strategic behavior and incentives among producers in recommender systems has seen much
interest recently. These interactions can broadly be classified into two types of games: exposure-based, where
producers are rewarded for maximizing the reach of their content, and engagement-based, where producer
rewards depend not only on reach but also on how well the recommended content aligns with user preferences.

Exposure games The seminal works of Raifer et al. (2017); Basat et al. (2017); Ben-Porat and Tennenholtz
(2018); Ben-Porat et al. (2019b;a; 2020) introduce game-theoretic models of competition among producers
aiming to maximize exposure. While these early studies constrain content creators to finite strategy spaces
by requiring them to select from a pre-specified, finite catalog, more recent works—such as Jagadeesan et al.
(2022); Hron et al. (2022), which are most closely related to ours—have relaxed this assumption by focusing
on creators with continuous strategy sets.

Engagement games The works of (Yao et al., 2023a; Immorlica et al., 2024; Huttenlocher et al., 2024)
model producer rewards based on engagement. Yao et al. (2023a) study social welfare in scenarios where
content creators compete without the mediation of a central recommender, and focus on bounding the Price
of Anarchy2. Immorlica et al. (2024) examine engagement games from a different perspective, exploring the
trade-off between producing high-quality content and gaming the recommender system by creating low-quality,
"clickbait" content. Huttenlocher et al. (2024) model the problem as a two-sided marketplace with departing
users and creators and show that maximizing total engagement in such a setting is NP-hard.

Mechanism design Works on Exposure and Engagement games focus on characterizing producer competi-
tion and equilibrium under a fixed content-serving rule and producer reward. In contrast, Yao et al. (2023b;
2024) adopt a mechanism design perspective, designing rewards and serving rules incentivizing equilibria
that have high social welfare. Hu et al. (2023) explore a similar setting but model the platform as a linear
contextual bandit.

User dynamics Our work studies adaptive producers who change their content vectors to maximize user
engagement. The user preferences are static, consistent with the literature on Exposure and Engagement
games. Another line of work by (Dean and Morgenstern, 2022; Kalimeris et al., 2021) studies shifting user
preferences based on the content recommended to them. Lin et al. (2024) adopt this user preference shift
model but also model evolving producers, providing conditions for user polarization, though their producer
evolution is not game-theoretic.

A table providing a more detailed comparison of our paper to related work along various axes (such as the
nature of producer reward, type of equilibrium and dynamics) is available in Appendix A.

2 Our model

We consider an engagement game between n producers on an online platform. The producers must decide
what type of content to produce in a d-dimensional space to maximize the engagement from users. This
space is generally not what one may think of as the original feature space, where features are defined, e.g.,
as different genres that a producer or user may care about. Rather, these features are embedded features
that are the results of a matrix factorization algorithm3 whose goal is to learn representative “directions” of
the recommendation problem, as in Hron et al. (2022); Jagadeesan et al. (2022). The online platform then
uses their recommender system to recommend content to users as a function of how well producer content
matches user preferences. More formally:

Producer model We have n producers on the platform. Each producer i chooses a content vector si from
the set S := {s : s ∈ Rd

≥0, ∥s∥1 ≤ 1}. We note that we focus on the ℓ1-norm in order to model the relative

2The ratio between the optimal welfare to that at the decentralized equilibrium(Koutsoupias and Papadimitriou, 1999)
3MF learns latent representations of users and movies which are then used to predict user preferences and ratings. Our

results however do not depend on the specifics of the algorithm used to obtain this embedding.
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amount of weight that each producer has on each embedded feature. We let ∆S be the set of probability
distributions over S. Letting si(f) denote the f -th entry of content vector si for feature f ∈ [d], one can
interpret si(f) as the fraction of producer i’s content that targets embedded feature f .

User model We have K users on the platform. Each user k ∈ [K] is described by a preference vector in
C := {c : c ∈ Rd

≥0, ∥c∥1 ≤ 1}. We note that ck describes user preferences in the form of the amount of weight
they attribute to each embedded feature. The more weight on the feature, the more utility the user derives
from seeing content that aligns with said feature. We assume that the utility of a user with preferences ck

who faces content s is given by c⊤
k s.

Recommender system’s content-serving rule The platform uses a recommender system (RS) to
decide which producer’s content to show to which user. Denote s⃗ = (s1, . . . , sn) ∈ Sn the full profile of
producers’ production choices. The RS shows producer i’s content si to a user with preferences ck with
probability pi(ck, s⃗) = pi(ck, si, s−i), where s−i denotes the rest of the producers. We call this probability
the content-serving rule. In this paper, we consider two content-serving rules:

1. The softmax content-serving rule is, as in Hron et al. (2022); Chen et al. (2019):

pi(c, si, s−i) ≜
exp

(
c⊤si

τ

)
∑n

j=1 exp
(

c⊤sj

τ

) (1)

where τ denotes the softmax temperature. A low temperature corresponds to greedier serving (i.e.,
only the best fitting producer’s content is shown to the user), whereas a high temperature corresponds
to adding more randomness to the serving (“worse” producers may still have their content shown to
the user, albeit with lower probability). The limit τ → 0 corresponds to a hard maximum, i.e., the
producer whose content is best aligned, namely producer arg maxj∈[n] c⊤sj , is shown to user c.

2. The top-k softmax content-serving rule first selects the top-k producers with the highest alignment
scores c⊤sj , where j ∈ [n]. Among the selected k producers, we then apply the softmax function
with temperature τ :

pi(c, si, s−i) ≜


exp

(
c⊤si

τ

)
∑

j∈K
exp

(
c⊤sj

τ

) if i ∈ K,

0 otherwise,

(2)

where K =
{

j ∈ [n] : c⊤sj is among the top k values of {c⊤s1, . . . , c⊤sn}
}

. When k = n, the top-k
softmax rule reduces to the regular softmax rule defined in (1), and when k = 1, it’s defined as the
greedy serving rule.

3. The linear-proportional content-serving rule (Luce (1977) choice axiom), where each producer’s
content si is shown to user ck with a probability directly proportional to c⊤

k si.

pi(c, si, s−i) ≜


c⊤si∑n

j=1
c⊤sj

if c⊤si > 0,

0 if c⊤si = 0.
(3)

Note that the linear serving rule is well-defined even when c⊤sj is zero for all producers j. We
use this rule as a baseline to compare performance to the typical softmax-based rule, and as an
alternative rule to derive theoretical insights (our experiments in Section 5 show that theoretical
insights for the linear-content serving rule in fact extend to the softmax rule).

4. The round-robin serving rule serves producers in a cyclic order: In the first round, all users are shown
producer 1’s content, in the second round producer 2 and so on. Formally, the serving probability for
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user c in serving round r is defined as:

pr
i (c, si, s−i) ≜

{
1 if i = (r − 1 mod n) + 1,

0 otherwise.
(4)

Producer utilities One of our contributions is to characterize the utility of a producer using engagement,
rather than just exposure. In exposure games, the utility of a producer is simply the probability that this
producer’s content is shown to a user. In contrast, with engagement, the utilities incorporate an additional
term that measures how much a user engages with the content once this content is shown to them. Formally,
we assume that a producer i who successfully shows content si to user k with preferences ck derives utility
s⊤

i ck from that user. This captures the fact that a user whose preferences are better aligned with the
producer’s content are more likely to spend more time engaging with that content. Formally, we define the
expected engagement utility for producer i as

ui(s) = ui(si, s−i) ≜
K∑

k=1
pi(ck, s⃗) · c⊤

k si. (5)

Note that this expected utility is reweighted by the probability of producer i showing si to user k, as i derives
no utility from user k if said user does not see his content in the first place. The total producer utility Up is
then defined as

Up ≜
n∑

i=1

K∑
k=1

pi(ck, s⃗) · c⊤
k si.

User utilities We similarly define the utility for a user with embedding ck as its engagement in expectation
across all producers i.e.,

∑n
i=1 pi(ck, s⃗) · c⊤

k si. The total user utility Uu is defined as

Uu ≜
K∑

k=1

n∑
i=1

pi(ck, s⃗) · c⊤
k si.

Remark 2.1. The value of the total producer utility Up and the total user utility Uu are equal, and the
average producer utility and the average user utility are equal up to a multiplicative factor.
Remark 2.2. For the round-robin serving rule (4), it is easy to see that the utility for a producer i is zero if
it is not being served. When it is served, the utility is given by maxsi∈S

∑K
k=1 c⊤

k si =
∥∥∥∑K

k=1 ck

∥∥∥
∞

, which is
achieved by setting si to the basis vector corresponding to the largest weight.

3 Equilibrium Structure

In this section, we derive our main structural result for equilibrium in engagement games: namely, we show
that at equilibrium, each producer prefers targeting a single embedded feature at a time.

Our first main assumption is that for all users, their features are strictly positive:
Assumption 3.1. For every user k and feature f , we have ck(f) > 0.

This assumption holds in practice when user representations are obtained via Non-Negative Matrix Factoriza-
tion (NMF) (Lee and Seung, 2000; Luo et al., 2014) as is observed in Jagadeesan et al. (2022); Hron et al.
(2022) and in our experiments in Section 5. We additionally make an assumption on the data distribution,
guaranteeing that user preferences c1, . . . , ck are non-trivial:
Assumption 3.2. For all pairs of production strategies s, s′ ∈ S such that s ≠ s′, there must exist at least
one user k such that c⊤

k s ̸= c⊤
k s′.

This is a mild assumption that states that there is enough diversity in user preferences. Equivalently, this
assumption states that user preferences are non-trivial and diverse enough such that span(c1, . . . , cK) = Rd,
i.e., the user preferences span 4 all of Rd. If the user preferences do not span all of Rd, this means that some

4Indeed, there then exists a subset of size d of (c1, . . . , cK) that forms a basis for Rd. If s ̸= s′, they must differ in at least
one coordinate in this basis, so there must exist ck such that c⊤

k s ̸= c⊤
k s′
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latent features are redundant. In practice, one may work with a reduced embedding dimension and perform a
new matrix factorization until Assumption 3.2 holds.

We are now interested in understanding properties of the Nash equilibria (NE) of our engagement-based
content production game, defined as the game where each producer decides which content to produce to
maximize their utility. Nash equilibria are a classical concept for solving games (Nash, 1951). We apply the
standard definition to our formulation as follows.
Definition 3.3 (Nash Equilibrium). For any producer i, the strategy s∗

i ∈ S that solves ui(s∗
i , s−i) =

maxsi∈S ui(si, s−i) is called a best response to s−i. A strategy profile (s∗
1, . . . , s∗

n) ∈ Sn is a pure-strategy
Nash equilibrium (pure NE) if and only if for every producer i ∈ [n],

ui(s∗
i , s∗

−i) = max
si∈S

ui(si, s∗
−i).

A strategy profile (D∗
1 , . . . , D∗

n) ∈ ∆Sn, where ∆Sn denotes the probability simplex over Sn, is a mixed-strategy
Nash equilibrium (mixed NE) if and only if for every producer i ∈ [n],

Esi∼D∗
i

,s−i∼D∗
−i

[ui(si, s−i)] = max
Di∈∆S

Esi∼Di,s−i∼D∗
−i

[ui(si, s−i)] .

Under either pure or mixed Nash equilibrium, all producers best respond to each other and do not want to
change their strategy: i.e., each producer maximizes its utility and gets the best utility it can by playing the
Nash, assuming all remaining producers also play the Nash.

We now characterize the equilibria of our game, under both content serving rules of Equation (1) and
Equation (3), showing that producers prefer to focus on a single embedding dimension at a time:
Theorem 3.4. Suppose Assumptions 3.1 and 3.2 hold. Let B := (e1, . . . , ed) be the standard basis for Rd,
where each ej is the unit vector with value 1 in coordinate j ∈ [d] and 0 in all other coordinates. Under both
types of content-serving rules, if there exists a NE, any pure strategy for producer i must satisfy s∗

i ∈ B, and
any mixed strategy must be a distribution supported on B in this equilibrium.

Informally, the theorem shows that at equilibrium, producer strategies are supported on the standard unit
basis rather than on the entire simplex S =

{
s : ∥s∥1 ≤ 1, s ∈ Rd

≥0
}

. Each producer focuses on a single
feature in the embedded space. Conceptually, the producers play a feature selection game where they trade-off
i) choosing the “best” features (those that align best with users’ preferences) to improve the reward when
showing content to users with ii) choosing potentially sub-optimal features to avoid competition with other
producers over top features and improve the chance of showing content to users.

The remainder of the paper studies how the choice of content-serving rule affects the trade-off between effects
i) and ii). i) pushes for more homogeneous content production while ii) promotes specialization. Section 4
provides some theoretical insights on this trade-off, and Section 5 provides experimental results for both the
linear-proportional and the softmax serving rule.

3.1 Proof of Theorem 3.4

Preliminary properties of producers’ utilities We start by noting the convexity properties of producers’
utilities. Everywhere in this proof, we denote S(c, s−i) =

∑n
j ̸=i c⊤

k sj .
Claim 3.5 (Convexity for linear-proportional serving rule). The function

fk,s−i
(x) = x2

x +
∑n

j ̸=i c⊤
k sj

is convex in x on domain the R>0. Further, suppose
∑n

j ̸=i c⊤
k sj > 0. Then it is strictly convex in x on the

domain R>0.

Proof. The first-order derivative is given by f ′
k,s−i

(x) = x(2S(c,s−i)+x)
(S(c,s−i)+x)2 ≥ 0. The second order derivative

of f is given by f ′′
k,s−i

(x) = 2S(c,s−i)2

(x+S(c,s−i))3 . Note that on x ∈ R>0, f ′′
k,s−i

(x) ≥ 0, with f ′′
k,s−i

(x) > 0 when
S(c, s−i) > 0. This concludes the proof.
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Claim 3.6 (Convexity for softmax serving rule). The function

fk,s−i
(x) = x exp (x/τ)

exp (x/τ) +
∑n

j ̸=i exp
(
c⊤

k sj/τ
)

is strictly convex in x for |x| ≤ τ log(Sexp).

In practice, we note that we expect this condition on x to hold when the game is large enough. Indeed, it
is equivalent to Sexp > exp (x/τ). When the number of producers grows, Sexp also grows while exp (x/τ)
remains bounded by exp (1/τ) (we restrict attention in this entire proof to x representing an inner product of
the form c⊤s, which we know is in [0, 1]).

Proof. Let us overload the S notation and write Sexp =
∑

j ̸=i exp
(
c⊤

k sj/τ
)
. The first-order derivative is

given by

f ′
k,s−i

(x) = (1 + x/τ) exp (x/τ) Sexp + exp (2x/τ)
(exp (x/τ) + Sexp)2

The second order derivative is then given by

f ′′
k,s−i

(x) = Sexp exp (x/τ)
τ2(Sexp + exp (x/τ))3 · (2Sexpτ + Sexpx + 2τ exp (x/τ) − x exp (x/τ)))

= Sexp exp (x/τ)
τ2(Sexp + exp (x/τ))2 ·

(
2τ + x

Sexp − exp (x/τ)
Sexp + exp (x/τ))

)
Notice that this is strictly positive so long as Sexp > exp (x/τ), concluding the proof.

Now, we note that for every producer j, in each strategy sj supported in a mixed strategy profile at equilibrium,
we must have sj > 0. Indeed, if any producer sets sj = 0 and produce no content, they get a utility of 0;
however, setting sj > 0 leads to s⊤

j ck > 0 for all users k, by Assumption 3.1, and yields strictly positive
utility. For a mixed strategy profile to constitute an equilibrium, every action on the support of each player’s
strategy must have the same utility, and this utility then has to be strictly positive, so it must be that sj > 0
on the entire mixed strategy’s support. Then, S(c, s−i) > 0 on any strategy profile on the support of a mixed
Nash equilibrium. Therefore, we can restrict attention to S ′ = S/{0}. We know that fk,s−i

(x) is then strictly
convex in x. Now, let’s examine the function gk,s−i

(si) = fk,s−i
(c⊤

k si). Clearly, gk,s−i
is convex and for all k,

gk,s−i
(λsi + (1 − λ)s′

i) ≤ λgk,s−i
(si) + (1 − λ)gk,s−i

(s′
i).

Further, pick any λ ∈ (0, 1) and si ̸= s′
i. There must exist k, by Assumption 3.2, such that c⊤

k si ̸= c⊤
k s′

i.
Then, we have that, for that k,

gk,s−i(λsi + (1 − λ)s′
i) = fk,s−i(λc⊤

k si + (1 − λ)c⊤
k s′

i)
< λfk,s−i(c⊤

k si) + (1 − λ)fk,s−i(c⊤
k s′

i)
= λgk,s−i(si) + (1 − λ)gk,s−i(s′

i),

where the inequality follows by strict convexity of fk,s−i(x). Summing over all k’s, we then get that

K∑
k=1

gk,s−i
(λsi + (1 − λ)s′

i) < λ

K∑
k=1

gk,s−i
(si) + (1 − λ)

K∑
k=1

gk,s−i
(s′

i)

as at least one of the inequality in the sum has to be strict. This shows that while each gk,s−i
is not necessarily

strictly convex,
∑

k gk,s−i
is. Now, note that both in the linear case as per Equation 3 and in the softmax case

as per Equation 1, we have that producer i’s utility for playing si, under a mixed strategy profile s−i ∼ D for
the remaining agents, is given by

ui(si, D) = Es−i∼D

[
K∑

k=1
gk,s−i

(si)
]

7
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Then, ui(si, D) is also strictly convex in si (this follows immediately by writing the definition of strict
convexity and by linearity of the expectation). Finally, now, suppose by contradiction that producer i’s best
response is not a unit vector ef . Then there exists f with 0 < si(f) < 1. In this case, note that

ui(si, D) = ui

∑
f

si(f)ef , D

 <
∑

f

si(f)ui(ef , D),

by strict convexity of si → ui(si, D). This is only possible if there exists f ′ such that ui(si, D) < u(ef ′ , D).
This concludes the proof.

Below, we provide our heuristic for computing Nash equilibria, under Algorithm 1. Our heuristic relies on
the structural result of Theorem 3.4: if a pure equilibrium exists, then it must be supported on the standard
basis B, which simplifies the best-response computation.

Algorithm 1 Best Response Dynamics for Pure Equilibrium Computation
Inputs: User embeddings (c1, . . . , cK). Utility ui(si, s−i) for producer i. Max iterations Nmax.
Output: Pure Nash equilibrium of the engagement game.

Initialize termination variable fin = 0 and iteration variable iter = 0. Initialize producer i’s strategy si

uniformly at random in B = (e1, . . . , ed).
while fin = 0 and iter < Nmax do

Produce a random permutation vector of producers 1 to n.
for each producer i in the above permutation do

Set fin = 1;
Compute s∗

i = arg maxsi∈B ui(si, s−i);
if ui(s∗

i , s−i) > ui(si, s−i) then
si = s∗

i ;
Set fin = 0 and exit the for loop.

end
end for

end while
return (s1, . . . , sn) if fin = 1, and ⊥ if fin = 0.

4 Equilibria under Simplified User Behavior

To provide theoretical insights about engagement equilibria, we first consider a simple, special case of our
framework where each user is single-minded, and is only interested in a single type of content. We also focus
on the linear-proportional content serving rule of Equation (3) for tractability.
Assumption 4.1 (Single-minded users). For any user k, ck = ef for some f ∈ [d], where (e1, . . . , ed) is the
standard basis.

Note that we only make this assumption in the current section, and that this is an assumption on user and
not producer behavior. This simplified assumption and setting allow us to derive our first insights towards
characterizing the equilibria of our recommender system, and how producers decide what type of content to
produce as a function of the total user weight on each feature. Our experiments in Section 5 show that the
insights we derive in this simple single-minded user setting hold for general types of users under the right
choice of content-serving rule.

Under this assumption, we provide a simplified characterization of the equilibria of our game. We consider
equilibria supported on the standard basis B, following the insights of Theorem 3.4, and let (m1, . . . , md) be
the number of users interested in content type e1, . . . , ed, respectively. We assume mf > 0 without loss of
generality; otherwise, feature f brings utility to no user nor producer, and can be removed. On the procedure
side, we use the notation (n1, . . . , nd) to denote an aggregate strategy profile where for all f ∈ [d], a number
nf of producers pick action ef .
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Lemma 4.2. Suppose Assumption 4.1 holds. For all f ∈ [d], let mf > 0 be the number of users with c = ef .
Under the linear-proportional content serving rule of Equation (3), there exists a pure NE supported on B
and given by (n1, . . . , nd) if and only if

nf

mf
≤ nf ′ + 1

mf ′
for all f, f ′ ∈ [d]. (6)

The full proof is given in Appendix B.1.

Interpretation of the equilibrium conditions Let δf ≜ mf∑d

f′=1
mf′

be the fraction of users that are

interested in feature f . Consider strategy profile nf = δf n, and assume nf is integer5. We show that this
pure strategy profile is an equilibrium of our engagement game, by verifying that Condition(6) in Lemma 4.2
holds for this construction. To see this, note that the equilibrium condition is equivalent to nf

δf
≤ nf′ +1

δ′
f

. On

the left-hand side, we have nf

δf
= n. On the right-hand side, we have nf′ +1

δf′
= δf′ n+1

δf′
≥ n, and the inequality

always holds.

In this equilibrium, the number of producers that pick feature f is (ignoring rounding) proportional to the
number of users interested in feature f . This aligns with intuition: at equilibrium, the probability with which
each producer is recommended to a user should be the same across all features f ; otherwise, a producer
that deviates to a feature f ′ with higher probability will be shown more often and gain more utility. We
note that Hron et al. (2022) made a related observation in a different setting6: they note that producer
content aligns with the average user weight on each embedded feature, with the average producer content
being c̄ = 1

K

∑
k∈K ck at an approximate equilibrium. However, we note that the insight of Hron et al. (2022)

remains different, in that all producers produce the same homogeneous content aligned with c̄; we show
specialization and heterogeneous content production, which we believe are commonplace in practice.

5 Experiments

We now provide experiments that expand our understanding of producer equilibria and utilities at equilibrium
for general user incentives.

5.1 Experimental setup

Synthetic Data We generate three types of user distributions for our synthetic data. In the uniform
distribution, we generate user embeddings c uniformly at random over the probability simplex. Hence, each
feature is equally represented in the data in expectation. In the skewed distribution, we first randomly sample
positive weights w1 ≤ . . . ≤ wd (sampled from the probability simplex and then sorted). We then generate
a uniformly distributed user embedding, but re-weight each feature f by wf to obtain c. This creates a
non-symmetric, skewed distribution where the total user weight for each feature is proportional to wf , leading
to differences across features. We also generate a sparse distribution for which we generate user embeddings
c ∈ Rd uniformly at random over the probability simplex and then apply an element-wise masking operation.
This operation uses random boolean vectors ∈ {0, 1}d, with 90% of its values being zero. As per our modeling
assumptions, we normalize user features c to have ℓ1-norm 1. All synthetic experiments use K = 10, 000
users. We vary the dimension d and the number of producers n.

Real Data Following prior work on producer-side competition, we use the NMF implementation in the
scikit-surprise package (Hug, 2020) to obtain user embeddings for the MovieLens-100k dataset (Harper
and Konstan, 2015); this dataset contains 100k ratings, 943 users and 1682 movies. We also run experiments
with two other, larger-scale ratings datasets: AmazonMusic rating (Ni et al., 2019) and RentTheRunway
clothing rating (Misra et al., 2018), These datasets have around 840k and 100k unique users respectively.

5When δf n is not integral, we can instead round carefully so that nf ’s still add to n, and the proposed strategy remains an
approximate NE, in that the equilibrium conditions are satisfied up to a small additive slack factor

6They use exposure instead of engagement, different assumptions on user preferences, and the softmax content-serving rule
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The insights from our experiments on these datasets turn out to be similar to the Movielens-100k dataset
and are deferred to Appendix F.

Equilibrium computation: a best-response based heuristic We provide a simple heuristic based
on best-response dynamics to compute pure-strategy Nash equilibria in Algorithm 1. In each iteration, it
goes through the list of producers in randomly sorted order. For each producer, it computes the best basis
vector response of the producer. If the producer is already playing a best response, the algorithm goes to
the next producer; otherwise, the algorithm notes the producer is not currently best responding, updates
the producer’s strategy to his best response, and starts the next iteration. If at the end of the for loop, we
realize that all producers are playing a best response, we have found a NE, hence we stop and output the
current strategy profile. If after Nmax iterations, we still have not found a NE, we output ⊥ to signal that
our dynamics did not converge.

We will see that our heuristic terminates the large majority of the time in our experiments; in that case, it
must output a pure Nash Equilibrium, as the algorithm can only terminate when all producers best respond
to each other.7

5.2 Experimental results

Convergence of Algorithm 1 and rate of convergence For our engagement game, we consider 12
different numbers of producers (2, 5, 10, 20, . . . , 100) and 6 different embedding dimensions (5, 10, 15, 20, 50, 100).
Each of these 12 × 6 configurations is instantiated with 5 random seeds to account for the randomness of
the NMF algorithm. Across all 360 instances of the (producers, dimension, seed) configuration, the softmax
content-serving rule with temperatures τ ∈ {100, 10, 1, 0.1} always converges to a unique Nash Equilibrium
(NE) on the Movielens-100k dataset. Even with a low softmax temperature of τ = 0.01, Algorithm 1 still
converges to a unique NE in a large number of instances. Additionally, for the top-k softmax serving rule
reducing the top-k value—making the serving rule "greedier"—results in fewer converged instances. The
linear-proportional serving rule converges in many instances, and the round-robin serving rule as highlighted
in Remark 2.2 always converges to the dimension with maximum weight.

Serving Rule τ = 100 τ = 10 τ = 1 τ = 0.1 τ = 0.01
(Full) Softmax 360 360 360 360 342
(Top-20) Softmax 253 247 232 182 326
(Top-10) Softmax 170 171 165 147 299

(a) Converged instances for Softmax-based serving rules

Serving Rule Converged
Greedy 269
Linear 357
Round-Robin 360

(b) Converged instances for
temperature-independent rules.

Table 1: Convergence to Nash Equilibrium (NE) across serving rules on the Movielens-100k dataset. (a)
Softmax serving rules with varying temperature τ and top k values, (b) Temperature-independent rules.

Further, we examine the rate of convergence of the best response dynamics in Algorithm 1 to a Nash
Equilibrium. In Figure 1 we plot the number of iterations (averaged over 40 runs) of Algorithm 1 with
increasing number of producers and across varying embedding dimensions on the Movielens-100k dataset.
Figures 1a and 1b plot the number of iterations to convergence with the linear and the softmax content-serving
rule. In Appendix D.1, we provide figures for the synthetic datasets and observe insights similar to Figure 1.

Based on the observations above, we conclude that Algorithm 1 empirically seems to be a reliable and
computationally efficient heuristic to find pure Nash equilibria for our engagement game, with performance
scaling well with the number of producers. In contrast, a naive brute-force approach enumerating all best
responses takes exponential time over the number of producers.

7We do not provide theoretical guarantees on the existence of pure NE or convergence of dynamics: in fact, Algorithm 1 does
not converge in a few instances (Table 3), confirming that our game is not what is called a “potential” game. When a game is
not potential, existence of pure NE and convergence of dynamics are not guaranteed, and equilibrium existence certification and
computation is generally a computationally hard problem. Heuristics are often the best that we can hope for.
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(b) the softmax serving rule
Movielens-100k

Figure 1: Number of iterations of Algorithm 1 until convergence to a Nash Equilibrium on the Movielens-100k
dataset. The different curves represent different embedding dimensions in the game d ∈ {5, 10, 15, 20, 50, 100};
the error bars represent standard error over 40 runs.

In the following, we study how changing the softmax temperature affects producer specialization and the
producer utility. We consider 5 different values for the softmax temperature τ ∈ {0.01, 0.1, 1, 10, 100} and use
the linear-proportional serving rule as a benchmark.

Equilibrium results In Figures 2 and 3, we highlight the impact of the content-serving rule and softmax
temperature on the degree of specialization at the instance-level. We show a single (but representative)
instance of the problem in each figure to provide a visual representation of producer specialization at
equilibrium; our insights are consistent across our generated instances.
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(c) Softmax τ = 0.01
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serving rule

Figure 2: Average user weight on each feature (blue, left bar) and fraction of producers going for each feature
(red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads to more
producer specialization. User embeddings obtained from NMF on MovieLens-100k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(a) Softmax τ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(b) Softmax τ = 0.1
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(c) Softmax τ = 0.01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 P

ro
du

ce
rs
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Figure 3: Average user weight on each feature (blue, left bar) and fraction of producers going for each feature
(red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads to more
producer specialization. Skewed-uniform distribution of users.

In Figure 2, we show the Nash equilibria for the linear-proportional serving rule and the softmax serving rule
with varying temperatures on the MovieLens-100k dataset, with user embeddings obtained via NMF. For the
softmax serving rule, we observe that the degree of specialization is decreasing in the temperature τ . We see
specialization occurring as the temperature drops from 100 to 0.01. A high temperature (τ = 100) incentivizes
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homogeneous content production: this is expected, as the content-serving rule becomes largely independent
of producers’ decisions (content is shown with probability converging to 1/n), and producers maximize their
utility by homogeneously targeting the highest-utility content (arg maxf∈d

∑
k∈K ck(f)). When τ is of the

order of 10 is when we first start seeing specialization; and the lowest temperature we experiment with
(τ = 0.01) leads to the most specialization.

In Figure 3, we replicate our experiment on the skewed-uniform dataset. Here too, the degree of producer
specialization is decreasing in the softmax temperature. However, the levels of specialization seem to decrease
for the skewed-uniform dataset and specialization seems to first occur at a lower temperature. This can be
explained by the fact that low-weight features may not be worth targeting and ignored by the producers.

Further, we note that with the linear-proportional serving rule we observe a high level of specialization on
the Movielens-100k and skewed-uniform datasets as seen in Figures 2d and 3d respectively.

In Appendix D.2, we present producer distribution figures for the uniform dataset, which exhibit insights
similar to those in Figure 2. Additionally, we provide extended figures with a few additional softmax
temperatures for the Movielens-100k and Skewed datasets (see Figures 5 and 10). Appendix E includes
producer distribution figures for the sparse synthetic dataset.

Producer utility at equilibrium In Figure 4a, we plot the average producer utility with increasing
softmax-serving temperature and with varying numbers of producers at a Nash Equilibrium. We observe
that the producer utility is decreasing with temperature, and temperature τ = 0.01 (near-hardmax) has the
highest utility. We believe this provides an argument in favour of using low temperatures in the softmax
content-serving rule. Recall that since the average user utility is identical to the average producer utility
(up to a multiplicative factor), the benefit of a low temperature in the softmax-serving also extends to user
utilities.

In Figure 4b, we compare the average producer utility across different serving rules while varying the softmax
temperature. For softmax serving, a lower temperature leads to higher producer utility, similarly, in the top-k
softmax rules, reducing k results in higher utility at the same temperature. This indicates that “greedier”
serving strategies improve producer utility. However, there is a trade-off between increasing producer utility
by making the serving rule greedier and the potential for decreased convergence to a Nash Equilibrium, as
observed in the Nash convergence table 1. Note that the linear and round-robin serving rules are independent
of temperature; we plot the same mean and standard error across all temperature values. Among these,
round-robin serving yields the lowest producer utility, while linear serving remains competitive.
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Figure 4: Average producer utility on the Movielens-100k dataset. (a) Varying the number of producers
n ∈ {5, 10, 50} with embedding dimension d = 15. (b) Comparing producer utility across serving rules: Linear
(blue), RoundRobin (red), Softmax (orange), Top-10/20 Softmax (green/purple) with n = 50 producers and
d = 15. Error bars represent standard error over 5 seeds.
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6 Conclusion

In this paper, we studied engagement games, a game-theoretic model of producers competing for user
engagement in a recommender system. Our main structural result showed that each producer targets a
single feature in embedded space at equilibrium. We then leveraged this structural result to study content-
specialization by producers and showed both theoretically and via extensive experiments that specialization
arises at a pure Nash Equilibrium of our game, and as a result of natural game dynamics. We also observe
that lower temperatures in the softmax content-serving rule incentivize specialization and improve producer
utility. Our linear-proportional serving rule serves as competitive benchmark still demonstrating high levels
of specialization and producer utility.

Limitations As in previous work on producer competition in recommender systems, we assume that each
producer is rational, and fully controls placement of their strategy si. Rationality is a common assumption in
systems with strong profit motives for the producers. Full control may be less realistic, as producers can
modify content features, but they do not know exactly how these changes affect the content embedding.
However, this model provides a first-order approximation to real-life behavior, and the same assumptions are
typical in related work (Hron et al., 2022; Jagadeesan et al., 2022; Yao et al., 2023a; Hu et al., 2023).

Our main structural result holds only for non-negative embeddings. While we make no assumption on how
these non-negative embeddings are obtained, an interesting direction for future work is to study engagement
games with potentially negative embeddings. There, it is not clear whether our best-response dynamics still
converge, and propose to study no-regret dynamics as a direction for equilibrium computation.

Finally, we caution treating the equilibria of our engagement games as definitive; we rather present them as
insights to competition in recommender systems, given the significant complexities of real-world recommender
systems and environments in which they operate.

References
Ran Ben Basat, Moshe Tennenholtz, and Oren Kurland. A game theoretic analysis of the adversarial retrieval

setting. Journal of Artificial Intelligence Research, 60:1127–1164, 2017.

Omer Ben-Porat and Moshe Tennenholtz. A game-theoretic approach to recommendation systems with
strategic content providers. Advances in Neural Information Processing Systems, 31, 2018.

Omer Ben-Porat, Gregory Goren, Itay Rosenberg, and Moshe Tennenholtz. From recommendation systems
to facility location games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1772–1779, 2019a.

Omer Ben-Porat, Itay Rosenberg, and Moshe Tennenholtz. Convergence of learning dynamics in information
retrieval games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1780–1787, 2019b.

Omer Ben-Porat, Itay Rosenberg, and Moshe Tennenholtz. Content provider dynamics and coordination in
recommendation ecosystems. Advances in Neural Information Processing Systems, 33:18931–18941, 2020.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-k off-policy
correction for a reinforce recommender system. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 456–464, 2019.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

Sarah Dean and Jamie Morgenstern. Preference dynamics under personalized recommendations. In Proceedings
of the 23rd ACM Conference on Economics and Computation, EC ’22, page 795–816, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450391504. doi: 10.1145/3490486.3538346. URL
https://doi.org/10.1145/3490486.3538346.

13

https://doi.org/10.1145/3490486.3538346


Published in Transactions on Machine Learning Research (02/2025)

Cristos Goodrow. On youtube’s recommendation system, Sep 2021. URL https://blog.youtube/inside-
youtube/on-youtubes-recommendation-system/.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. 5(4), dec 2015.
ISSN 2160-6455. doi: 10.1145/2827872. URL https://doi.org/10.1145/2827872.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filtering. In Proceedings of the 26th international conference on world wide web, pages 173–182, 2017.

Jiri Hron, Karl Krauth, Michael Jordan, Niki Kilbertus, and Sarah Dean. Modeling content creator incentives
on algorithm-curated platforms. In The Eleventh International Conference on Learning Representations,
2022.

Xinyan Hu, Meena Jagadeesan, Michael I Jordan, and Jacob Steinhard. Incentivizing high-quality content in
online recommender systems. arXiv preprint arXiv:2306.07479, 2023.

Nicolas Hug. Surprise: A python library for recommender systems. Journal of Open Source Software, 5(52):
2174, 2020. doi: 10.21105/joss.02174. URL https://doi.org/10.21105/joss.02174.

Daniel Huttenlocher, Hannah Li, Liang Lyu, Asuman Ozdaglar, and James Siderius. Matching of users and
creators in two-sided markets with departures, 2024. URL https://arxiv.org/abs/2401.00313.

Nicole Immorlica, Meena Jagadeesan, and Brendan Lucier. Clickbait vs. quality: How engagement-based
optimization shapes the content landscape in online platforms. arXiv preprint arXiv:2401.09804, 2024.

Instagram. Instagram ranking explained, May 2023. URL https://about.instagram.com/blog/
announcements/instagram-ranking-explained/.

Meena Jagadeesan, Nikhil Garg, and Jacob Steinhardt. Supply-side equilibria in recommender systems. arXiv
preprint arXiv:2206.13489, 2022.

Dimitris Kalimeris, Smriti Bhagat, Shankar Kalyanaraman, and Udi Weinsberg. Preference amplification in
recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, page 805–815, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383325. doi: 10.1145/3447548.3467298. URL https://doi.org/10.1145/3447548.3467298.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Annual symposium on theoretical
aspects of computer science, pages 404–413. Springer, 1999.

Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. Advances in neural
information processing systems, 13, 2000.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web, pages
661–670, 2010.

Tao Lin, Kun Jin, Andrew Estornell, Xiaoying Zhang, Yiling Chen, and Yang Liu. User-creator feature
polarization in recommender systems with dual influence. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=yWq89o19wf.

Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and Tao Zhou. Recommender
systems. Physics reports, 519(1):1–49, 2012.

R.Duncan Luce. The choice axiom after twenty years. Journal of Mathematical Psychology, 15(3):
215–233, 1977. ISSN 0022-2496. doi: https://doi.org/10.1016/0022-2496(77)90032-3. URL https:
//www.sciencedirect.com/science/article/pii/0022249677900323.

14

https://blog.youtube/inside-youtube/on-youtubes-recommendation-system/
https://blog.youtube/inside-youtube/on-youtubes-recommendation-system/
https://doi.org/10.1145/2827872
https://doi.org/10.21105/joss.02174
https://arxiv.org/abs/2401.00313
https://about.instagram.com/blog/announcements/instagram-ranking-explained/
https://about.instagram.com/blog/announcements/instagram-ranking-explained/
https://doi.org/10.1145/3447548.3467298
https://openreview.net/forum?id=yWq89o19wf
https://www.sciencedirect.com/science/article/pii/0022249677900323
https://www.sciencedirect.com/science/article/pii/0022249677900323


Published in Transactions on Machine Learning Research (02/2025)

Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An efficient non-negative matrix-factorization-based
approach to collaborative filtering for recommender systems. IEEE Transactions on Industrial Informatics,
10(2):1273–1284, 2014.

Zachary Mack. How streaming affects the lengths of songs, May 2019. URL https://www.theverge.com/2019/
5/28/18642978/music-streaming-spotify-song-length-distribution-production-switched-on-
pop-vergecast-interview.

Jeremy B Merrill and Will Oremus. Five points for anger, one for a ‘like’: How facebook’s formula fostered
rage and misinformation. The Washington Post, 26, 2021.

Smitha Milli, Emma Pierson, and Nikhil Garg. Choosing the right weights: Balancing value, strategy, and
noise in recommender systems, 2023.

Rishabh Misra, Mengting Wan, and Julian McAuley. Decomposing fit semantics for product size recommen-
dation in metric spaces. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18,
page 422–426, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450359016.
doi: 10.1145/3240323.3240398. URL https://doi.org/10.1145/3240323.3240398.

John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1018. URL https:
//aclanthology.org/D19-1018.

Amanda Perelli. The creator economy is a $250 billion industry and it’s here to stay — businessin-
sider.com. https://www.businessinsider.com/creator-economy-250-billion-market-and-here-to-
stay-2023-11?utm_source=copy-link&utm_medium=referral&utm_content=topbar, 2023.

Kun Qian and Sanjay Jain. Digital content creation: An analysis of the impact of recommendation systems.
Available at SSRN 4311562, 2022.

Nimrod Raifer, Fiana Raiber, Moshe Tennenholtz, and Oren Kurland. Information retrieval meets game
theory: The ranking competition between documents’ authors. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 465–474, 2017.

Stigler Committee. Final report: Stigler committee on digital platforms. available at https:
//www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-platforms---committee-
report---stigler-center.pdf,, September 2019.

Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A comprehensive review. IEEE
Transactions on knowledge and data engineering, 25(6):1336–1353, 2012.

Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, and Haifeng Xu. How bad is top-k recommendation
under competing content creators? arXiv preprint arXiv:2302.01971, 2023a.

Fan Yao, Chuanhao Li, Karthik Abinav Sankararaman, Yiming Liao, Yan Zhu, Qifan Wang, Hongning Wang,
and Haifeng Xu. Rethinking incentives in recommender systems: Are monotone rewards always beneficial?
arXiv preprint arXiv:2306.07893, 2023b.

Fan Yao, Yiming Liao, Mingzhe Wu, Chuanhao Li, Yan Zhu, James Yang, Jingzhou Liu, Qifan Wang, Haifeng
Xu, and Hongning Wang. User welfare optimization in recommender systems with competing content
creators. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 3874–3885, 2024.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Ajit Kumthekar, Zhe
Zhao, Li Wei, and Ed Chi, editors. Sampling-Bias-Corrected Neural Modeling for Large Corpus Item
Recommendations, 2019.

15

https://www.theverge.com/2019/5/28/18642978/music-streaming-spotify-song-length-distribution-production-switched-on-pop-vergecast-interview
https://www.theverge.com/2019/5/28/18642978/music-streaming-spotify-song-length-distribution-production-switched-on-pop-vergecast-interview
https://www.theverge.com/2019/5/28/18642978/music-streaming-spotify-song-length-distribution-production-switched-on-pop-vergecast-interview
https://doi.org/10.1145/3240323.3240398
https://aclanthology.org/D19-1018
https://aclanthology.org/D19-1018
https://www.businessinsider.com/creator-economy-250-billion-market-and-here-to-stay-2023-11?utm_source=copy-link&utm_medium=referral&utm_content=topbar
https://www.businessinsider.com/creator-economy-250-billion-market-and-here-to-stay-2023-11?utm_source=copy-link&utm_medium=referral&utm_content=topbar
 https://www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-platforms---committee-report---stigler-center.pdf,
 https://www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-platforms---committee-report---stigler-center.pdf,
 https://www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-platforms---committee-report---stigler-center.pdf,


Published in Transactions on Machine Learning Research (02/2025)

A Extended comparison with related work

Paper Producer
Reward

Producer
Dynamics?

User
Dynamics?

Producer
Equilibrium

Ours Engagement Yes No Pure NE
Ben-Porat et al. (2019b; 2020) Exposure Yes No Pure NE
Hron et al. (2022) Exposure Yes No Local NE
Jagadeesan et al. (2022) Exposure Yes No Mixed NE
Hu et al. (2023) Mechanism design Yes No Mixed NE
Yao et al. (2023a) Engagement Yes No CCE
Yao et al. (2023b; 2024) Mechanism design Yes No Local NE
Dean and Morgenstern (2022) N/A N/A Yes N/A
Lin et al. (2024) Engagement Yes Yes N/A

Table 2: Comparing our paper to related work

Ben-Porat et al. (2019a; 2020) study exposure games with finite strategy spaces (producers selecting content
from a finite catalog) and search for Pure NE using graph algorithms. Hron et al. (2022) focus on the concept
of ε-local Nash Equilibria: i.e., given a joint strategy profile (si, s−i), each producer’s i strategy si is optimal
in the open ball at (si, s−i) with radius ε—this is a weaker notion of equilibrium than pure NE, which holds
globally. The work of Jagadeesan et al. (2022) characterizes the support of the mixed Nash Equilibrium of
their game, but do not provide a closed-form expression for said mixed NE—we instead provide a closed-form
characterization in the restricted setting of Section 4. Hu et al. (2023) builds on the exposure model in
Jagadeesan et al. (2022) but studies the mechanism design problem with the platform modeled by a linear
contextual bandit. Yao et al. (2023a) focus on engagement games with the top-k serving rule, studying
no-regret dynamics and the Coarse Correlated Equilibria (CCE) to which these dynamics converge. Yao et al.
(2023b; 2024) address the mechanism design problem, aiming to incentivize welfare-maximizing local Nash
equilibria. The works of Dean and Morgenstern (2022); Lin et al. (2024) model user dynamics, studying user
polarization and do not model producer competition and equilibrium.

B Omitted Proofs

B.1 Proof of Lemma 4.2

First, we note that producer i’s utility is convex in si (following the same proof as in Appendix 3.1), however
is generally not strictly convex. This implies (as for the proof in Appendix 3.1) that each producer i has a
best response in the standard basis B. There may however be best responses supported outside of B, and not
exist an equilibrium supported on B. Yet, note that if there exists a strategy profile in which each producer’s
strategy is supported on B and all producers best respond to each other, it is in fact an equilibrium supported
on B: no producer can improve their utility by deviating within B, and no producer who cannot improve
by deviating on B can improve by deviating outside of B since there is a best response on B. In turn, there
exists an equilibrium supported on B if and only if there exists an equilibrium when producers’ strategies are
restricted to B.

Now, let us restrict ourselves to producers playing on B. Pick any f such that nf > 0. We start by computing
the utility of producer i who plays ef :

ui(ef , s−i) =
K∑

k=1
pi(ck, ef , s−i) · c⊤

k ef =
K∑

k=1

1[ck = ef ]
nf

where the second equality follows from the fact that pi(ef , ef , s−i) · e⊤
f ef = 1

nf
and pi(ef ′ , ef , s−i) = 0 for

f ′ ̸= f . Therefore, the engagement utility from user ck is 0 if ck ̸= ef , and 1/nf if ck = ef . Since there is a
number mf of users with c = ef , it follows that the total engagement utility for producer i, if it picks si = ef ,
is given by mf /nf .
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Now, let us study the deviations for any given producer i with si = ef . Suppose the producer deviates to ef ′

where f ′ ̸= f . Then, the new number of producers picking f ′ is nf ′ + 1, and producer i now obtains utility
mf ′/(nf ′ + 1). Therefore, producer i does not deviate if and only if for all f ′, we have

mf

nf
≥ mf ′

nf ′ + 1 .

Then (n1, . . . , nd) is an equilibrium iff no producer wants to deviate, i.e iff for all f, f ′ such that nf > 0,

nf

mf
≤ nf ′

mf ′
+ 1

mf ′
.

If nf = 0, there is no deviation for any producer that picks ef as such producers do not exist, and the
inequality trivially holds. This concludes the proof.

C Supplementary results on the Movielens-100k dataset

C.1 Producer distribution

Figure 5 shows the producer distribution for the Movielens-100k dataset with softmax serving, illustrating
increased specialization as the temperature decreases. Similarly, Figure 6 shows similar insights for top-20
softmax serving, however, Unlike full softmax, top-20 serving shows specialization even at high temperatures
(τ = 100), as it retains the top 20 producers and serves those producers almost randomly (high τ). Figure 7
presents producer distributions for the three non-temperature-dependent rules: greedy, linear, and round-robin.
Greedy and linear serving result in producer specialization, while round-robin, as highlighted in remark 2.2),
leads all producers to target the highest-weight feature.
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Figure 5: (Full) Softmax serving: Average user weight on each feature (blue, left bar) and fraction of producers
going for each feature (red, right bar) n = 100 producers, embedding dimension d = 15. User embeddings
obtained from NMF on MovieLens-100k.

17



Published in Transactions on Machine Learning Research (02/2025)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(a) Softmax τ = 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(b) Softmax τ = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(c) Softmax τ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(d) Softmax τ = 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
feature #

0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e 

U
se

r 
w

ei
gh

t

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n 

of
 P

ro
du

ce
rs

(e) Softmax τ = 0.01

Figure 6: (Top-20) Softmax serving: Average user weight on each feature (blue, left bar) and fraction
of producers going for each feature (red, right bar) n = 100 producers, embedding dimension d = 15.
User embeddings obtained from NMF on MovieLens-100k, Note: unlike full softmax, top-20 serving shows
specialization even at a high temperature.
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(c) Round robin

Figure 7: Temperature independent serving rules: Greedy, Linear and Round-robin serving, Average user
weight on each feature (blue, left bar) and fraction of producers going for each feature (red, right bar) n = 100
producers, embedding dimension d = 15.User embeddings obtained from NMF on MovieLens-100k.

D Supplementary results on the uniform and skewed synthetic datasets

D.1 Number of iterations until convergence

In Figure 8, we plot the number of iterations (averaged over 40 runs) of Algorithm 1 with increasing number
of producers and across varying embedding dimensions. We do so on the Uniform and Skewed-uniform
datasets. With both the linear-proportional and softmax content serving rules, we observe that Algorithm 1
seems to scale linearly in the number of producers, further highlighting the computational efficiency of our
heuristic.

D.2 Producer distribution

Figure 9 and Figures 10 provide producer distribution plots for softmax serving on the synthetic uniform and
skewed datasets. These plots further highlight how the degree of specialization increases as the temperature
decreases, over a few more softmax temperatures (τ = 10 and τ = 0.1).
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uniform dataset
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skewed-uniform dataset

Figure 8: Number of iterations of Algorithm 1 until convergence to a Nash Equilibrium on the uniform, skewed-
uniform datasets. The different curves represent different embedding dimensions in the game d ∈ {5, 10, 15, 20};
the error bars represent standard error over 40 runs.
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(f) Linear-proportional
serving rule

Figure 9: Average user weight on each feature (blue, left bar) and fraction of producers going for each feature
(red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads to more
producer specialization. Uniform distribution of users.
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(f) the linear-proportional
serving rule

Figure 10: Average user weight on each feature (blue, left bar) and fraction of producers going for each
feature (red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads
to more producer specialization. Skewed-uniform distribution of users.19
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E Experiments on the Sparse synthetic dataset

E.1 Average producer utility

Figure 11 illustrates the average producer utility across serving rules for the sparse synthetic dataset, revealing
trends similar to those observed in Figure 4b in the main text. Specifically, lower k values and lower
temperatures lead to higher producer utility; however, this comes with a decreased likelihood of convergence
to a Nash equilibrium.
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Figure 11: Average producer utility on the Sparse Synthetic dataset: comparing producer utility across
serving rules: Linear (blue), RoundRobin (red), Softmax (orange), Top-10/20 Softmax (green/purple) with
n = 50 producers and d = 15. Error bars represent standard error over 5 seeds.

E.2 Producer distribution at Nash Equilibrium
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(d) Softmax τ = 0.1
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(e) Softmax τ = 0.01
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(f) the linear-proportional
serving rule

Figure 12: Average user weight on each feature (blue, left bar) and fraction of producers going for each
feature (red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads
to more producer specialization. Sparse distribution of users.
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F Experiments on the AmazonMusic and RentTheRunway datasets

F.1 Number of iterations till convergence

Figure 13 plots the number of iterations of Algorithm 1 until convergence to NE, averaged over 40 runs of
best response dynamics, on the AmazonMusic and RentTheRunway datasets. Similar to Figure 1, we note a
fast time to convergence that seems to scale linearly in the number of producers.
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Figure 13: Number of iterations in Algorithm 1 until convergence to a NE on the AmazonMusic and
RentTheRunway datasets. The different curves represent different embedding dimensions in the game
d ∈ {5, 10, 15, 20}, error bars represent standard error over 40 runs.

F.2 Producer distribution at Nash equilibrium

Figures 14 and 15 provide plots for the producer distribution at Nash equilibrium on the AmazonMusic and
RentTheRunway dataset respectively. We note that our insights on how the softmax temperature affects
specialization at equilibrium also arise in these two additional datasets: namely, lower temperatures lead to
higher degrees of specialization.
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Figure 14: Average user weight on each feature (blue, left bar) and fraction of producers going for each
feature (red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads
to more producer specialization. User embeddings obtained from NMF on the AmazonMusic dataset.
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(b) Softmax τ = 10
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Figure 15: Average user weight on each feature (blue, left bar) and fraction of producers going for each
feature (red, right bar) n = 100 producers, embedding dimension d = 15. Lower softmax temperature leads
to more producer specialization. User embeddings obtained from NMF on the RentTheRunway dataset.

F.3 Average producer utility

In Figure 16, we plot the average producer utility with increasing softmax-serving temperature and with
varying numbers of producers on the AmazonMusic and RentTheRunway datasets. As in Figure 4a, we
observe that the producer utility is decreasing with temperature, and temperature τ = 0.01 (near-hardmax)
has the highest utility. This further supports using low temperatures in the softmax content-serving rule.
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Figure 16: Average producer utility is decreasing in the softmax temperature, results on the AmazonMusic
and RentTheRunway datasets. The different curves represent different number of producers in the game
n ∈ {5, 10, 50}, embedding dimension d = 15, error bars represent standard error over 5 seeds

In Figure 17 we compare the average producer utility with the softmax serving rule (across increasing
temperatures) v.s with the linear-proportional serving rule. We observe that across both datasets, the lowest
softmax temperature we experiment with (τ = 0.01) leads to a greater utility when compared to linear serving.
However, linear serving still obtains a competitive utility, greater than that with softmax temperatures
τ ∈ {0.1, 1, 10, 100}.

G Tables for Nash Equilibrium convergence

For our engagement game, we consider 12 different number of producers (2, 5, 10, 20, . . . , 100) and 4 different
embedding dimensions (5, 10, 15, 20). Each of these 12 × 4 games are instantiated with 5 random seeds for the
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Figure 17: Average producer utility with linear serving (in blue) v.s with softmax-serving (in red) across
increasing temperatures on the AmazonMusic and RentTheRunway datasets. n = 50 producers, embedding
dimension d = 15, error bars represent standard error over 5 seeds.

randomness in the draws of the synthetic data, and the randomness of NMF algorithm on the real datasets.
We observe that on each of these 240 instances of (#producer, dimension, seed), the softmax content-serving
rule with temperatures τ ∈ {100, 10, 1, 0.1} always converges to a unique NE on all the datasets. With
softmax temperature τ = 0.01, Algorithm 1 still converges to a unique NE in a large number of instances.
The linear-proportional serving also converges to a unique NE almost always.

Dataset \ Serving Rule Linear Softmax
τ = 100 τ = 10 τ = 1 τ = 0.1 τ = 0.01

Uniform 239 240 240 240 240 232
Skewed-uniform 240 240 240 240 240 240
Movielens-100k 240 240 240 240 240 233
AmazonMusic 240 240 240 240 240 236
RentTheRunway 240 240 240 240 240 237

Table 3: Number of instances in which Algorithm 1 converges to a Nash equilibrium

H Reproducibility

Here we briefly describe the datasets, embedding generation, and experiments. The code and further details
are available in the supplementary.

Datasets: We import the Movielens-100k dataset from the scikit-surprise package. For the Amazon-
Music ratings we use the “ratings only” Digital_Music.csv from https://nijianmo.github.io/amazon/
index.html, this dataset has approximately 1.5 million ratings, 840k unique users and 450k unique items. For
RentTheRunway we use https://cseweb.ucsd.edu/~jmcauley/datasets.html#clothing_fit, this dataset
has around 190k ratings, 100k unique users and 5.8k unique items.

Embedding generation: We consider the following embedding seeds {13, 17, 19, 23, 29} for randomness in
the embedding generation. These 5 embeddings seeds are used in the random draws for the synthetic uniform
and skewed embeddings, and for the randomness in the Non-negative matrix factorization embeddings for
the Movielens-100k, AmazonMusic and RentTheRunway datasets. Note that the real data embeddings
are generated using the NMF implementation in scikit-surprise where we pick 4 different factors d ∈
{5, 10, 15, 20}. The synthetic and real data embeddings take 2.6 CPU hours in total to generate and are
saved for further use in the experiments.

Note that to parallelize workloads for embedding generation and for the following experiments we use Slurm
job arrays.
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Experiment 1 : Convergence of Algorithm 1 For our engagement game, we consider 12 different
number of producers n ∈ {2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and 4 different embedding dimensions
d ∈ {5, 10, 15, 20}. Each of these 12 × 4 engagement games are instantiated with the 5 embedding seeds
described above which determine the user embeddings for a dataset. We then run Algorithm 1 40 times with
the maximum number of iterations Nmax set to 500. In each of the 40 trials of Algorithm 1 the producer
strategies are randomly initialized using the sequential seeds {1, 2, . . . 40}. We then plot the mean and
standard error across these in Figure 1,8 and 13. All plots use a softmax temperature of τ = 1 for simplicity
of exposition.

This experiment on the Uniform, skewed and Movielens-100k datasets take approximately 50, 74 and 3 total
CPU hours respectively. With the larger scale AmazonMusic and RentTheRunway it takes ∼ 4.5k and 1k
total CPU hours.

Experiment 2 : Producer distribution and utility

Producer distribution: Here we fix the embedding seed to 17, and plot the producer distribu-
tion for the linear serving rule and for the softmax-serving rule after Algorithm 1 terminates. Note that here
we don’t report mean producer distribution across embedding seeds as this can hide lack of specialization,
in the following manner: for a given embedding, only a few features are targeted by the producers, like in
Figure 9b all producers go for index #2. However, the specific index of the feature could change as the
embedding seed changes. In that case, when averaging over the seeds, we may be under the impression that
specialization occurs, when it does not.

Producer utility: Here for each of the 12 × 4 instances of #producers n and dimension d, we instantiate the
engagement game with linear-serving and 5 different softmax-serving temperatures τ ∈ {0.01, 0.1, 1, 10, 100}.
We measure the average producer and user utility at the unique Nash equilibrium and report its mean across
the 5 embedding seeds. Average utilities are measured by taking the average across converging runs, and
non-converging seeds are dropped.

This experiment on the Uniform, skewed and Movielens-100k datasets take approximately 4.4, 7 and 0.5 total
CPU hours respectively. With the larger scale datasets, AmazonMusic and RentTheRunway, it takes ∼ 530
and 105 total CPU hours.
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